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Abstract

A decision maker confronted with the task of designing a clinical trial

has to consider a multitude of aspects. Large trials lead to more evidence,

which in turn makes it less likely that harmful decisions are taken when

deciding on future treatments for patients. On the other hand, large trials

typically require substantial financial resources and may take a long time

to finish. This trade-off between the cost of pharmaceutical R&D and the

value of the data generated motivates a study of how clinical trials can

be optimised in practice.

The size of the trial is but one aspect of its design. In a setting

where there is some prior evidence that a treatment works better for

a subpopulation defined by a biomarker, it is natural to ask whether

the resources available are best spent by restricting trial recruitment via

biomarker screening. The optimal trial design also depends on the type

of the decision maker. For a commercial sponsor, it is vital that invested

resources may eventually be recouped via incomes from sales. On the

other hand, a publicly funded trial might instead be optimised purely from

a public health perspective. By viewing the trial as a stage in a sequential

problem, post-trial decisions regarding pricing for a new treatment may

also affect optimality.

Bayesian decision theory is a flexible framework that may be applied

when searching for an optimal course of action in an uncertain environ-

ment. In particular, it allows for different beliefs prior to the trial and

different preferences for the trial outcomes. This thesis presents two pa-

pers in which Bayesian decision theory is used to find the optimal trial

design under two different models for the contemporary regulatory envi-

ronment. In addition to providing a methodology for trial design in the

specific situations considered, the analysis also leads to insights regarding

the impact of typical regulatory rules on the behaviour of trial sponsors.

Keywords: Bayesian statistics, decision theory, clinical trials, pharmaceutical
R&D, drug regulation, subgroup analysis, multiple testing, health economics.
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Chapter 1

Introduction

This licentiate thesis consists of two papers in which Bayesian Decision Theory
(BDT) is used to optimise clinical trial designs. Both papers consider opti-
misation problems where a pharmaceutical company’s expected profit is to be
maximised. From such a perspective, the aim is to choose a trial design that
balances the probability of getting regulatory approval for market introduction
of a new medical treatment with the cost and time duration associated with the
design. Paper II also considers trial optimisation from a public health perspec-
tive, replacing the profit maximisation goal with that of maximising the total
health benefits for the target population.

The idea of using utility functions to associate a numerical value with every
possible outcome of a decision process is basic to the BDT framework. As
compared to, for example, the classical power-based method of determining a
sample size, this brings additional flexibility since all relevant gains and costs
associated with the trial can be aggregated and represented in terms of a utility
function. Given a fixed set of regulatory rules for the market introduction of
a new treatment, the specification of a probabilistic model and an appropriate
utility function leads directly to a maximisation problem. The purpose of this
thesis is to provide an analysis of how rational decision makers act in some
different models for the regulatory environment for approval and reimbursement
of new medical treatments.

The work presented in this thesis is part of an EU project called Integrated
DEsign and AnaLysis of clinical trials in small population groups (IDEAL).
Small population groups may arise because the treatment is for a rare disease
or is only expected to work in a small subset of the total population. Trial
design in such situations often requires a more careful analysis of how to make
the most of the necessarily small sample sizes. Consisting of a multidisciplinary
consortium of researchers from universities, research institutes and the industry,
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2 Chapter 1. Introduction

the purpose of the IDEAL project is to develop statistical methods that are
sufficiently general to handle also the special case of small population groups.
From a regulatory perspective, small population groups also raise questions that
are not purely statistical. If a pharmaceutical company expects the final market
to be small, will it view basic research in this area as a viable investment? If
not, what needs to be changed in the regulatory structure so as to incentivise
more research targeting small population groups? The economic resources of
any society are limited, so how should the cost of implementing the incentives
be balanced against the potential health gains? To answer these questions, it
is necessary to have a good understanding of how rational decision makers act
in different regulatory situations.

The content of this thesis is structured as follows. Chapter 2 contains a brief
introduction to the basic terminology and history of clinical trials. It also de-
scribes the typical regulatory structure in place for the approval of new medical
treatments and introduces some terminology for biomarkers which is used in
paper II. Chapter 3 contains an introduction to the BDT methodology, which
is the basic tool used to frame the problems of both paper I and paper II. To
illustrate the typical steps involved in modelling and optimisation, this section
contains three example applications: the optimisation of sample size in a clinical
trial from a public health perspective, the computation of the expected value
of perfect information about a certain regulatory parameter, and the sequential
optimisation of the sample size for a phase II trial and the subsequent GO or
NO GO decision for two phase III trials. Chapter 4 presents the basic notions
of multiple hypothesis testing. In particular, the Speissens-Debois adjustment
procedure used in paper II is discussed in detail. Two basic results from math-
ematical analysis, the implicit function theorem and the envelope theorem, are
briefly stated in Chapter 5. Both are extensively used in the theory presented
in paper I. Chapter 6 contains short summaries of the contents of paper I and
paper II. Chapter 7 contains a discussion and a conclusion.



Chapter 2

Clinical trials

A clinical trial is an experiment performed on human subjects for the purpose
of generating data that may be used to evaluate the efficacy and safety of a
medical treatment. The treatment need not be a drug, but could just as well
be a certain diet, a specific usage of a medical device or any other well-defined
intervention in the life of a patient. Often, the term ’drug’ will be used in this
thesis to refer to a chemical substance under clinical development. However,
in many cases the discussion also carries over to the more general concept of a
medical treatment.

The purpose of performing a late-stage confirmatory or pivotal clinical trial
is to generate information about a treatment that may aid a governmental body
tasked with determining if the benefit outweighs the associated risk in a certain
target population. Often, the treatment is compared with a placebo alternative,
which could for example be inert tablets (sugar pills). After the trial, when a
decision is to be made on whether or not to introduce a new treatment, there
may still remain some uncertainty as to which choice that is the right one. On
the one hand, approval of a new treatment with unknown safety issues could
lead to serious long-term consequences for some patients. On the other hand, an
overly strict policy of rejection could mean that potentially beneficial treatments
would never reach the patients. The information obtained from a well-designed
clinical trial reduces the probability that the wrong approval decision is made.
In general, more participants in the trial leads to a greater body of evidence for
supporting the approval decision. At the same time, clinical trials are typically
very costly and the resources spent on a particular trial might have been better
spent elsewhere. This is the basic trade-off: how much of available resources is it
worthwhile to invest in a trial in order to reduce the uncertainties regarding the
efficacy and safety properties of a given treatment? In addition to the increased
cost of a larger trial, it is also important to keep in mind that a larger trial will
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4 Chapter 2. Clinical trials

typically take a longer time to perform. Since the new treatment is unavailable
to the general population for the duration of the trial, this provides another
reason to keep it at a moderate size as long as the amount of evidence obtained
is not overly compromised.

The following sections in this chapter give a brief introduction to the history
and current status of clinical trial methodology. There are a number of books
and review articles available for a reader who wishes to learn more about the
subject. Chow and Liu (2014) provides a broad overview of both the prac-
tical and theoretical issues of the design and analysis of clinical trials. They
cover the regulatory structure for approval of new treatments as implemented
by the FDA and the basic statistical methods available for different kinds of
trials. Speigelhalter et al. (2004) focus on the use of the Bayesian approach but
also cover issues connected to health-care evaluation, such as cost-effectiveness
analysis. An introduction to adaptive Bayesian designs is given by Berry et al.
(2011). Ondra et al. (2016) present a review of different trial designs involving
biomarkers that have been proposed in the literature.

2.1 History of clinical trials

The regulations controlling the testing and market introduction of new treat-
ments have been under continuous development during the last century, even-
tually leading up to the present day situation in which substantial financial
investments and many years of development are needed in order to bring a new
drug from discovery to patient usage. DiMasi et al. (2016) estimate the average
out-of-pocket cost per approved new compound to be 1395 million USD (2013
dollars). Kaitin and DiMasi (2011) present data on the average times required
for the total clinical phase (phase I, II and III trials) and subsequent approval
phase (evaluation of trial evidence by regulators) for new drugs approved in the
U.S. For the 5-year period 2005-2009, average times of 6.4 years for the total
clinical phase and 1.2 years for the approval phase are reported. Before a drug
enters the clinical development stage, several years have typically been spent
on pre-clinical research.

The regulations that exist for the marketing of new treatments are not the
same across different regions of the world. From the viewpoint of this thesis,
the most important regulatory agencies are the U.S. Food and Drug Admin-
istration (FDA) and the European Medicines Agency (EMA). The FDA was
formed in 1931. Its main objectives, as regards drug regulation, is to ensure
that drugs are safe and effective and that such products are honestly and in-
formatively labelled (Chow and Liu, 2014). As an example of the importance
of testing new treatments on human subjects in clinical trials, before making
a decision on whether or not to bring the treatment to the open market, we
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may consider the well-known example of the Elixir Sulfanilamide disaster which
occurred in the late 1930s. This drug had never been tested in human sub-
jects before market introduction. Safety issues with this drug eventually led to
more than 100 deaths and to the passing of The Federal Food, Drug and Cos-
metic Act in 1938, requiring pharmaceutical companies to submit reports on
the safety of new drugs. A later amendment (the Kefauver-Harris Amendment
of 1962) strengthened the safety requirements and also introduced requirements
on efficacy for the first time.

EMA was founded in 1995 with the purpose to harmonise the work of the
national level regulatory bodies within the EU (EMA, 2016). It works to ensure
the efficacy and safety of human and veterinary medicines in Europe and pro-
vides a centralised procedure for the evaluation of applications for marketing
authorisation. EMA does not decide on the price or availability of authorised
treatments. Such decisions are made on the national level by the EU member
states’ health technology assessment bodies.

2.2 Contemporary clinical development

Speigelhalter et al. (2004) use the following classification for the stakeholders
involved in the clinical development process. Sponsors are agents (e.g., pharma-
ceutical companies) paying for the trial and are generally interested in eventu-
ally being able to make a profit from the investments in research. Investigators
are responsible for the actual conduct of the study. Reviewers are responsible
for analysing the safety and efficacy issues and decide on marketing approval,
whereas policy-makers are more concerned about the total cost-benefit impact
of a new treatment. The consumers are the individual patients that derive
benefit from a treatment.

In this thesis, a slightly different terminology is used. For-profit pharma-
ceutical companies that aim to get regulatory approval for introducing their
products on the market are referred to as commercial sponsors. However, a
sponsor could also be a publicly funded research institute or health care or-
ganisation that aims to maximise the quality and quantity of the health care
benefiting society at large. Hence, a sponsor in the most general sense is an
agent paying for the trial. A reviewer is referred to as a Regulatory Author-

ity (RA). Using the clinical trial evidence provided by a sponsor, it decides on
marketing approval for a proposed treatment. Given that such approval has
been granted, it is up to a Health Care Insurer (HCI) to decide on the level
of payment for the new treatment, balancing economic considerations with the
overall benefit-risk profile of the new treatment. The general terminology for
the stakeholders involved in the process of bringing a new treatment to a market
can be applied to the regional EU and U.S. markets. In the U.S., the FDA takes



6 Chapter 2. Clinical trials

on the role as the RA. Payment is typically provided by insurance companies,
which thus constitute the HCI’s. In the EU, EMA is the RA, while the HCI’s
are taken to be the country-level health care authorities or insurance companies.

We will now consider the different viewpoints and aims of a sponsor, an
RA and a HCI. For a commercial sponsor, the goal of the entire development
process is to obtain a return on the investment made in the clinical trials for
the new treatment. When the sponsor deliberates on which decision to make
at a certain point in the process, its objective is assumed to be to maximise its
expected future profits. The main decision rule used by the RA is assumed to
be the demonstration of a statistically significant effect for the new treatment
vs. placebo relative to some specified value for the type I error. This demon-
stration should be done by means of one or two (independent) clinical trials.
The conventional requirement may be found in section 3.5 of the International
Council for Harmonisation of Technical Requirements for Pharmaceuticals for
Human Use’s (ICH) guidance on efficacy E9 (ICH, 2016),

Conventionally the probability of type I error is set at 5% or less
or as dictated by any adjustments made necessary for multiplicity
considerations; the precise choice may be influenced by the prior
plausibility of the hypothesis under test and the desired impact of
the results. The probability of type II error is conventionally set
at 10% to 20%; it is in the sponsor’s interest to keep this figure as
low as feasible especially in the case of trials that are difficult or
impossible to repeat. Alternative values to the conventional levels
of type I and type II error may be acceptable or even preferable in
some cases.

A significance level of 5% was suggested by Fisher (1946) as a convenient cutoff
level to reject a null hypothesis. Although this suggestion has developed into a
regulatory convention, Fisher did not intend that this cutoff level be fixed at the
same level regardless of application. Instead, he recommended that a specific
significance level be set according to circumstances (Fisher, 1956). Typically, a
requirement on power is set at between 80 and 90%. The RA will certainly also
consider safety aspects of a treatment, although the precise nature of safety
evaluations are often not as explicit as the requirements on efficacy. Neither
paper I nor paper II contains detailed models of the RA’s safety considerations.

Given that the treatment has been deemed sufficiently safe and efficacious
for market introduction by the RA, the HCI decides on reimbursement based
on both the benefit-risk balance and the cost of the treatment. The extent to
which monetary and purely health related concerns are (or should be) combined
is a complex ethical issue. Hence, it is unsurprising that the HCI conduct differs
greatly between individual nations and regions. One HCI of particular impor-
tance to this thesis is the National Institute of Clinical Excellence (NICE) in
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the U.K. The role of NICE is to provide guidance to health providers and help
support the decisions on which treatments that are to be covered by govern-
mental reimbursement schemes. It is used, in paper I, as a specific example of
a HCI that is willing to directly associate an incremental health benefit with a
monetary cost. For this, it combines both positive and negative health effects
of the treatment into a common measure referred to as Quality Adjusted Life
Years (QALYs).

Since the late 1970s, the FDA divides clinical development into three se-
quential stages. These stages are referred to as phase I, II and III (Chow and
Liu, 2014). Phase I trials include a small number of healthy volunteers. The
main objective of these early trials is to obtain information about the drug’s
pharmacokinetic and pharmacologic properties and how the efficacy and side
effects vary with the dose level. Barring any serious safety events, the testing
proceeds to phase II. The participants in this stage typically number in the hun-
dreds. The main objective of phase II is to find the proper dosing for the new
drug, striking a balance between its beneficial effects and the risks associated
with any potential side effects. The procedure is concluded in phase III, which
consists of one or several (independent) relatively large clinical trials (partici-
pants may number in the thousands), the purpose of which is to provide the
major part of the evidence that the overall benefit-risk balance of the new drug
is acceptable. The two papers which constitute this thesis are concerned with
phase III trials.

2.3 Biomarkers and subgroup analyses

Paper II is concerned with optimising pivotal clinical trials investigating treat-
ments for which there exists some indication of a superior performance in a
subgroup of the target population. One way to define subgroups is through the
concept of a biomarker. A definition which fits the purpose of this thesis is the
one provided by the Biomarkers Definitions Working Group (2001),

Biological marker (biomarker): A characteristic that is objectively
measured and evaluated as an indicator of normal biological pro-
cesses, pathogenic processes, or pharmacologic responses to a ther-
apeutic intervention.

A biomarker can be either prognostic or predictive (or both). A prognostic
biomarker is one which can be used to characterise the general outcome for a
patient with a certain condition, independently of any specific treatment. In
contrast, a biomarker is predictive only with respect to a specific treatment, the
idea being that the biomarker status may be used to predict how well a patient
responds to the treatment in question. In general, a patient response consists
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of an efficacy response and a safety response, corresponding to any side-effects
of the treatment. Whether or not the biomarker can be used to predict the
efficacy response or the safety response (or both) depends on the type of the
biomarker and the properties of the screening procedure used to determine its
status for a specific patient.

In general, there are both discrete and continuous biomarkers. However,
paper II only considers the special case of a predictive binary biomarker. Note
that the biomarker status of a patient, as determined by the screening proce-
dure, is not treated as a response variable in this thesis. It is only used as a
covariate that influences the efficacy response. Although a biomarker need not
be genetically based, an important area where such examples do occur is that
of clinical trials investigating cancer treatments (see, for example, Ziegler et al.
(2012) for a high-level review). Cancer involves changes to the DNA at a cel-
lular level which in some cases can be directly measured in the tumour. These
changes may sometimes be mapped to a binary biomarker status correspond-
ing to, for example, the presence or absence of a specific gene mutation. The
biomarker status can then be used to decide on the best course of treatment.

2.4 Bayesian vs. frequentist methods in clinical

trials

Although Bayesian methods continue to see an increasing use, the dominat-
ing approach to the design and analysis of confirmatory clinical trials is still
what is commonly referred to as the classical or frequentist approach. As noted
by Senn (2007), this classical approach is really a hybrid one, employing the
Neyman-Pearson framework during the design stage while being Fisherian dur-
ing analysis. The purpose of this thesis is not to enter into a discussion about the
respective virtues and drawbacks of the frequentist and Bayesian approaches.
Rather, it is recognised that the Bayesian decision theoretic approach seems a
viable one for handling the practical problems of specific concern to this thesis,
namely, how to make the most of the limited sample sizes achievable for rare
disease trials and how to combine different aspects of the possible outcomes of
a trial by means of utility functions.

It is important to note that when a particular decision problem is solved
in this thesis, it is not assumed that all stakeholders involved in the process
are taking decisions which are optimal relative to some BDT model. Instead,
optimisation with respect to a full BDT model is done only for the sponsor. The
decision rules for the RA and the HCI are modelled after current conventions.
For the RA, this typically means that the rule is based on a classical significance
test.



Chapter 3

Bayesian decision theory

Bayesian decision theory is a prescriptive theory that can be used to determine
the optimal course of action for a decision maker faced with a situation involv-
ing uncertainty. The theory is referred to as ’Bayesian’ because any uncertainty,
regardless of its source, is associated with a probability distribution. An argu-
ment which is often put forward to justify the use of BDT is that a decision
maker which aims to avoid inconsistent behaviour must act as if it represents
degrees of beliefs by probability distributions and preferences about possible
consequences by a utility function. Moreover, the action to be chosen should
be the one that maximises the expected utility. Formally, this result is shown
by imposing certain axioms (often referred to as ’axioms of rationality’) on a
mathematical abstraction of a general decision problem. The purpose of the ax-
ioms is to ensure that certain behaviour that many would regard as obviously
inconsistent, or irrational, is avoided by any decision maker that follows them.
Many variations of this formal argument can be found in the literature. For one
of the earlier expositions, see Savage (1972). Another comprehensive treatment
of the foundations of BDT is given by Bernardo and Smith (1994).

The clinical trial design problems that are analysed in papers I and II can
both be formulated as statistical decision problems (DeGroot, 1970, p. 136).
In this class of problems, the decision maker is to make a final decision, the
consequence of which depends on the value of some unknown parameter. Be-
fore making the final decision, the decision maker has the option to perform an
experiment in order to increase the knowledge that it has about the parameter
value. The data generated by the experiment is used to increase the probability
of making a final decision leading to the most desirable consequence. Follow-
ing Raiffa and Schlaifer (1961), a statistical decision problem may formally be
described as an ordered list with four components, (E ,X ,D,Θ), where

9



10 Chapter 3. Bayesian decision theory

• E is a set of experiments,

• X is a sample space of possible observations that may result from the
experiments in E ,

• D is a set of possible decisions, and,

• Θ is a parameter space.

The decision maker selects an experiment e ∈ E , observes a result X ∈ X 1, and
selects a final decision d ∈ D. The consequence that results from d depends on
the value of θ ∈ Θ.

In addition to the basic structure formalised by (E ,X ,D,Θ), in order to
complete the specification of a statistical decision problem and thus enable the
computation of the optimal course of action, the decision maker must specify
its beliefs regarding X and θ in terms of a joint probability distribution. Fur-
ther, it must also specify its preferences regarding any combination of decisions,
observations and parameter values by means of a real-valued utility function
u(e, x, d, θ). Typically, the joint distribution of (X, θ) is defined by specifying
a prior distribution for θ and a conditional distribution for the observation X
given that the experiment e is performed and that θ is the true parameter value.

Having fully formalised the decision problem, the goal of the decision maker
is to find a decision rule δ which maximises its expected utility. Such a decision
rule consists of an experiment eδ and a function dδ that maps every possible
outcome of the experiment to a final decision dδ(x). Hence, the problem may
be written as

max
δ

E [u(eδ, X, dδ(X), θ)] . (3.1)

The decision problem analysed in paper I has two stages. In the first stage,
a pharmaceutical company chooses a sample size for a phase III trial and then
observes the outcome. In the second stage, the company chooses a price for the
new treatment. A HCI then decides whether or not to reimburse the company
for the new treatment. This problem is easily reinterpreted as a statistical
decision problem. Specifically, one may take E to be the union of a NO GO
decision and the set of possible sample sizes corresponding to a GO decision
in the first stage. D can be chosen as the set of possible prices in the second
stage. In paper II, there is only a single stage, corresponding to the selection of
a clinical trial design (of which the sample size decision constitutes one part).
However, that situation may also be mapped to a statistical decision problem
by simply taking E to be the set of available trial designs and letting D be a

1We follow the convention of denoting random variables by capital letters and specific
realisations by the corresponding small letters. For example, X is a random variable before
the experiment, with some specific realisation x after the experiment is completed.
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set containing a single element. Such a definition for D implies that there is no
choice involved and that the statistical decision problem therefore is reduced to
a single stage problem.

3.1 The method of backward induction

An optimal decision rule δ∗ can be found using the method of backward in-
duction, which proceeds backwards in the decision problem while computing a
sequence of induced utilities. The first step is to compute the expected utility
of choosing d given that x was observed in the experiment e,

ū(e, x, d) ≡ E [u(e, x, d, θ)|e, x] .
This is done for all triples (e, x, d) ∈ E × X × D. Since the decision maker is
free to choose any d ∈ D, the rational choice is to select the one maximising
ū(e, x, d). Therefore, the optimal decision rule given e is

dδ∗(x) = argmax
d∈D

ū(e, x, d),

with a corresponding induced expected utility

ū∗(e, x) ≡ max
d∈D

ū(e, x, d).

The next step is to find the experiment that maximises the expected utility of
observing the outcome X, given that the optimal rule dδ∗(x) is subsequently
followed. The induced expected utility corresponding to a specific e may be
written as

ũ(e) ≡ E [ū∗(e,X)|e] ,
and the optimal choice of e is therefore e∗ ≡ argmaxe∈E ũ(e), with a corre-
sponding optimal expected utility ũ∗ = maxe∈E ũ(e). The optimal decision rule
δ∗ = (e∗, dδ∗) constructed in this way solves the problem in Eq. (3.1). The
interleaving operations of expectation and maximisation used to obtain the rule
implies that the corresponding optimal utility may be written as

ũ∗ = max
e∈E

E

[
max
d∈D

E [u(e,X, d, θ)|e,X]

∣∣∣∣e
]
.

The formalism for a single experiment can easily be generalised to situations
involving a sequence of experiments with corresponding observations. Such a
sequential statistical decision problem2 of k stages prior to the final decision

2Clearly, the original problem already contains two stages, and may therefore be considered
a sequential decision problem. However, since the notion of a statistical decision problem
always formally contain at least one experiment and one final decision, ’sequential’ is used
when more than one experiment is performed before the final decision.
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may be specified as (E1,X1, . . . , Ek,Xk,D,Θ). This generalisation leads to no
conceptual difficulties since the method of backward induction may still be
used to construct an optimal decision rule. However, the computational effort
required to find the optimal rule obviously increases with the number of stages.

In order to illustrate the method of backward induction, the remaining sec-
tions of this chapter describes three different examples.

3.2 Optimisation of sample size

This section presents an example of sample size optimisation in the context of a
parallel-group trial comparing a new treatment A with a placebo alternative B.
An equal randomisation of n patients to the two groups is assumed, implying
a per-group sample size of n/2. In practice, different group sizes may result
as a consequence of the recruitment or randomisation process. Such issues are
ignored in the simple model treated here.

The unknown, incremental clinical utility3 of A vs. B is denoted by θ. The
individual responses in the two arms are assumed to be i.i.d. random variables
which are combined into two sample means, X̄A and X̄B . The variance of each
individual response is for simplicity assumed to be known and equal to σ2. The
difference X̄ = X̄A − X̄B is used to estimate θ under the assumption that

X̄ | n, θ ∼ N (
θ, 4σ2/n

)
.

A normal conjugate prior with zero mean is assumed for θ, so that

θ ∼ N (
0, 4σ2/n0

)
.

This prior formalises the knowledge about θ that is available to the decision
maker before the data from the trial has been observed. By the probabilistic
assumption of a normal conjugate model, the posterior distribution of θ given
the observed value of the sample mean X̄ (and n) is also normal. Writing the
prior variance as 4σ2/n0 makes it easy to compare the amount of information
about θ in the prior with the information about θ provided by the trial sample.

The decision procedure is as follows. First, a non-negative sample size n ∈
[0, N ] is selected, where N > 0 denotes the total size of the target population
for the new treatment. To facilitate the use of calculus to solve the problem, n
is assumed to be a continuous quantity, although in practice it must of course be
an integer. After the trial, a decision d ∈ {0, 1} is taken on which treatment to
give to the patients in the target population, where d = 1 and d = 0 correspond

3Clinical utility is taken to be some measure that incorporates both efficacy and safety
aspects (side-effects) of a treatment. It should be thought of as a real number corresponding
to the net health benefit that a treatment brings to a patient.
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to treatment A and B, respectively. Hence, in terms of the general list structure,
for this particular problem we have (E = [0, N ],X = R,D = {0, 1},Θ = R).

The utility of choosing a sample size n, observing a sample mean x̄, and
taking the post-trial decision d, given that θ is the true incremental clinical
utility in the population, is taken to be the aggregated, incremental clinical
utility for both in-trial and post-trial patients. Note that, in order to simplify
the problem for presentation purposes, any monetary trial costs are ignored.
However, there are still ’trial costs’ involved (in units of clinical utility) since
half of the patients in the trial are given an inferior treatment. Formally,

u(n, x̄, d, θ) =
nx̄

2
+ d(N − n)θ.

We now proceed to solve the problem of finding the optimal sample size n∗

maximising the expected utility. By the standard result for normal conjugate
updating (Raiffa and Schlaifer, 1961), the posterior distribution of θ given n
and X̄ is

θ | n, X̄ ∼ N
(

nX̄

n0 + n
,

4σ2

n0 + n

)
.

It follows that the induced utility of choosing n, observing x̄ and subsequently
selecting a treatment option d is

ū(n, x̄, d) = E

[nx̄
2

+ d(N − n)θ
∣∣∣n, x̄] = nx̄

2
+ d(N − n)E [θ|n, x̄]

=
nx̄

2
+ d(N − n)

(
nx̄

n0 + n

)
.

Maximising over d ∈ {0, 1} gives

ū∗(n, x̄) =
nx̄

2
+

(N − n)n

n0 + n
max (0, x̄) .

Now, it may easily be shown that if Y is a random variable distributed as
Y ∼ N (

0, σ2
Y

)
, then E [max(0, Y )] = σY /

√
2π. Therefore, since the prior

predictive distribution for X̄ is given by X̄ ∼ N (
0, 4σ2/n0 + 4σ2/n

)
,

ũ(n) =
(N − n)n

n0 + n
E
[
max

(
0, X̄

)∣∣n] = N − n√
2π

√
4σ2

n0

√
n

n0 + n
. (3.2)

It follows directly from the expression for ũ(n) in Eq. (3.2) that it is a differen-
tiable function of n and that there must exist a global maximiser in (0, N). By
computing ũ′(n) and solving ũ′(n) = 0, it follows that the optimal sample size
is given by

n∗ =
n0

4

(√
9 +

8N

n0
− 3

)
. (3.3)
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Fixing n0 and using Eq. (3.3), it is straightforward to show that

n∗ ∼
√

n0

2

√
N, N → ∞.

If N is held fixed, then limn0→0 n
∗ = 0 and limn0→∞ n∗ = N/3.

An interesting recent contribution by Stallard et al. (2016) contains a de-
tailed analysis of a generalised version of the problem considered in this section.
The authors show that the optimal sample size is O(

√
N) as N → ∞, under the

assumptions that the distribution for the primary endpoint has a one-parameter
exponential family form and that the utility for each patient is a continuous
function of the parameter. In addition to the result for a fixed value of N , they
also extend the asymptotic analysis to the case in which N is unknown and has
a geometric distribution.

3.3 EVPI analysis for a sponsor

This section presents an example using the concept of Expected Value of Perfect
Information (EVPI). For a formal, general definition, see Raiffa and Schlaifer
(1961, p. 88). To simplify the presentation, the concept of EVPI will be de-
fined here only within the context of the specific example discussed. As noted
previously, although both efficacy and safety concerns are important, the pre-
cise way in which these are combined and jointly evaluated by a RA is often
unclear. Such uncertainty about the RA’s decision rule impacts the optimal
decision-making behaviour for a commercial sponsor. The EVPI provides a for-
mal way to quantify the sponsor’s expected gain if the RA clarifies its decision
rule.

Suppose that a commercial sponsor is planning a confirmatory, parallel-
group clinical trial comparing a new treatment with placebo. Assume an equal
randomisation resulting in n/2 patients per group. The incremental mean ef-
ficacy and safety responses in the target population are denoted by θe and θs,
respectively. It will be assumed that the data from the trial is combined into
estimates X̄ and Ȳ , distributed according to[

X̄
Ȳ

]
| n,

[
θe
θs

]
∼ N

([
θe
θs

]
,
4

n

[
σ2
e ρσeσs

ρσeσs σ2
s

])
. (3.4)

Further, it will also be assumed that the RA combines the efficacy and safety
responses into a clinical utility response X̄ − κȲ , and that market approval is
granted if the null hypothesis H0 : θe − κθs = 0 can be rejected for a one-sided
significance level α. For simplicity, the parameters θe and θs are assumed to be
known by the sponsor. The computations that follow can also be carried out
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when a prior is placed on them, but the focus in this section is that the sponsor
is uncertain about the value of κ used by the RA.

By the distributional assumption in Eq. (3.4), it follows that

X̄ − κȲ | n,
[
θe
θs

]
∼ N

(
θe − κθs,

4

n

(
σ2
e − 2κρσeσs + κ2σ2

s

))
,

and that the RA rejects H0 and approves the new treatment for marketing if

X̄ − κȲ√
4
n
(σ2

e − 2κρσeσs + κ2σ2
s)

> zα ⇐⇒ X̄ − κȲ > zα

√
4

n
σc,

where zα = Φ−1(1− α) and σc =
√

σ2
e − 2κρσeσs + κ2σ2

s .
Given a total target population of N patients, define the utility for the

sponsor to be b(N − n) − (c0 + cn) if there is RA approval and −(c0 + cn)
otherwise, where b is the monetary benefit per patient treated after the trial, c0
is a fixed setup cost for the trial and c is the marginal cost per patient included
in the trial. The utility of choosing a sample size n and obtaining estimates
X̄ = x̄ and Ȳ = ȳ, given that κ is the weight used by the RA, is then

u(n, x̄, ȳ, κ) = b(N − n)I

{
x̄− κȳ > zα

√
4

n
σc

}
− (c0 + cn),

implying that the expected utility for the sponsor of choosing a sample of size
n given κ is

ū(n, κ) = b(N − n)P

(
X̄ − κȲ > zα

√
4

n
σc

∣∣∣∣∣κ
)

− (c0 + cn)

= b(N − n)Φ

(√
n

4

(
θe − κθs

σc

)
− zα

)
− (c0 + cn). (3.5)

The expected utility of choosing a sample of size n is obtained by taking the
expectation of the expression above with respect to the distribution for κ,

ũ(n) = E [ū(n, κ)] = b(N−n)E

[
Φ

(√
n

4

(
θe − κθs

σc

)
− zα

)]
−(c0+cn). (3.6)

For the present situation, the EVPI about κ for the sponsor may be inter-
preted as the difference in the sponsor’s expected utility when acting optimally
in the following two situations

1. The sponsor is provided with the true value of κ, thus obtaining full
knowledge about the RA’s decision rule for approval, and then chooses a
sample size.
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2. The sponsor chooses a sample size based on its prior beliefs about κ.

Note that the expected value over the prior for κ is taken for both situations.
Although the sponsor knows that κ will be revealed before the sample size
decision in the first situation, an integration over the prior is necessary also for
this case. The reason is that the precise value communicated is still uncertain
when the expected utility is evaluated.

Let n∗(κ) be the sample size maximising ū(n, κ) as defined in Eq. (3.5) and
let n∗ be the sample size maximising ũ(n) as defined in Eq. (3.6). The EVPI
about κ may then be written as

EVPI = E [ū(n∗(κ), κ)− ū(n∗, κ)] = E [ū(n∗(κ), κ)]− ũ(n∗).

Since n∗(κ) is by definition the optimal sample size given κ, ū(n∗(κ), κ)−ū(n∗, κ)
is always non-negative. Hence, EVPI ≥ 0 always holds. For a numerical exam-
ple, see Figure 3.1, in which log κ ∼ N (μκ, σ

2
κ). The sample sizes were optimised

under the restrictions n∗(κ) ≥ 1 and n∗ ≥ 1. As the uncertainty about κ is
reduced, i.e., as σκ → 0, the EVPI tends to 0. Note that for σκ = 0.2, the
expected utility for the optimal sample size is negative for situation 2 while
positive for situation 1. Hence, a sponsor with such a prior for κ could be con-
vinced to switch from a NO GO to a GO decision under the assurance that the
true value of κ will be revealed before the sample size is chosen.
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Figure 3.1: E [ū(n∗(κ), κ)] (black circles) and ũ(n∗) (grey squares) as functions
of σκ. Parameter values: θe = 1, θs = 0.5, σe = σs = 1, ρ = 0.5, b = 1, c = 2,
c0 = 400, α = 0.025, N = 1000, μκ = 0.
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3.4 Optimisation of phase II sample size and

phase III GO decision

This section solves a multi-stage decision problem in which a sponsor first op-
timises the sample size for a phase II trial and then the decision of whether or
not to invest in a pair of phase III trials for market authorisation.

When planning the phase II trial, the sponsor is to select a sample size n2

for the total number of patients to be included in a parallel group trial with
equal randomisation (giving n2/2 patients per group). The trial results in an
estimate

X̄ | θ2 ∼ N
(
θ2,

4σ2
2

n2

)
,

where θ2 is the unknown population mean of incremental efficacy for patients
recruited to phase II and σ2

2 is the variance for each individual patient response.
For simplicity, σ2

2 is assumed to be known. Before the trial is started, the
sponsor’s prior distribution for θ2 is assumed to be

θ2 ∼ N
(
μ1,

4σ2
2

n1

)
,

implying that the posterior distribution for θ2 given n2 and X̄ becomes

θ2 | n2, X̄ ∼ N
(
μ1n1 + X̄n2

n1 + n2
,

4σ2
2

n1 + n2

)
.

After the phase II trial has concluded, the next step for the sponsor is to
decide if it should try to get the new treatment approved for market authori-
sation by a RA. It is assumed that the RA requires that one-sided statistical
significance is shown for efficacy in two independent trials of the same size. It
is also assumed that the RA demands a specific size for the phase III trials.
For example, this size may be determined by the conventional frequentist re-
quirements on the type I and type II errors, or perhaps by the necessity to
gather enough data for a safety evaluation. Hence, for this example, the phase
III sample size is not chosen by the sponsor, but instead fixed at a given value
n3. The sponsor only decides on the value of the binary variable d, with d = 1
(d = 0) corresponding to a GO (NO GO) decision.

Just as for phase II, the two phase III trials are assumed to be parallel-group
trials with equal randomisation, each containing n3/2 patients per group. They
are assumed to result in sample mean estimates Ȳ1 and Ȳ2 of the incremental
efficacy, which, given the true incremental efficacy mean θ3 of the target popu-
lation, are independent and normally distributed. Moreover, reflecting the fact
that the efficacy for the patients recruited to the phase II trial may not be the
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same as the one for the target population, θ3 is assumed to be normally dis-
tributed with mean θ2 and variance τ2. Hence, the distributional assumptions
connecting phase II to phase III are

Ȳ1 ⊥⊥ Ȳ2 | θ3, Ȳ1, Ȳ2 | θ3 ∼ N
(
θ3,

4σ2
3

n3

)
, θ3 | θ2 ∼ N (

θ2, τ
2
)
,

where σ2
3 denotes the sample variance per individual phase III response (as-

sumed known).
The utility for the sponsor of choosing n2, observing x̄ in phase II, making

the GO or NO GO decision d, and observing ȳ1 and ȳ2 as outcomes in the phase
III trial is defined as

u(n2, x̄, d, ȳ1, ȳ2) = d (V I {RA accepts} − c3)− c2n2,

where V is the market value of introducing the new treatment, c3 is the total cost
of performing the two phase III trials and c2 is the marginal cost of increasing
the sample size of the phase II trial. I denotes the indicator function for the
event given as argument. The expected utility of choosing n2, observing x̄ and
choosing d is

ū(n2, x̄, d) = d (V E [I {RA accepts}|n2, x̄]− c3)− c2n2. (3.7)

By assumption, the RA accepts the new treatment if and only if the null
hypothesis of no incremental efficacy can be rejected at the one-sided level α
in both of the phase III trials. Since Ȳ1 and Ȳ2 are assumed to be independent
given θ3, the conditional expectation E [I {RA accepts}|θ3] equals

P

⎛
⎝Ȳ1 > zα

√
4σ2

3

n3

∣∣∣∣∣∣θ3
⎞
⎠P

⎛
⎝Ȳ2 > zα

√
4σ2

3

n3

∣∣∣∣∣∣θ3
⎞
⎠ = Φ

(√
n3θ3
2σ3

− zα

)2

.

By maximising over d and subsequently taking the expectation with respect
to the prior predictive distribution for X̄, the backward induction is completed
and the expected utility for the sponsor of choosing a sample size n2 and con-
tinue optimally may be written as

ũ(n2) = E

[
max

(
0, V E

[
Φ

(√
n3θ3
2σ3

− zα

)2
∣∣∣∣∣n2, X̄

]
− c3

)]
− c2n2.

In the equation above, note that the inner expectation is computed with respect
to the posterior distribution of θ3 given n2 and X̄,

θ3 | n2, X̄ ∼ N
(
μ1n1 + X̄n2

n1 + n2
,

4σ2
2

n1 + n2
+ τ2

)
,
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and that the outer expectation is computed with respect to the prior predictive
distribution for X̄,

X̄ ∼ N
(
μ1,

4σ2
2

n1
+

4σ2
2

n2

)
.

Eq. (3.7) provides the basis for studying the expected utility for the sponsor
as a function of the phase II sample size. It is also interesting to consider how
the choice of n2 affects the probability of a GO decision in phase III. From Eq.
(3.7), it immediately follows that a GO decision (d = 1) will be optimal if and
only if the phase II trial results in an estimate x̄ such that

E [I {RA accepts}|n2, x̄] >
c3
V
.

Hence, the probability of a GO decision for a specific sample size n2 is

P

(
E

[
Φ

(√
n3θ3
2σ3

− zα

)2
∣∣∣∣∣n2, X̄

]
>

c3
V

)
.

Figure 3.2 shows ū(n2) and the probability of a phase III GO decision,
computed numerically over a grid for n2 for a specific combination of parameter
values. Two cases are shown, corresponding to a large (V = 1000) and a small
(V = 200) market. Note that the expected utility for a small market size is
negative for all sample sizes considered, implying that the optimal decision for
the sponsor is to abandon the project in phase II.
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Figure 3.2: Plot of ũ(n2) and the probability of a phase III GO decision over the
grid n2 = {5, 10, . . . , 150}. Parameter values: μ1 = 0, n1 = 10, σ2 =

√
1/10,

c2 = 0.1, c3 = 100, n3 = 1000, σ3 = 2, τ = 0.2, α = 0.025.



Chapter 4

Multiple testing procedures

Consider a statistical model in which the probability distribution of an observ-
able (and possibly multi-variate) random variable X is determined by the value
of a parameter θ. Assume that θ belongs to some set Θ, commonly referred
to as the parameter space. In this setting, a subset H of Θ is referred to as
a null hypothesis about the value of θ, and the complement Hc is called the
alternative hypothesis. A test associated with a null hypothesis is then defined
using a binary function, T say, which maps the value X into a value T (X) that
determines whether or not the null hypothesis is rejected.

Given a hypothesis H ⊆ Θ and an associated test T , the type I error is
defined as the (maximum) probability of falsely rejecting H. Formally,

type I error = sup
θ∈H

Pθ (T (X) rejects H) .

A statistical test is said to control the type I error at the level α if the error is
less than or equal to α. When multiple hypotheses are tested in an experiment,
the question then arises as to how to properly generalise the concept of a type
I error for a single hypothesis.

Let {H1, . . . , Hm} be a family of m ≥ 1 hypotheses. For any value of
the parameter θ, let I(θ) ⊆ {1, . . . ,m} be the index set corresponding to all
hypotheses containing θ, I(θ) = {i | θ ∈ Hi}. Any fixed value of θ defines a
subset of true hypotheses, MI(θ) = {Hi | i ∈ I(θ)}, containing mI(θ) = |MI(θ)|
elements. In this setting of multiple hypotheses, a test function T maps an
outcome X of the experiment into a subset of {H1, . . . , Hm}, the elements of
which correspond to the individual hypotheses that are rejected by the test.

Having a fixed test procedure T in mind, let R (an observable random vari-
able) be the total number of hypotheses which are rejected by the test and let
V (an unobservable random variable) be the number of true hypotheses which

21
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are rejected. There are several alternative definitions that may be used when
generalising the type I error rate to the testing of several hypotheses (Bretz
et al., 2011, Chapter 2). The Per Comparison-Error Rate (PCER) is defined
as the expected number of true hypotheses rejected per comparison,

PCER = Eθ [V ] /m.

The False Discovery Rate (FDR) is defined as the expected proportion of falsely
rejected hypotheses among the rejected hypotheses (V/R is defined as 0 for
R = 0),

FDR = Eθ [V/R | R > 0]Pθ (R > 0) .

The Family-Wise Error Rate (FWER) is defined as the probability that at least
one hypothesis is falsely rejected,

FWER = Pθ (V > 0) .

In the context of confirmatory clinical trials, a common contemporary regulatory
requirement is that the FWER is controlled at a given significance level α (Bretz
et al., 2011, p. 13). This is also the generalisation of type I error to multiple
hypotheses used in this thesis.

A procedure which ensures control of the error rate in a situation involving
the testing of multiple hypotheses is referred to as a Multiple Testing Procedure

(MTP). A MTP is said to control the FWER in the weak sense if the rate is
controlled only under the global null hypothesis, which is defined as the inter-
section of all null hypotheses in the family. Hence, there is weak FWER control
if

sup
θ∈∩m

i=1
Hi

Pθ (V > 0) ≤ α.

Control of the FWER is said to be strong if the type I error is controlled for
any configuration of true and false hypotheses, which may be expressed as

sup
θ∈∪m

i=1
Hi

Pθ (V > 0) ≤ α.

In many situations of multiple testing, natural individual tests and corre-
sponding unadjusted p-values may be associated with each null hypothesis Hi,
i = 1, . . . ,m. These tests would then control the type I error rate for a sin-
gle hypothesis and are often used as a basis for the construction of a MTP.
An adjusted p-value can then be associated with each individual hypothesis,
being defined in such a way that a direct comparison with the overall FWER
significance level α is possible.

The closed testing principle (Marcus et al., 1976) can be used to construct a
MTP given that tests for rejection have been defined for all possible intersection
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hypotheses HI = ∩i∈IHi, I ⊆ {1, . . . ,m}. An elementary hypothesis Hi is then
rejected by the overall test (i.e., by the MTP) if HI can be rejected for all I
containing i. It can be shown that, if the tests for the intersections control the
error rate at level α, then so will the overall MTP.

One of the simplest and most well-known MTP is the Bonferroni proce-
dure, which may serve to illustrate the general philosophy behind such methods.
Suppose that individual tests T1, . . . , Tm have been defined for the hypotheses,
with corresponding unadjusted p-values p1, . . . , pm. The Bonferroni procedure
is then implemented by rejecting Hi if pi ≤ α/m, 1 ≤ i ≤ m. That the FWER
is controlled in the strong sense at the level α follows directly by the Bonferroni
inequality, since Pθ (V > 0) may be written as

Pθ

(∪i∈I(θ) {pi ≤ α/m}) ≤ ∑
i∈I(θ)

Pθ (pi ≤ α/m) ≤ mI(θ)

( α

m

)
≤ α. (4.1)

4.1 The Spiessens-Debois test

Since no distributional assumptions are used in the proof of Eq. (4.1), the
Bonferroni MTP is completely general and may be applied in any situation.
However, this generality comes at a price. More specific procedures that are only
applicable if certain distributional assumptions are placed on the test statistics
often lead to higher power. One such procedure, which is employed in paper
II, have been proposed by Spiessens and Debois (2010). They refer to it as the
general bivariate normal method.

We now consider the construction of a MTP controlling the FWER in the
strong sense by combining the closed testing principle with the method of
Spiessens and Debois. The context is that of a clinical trial with two analy-
ses, namely, an overall analysis of the efficacy in the total population and a
subgroup analysis which only considers a subset of the population. The two
test statistics corresponding to the overall and subgroup analyses are assumed
to follow a joint, bivariate normal distribution. Let Z1 and Z2 denote the stan-
dardised test statistics used to test the null hypotheses H1 and H2 of a zero
treatment effect in the total population and the subgroup, respectively. The
global null hypothesis that there is no treatment effect in the total population
nor in the subgroup is defined as H12 = H1 ∩H2. The test constructed will be
one-sided, in the sense that it builds on one-sided tests of H1 and H2.

It may be shown (Jennison and Turnbull, 2000) that under H12,

[
Z1

Z2

]
∼ N

([
0
0

]
,

[
1

√
λ√

λ 1

])
, (4.2)
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where λ = IS/IT is the fraction of information1 in the subgroup relative to the
total population.

Consider now the construction of a test for the rejection of the overall null
hypothesis H12 which controls the type I error at the level α. If H12 is true,
then it is unlikely that extreme values will be observed for Z1 or Z2. Hence, a
reasonable test is one which rejects H12 if either Z1 > zα1

or Z2 > zα2
, where

zα1
and zα2

are the critical values corresponding to some significance levels α1

and α2. Suppose that the level α1 is fixed at some specific value. Then in order
to control the FWER at an overall significance level α, the other significance
level α2 must be chosen in such a way that

Pθ (Z1 > zα1
or Z2 > zα2

) = α

for θ ∈ H12. Since

Pθ (Z1 > zα1
or Z2 > zα2

) = Pθ (Z1 > zα1
) + Pθ (Z1 ≤ zα1

and Z2 > zα2
)

= α1 + Pθ (Z1 ≤ zα1
and Z2 > zα2

) ,

this is equivalent to finding a value of α2 satisfying

Pθ (Z1 ≤ zα1
and Z2 > zα2

) = α− α1. (4.3)

Using the explicit density in Eq. (4.2), it can be seen that solving Eq. (4.3) is
equivalent to solving

∫ zα1

−∞

Φ

(
zα2

−√
λz1√

1− λ

)
φ(z1) dx = 1− α. (4.4)

Given a selected value of α1, the solution of Eq. (4.4) provides a value of α2

such that the test which rejects the intersection hypothesis H12 if Z1 > zα1
or

Z2 > zα2
controls the type I error at level α. Clearly, the canonical univariate

tests which rejects H1 if Z1 > zα and H2 if Z2 > zα also controls the type I
error rate for rejection the of H1 and H2, respectively. Hence, by the closed
testing principle, the following MTP used in paper II controls the FWER in the
strong sense:

1. Specify values of α and α1.

2. Reject H1 if Z1 > zα (unadjusted rejection of H1) and Z1 > zα1
or

Z2 > zα2
(unadjusted rejection of H12).

3. Reject H2 if Z2 > zα (unadjusted rejection of H2) and Z1 > zα1
or

Z2 > zα2
(unadjusted rejection of H12).

1Information is here defined as the reciprocal of the variance of the respective parameter.
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The use of the correlation
√
λ between the statistics Z1 and Z2 in the con-

struction of the closed Spiessens-Debois test implies that the power to reject
either H1 or H2 is strictly greater than the corresponding power for the Bon-
ferroni test. To see this, fix α > 0 and let α1 satisfy 0 < α1 < α. The power for
the Bonferroni test is

Pθ (Z1 > zα1
or Z2 > zα2

) ,

where α2 = α − α1. The power for the Spiessens-Debois test is given by the
same expression, since the event to reject H1 or H2 may be written as

Z1 > zα and (Z1 > zα1
or Z2 > zα2

) or Z2 > zα and (Z1 > zα1
or Z2 > zα2

) =

Z1 > zα1
or (Z1 > zα and Z2 > zα2

) or Z2 > zα2
or (Z1 > zα1

and Z2 > zα) =

Z1 > zα1
or Z2 > zα2

.

However, for the Spiessens-Debois test, α2 is defined by Eq. (4.3). Since the
event Z1 ≤ zα1

and Z2 > zα2
is trivially a proper subset of the event Z2 > zα2

,
it follows that α2 must satisfy α2 > α−α1 if it solves the equation. Hence, the
power to reject either of the two hypotheses is strictly greater for the Spiessens-
Debois test.





Chapter 5

Some basic tools from

analysis

This chapter briefly describes two results from elementary analysis that are
applied in paper I.

5.1 The implicit function theorem

In paper I we are faced with the problem of maximising a certain objective
function (an expected utility) with respect to a price variable. In addition to
the price variable, the objective function also depends on a set of parameters and
it is of interest to analyse how the optimal price depends on these parameters.
The implicit function theorem (see, for example, Rudin (1976, Chapter 9))
is used in paper I to establish that the optimal price function is continuously
differentiable, given that this holds for the objective function that is maximised.
Moreover, the theorem provides formulas for computing the partial derivatives
of the optimal price function with respect to the parameters. For reference, a
version of the theorem will now be stated.

Let f be a continuously differentiable function mapping points (x, y) ∈ R
n+1

into R and suppose that the point (a, b) = (a1, . . . , an, b) ∈ R
n+1 satisfies

f(a, b) = 0. Then, if (∂f/∂y)(a, b) �= 0, there exists an open set U contain-
ing a, an open set V containing b, and a unique continuously differentiable
function g : U → V such that the local graph of g, {(x, g(x)) | x ∈ U}, co-
incides with the local level set {(x, y) ∈ U × V | f(x, y) = 0}. Moreover, the
partial derivative of g with respect to the component xi in the point a is given
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by
∂g

∂xi

(a) = − ∂f

∂xi

(a, b)
/∂f

∂y
(a, b).

5.2 The envelope theorem

A general result that is often useful when analysing how changes to parameters
influence the optimised value of an objective function is the envelope theorem
(Varian, 1992, Chapter 27). There are many versions of this theorem, but the
result will only be stated here under rather strong smoothness assumptions.
The theorem is used in paper I to analyse how the optimal expected utility
responds to changes in various parameters.

Suppose that f is a differentiable function mapping points (x, y) ∈ R
n+1

into R, and consider the maximisation problem

f∗(x) ≡ max
y

f(x, y).

Assume further that the maximising argument y∗(x) is differentiable for x in
some region U of interest and that (x, y∗(x)) corresponds to an interior global
optimum for x ∈ U . The envelope theorem then states that

∂

∂xi

(f∗(x)) =
∂f

∂xi

(x, y)

∣∣∣∣
y=y∗(x)

. (5.1)

Hence, changes in the optimal value of the objective function may be analysed in
terms of partial derivatives of the original objective function. With the stated
assumptions, this result is easily shown. Since f∗(x) = f(x, y∗(x)), the left
hand side of Eq. (5.1) is

∂

∂xi

(f(x, y∗(x))) =
∂f

∂xi

(x, y∗(x)) +
∂f

∂y
(x, y∗(x))

∂y∗

∂xi

(x).

But from the assumptions of differentiability and an interior optimum, (∂y∗/∂xi)(x) =
0 and the result follows.



Chapter 6

Summary of papers

6.1 Paper I: Late-Stage Pharmaceutical R&D

and Pricing Policies under Two-Stage Reg-

ulation

Paper I presents a BDT framework for investigating R&D incentives for the
pharmaceutical industry in the presence of two exogenous regulatory stages.
In Stage 0, a commercial sponsor deliberates on whether to run a phase III
trial and, if it decides to go ahead, selects the sample size of the trial. The
trial results in an estimate of the incremental effectiveness, which is denoted
by x. Upon trial completion, a RA in charge of granting access to a market
considers the evidence produced by the trial. Approval for marketing is granted
if the sample size is large enough and the new treatment shows superiority to
the current standard alternative at a one-sided level of statistical significance.
In Stage 1, a price is proposed by the sponsor for the new treatment. When
this price is combined with the effectiveness estimate provided by the trial, it
determines the Incremental Cost-Effectiveness Ratio (ICER) upon which a HCI
bases its reimbursement decision. The sponsor’s optimal Stage 1 pricing policy
depends on the estimate x, which is a random variable from the perspective of
Stage 0. The optimal policy for the sponsor over both stages is found using
backward induction.

From the perspective of the sponsor, the value of the HCI’s Maximum Will-
ingness to Pay (WTP) for a unit increase in effectiveness is uncertain and is
modelled using a continuous random variable W . It is assumed that W belongs
to a location-scale family of random variables, implying that any member can be
uniquely characterised in terms of a pair (m, s), where m is the expected value
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(or location parameter) of W and the scale, s, can be considered a measure of
how uncertain the sponsor is about the HCI’s WTP. We identify three ranges
for the uncertainty parameter s, in which increases in uncertainty have different
effects. In the ’low uncertainty’ range, increases in s result in lower optimal
prices, lower optimal expected profits and a smaller optimal trial sample size.
In the ’high uncertainty’ range, the situation is reversed: greater uncertainty
leads to higher prices, higher expected profits and a larger trial sample size.
For ’intermediate uncertainty’, prices are increasing, expected profits decreas-
ing and sample size decreasing in the degree of uncertainty. Hence, for the range
of intermediate uncertainty, a smaller value for s benefits the sponsor, the HCI
and the patients.

The framework is applied to a recent NICE appraisal of mannitol dry powder
for treating cystic fibrosis. The status of cystic fibrosis as a rare disease means
that the R&D decision could potentially be considered to be a marginal project,
that is, one with a market size that is close to the minimum population size
required for the investment to be deemed profitable. Within the context of
this application, we briefly consider how the RA parameters defining the one-
sided significance level and the minimum sample size required for marketing
authorisation impact the minimum size of the target population that the sponsor
requires in order to expect a positive profit when acting optimally.

6.2 Paper II: Optimising Trial Designs for Tar-

geted Therapies

Paper II is concerned with pivotal clinical trials in which the efficacy of a treat-
ment is tested in an overall population and/or in a pre-specified subpopulation
defined by a binary biomarker. A BDT framework is used to derive optimised
trial designs by maximising utility functions. The optimisation is done from
two perspectives: from the viewpoint of a commercial sponsor and from the
viewpoint of a public health decision maker.

For both perspectives, three different types of trial designs are considered.
These are referred to as as the classical design, the stratified design and the
enrichment design. The classical design makes no use of the biomarker status
and only tests for a treatment effect in the full population. This is done using
a standard, parallel-group trial with equal group sizes. The stratified design
also recruits patients from the full population, but the biomarker status of each
patient is determined and the treatment effect is tested in the full population
and in the subpopulation. This implies that the stratified design may lead to
approval in either the full population or in the subpopulation only, which ne-
cessitates an appropriate control of the FWER. Such control is implemented
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using the closed Spiessens-Debois test. In the enrichment design, patients are
screened for their biomarker status and only biomarker positive patients are
included in the trial. The use of the biomarker test in the stratified and enrich-
ment designs implies that a fixed cost must be paid to develop the screening
procedure. Moreover, a marginal cost must be paid for each patient screened.
These biomarker costs are not present for the classical design. By comparing
the optimal expected utilities for these three design types, the framework al-
lows us to assess when it is favourable to determine the biomarker status of the
patients in a clinical trial and when it is actually more efficient to disregard the
biomarker and to proceed with a classical trial design.

The sample size is optimised for each of the three design types. Moreover,
for the stratified design, the two significance levels defining the Spiessens-Debois
test are also optimised. This optimisation is done with respect to a prior that
encodes the pre-trial knowledge about the efficacy of the treatment by means of
a two dimensional distribution on the true effect sizes in the full population and
the subpopulation. The considered utility functions account for the different
costs of the design types as well as the expected benefit when demonstrating
efficacy in the different subpopulations.

Examples of trial designs obtained by numerical optimisation are presented
for both perspectives. We find that the optimal type of design depends sensi-
tively on the various parameters of the framework. A parameter of particular
interest is the prevalence of the biomarker positive patients in the total target
population, and we consider the impact of this parameter in detail.





Chapter 7

Discussion

In both of the papers that constitute this thesis, the objective is to characterise
the optimal trial design for a Bayesian decision maker in a fixed regulatory
environment. Although simplifying assumptions were made, the models used
for market approval and reimbursement were defined so as to correspond to
current standard practice. Within such a setting, it is possible to draw some
conclusions about the impact of changing the parameters defining the regulatory
structure. For example, in paper I, it was possible to study how the minimum
market size required for a sponsor’s GO decision depends on the value of the
one-sided significance level used by the RA.

Given that the optimal behaviour of the sponsor can be computed for a
fixed regulatory environment, it is natural to go one step further and ask if it
is possible to change the rules for market approval and reimbursement so as to
improve the expected utility for the patient population. There has been much
recent work in the health economics literature investigating the performance of
alternative regulatory schemes. Babar (2015, Chapter 21) provides an intro-
duction to the ideas behind some different pricing policies and reviews some
of the recent contributions to the literature. It is noted there that the main
objective of any such policy is to provide a good trade-off between the value for
money for the payer (static efficiency) and the need to provide enough incentives
for R&D investments by the pharmaceutical industry (dynamic efficiency). An
interesting extension of the work in paper I would be to specify a model for
the connection between the sponsor’s level of appropriation of the total welfare
resulting from adopting a new treatment (i.e., its profit) and its willingness and
capability to invest in future innovation efforts. Provided that a social welfare
function is also specified, such an expanded model could then be used as a basis
for the search of an optimal set of rules for market approval and reimbursement
within some space of reasonable regulatory schemes.
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Some work in this direction is described by Jena and Philipson (2008), which
analyse the use of cost-effectiveness methods by payers to decide on reimburse-
ment for a new treatment. They mention the ICER threshold employed by
NICE in the U.K. as one example and note that such schemes are closely re-
lated to other forms of supply side price regulation (e.g., price-controls and
rate-of-return regulations). They argue that such methods are at least implicitly
concerned with maximising the surplus available to consumers upon acceptance
of the new treatment at the cost of a reduced profit for the pharmaceutical
company responsible for the innovation. They also stress that their major point
is not that existing incentives are either too high or too low, but that any policy
based on cost-effectiveness for treatment adoption and reimbursement do have
implications for dynamic welfare which should be considered when evaluating
it. Their emphasis lies on the pricing part of the regulation. Hence, it seems
worthwhile to expand their analysis by also including an explicit model for the
clinical trial stage, as done in paper I.

Shifting focus from pricing schemes to the rules determining under what
conditions reimbursement takes place, Levaggi et al. (2016) compare the per-
formance of regulatory acceptance of a new treatment based on standard ICER
threshold comparisons versus that of performance-based risk-sharing agree-
ments. The idea behind the latter mechanism is that the firm will not be
paid in full if the observed effectiveness of the treatment falls below a certain
level after market introduction. Relative to the work by Jena and Philipson
(2008), there is not only focus on policy performance with respect to static
and dynamic efficiency, but also an effort to determine which of the alternative
regulatory mechanisms that is to be preferred. Although they do not specify a
social welfare function and proceed with optimisation of regulatory parameters,
their work may possibly be extended in this direction. Their model involves
three stages for the firm’s product: (1) discovery, (2) development, and (3)
commercialisation. During the discovery stage, which corresponds to scientific
efforts prior to clinical trials, the effectiveness of the drug is assumed to evolve
as a geometric Brownian motion. The development stage, comprising phase I,
II and III trials, is modelled in terms of a single probability of failure. However,
it would be interesting to investigate to what extent an expanded policy spec-
ification could be handled that also contains parameters such as, for example,
the minimum required sample size and a threshold for the type I error.

The contributions discussed above are primarily concerned with analysing
the relationship between payer reimbursement and the incentives for the indus-
try to invest in pharmaceutical R&D. Le Deley et al. (2012) instead asks the
question: what are the appropriate values for the regulatory parameters per-
taining to evaluation of the statistical evidence, such as the type I error and
sample size, if the goal is to maximise the cumulative therapeutic benefit over a
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time horizon comprising several successive new candidates for approval? Work-
ing within the context of cancer trials, they use a simulation study to reach
the conclusion that expected survival benefits over a 15-year time horizon are
maximised when individual trial sample size is smaller and type I error rates
larger than the conventional values. Their simulation approach is appealing,
and it would be interesting to investigate the effects of extending their model
with a reimbursement stage after each trial.

It should also be pointed out that a simple model of a market situation con-
sisting of two players, the profit-maximising firm performing the research and
the trial on the one hand, and the regulator deciding on market approval and re-
imbursement on the other, can be placed within the principal-agent framework
of game-theoretic mechanism design (see, for example, Baron (1989, Chapter 24)
or Fudenberg and Tirole (1991, Chapter 7)). In this framework, the regulator
(i.e., the principal) first chooses a mechanism, which consists of the specification
of a message space and a function mapping every possible message into a collec-
tion of values for the regulatory parameters and the actions for the agent. This
mechanism is presented to the agent (i.e., the firm), which chooses a message
from those available so as to maximise its expected profits. The main compli-
cating factor facing the principal in this setting is that the agent may be better
informed about certain parameters of the decision process that will determine
the overall social welfare. In other words, the agent has private information
about some parameters, θ say, while the principal can only describe its knowl-
edge about θ in terms of a probability distribution. Typical examples in the
economics literature of what θ might represent are, for example, different types
of costs, such as the marginal production cost or the cost of performing a clinical
trial. In the special context of regulation of pharmaceutical firms, another piece
of private information of interest for the principal would be the beliefs held by
the agent about the efficacy of a new treatment prior to confirmatory clinical
trials. By the revelation principle, the only message set that the principal needs
to consider is the one that consists of all possible values of θ, and it may without
loss of generality restrict the optimisation to mechanisms for which the agent
truthfully reports the value of θ.

Although the specification of a utility function followed by a full BDT anal-
ysis has been promoted by several authors (see, e.g., Lindley (1997), Claxton
(1999) or Berry (2006)), scepticism regarding the practicality of the approach
can also be found in the literature. Some important points are given by Ar-
mitage (1985). He notes that it is an over-simplification to treat the result of a
phase III trial only as a trigger for a subsequent treatment decision. The trial
data also has a value in itself, since it adds to the total body of scientific knowl-
edge. Another point is connected to the ethics of a clinical trials. In typical
patient horizon models, health benefits are valued equally for both recruited
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and post-trial patients. Although acceptable from a utilitarian viewpoint, such
a valuation is not consistent with traditional medical ethics, which dictates that
the interests of the current patient is paramount. He further argues that pro-
cedures for discounting the benefits of future patients introduce a degree of
arbitrariness into the model and therefore makes it less persuasive. Moreover,
it is difficult to find a value for the patient horizon itself, since this involves
estimating the time until a new and better treatment option arrives. The is-
sues put forth by Armitage are all important, but they hardly provide enough
reasons for abandoning the BDT approach. Rather, they call for a more precise
definition of the utility function, able to capture all gains and costs that the
decision maker deems relevant, together with an appropriately specified prob-
abilistic model for the uncertainty surrounding the true value of the patient
horizon.

7.1 Conclusion

The work presented in this thesis can be summarised as being an application
of the BDT framework to two specific problems of clinical trial optimisation.
In paper I, the decision problem has two stages. A choice of sample size for a
confirmatory trial is followed by a price choice for the new treatment if there
is RA approval for market authorisation. The result of main interest is that
the optimal strategy of the sponsor depends on how uncertain it is about the
willingness of the HCI to provide reimbursement. In particular, the model
implies that reducing such uncertainty will in some situations lead to both
higher expected profits for the sponsor and lower proposed prices (hence, a
smaller budget impact for the HCI). By keeping the model structure relatively
simple, we were able to obtain many results regarding the impact of parameter
values on the optimal strategy using mathematical analysis. From the viewpoint
of a commercial sponsor, an extended model incorporating more development
stages (phase I and II trials) and a more realistic specification of the regulatory
rules used by the RA and the HCI would certainly be of interest. Analytic results
may be hard to derive in such a generalised model, but it will still be possible to
evaluate it using numerical computations. The RA and HCI rules were taken as
exogenous and were not optimised. As indicated in the discussion, there exists
numerous approaches to the problem of finding a regulatory environment that
is optimal from a societal perspective given that drug development is done by
rational, economic agents.

I paper II, the decision problem consists of a single stage. A sponsor, com-
mercial or otherwise, selects an optimal trial design from a class of alternatives
so as to maximise its expected utility. The class of designs is partitioned into
classical, stratified and enrichment designs, where the latter two incorporates a
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biomarker test. The main conclusion reached was that the optimal design de-
pends heavily on the perspective of the sponsor (commercial or public health),
the prior distribution used for the effect sizes and the prevalence of the sub-
group of biomarker positive patients. In particular, it was found that there
are situations in which it is optimal to disregard the biomarker test and go for
a classical design. A natural exstension of the work is to enlarge the class of
trial designs so as to also encompass adaptive designs with interim decisions.
Adding too many stages will make accurate computations using the backward
induction algorithm prohibitively expensive, but a single interim analysis giving
a two stage design seems tractable.
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