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Key Points.

◦ We present an advanced method for retrieving sea-surface heights using

inverse modeling of SNR observations.

◦ The new method models sea-surface heights as a continuous function using

B-splines.

◦ Data from several GNSS signals are seamlessly combined for increased

precision.

This paper presents a new method for retrieving sea-surface heights from GNSS-3

R data by inverse modeling of SNR observations from a single geodetic re-4

ceiver. The method relies on a B-spline representation of the temporal sea5

level variations in order to account for its continuity. The corresponding B-6

spline coefficients are determined through a non-linear least-squares fit to7

the SNR data, and a consistent choice of model parameters enables the com-8

bination of multiple GNSS in a single inversion process. This leads to a clear9

increase in precision of the sea level retrievals which can be attributed to a10

better spatial and temporal sampling of the reflecting surface. Tests with data11

from two different coastal GNSS sites and comparison with co-located tide12

gauges show a significant increase in precision when compared to previously13

used methods, reaching standard deviations of 1.4 cm at Onsala, Sweden, and14

3.1 cm at Spring Bay, Tasmania15
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1. Introduction

Since it was demonstrated that reflected GNSS signals can be used to monitor16

local sea-surface heights [Soulat et al., 2004], the concept has been attractive as it17

is relatively inexpensive and easy to deploy and operate. Furthermore, the GNSS18

technology can relate the sea level measurements to a global reference frame, which19

means that GNSS reflectometry (GNSS-R) can directly distinguish between relative20

and absolute sea-surface change, something traditional tide gauges cannot do without21

additional equipment.22

Various concepts exist for GNSS-R, and they can be broadly categorized into two23

groups – phase difference analysis [Soulat et al., 2004; Löfgren et al., 2011] and signal-24

to-noise ratio (SNR) analysis [Larson et al., 2013]. The first technique uses two25

antennas to determine the difference in phase between the direct and the reflected26

signal, and thereby their path length difference. The latter uses only a single antenna,27

instead analyzing the SNR pattern from the GNSS satellites to determine the sea-28

surface height. A benefit of using the SNR method is greater robustness to wind and29

wave conditions [Löfgren and Haas , 2014], and it has also been demonstrated that30

the method is useful for determining other important sea-state parameters, such as31

significant wave height [Alonso-Arroyo et al., 2015]. However the method has so far32

been less precise than the phase difference analysis. Therefore, this paper presents a33

new algorithm for retrieving sea-surface heights from GNSS SNR data, that increases34

the precision of single receiver GNSS tide gauges.35

D R A F T June 23, 2016, 1:14pm D R A F T



4 STRANDBERG ET AL.: GNSS-R INVERSE-MODELING

2. GNSS-R and sea level

The recorded SNR at a ground-based GNSS station varies during a GNSS satellite36

passage. In general, the SNR depends on different factors such as satellite signal37

strength, antenna gain pattern, and multipath environment. According to Nievinski38

and Larson [2014b], in case of a single multipath reflection, SNR (in watt/watt) can39

be written as40

SNR = Pd

(
1 + Pi + 2

√
Pi cos(φi)

)
/Pn + P I

s /Pn. (1)41

Here, Pd is the power received directly from the satellite, Pi is the relative interfer-42

ometric power due to reflections, P I
s is the incoherent signal power, and Pn is the43

noise power. Assuming a horizontal reflecting surface, the interferometric phase φi44

can be written as45

φi =
4πh

λ
sin(ε) + ϕ. (2)46

Here, h is the reflector height, i.e. the vertical distance from the phase center of the47

GNSS antenna to the reflecting surface, ε is the elevation angle of the satellite, and λ48

its signal wavelength, while ϕ contains the phase contribution of the antenna pattern49

and electromagnetic properties of the reflecting surface.50

Focusing on the geometry-dependent part, SNR observations are usually divided51

into a trend, tSNR, which mainly depends on the satellite elevation, and the oscil-52

lating part δSNR:53

tSNR = Pd (1 + Pi) /Pn + P I
s /Pn, (3)54

δSNR = 2Pd

√
Pi cos(φi)/Pn. (4)55

56

D R A F T June 23, 2016, 1:14pm D R A F T



STRANDBERG ET AL.: GNSS-R INVERSE-MODELING 5

Previous studies, for example by Larson et al. [2013], have focused on the interfer-57

ometric phase φi for retrieving sea-surface heights through spectral analysis of δSNR.58

Following these studies, if we write δSNR as a function of x = sin(ε)by inserting59

the interferometric phase of Eq. (2) into Eq. (4), and then neglect the elevation60

dependency of Pd, Pi and ϕ, we obtain61

δSNR = A cos

(
4πh

λ
x+ ϕ

)
, (5)62

where A = 2Pd

√
Pi/Pn becomes a constant factor. Therefore, the main spectral63

component can be translated into a distance between the antenna and the sea surface.64

However, the spectral method ignores effects of temporal reflector height variations.65

This is acceptable for coastal sites with small tidal range, where the water level is66

relatively stationary during a satellite pass. But for sites with large sea level variations67

a correction term must be added, for example based on tidal models [Löfgren and68

Haas , 2014]. Roussel et al. [2015] instead introduced a method based on the Lomb-69

Scargle inversion that combines all available GNSS signals, by fitting h and dh
dt

to all70

satellites visible during a measurement time span. However, their study considers71

only a correction term for linear temporal changes of the reflector height. In contrast72

to this, we present here an advanced method that directly accounts for temporal73

changes in sea-surface heights, by modeling height as a smooth function.74

3. Advanced sea-surface height retrieval by inverse modeling

In the present study we use inverse modeling, i.e. we fit an analytic function to75

measured δSNR oscillations. Thus, we do not rely on spectral methods, but use a76

D R A F T June 23, 2016, 1:14pm D R A F T



6 STRANDBERG ET AL.: GNSS-R INVERSE-MODELING

physical model for the data analysis. Similar methods have previously been used for77

snow depth estimation [Nievinski and Larson, 2014c], where single satellite arcs were78

analyzed independently, assuming a static reflector height. In order to benefit from79

the sophisticated properties of inverse modeling, and considering that sea-surface80

height variations can be approximated as a smooth process, we present an advanced81

method for sea-surface height retrieval hereafter.82

First, we extend the simplified form of Equation (5) with an attenuation factor

in order to account for the decrease of the multipath oscillation amplitude with

increasing elevation. The attenuation factor

S2 = e−4k2s2 sin2(ε) (6)

relates to the interferometric power Pi of Equation (4), where k is the wave number,83

and s is the standard deviation of the reflector surface height. This term accounts for84

loss of coherence in the reflected signal due to surface random roughness [Beckmann85

and Spizzichino, 1963].86

The oscillating part of the SNR will therefore be modeled as:87

δSNR =

(
C1 sin

(
4πh

λ
x

)
+ C2 cos

(
4πh

λ
x

))
e−4k2Λx2

, (7)88

where in-phase/out-of-phase terms C1 and C2 replace amplitude and phase in Equa-89

tion (5) for numerical stability during the inversion process. The term Λ = s2 is90

introduced for the same reason.91

Conversion back to A and ϕ is achieved by the following basic relations:92

A =
√
C2

1 + C2
2 , (8)93
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and94

ϕ = tan−1(C2/C1). (9)95

Now Eq. (7) combines geometric and radiometric information and represents a well-96

suited functional model that enables sea-surface height retrievals from the inversion97

of SNR data.98

As discussed in the previous section, only δSNR is of interest for determining the99

sea-surface height. Therefore, only SNR-measurements from directions towards open100

water are converted to linear scale (i.e. watt/watt), and then detrended using a101

low order polynomial. This ensures that signatures originating from antenna gain102

pattern and other factors are removed to a large extent, and that the observable of103

interest, δSNR, becomes accessible for further data analysis. By using a non-linear104

least-squares algorithm (cf. Section 3.2), an analytic model is fit to the remaining105

oscillations, as shown in Figure 1.106

For a particular coastal site one can assume that the amplitude, phase, and damp-107

ing factors are constants or slowly varying in time, while sea-surface height usually108

varies more rapidly. According to Nievinski and Larson [2014a], the amplitude is109

mainly influenced by satellite signal strength, receiver characteristics, and electro-110

magnetic properties of the reflecting surface. These influencing factors can in general111

be assumed to be constant over a few days. The phase ϕ is also dependent on the112

electromagnetic properties of the reflecting surface, enabling us to treat it as constant113

over a few days. However, treating ϕ as a constant neglects non-geometric elevation114

dependence of the phase, for example from reflections and antenna patterns which115
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can lead to a bias in the retrieved reflector heights [Nievinski , 2013]. Correct mod-116

eling of such effects would therefore further increase the precision of the algorithm.117

The damping relates to surface random roughness, which is driven by average local118

wind speed and direction, and the shape of the coastline. In a first-order approxima-119

tion we can also assume the damping to be constant over a few days. It is however120

important to notice that unless antenna characteristics are modeled properly, the121

Λ = s2 parameter will not only include information from the surface roughness, but122

also from the antenna gain pattern. Therefore, care should be taken when interpret-123

ing the values of this parameter. Modeling these properties as constants allows us124

to combine data from several GNSS satellites, and even different systems, via the125

information implicitly shared through common parameters.126

For the coastal sites tested in this work, cf. Section 4, this means that SNR127

measurements from both GPS and GLONASS satellites, and the L1 and L2 frequency128

of both systems, are used in a consistent inversion process. To consider varying signal129

strengths and frequency dependent reflection phase offsets, both A and ϕ, i.e. C1130

and C2, are estimated per satellite system and wavelength, i.e. one set for GPS L1,131

one for GLONASS L1, etc. The roughness parameter s is however not dependent on132

the signal, but rather on geometric properties of the reflector, and thus is considered133

as a single constant parameter. Sea-surface height information is also shared across134

all the satellite systems and wavelengths. However, the sea-surface height undergoes135

significant temporal changes. In order to handle this temporal variation we introduce136
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a B-spline representation for the sea-surface height, which is described in the next137

section.138

3.1. Modeling sea-surface heights by B-Spline functions

As discussed before, SNR interference patterns contain the necessary information139

to obtain geometric and radiometric properties of the reflecting surface. Although140

arc-wise inversion, for example by spectral methods [Larson et al., 2013], has been141

proven to be a powerful GNSS-R approach, it does not make use of the knowledge142

that the estimated parameters are continuous. In particular for GNSS-R sea level143

applications, we assume that the sea surface varies as a smooth function which should144

therefore be included in the retrieval process.145

In principle, any analytic function that considers tidal and long-term variations146

is sufficient to be implemented in a straightforward inversion algorithm. Piece-wise147

linear models might be the simplest functional approach but lead to discontinuities148

at the nodes when computing first-order derivatives. As already discussed by Hobiger149

et al. [2014] and Hobiger et al. [2016], B-spline functions can help to overcome such150

deficits while still providing enough variability to consider the most dominant sub-151

daily and long-term sea level variations. In their basic form, B-spline functions are152

constructed from zero-degree basis functions which are defined as153

N0
j (t) =

{
1 if tj ≤ t < tj+1

0 otherwise
, (10)154
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and B-spline basis functions of higher order r can be recursively computed by the155

relation156

N r
j (t) =

t− tj
tj+r − tj

N r−1
j (t) +

tj+r+1 − t
tj+r+1 − tj+1

N r−1
j+1 (t). (11)157

With these basis functions sea-surface height variations can be approximated as158

h(t) =
N∑
j=0

hjN
r
j (t) (12)159

when node values h0, ..., hN are estimated from the SNR data. Herein, N + 1 denotes160

the total number of nodes. For most applications, quadratic or cubic B-spline func-161

tions are chosen to approximate signals that are expected to be continuous in the162

first- or second-order derivatives. The capability of resolving certain spectral features163

depends only on the temporal spacing of the nodes, which means that one can place164

more nodes when expecting higher frequency components or increase the temporal165

node spacing when dealing with rather low-frequent signals. In this study, quadratic166

B-spline functions N2
j (t) are used as the sea-surface height is assumed to be a smooth167

function.168

An important feature of B-spline functions is that they are obtained as a linear169

combination of the basis functions and node values as denoted in Eq. 12. Therefore170

it is straightforward to evaluate the continuous function at any given epoch while171

only dealing with a relatively small number of coefficients. Moreover, the linearity of172

Eq. 12 makes it easy to estimate the coefficients by least-squares methods.173

3.2. Non-linear least-squares parameter estimation
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Considering that amplitudes C1,i and C2,i, and the damping factor Λ are estimated174

as constants over the time span considered in the data analysis, the total number of175

parameters MT which needs to be estimated from a consistent inverse modeling is176

MT = MB + 2 ·Mf + 1, (13)177

where MB denotes the number of B-spline nodes and Mf is the number of GNSS178

frequencies which are used. Even with moderate sampling rates, e.g. a 30 s sampling179

interval, and a dense choice of B-spline nodes, e.g. one per hour, it is obvious that the180

number of observations is much larger than the number of unknowns which should be181

estimated. Therefore, one faces an over-determined parameter estimation problem,182

which would be normally solved by least-squares adjustment, i.e. finding an optimum183

set of parameters x0, x1, . . . , xMT
, that minimizes the cost function184

min
∑
N

(yi − f(x0, x1, . . . , xMT
))2 , (14)185

where N is the total number of observations and yi are SNR measurements. However,186

the high non-linearity of the functional model (cf. Equation (7)) does not allow for a187

classical least-squares solution. Instead, a non-linear least-squares method needs to188

be applied. The MINPACK libraries [Moré et al., 1980], which are interfaced via the189

”optim” package within the Python framework SciPy [Oliphant , 20107; Millman and190

Aivazis , 2011], provide a convenient solution and easy-to-use environment which has191

been used in this work. Thus, inverse modeling of SNR interference patterns becomes192

possible even when the relation between the model parameters and the observed SNR193

variations is highly non-linear.194
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3.3. Parametrization and initial conditions

In order to retrieve sea-surface heights it is important that the analyzed SNR195

patterns come from reflections off the water surface. To ensure that only relevant196

reflections from water are analyzed only directions where the characteristic oscillating197

pattern is observed are considered in the analysis process. The process is further198

described in [Löfgren et al., 2014]. This results in station specific azimuth/elevation199

sectors in which water reflections are expected.200

The choice of initial parameters in the non-linear least-squares estimation process201

is crucial. Especially the initial distance between the antenna and the sea surface202

is of importance, since it determines whether the solver converges to the global or203

a local minimum. Therefore, the initial height should be chosen site-specific, using204

a representative value for the average antenna height above the sea level, setting all205

a priori B-spline node values to this initial estimate. The other parameters, C1, C2,206

and Λ, are less sensitive to their a priori values, and do not need to be initialized207

site-specific.208

Another point of interest is the number of nodes used for the B-spline implementa-209

tion, as it determines the maximum temporal resolution of the solution. For a high210

temporal resolution a large number of nodes is desirable, however this will increase211

the computational load of the non-linear least-squares estimation and may eventually212

degrade the final solution due to overfitting. Furthermore, the SNR data are not con-213

tinuous, and there are data gaps when no satellites are within the azimuth/elevation214

sectors considered in the analysis process. These periods without data impose a limit215
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on the temporal resolution of the inversion process, since all B-spline intervals must216

cover a time span with sufficient data. Thus the B-spline intervals must be larger217

than the longest gaps in the data set.218

The B-spline solution can occasionally be unstable at the beginning or the end,219

especially if there are data gaps. Therefore, we perform an inversion process with220

data from three consecutive days, but select only the results of the middle day. This221

processing scheme is applied to each day in order to obtain a smooth and continuous222

time series of sea-surface heights.223

4. Testing and validating the method at two coastal sites

The new method has been tested with data from the GNSS stations at Onsala224

(GTGU) at the Swedish west coast, and Spring Bay (SPBY) at the east coast of225

Tasmania, cf. Section 4.1 and 4.2. Both stations are located on the coast and have226

a good view of open water. In addition, the two installations record SNR data from227

both GPS and GLONASS with high temporal resolution. Moreover, both stations228

are co-located to tide gauges for independent validation and have been previously229

used for GNSS-R related studies.230

4.1. Onsala GNSS-R installation (GTGU)

The GNSS-R tide gauge at the Onsala Space Observatory was installed in the231

fall of 2011, and has been previously described by Larson et al. [2013]. The site was232

installed specifically for GNSS-R purposes and therefore has a wide view over the sea,233

covering almost 180 degrees in azimuth (c.f. Table 1 for azimuth/elevation ranges).234
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The equipment at the site includes two Leica AR 25 GNSS antennas, one zenith and235

one nadir looking. The nadir looking antenna is modified to be sensitive for left-236

hand circularly polarized signals. Both antennas are mounted on a horizontal pole237

which allows them to be placed up to 4 m above the mean sea level. Each antenna238

is connected to a separate Leica GRX1200 receiver. Thus it is possible to use the239

up-ward looking installation (called GTGU) for GNSS-R studies using SNR data or240

investigate sea-surface height changes by utilizing the phase difference between the241

up-ward and down-ward looking antenna/receiver pairs. During the period studied242

in Sec. 5, data from a co-located pressure tide gauge with a nominal uncertainty of243

5 mm were available. As this tide gauge is only 10 m away from the GNSS-R station,244

it can be used as a reference to which GNSS-R solutions can be compared to.245

In general, it can be stated that the tidal variations at Onsala are relatively small,246

and have a daily peak-to-peak variation of around 20 cm. However, meteorological247

effects, in particular local pressure variations that influence the sea level, are the248

primary driver for sea level variations at the site. These effects lead to a maximum249

peak-to-peak variation of the sea-surface height of around 80 cm over the test period.250

4.2. Spring Bay GNSS-R installation (SPBY)

The Spring Bay GNSS-R installation is situated close to the city Spring Bay in251

Tasmania, Australia, and is operated by Geoscience Australia. The site was not252

installed for GNSS-R purposes, but rather for position monitoring, and has a smaller253

acceptable azimuth/elevation range than GTGU, see Table 1. Since the equipment254

at the site only consist of one single zenith looking Leica AT504 GG antenna, only255
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SNR analysis is possible at the site. The antenna is mounted approximately 4 m256

above the average sea surface and is connected to a Leica GRX1200 receiver.257

There is a co-located acoustic tide gauge at the site which gives one measurement258

each minute. These measurements are computed as averages from 1 Hz data over a259

period of one minute. The standard deviation during one minute is on average 1.3 cm260

for the time period studied in this paper.261

The peak-to-peak variation of the daily tides at Spring Bay is larger than at Onsala262

and are approximately 80 cm. Together with long periodic effects, the total peak-to-263

peak variation was around 1.3 m during the test period.264

5. Results

To compare with earlier studies at the Onsala GNSS-R tide gauge, cf. Section 4.1,265

the new algorithm, cf. Section 3, was tested with data from 2012, day of year (doy)266

273 to 303. These data were previously analyzed by Löfgren and Haas [2014] with267

both the Lomb-Scargle algorithm, with height rate corrections, as well as with the268

phase difference method. The authors report standard deviations for the difference269

when comparing to a co-located pressure tide gauge of 4.0 cm and 3.2 cm respectively.270

In this work, the retrieved sea-surface heights are represented as B-spline functions.271

Therefore, to compare with measurements from a co-located pressure tide gauge, the272

B-spline representations are evaluated at the epochs of the pressure tide gauge mea-273

surements. For GTGU the standard deviation becomes 1.4 cm, which is a significant274
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improvement in precision not only in respect with the previously used SNR method,275

but also in comparison with the phase difference analysis.276

The inverse modeling method was also compared with the Lomb-Scargle spectral277

method on data from the GNSS station SPBY in Spring Bay, Australia. The time278

period for the tests on this site was stipulated by the presence of a continuous series279

of data with high temporal resolution, and was chosen to be between doy 283 and280

324, 2015.281

In Figure 4 the standard deviation, with respect to the co-located tide gauge, for282

the full period is presented for both the inverse-modeling method presented in this283

paper, and the Lomb-Scargle spectral method. As the site only has one upward-284

looking antenna the phase difference method is unfeasible, and only the performance285

of the two SNR-methods can be evaluated. The standard deviation between the sea-286

surface heights retrieved by inverse-modeling and the co-located tide gauge is 3.1 cm287

for the whole period. In comparison, the best value for the Lomb-Scargle analysis on288

this data set, which is from the L1 signal from GLONASS satellites, yields a standard289

deviation of 9.8 cm, which is similar to the results presented by Santamaŕıa-Gómez290

et al. [2015], where the lowest standard deviation for the whole year of 2013 was291

found to be 8.5 cm.292

As seen from Table 2 and Figure 4, the capability to simultaneously process data293

from multiple GNSS is beneficial, as the combination of GPS and GLONASS leads to294

higher precision than using them separately. However, combining L1 and L2 signals295

in a single inversion process did not result in a significantly improved precision. This296
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shows that it is not the increased amount of data points available in the inversion297

process that is the origin of the improvement, but rather the improved temporal and298

spatial coverage that using several GNSS together provides. More satellites means299

a higher probability that a GNSS surface reflection is available within the accepted300

azimuth/elevation sectors at any given time.301

The standard deviation of the two stations for different numbers of B-spline nodes302

are presented in Figure 5. As expected, a higher temporal resolution at first increases303

the precision of the algorithm. However, after a certain threshold, the precision starts304

to deteriorate. Such deterioration is a general problem when fitting functions, also305

known as overfitting. This threshold occurs at a higher number of B-spline nodes for306

GTGU, which has larger azimuth/elevation sectors, than for SPBY. A wider angle307

mask means more SNR measurements and less, and shorter, gaps where no data at308

all are available. This also implies that a higher temporal resolution of the B-spline309

model becomes feasible without the risk of overfitting.310

The sharp increase in standard deviation that occurs at lower number of nodes at311

SPBY arises since the small number of B-spline nodes reduces the ability to resolve the312

semi-diurnal tides that are dominant at Spring Bay. For GTGU the same increase in313

standard deviation is not observed as semi-diurnal tides are less important at Onsala314

than meteorological effects, which dominate the local sea level and occur on longer315

timescales.316

As discussed before, it can be stated that the new inverse modeling strategy out-317

performs both the Lomb-Scargle and phase-difference methods in terms of smaller318
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standard deviation. Moreover, as shown in Table 2, higher correlations against mea-319

surements from a co-located tide gauge are obtained when using the inverse modeling320

approach. Since tides are periodic by nature it is possible to study more than simple321

correlations and investigate how well the tide gauge records and the retrieved heights322

from both the inverse modeling algorithm and the Lomb-Scargle method agree on323

different time scales. This is done with wavelet coherence analysis using a MATLAB-324

implementation based on the work by Grinsted et al. [2004]. The coherence between325

the sea-surface heights retrieved from GNSS-R and the tide gauges are shown in Fig-326

ures 6 and 7, for GTGU and SPBY respectively. Since the wavelet analysis requires327

a regularly sampled signal, the heights derived from the Lomb-Scargle analysis are328

re-sampled using linear interpolation. As this might affect the coherence on periods329

shorter than the original spacing of the data, only time scales above the longest time330

between two successive Lomb-Scargle solutions are considered here.331

From Figures 6 and 7 it is clear that the coherence for the inverse modeling is in332

general higher than for the Lomb-Scargle solution. In particular, the inverse modeling333

coherence is preserved for periods down to 6 h, whereas the Lomb-Scargle approach334

is only capable to resolve spectral components with periods of 8 h or longer. Over335

all, inverse modeling outperforms the Lomb-Scargle results in terms of coherence on336

all time scales.337

Although not discussed here, an analysis of the post-fit residuals revealed no sys-338

tematic effects or signals, which confirms that the chosen parameterization is suitable339
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to model the data. Thus, the presented inversion strategy appears to a good choice340

for retrieving sea-surface heights from GNSS SNR data.341

6. Conclusion and outlook

The precision of interferometric GNSS-R analysis has been increased by using a new342

algorithm for retrieving sea-surface heights from GNSS SNR data, based on inverse343

modeling of SNR observations. Tests at two different sites confirm this increase in344

precision when comparing against the Lomb-Scargle method and the dual receiver345

method applied to GTGU data.346

The precision of the inversion increased when signals from GPS and GLONASS347

were consistently combined. However, combining data from L1 and L2 signals did not348

improve precision. Both findings can be explained by the fact that better geometric349

coverage tends to improve the inversion whereas more data from the same time and350

location do not lead to significantly better sea level retrievals. Therefore, adding data351

from more GNSS as they become available has the potential to increase the precision352

of our algorithm, since more available satellites lead to a higher probability for a353

satellite to be within the accepted azimuth/elevation ranges at any given time.354

However, even using only one of the signals, the method increases the precision355

significantly compared to previously used methods. This paves the way for using356

low-cost GNSS equipment for precise sea level studies.357

The number of B-spline nodes used in the inversion model has a significant impact358

on the precision of the solution. However, the optimum number of nodes can only359
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be determined with knowledge about local sea visibility conditions, as well as tidal360

variations at a particular site. Further studies will show how to automatically adopt361

the algorithm for an arbitrary coastal site.362
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Löfgren, J. S., R. Haas, H.G. Scherneck, and M. Bos (2011), Three months of local390

sea level derived from reflected GNSS signals, Radio Science, 46 (6)391
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Figure 1. Detrended SNR from a GLONASS L1 arc (black dots) at GTGU on day 263,

2015, together with the SNR pattern obtained from inverse modeling (red line).
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Figure 2. Sea level at Onsala as derived from inverse modeling of the detrended SNR

data (red, dashed), and the reference levels from the co-located tide gauge (black, solid) for

a subset of the data used for validation. Since the tide gauge and the GNSS solution do

not have the same reference level, the mean of each of the two data sets has been removed

before plotting.
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Figure 3. Results from pressure tide gauge (black, solid line), inverse modeling using

both GLONASS and GPS (red, dashed line), and different Lomb-Scargle (LSP) solutions

(symbols) for the GNSS station SPBY (Spring Bay, Australia). The mean of each data

series has been removed before plotting.
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Figure 4. Standard deviation of the different GNSS-R sea level solutions w.r.t. the Spring

Bay tide gauge for the full period from doy 283 to 324, 2015.
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Figure 5. Standard deviations compared to co-located tide gauges for the GTGU and

SPBY stations, using different number of B-spline nodes, and their spacing in time (upper

axis), in the inverse modeling process.
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Figure 6. Wavelet coherence between the Onsala tide gauge measurements and the

sea-surface heights retrieved by the inverse modeling (left) and the Lomb-Scargle method

(right). The gray mask marks the areas where boundary effects impact the wavelet analysis,

and the black contour marks the 5 % significance level against red noise.
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Figure 7. Wavelet coherence between the Spring Bay tide gauge measurements and the

sea-surface heights retrieved by the inverse modeling (left) and the Lomb-Scargle method

(right). The gray mask marks the areas where boundary effects impact the wavelet analysis,

and the black contour marks the 5 % significance level against red noise.

D R A F T June 23, 2016, 1:14pm D R A F T



STRANDBERG ET AL.: GNSS-R INVERSE-MODELING 31

Table 1. Azimuth/elevation ranges and initial heights for GTGU and SPBY

Station Elevation range [deg] Azimuth range [deg] Initial height

GTGU 1 – 14.5 70 – 260 4 m

SPBY 1 – 10 280 – 310 4 m
1 – 7 310 – 335
1 – 10 335 – 360
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Table 2. Comparison of different GNSS-R sea level solutions for GTGU, day of year 273

to 303, 2012

Standard Mean abs.
deviation difference Correlation

[cm] [cm]

Inverse modeling
GPS+GLO, L1/L2 1.44 1.13 0.99
GPS+GLO, L1 1.43 1.13 0.99
GPS+GLO, L2 2.00 1.58 0.99
GPS, L1/L2 1.54 1.21 0.99
GPS, L1 1.53 1.21 0.99
GPS, L2 2.32 1.84 0.99
GLONASS, L1/L2 1.68 1.33 0.99
GLONASS, L1 1.69 1.33 0.99
GLONASS, L2 2.24 1.77 0.99

Lomb-Scargle spectral analysisa

GPS, L1 4.0 3.2 0.97
GPS, L2 9.0 7.5 0.86
GLONASS, L1 4.7 3.6 0.96
GLONASS, L2 8.9 7.0 0.87

Geodetic phase difference analysisa

GPS, L1 3.5 2.3 0.95
GPS, L2 3.5 2.4 0.95
GLONASS, L1 3.3 2.2 0.96
GLONASS, L2 3.2 2.3 0.96

a Results from Löfgren and Haas (2014). Values only reported with mm resolution.
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