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ABSTRACT

Context. This article belongs to the first series of XXL publications. It presents multifibre spectroscopic observations of three 0.55 deg2

fields in the XXL Survey, which were selected on the basis of their high density of X-ray-detected clusters. The observations were
obtained with the AutoFib2+WYFFOS (AF2) wide-field fibre spectrograph mounted on the 4.2 m William Herschel Telescope.
Aims. The paper first describes the scientific rationale, the preparation, the data reduction, and the results of the observations, and
then presents a study of active galactic nuclei (AGN) within three superclusters.
Methods. To determine the redshift of galaxy clusters and AGN, we assign high priority to a) the brightest cluster galaxies (BCGs),
b) the most probable cluster galaxy candidates, and c) the optical counterparts of X-ray point-like sources. We use the outcome of the
observations to study the projected (2D) and the spatial (3D) overdensity of AGN in three superclusters.
Results. We obtained redshifts for 455 galaxies in total, 56 of which are counterparts of X-ray point-like sources. We were able to
determine the redshift of the merging supercluster XLSSC-e, which consists of six individual clusters at z ∼ 0.43, and we confirmed
the redshift of supercluster XLSSC-d at z ∼ 0.3. More importantly, we discovered a new supercluster, XLSSC-f, that comprises three
galaxy clusters also at z ∼ 0.3. We find a significant 2D overdensity of X-ray point-like sources only around the supercluster XLSSC-f.
This result is also supported by the spatial (3D) analysis of XLSSC-f, where we find four AGN with compatible spectroscopic redshifts
and possibly one more with compatible photometric redshift. In addition, we find two AGN (3D analysis) at the redshift of XLSSC-e,
but no AGN in XLSSC-d. Comparing these findings with the optical galaxy overdensity we conclude that the total number of AGN
in the area of the three superclusters significantly exceeds the field expectations. All of the AGN found have luminosities below
7 × 1042 erg s−1.
Conclusions. The difference in the AGN frequency between the three superclusters cannot be explained by the present study because
of small number statistics. Further analysis of a larger number of superclusters within the 50 deg2 of the XXL is needed before any
conclusions on the effect of the supercluster environment on AGN can be reached.

Key words. galaxies: active – galaxies: clusters: general – X-rays: galaxies: clusters – galaxies: interactions – galaxies: evolution –
large-scale structure of Universe

� Based on observations obtained with XMM-Newton, an ESA science mission with instruments and contributions directly funded by ESA
Member States and NASA. Based on observations obtained with the William Herschel telescope during semester 13B.
�� The Master Catalogue is available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via
http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/592/A2
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1. Introduction

As structures grow hierarchically, galaxies are accreted by pro-
gressively more massive dark matter halos, and the majority of
galaxies end up in clusters (Eke et al. 2004; Calvi et al. 2011).
Clusters are therefore the predominant environment of galax-
ies and can play a very important role in establishing galaxy
properties.

Although there is no explicit classification, galaxy concen-
trations with more than 50 members and more massive than
1014 M� are defined as galaxy clusters. Less massive aggrega-
tions with less than 50 galaxies are called galaxy groups. We
note that according to the above classification most of the ex-
tended X-ray sources in the current study are clusters.

Clusters and groups are usually identified by optical and in-
frared surveys as concentrations of red-sequence galaxies (e.g.
Gladders & Yee 2000; Koester et al. 2007a; Hao et al. 2010;
Rykoff et al. 2014; Bleem et al. 2015) or galaxy overdensi-
ties in photometric redshift space (e.g. Wen et al. 2009, 2012;
Szabo et al. 2011) and they are confirmed by follow-up spec-
troscopy. They can also be identified by X-ray observations as
extended sources, unambiguously testifying the presence of hot
gas trapped in the potential well of a virialised system (e.g.
Pierre et al. 2004; Pacaud et al. 2007; Pierre et al. 2016, hereafter
Paper I). X-ray selected cluster samples are rarer and smaller
than optically selected ones, and deep X-ray observations are re-
quired to probe a significant range of halo masses.

The properties of galaxy populations in groups and clusters
vary enormously. At low redshift, it is well known that some
galaxy groups are dominated by early-type, passively evolving
galaxies, similarly to clusters, while others have a galaxy popu-
lation resembling that of the field, mostly composed of late-type,
star-forming galaxies (Zabludoff & Mulchaey 1998). Recent
studies of optically selected clusters at intermediate redshifts
have found a similar variety. Surveys like EDisCS (Poggianti
et al. 2006, 2009), zCOSMOS (Iovino et al. 2010), and CNOC2
(Wilman et al. 2005, 2008) find that cluster galaxies differ sig-
nificantly from galaxies that reside in lower mass halos in the
field, but with a wide range of properties at a given cluster ve-
locity dispersion. Whether this variety originates from the dif-
ference between virialised clusters and clusters in formation or
from unbound galaxy associations is still an open question, es-
pecially given the broad spread in galaxy properties observed in
the currently small X-ray selected samples (Jeltema et al. 2007;
Urquhart et al. 2010).

The effect of the group and cluster environment on the activ-
ity of the central supermassive black hole (SMBH) of galaxies
and vice versa is still fairly undetermined, but nevertheless cru-
cial. Galaxy clusters represent one end of the density spectrum
in our universe, and as such they are an ideal place to inves-
tigate the effect of the dense environment in the triggering of
active galactic nuclei (AGN), especially since an excessive num-
ber of X-ray point-like sources are undoubtedly found there (e.g.
Cappi et al. 2001; Molnar et al. 2002; Johnson et al. 2003; D’Elia
et al. 2004; Cappelluti 2005; Gilmour et al. 2009). Specifically,
for the XMM-LSS field, 60% of X-ray-selected AGN reside in
the overdense regions of group-like environment (Melnyk et al.
2013). We note that AGN can be used as cosmological probes
to trace the large-scale structure at high redshifts (e.g. Einasto
et al. 2014), and thus the study of the AGN frequency-to-density
relation is essential.

Theoretically, the feeding of the black hole can only be
achieved by means of a non-axisymmetric perturbation that

induces mass inflow. This kind of perturbation can occur in
interactions and merging between two galaxies, which results in
the feeding of the black hole and the activation of the AGN phase
(e.g. Umemura 1998; Kawakatu et al. 2006; Koulouridis et al.
2006a,b; 2013; Koulouridis 2014; Ellison et al. 2011; Silverman
et al. 2011; Villforth et al. 2012; Hopkins & Quataert 2011).
Thus, the cluster environment, where the concentration of galax-
ies is very high relative to the field, would also seem favourable
to AGN. However, the rather extreme conditions within the grav-
itational potential of a galaxy cluster can work in the oppo-
site direction as well. The ram pressure from the intracluster
medium (ICM) is probably able to strip or evaporate the cold
gas reservoir of galaxies (Gunn & Gott 1972; Cowie & Songaila
1977; Giovanelli & Haynes 1985; Chung et al. 2009; Jaffé et al.
2015) and can strongly affect the fueling of the AGN. Other
studies, however, have argued that ram pressure stripping can-
not be as effective in transforming blue-sequence galaxies to red
(e.g. Larson et al. 1980; Balogh et al. 2000, 2002; Bekki et al.
2002; van den Bosch et al. 2008; Wetzel et al. 2012), especially
in galaxy groups where other processes are taking place as well.
In addition, possible prevention of accretion of gas from the halo
into cluster or group galaxies (“strangulation”; e.g. Larson et al.
1980; Bekki et al. 2002; Tanaka et al. 2004) may, in fact, sup-
press AGN activity.

When using only optically selected AGN, the results on
the AGN frequency within galaxy clusters remain inconclu-
sive. Early studies reported that AGN are less frequent in
galaxy clusters than in the field (Osterbrock 1960; Gisler 1978;
Dressler et al. 1985) and more recent studies support this sug-
gestion (Kauffmann et al. 2004; Popesso & Biviano 2006;
von der Linden et al. 2010; Pimbblet et al. 2013). Other stud-
ies, however, have found no differences between cluster and field
galaxies (e.g. Miller et al. 2003).

In contrast to optically selected AGN, radio-loud AGN seem
to be more clustered than any other type of galaxy (Hart et al.
2009) and are often associated with brightest cluster galaxies
(BCGs; e.g. Best 2004; Best et al. 2007). Nevertheless, Best et al.
(2005) showed that radio-loud AGN with the strongest optical
emission lines avoid the densest regions, a fact that implies a
certain connection between the environment and the accretion
rate onto the SMBH.

Undoubtedly, the best way to detect active galaxies is
through X-ray observations (e.g. Brandt & Alexander 2010).
During the previous decade, spectroscopic studies of X-ray
point-like sources in rich galaxy clusters have concluded that
low-X-ray-luminosity AGN (<3 × 1042 erg s−1) are equally
present in cluster and field environments (e.g. Martini et al.
2007; Haggard et al. 2010), although most of them presented
no optical AGN spectrum (e.g. Martini et al. 2002, 2006; Davis
et al. 2003). Nevertheless, luminous AGN were rarely found
in clusters (Kauffmann et al. 2004; Popesso & Biviano 2006).
More recent studies also reported a significant lack of AGN
in rich galaxy clusters by comparing X-ray to optical data.
Koulouridis & Plionis (2010) demonstrated the suppression of
X-ray-selected AGN in 16 rich Abell clusters (Abell 1958) by
comparing the X-ray point source overdensity to the optical
galaxy overdensity. Ehlert et al. (2013, 2014) found that the
X-ray AGN fraction in the central regions of 42 of the most
massive clusters known is about three times lower than the field
value using the same technique, while in their most recent study
(Ehlert et al. 2015) they argue that galaxy mergers may be an
important contributor to the cluster AGN population. More im-
portantly, from the complete spectroscopy of their X-ray point-
like source sample, Haines et al. (2012) concluded that X-ray
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AGN found in massive clusters are an in-falling population and
confirm the suppression in the inner regions of rich clusters. On
the other hand, Martini et al. (2013) argue that this trend is not
confirmed for a sample of high-redshift clusters (1.0 < z < 1.5).
Finally, an indirect way to address the issue is by clustering anal-
yses, but these results also remain inconclusive (see relevant dis-
cussion in Haines et al. 2012, Sect. 5.2).

The majority of the above studies deal with AGN within
massive clusters, while the presence of AGN in less massive or
even more massive formations has been very poorly studied. In
a scenario in which AGN are suppressed by the strong gravita-
tional potential of massive clusters (through gas stripping, stran-
gulation, tidal stripping, evaporation, high velocity-dispersion,
etc.), one would expect the AGN presence to rise in shallower
gravitational potentials (see Arnold et al. 2009; Gavazzi et al.
2011; Bitsakis et al. 2015) and be completely nullified within
the deepest ones. In Koulouridis et al. (2014), we investigated the
AGN presence in two samples of poor and moderate clusters and
found evidence of this anti-correlation. Interestingly, in merging
or actively growing clusters the high incidence of galaxy mergers
can potentially enhance the number of AGN, while at the same
time, shock waves may also enhance the ram pressure stripping
intensity (Vijayaraghavan & Ricker 2013; Jaffé et al., in prep.).

In the current study we investigate the most extreme massive
formations in the Universe, superclusters. They typically consist
of three to ten clusters spanning as many as 150 h−1 Mpc and
are without sharply defined boundaries (e.g. Chon et al. 2014;
Pearson 2015). The superclusters can vary widely in size, con-
taining from a few small groups of the order of 1013−1014 M�
(e.g. Einasto et al. 2011; Chon et al. 2014) up to many massive
clusters. We note, however, that the mass density, averaged on
the supercluster scale, is smaller than in clusters. They are al-
ready decoupled from the Hubble flow, but not yet virialised;
the time it takes a randomly moving galaxy to traverse the long
axis of a supercluster is typically comparable to the age of the
universe. They also appear to be interconnected, but the bound-
aries between them are poorly defined. At these large scales the
dynamical evolution proceeds at a slow rate and superclusters
reflect the initial conditions of their formation. Therefore, they
are important sites where we can directly witness the evolution
of structure formation and mass assembly.

With its depth, uniform coverage, and well-defined selection
function, the XXL Survey (The Ultimate XMM-Newton Survey,
Paper I) is making a unique contribution to the study of distant
clusters. In addition, its two 5 × 5 deg2 fields are essential to the
study of AGN in the cluster environment. Clusters can be very
extended, of the order of a few Mpc, and AGN may preferen-
tially reside even further out in their outskirts (e.g. Fassbender
et al. 2012; Haines et al. 2012; Koulouridis et al. 2014). More
than half of the detected extended sources are 1−3 keV clusters
in the 0.2 < z < 0.5 range (Fig. 1), they cover an estimated mass
range 1012.8−1014.5 M�, and are the subject of our spectroscopic
follow-up campaign.

In the first part of the current paper (Sects. 2 and 3), we
present the preparation, the data reduction, and the results of
the William Herschel Telescope (WHT) observations. In the sec-
ond part (Sect. 4) we investigate the AGN frequency within the
three superclusters. The results for cluster galaxies and the re-
lated spectroscopic catalogues will be presented in a subsequent
paper. Throughout this paper we use H0 = 70 km s−1 Mpc−1,
Ωm = 0.28, and ΩΛ = 0.72.

0.2 0.3 0.4 0.5

0.2

0.3

0.4

0.5

Fig. 1. Comparison of the galaxy spectroscopic redshifts obtained dur-
ing the two runs with the William Herschel Telescope with the CFHTLS
photometric redshifts.

2. Data description

2.1. The XXL Survey

The XXL Survey is the largest XMM project approved to date
(>6 Ms), surveying two ∼5 × 5 deg2 fields at a depth of ∼5 ×
10−15 erg s−1 cm−2 in the [0.5−2] keV soft X-ray band1 (com-
pleteness limit for the point-like sources). The XXL observa-
tions have been completed and processed. To date some 450 new
galaxy clusters have been detected out to redshift z ∼ 2 as well as
more than 10 000 AGN out to z ∼ 4. The main goal of the project
is to constrain the Dark Energy equation of state using clusters
of galaxies. This survey will also have lasting legacy value for
cluster scaling laws and studies of galaxy clusters, AGN, and
X-ray background. The northern field (XXL-N), which we use
in the current study, is also covered in other wavelengths, e.g.
the Canada-France-Hawaii Telescope Legacy Survey (CFHTLS-
optical), Spitzer Space Telescope (SST-infrared), the UKIRT
Infrared Deep Sky Survey (UKIDSS) and the Galaxy Evolution
Explorer (GALEX-Ultraviolet).

2.2. Spectroscopic target and supercluster selection

The three fields observed in this work (see Table 1) were chosen
on the basis of the high number of X-ray clusters, containing a
total of 25 X-ray groups/clusters in the redshift range that we are
targeting, i.e. 0.2 < z < 0.5. In order of priority, we targeted a)
all the BCGs, b) cluster galaxy candidates selected on the basis

1 The XXM-Newton observation IDs used in the current study:
Field-1:
0677670135, 0677670136, 0677680101, 0677680131, 0677681101
Field-2:
0651170501, 0651170601, 0655343860, 0677650132, 0677650133,
0677650134, 0677660101, 0677660201, 0677660231, 0677660232,
0677660233, 0677670133, 0677670134, 0677670135, 0742430101
Field-3:
0109520201, 0109520301, 0111110101, 0111110201, 0111110701,
0112680101, 0112680401, 0112681001, 0112681301, 0677580131,
0677580132, 0677590131, 0677590132, 0677590133.
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Table 1. WHT observations.

Date Time UT Name Config. Exp. Seeing

(1) (2) (3) (4) (5) (6)

2013 Oct. 29 22:00–00:50 Field-1 1st Bright 150 1.5′′−2.4′′

2013 Oct. 29 01:42–04:45 Field-1 2nd Bright 150 1.5′′−2.4′′

2013 Oct. 30 22:00–00:15 Field-3 1st Bright 120 <1.5′′

2013 Oct. 30 00:50–04:30 Field-1 Faint 200 <1.5′′

2013 Nov. 07 22:00–02:10 Field-3 Faint 240 <1.5′′

2013 Nov. 08 21:00–00:20 Field-3 2nd Bright 180 >1.5′′

2013 Nov. 08 01:20–02:20 Field-2 1st Bright 60 >1.5′′

2013 Nov. 09 23:00–02:30 Field-2 2nd Bright 180 >2.0′′

2013 Nov. 10 22:00–23:30 Field-2 1st Bright 120 >1.5′′

2013 Nov. 08 00:00–03:30 Field-2 Faint 180 0.5′′−0.9′′

Notes. (1) Date of observation; (2) starting and ending UT; (3) name
of the observed WHT field; (4) target selection: “Bright” for targets
19 < mr < 20.5 and “Faint” for 20.5 < mr < 21; (5) exposure time in
minutes; (6) seeing during the observation.

of projected distance to the cluster X-ray position (<500 h−1 kpc
and 19 < rSDSS < 21), c) optical counterparts of X-ray point-like
sources (mostly AGN), and finally d) any other galaxy in the
targeted redshift range according to their photometric redshift.

Superclusters are defined as concentrations of clusters that
trace a second-order clustering hierarchy of galaxies, and they
are the largest structures observed. In the current study we iden-
tify superclusters as concentrations of at least three clusters at a
close redshift separation within 25′ radius, given the limited field
of view (FoV) of the WHT. Our three observed fields include a
total of three superclusters (see Table 2).

Pacaud et al. (2016, hereafter Paper II) base their selection
on a different methodology because of the different sample (the
100 brightest clusters, hereafter XXL-100-GC2) and the different
area (the full XXL Survey). According to Paper II a supercluster
must include a close pair of clusters (D < 8 h−1 Mpc) and at least
a third cluster within 20 h−1 Mpc of the pair. The above selection
requires all three clusters of the starting triplet to be members of
the XXL-100-GC. Then all clusters within 35 h−1 Mpc, indepen-
dent of brightness, are considered supercluster members. They
finally report five superclusters, XLSSC-a to -e.

Two of them are in common with the current paper, i.e. Field-
1 includes XLSSC-e and Field-2 a part of XLSSC-d. The lat-
ter comprises seven X-ray detected clusters in Paper II, but the
WHT FoV includes only a close bright pair and one more fainter
cluster3. In Field-3 we discover a supercluster that satisfies the
first criterion of Paper II of having a close pair of clusters that be-
long to the XXL-100-GC sample, but the third member is fainter.
We name this supercluster XLSSC-f.

In addition to the discovery of the XLSSC-f supercluster, we
also publish a new XXL cluster, namely XLSSC 117. We list
some basic properties of the new cluster in Table 2.

2 XXL-100-GC data are available in computer readable form via the
XXL Master Catalogue browser http://cosmosdb.iasf-milano.
inaf.it/XXL, and via the XMM XXL DataBase http://xmm-lss.
in2p3.fr
3 Because of the slightly higher average redshift of the three clusters
of XLSSC-d in the current paper (z = 0.298) than of the seven clusters
in Paper II (z = 0.294), the two papers report slightly different redshift
(0.30 and 0.29, respectively).

3. Multifibre optical spectroscopy

3.1. Target preparation

For the preparation of the observations we executed the soft-
ware af2-configure, available in the Isaac Newton Group of
Telescopes (ING) website4. It is designed to create the mapping
between the objects and the fibres during a particular spectro-
graph exposure. It uses an input file with the coordinates (α, δ)
of the objects, creates a fibre-to-object mapping using one of
two currently available placement algorithms, and then allows
the user to edit the fibre locations interactively. In the input file
the user should also assign priority to all objects. High prior-
ity should be assigned to fiducial stars, since it is essential to
allocate approximately eight fiducial fibres, scattered homoge-
neously in the field, to accurately align the science fibres. The
placement algorithms search for the best combination of posi-
tion angle of the spectrograph on the sky and targets in the fibres
that maximise the sum of object priorities.

The fibres are positioned by af2-configure within a FoV
of 1 deg in diameter, but we manually limited our targets within
the central 25 arcmin radius to avoid the effects of vignetting.
We tried to maximise the number of fibres allocated on galax-
ies, but typically also placed 20−30 fibres on the sky for sky
subtraction purposes. Within each field our targets were divided
into bright (19 < rSDSS < 20.5) and faint (20.5 < rSDSS < 21)
and we prepared two fibre configurations for the bright sources
and one for the faint. We allocated an average of ∼100 sources
per configuration, plus sky fibres and fiducial stars.

3.2. Observations

We observed the three fields with the 4.2 m WHT during six
nights in 2013. More details about the observations are listed
in Table 1. We conducted multifibre medium resolution spec-
troscopy with the AutoFib2+WYFFOS (AF2) wide-field mul-
tifibre spectrograph. The AF2 contains 150 science fibres of
1.6 arcsec diameter and 10 fiducial bundles for acquisition and
guiding. At the prime focus, the fibres are placed onto a field
plate by a robot positioner at user-defined sky coordinates (see
Sect. 3.1).

We used the R600B grating with the new default detec-
tor Red+4. It is an e2v 231-84 4k × 4k, red-sensitive, fringe-
suppression CCD with a mosaic of 4096 × 4112 pixels, 15 μm
each. We used a 2 × 2 binning of the CCD pixels and we ob-
tained a spectral resolution of ∼4.4 Å. The spectra were centred
at wavelength ∼5400 Å, and covered the range 3800 to 7000 Å.
The spectra of He and Ne lamps were used for the wavelength
calibration.

The bright configurations were observed for 2 or 2.5 h each
(depending on the seeing), and the faint for 3−4 h each. We were
able to observe nine fibre configurations. In total the run yielded
∼900 spectra.

3.3. Data reduction

Data were reduced using the AF2 data reduction pipeline v1.025.
The pipeline is written in IDL and is able to perform data reduc-
tion, including fibre-to-fibre sensitivity corrections and optimal
extraction of the individual spectra. Below we describe briefly

4 http://www.ing.iac.es
5 A newer version of the pipeline (v3.0) can be downloaded
from http://www.ing.iac.es/astronomy/instruments/af2/
reduction.html
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Table 2. Superclusters.

Obs. Field RA Dec Supercluster RA Dec cluster ID zspec zmean T300kpc M500,MT r500,MT Ref.

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13)

Field-1 32.60 –6.30 XLSSC-e 32.87 –6.20 XLSSC 081 0.432 1.7+0.3
−0.2 0.7 0.55 5

XLSSC 082† 0.427 3.9+1.7
−0.6 2.9 0.88 5

XLSSC 083† 0.430 4.8+1.2
−0.9 4.1 0.99 4

XLSSC 084† 0.430 0.429 4.5+2.3
−1.5 3.7 0.96 4

XLSSC 085† 0.428 4.8+2.0
−1.0 4.1 0.99 4

XLSSC 086† 0.424 2.6+1.2
−0.6 1.5 0.70 5

Field-2 36.93 –4.70 XLSSC-d 37.22 –5.05 XLSSC 013 0.307 1.6+0.3
−0.1 0.7 0.57 1

XLSSC 022 0.293 0.298 2.1+0.1
−0.1 1.1 0.68 2

XLSSC 027 0.295 2.7+0.4
−0.3 1.7 0.77 3

Field-3 33.12 –5.82 XLSSC-f 33.12 –5.82 XLSSC 098 0.297 2.9+1.0
−0.6 1.9 0.81 4

XLSSC 111 0.299 0.298 4.5+0.6
−0.5 4.0 1.02 4

XLSSC 117 0.298 3.3+0.8
−0.7 2.4 0.86 6

Notes. (1) Observed field name; (2), (3) field coordinates in the J2000 system; (4) supercluster name; (5); (6), supercluster coordinates in the
J2000 system, as published in Paper II for XLSSC-d and -e; (7) original cluster name in the XXL database, members of the XXL-100-GC sample
in bold; (8) spectroscopic redshift; (9) mean supercluster redshift; (10) X-ray temperature in keV within an aperture of 300 kpc measured in
Giles at al. (2016, Paper III) for the members of the XXL-100-GC sample; (11) cluster mass in 1014 M�, calculated from the M500,MT − T300 kpc

scaling relation of Lieu et al. (2016, hereafter Paper IV); (12) overdensity radius with respect to the critical density in Mpc, calculated from the
M500,MT − T300 kpc scaling relation of Paper IV; (13) reference to the first X-ray detection as a cluster. (†) The spectroscopic redshift of the cluster
was initially determined by the observations presented in the current paper.

References. (1) Willis et al. (2005); (2) Pierre et al. (2006); (3) Pacaud et al. (2007); (4) Paper II; (5) Paper VII; (6) this work.

the calibration and extraction modules of the pipeline, but more
details can be found in the pipeline manual distributed online by
the ING.

The first steps of the pipeline include master bias correction,
tracing of the fibres, flat-field correction, masking of bad pixel
in the science data, and wavelength calibration. In more detail:

1. BIAS module: at least ten bias files are used each night to
debias all raw data images. The average signal level in the
overscan regions is used to correct for any change in the bias
level over time.

2. MASK module: the module produces a mask file of the CCD
pixels where the dark current exceeds a user-specified level.
It also displays a plot of the fraction of masked pixels versus
the cut-off level and an image of the produced file.

3. FLAT module: at least ten twilight sky or internal flats
were used to perform the flat-field correction each night.
Individual flats are scaled according to their mean value be-
fore calculating their total median value.

4. CIRC module: this module uses a flat file to trace the x-pixel
position of the centre of the spectral line of each active fibre
as a function of y-pixel. In the pipeline version used for the
reduction in the current paper, the module crashed if the low-
signal area of the CCD (the blue part of the spectrum) was
not trimmed. The new version of the pipeline, however, does
not present this problem and the user can analyse the CCD
in its full length.

5. ARC & ATLAS module: the module extracts the lamp spec-
trum as a function of y-pixel position and uses this intermedi-
ate spectrum to determine the wavelength calibration. In our
case two arc files are used to reference lines simultaneously,
one from the helium lamp for the blue part of the spectrum,
and one from the neon lamp for the red part of the spectrum.
The ARC module identifies the approximate y-pixel location
and exact wavelengths for a set of well-separated unsaturated

lines in the arc spectra and finds the precise position of the
peaks by fitting Gaussian profiles to each one. It uses a pre-
defined table of emission line data, but in combination with
the ATLASmodule the selection and confirmation of the lamp
lines is performed interactively.

The extraction of the spectrum by the pipeline is done in two
additional steps:

1. STAR module: the module first extracts the science spectra
of designated targets and sky-allocated fibres and then pro-
cesses the intermediate spectra to produce sky subtracted
output spectra on a common wavelength base. The median
sky spectrum is calculated within the STAR module. There
are four different options for the calculation, but in our case
we selected the one where the median sky is scaled and the
output spectrum is masked over sky lines.

2. MEDAN module: this module evaluates the median spectra
for each fibre by combining all available science exposures.
Spectra are normalised to their mean value before the median
is calculated.

Finally, the flux calibration, which is not included in the pipeline,
is performed with IRAF using STANDARD, SENSFUNC, and
CALIBRATE tasks. Given the wide magnitude range covered, the
spectra have a wide range of S/N.

3.3.1. Galaxy redshifts

Redshifts were obtained from visual inspection of all spectra
by two of the authors (BP and CA), using the IRAF package
RVSAO independently and iterating on doubtful cases.

The overall success rate (number of redshifts/number of
spectra) was 60%, ranging from 84% for the best seeing con-
figurations to the lowest 30% for the worst ones.
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The probability that each redshift was correct was estimated
on the basis of the number and quality of spectral features (lines
in emission or absorption, D4000) identified in the spectrum. If
a large number of lines were identified without wavelength off-
sets the probability was set to 99%. As the number of identified
spectral features decreased, the assigned probability decreased;
75% percent redshifts had at least two or three secure lines.

In total we obtained 455 good-quality redshifts (of which
172/147/110 have a 75%/95%/99% chance of being correct, and
26 are based on a single emission line but with very reliable iden-
tification). Ninety other redshifts were more uncertain and were
not used for any of our purposes, but were recorded for future
reference. We note that our target sample was not contaminated
by stars.

In more detail we obtained:

1. 9 BCG (brightest cluster galaxy) redshifts. These provide us
with nine new cluster redshifts around z = 0.3−0.5. More
importantly these redshifts are too high to be obtained by
GAMA spectroscopy (Driver et al. 2011; Liske et al. 2015),
which covers the XXL Survey, but is much shallower.

2. 82 and 160 cluster galaxy candidates that lie within 0.5 and
1 h−1 Mpc of the cluster centres, respectively. We will use
these galaxies for a more precise determination of the cluster
redshifts and for the study of the cluster properties.
In addition, we obtained the redshifts of another 148 galaxies
that lie more than 1 h−1 Mpc from the closest extended X-ray
source.

3. 56 AGN redshifts that are used in the second part of the cur-
rent paper, in combination with spectroscopic results from
other surveys.

In Fig. 1 we compare our spectroscopic redshifts with the
CFHTLS photometric redshifts (Ilbert et al. 2006; Coupon et al.
2009). WHT spectroscopy is clearly useful in the redshift range
of interest (0.2 < z < 0.5).

4. AGN in superclusters

In the following sections we present a study of the AGN fre-
quency in the three observed supercusters. The supercluster in
Field-1 (XLSSC-e) is very different from the ones found in the
other two fields, i.e. all five clusters found at z ∼ 0.43 are lo-
cated within a circle of 4′ radius (1.3 h−1 Mpc) and a sixth but
uncertain member within 10′. A more detailed analysis of the su-
percluster and its BCGs is presented in Pompei et al. (2016, here-
after Paper VII). Baran et al. (2016, hereafter Paper IX) iden-
tified several overdensities via a Voronoi Tessellation analysis
of optically detected galaxies and presented new radio observa-
tions. Therefore, we consider the supercluster in Field-1 to be a
merging supercluster in a tight configuration.

On the contrary, in the FoV of the WHT (6.5 h−1 Mpc ra-
dius at z = 0.3), the other two structures include only three
members each in a much looser configuration, although both in-
clude a very close cluster pair (<1 h−1 Mpc). Therefore, the su-
perclusters in Field-2 (XLSSC-d) and Field-3 (XLSSC-f) seem
very similar (see Fig. 2). However, further investigation outside
the WHT FoV reveals that these two superclusters are intrin-
sically different, i.e. the structure found in Field-2 is only part
of a larger formation comprising seven X-ray detected clusters
within 35 h−1 Mpc (Paper II), while the three clusters found in
Field-3 are not related to any significant overdensity in the re-
gion. Nevertheless, the total mass of the latter is larger by a fac-
tor of 2.5.

Because of the above differences and its higher redshift, we
studied AGN in XLSSC-e within a 10′ radius around its five
confirmed clusters, while for the other two superclusters we used
the full 25′ FoV of the WHT. In general, superclusters are not
virialised and there is no explicit definition of their centre. For
XLSSC-e we chose a position approximately in the middle of the
formation to be the centre, while for XLSSC-d and -f we used the
centre of the WHT FoV. From the X-ray images in Fig. 2 (right
panels) it is apparent that the above choices are reasonable.

4.1. Methodology
We assessed the enhancement or the suppression of AGN pres-
ence within the three superclusters by analysing both the 3D
(spatial) and the 2D (projected) overdensity of X-ray point
sources. We chose to analyse the 2D case as well since we lacked
complete spectroscopy for all the X-ray point sources. However,
we had to take into account that the 2D case is hampered by a va-
riety of systematic effects, related for example to flux-boosting
due to lensing (see discussion in Koulouridis et al. 2014). For
the statistical evaluation of our results we used the confidence
limits for small numbers of events in astrophysical data, based
on Poisson statistics (Gehrels 1986).

To assess the 2D and 3D overdensity of AGN in the three su-
perclusters we adopted a common lower luminosity limit for the
X-ray point-like sources. We find that for the two superclusters
at z = 0.3 a luminosity limit of L(0.5−2 keV) = 2.7 × 1042 erg s−1,
which corresponds to f(0.5−2 keV) ∼ 1.0 × 10−14 erg s−1 cm−2,
combines both the inclusion of low-luminosity AGN and a rela-
tively high completeness of spectroscopic redshifts. For the su-
percluster XLSSC-e at z = 0.43, this luminosity limit corre-
sponds to a flux limit of f(0.5−2 keV) = 4.5 × 10−15 erg s−1 cm−2.
We will show the importance of having a common luminosity
rather than a flux limit for fields at different redshifts.

4.1.1. Projected overdensity of X-ray point-like sources

In a given area, the projected overdensity of X-ray AGN is esti-
mated according to

δx =
Nx

Nexp
− 1, (1)

where Nx is the number of X-ray point-like sources detected
in the area and Nexp is the expected number according to the
log N − log S of the XXL northern field (Elyiv et al. in prep)
within the same area. We note that the soft-band log N − log S
used in the current study is lower than those of the 2XMM
(Ebrero et al. 2009) and COSMOS (Cappelluti et al. 2009) sur-
veys (with deviations not exceeding the 2−3σ Poisson level), but
in excellent agreement with those of the XMM Medium Deep
Survey (XMDS, Chiappetti et al. 2005).

To calculate the value of Nx, we identified all point-like
sources located within five radial annuli between n and (n + 1)r
around the centre of each field, where n = 0, 1, 2,...5, r = 2′
for XLSSC-e (higher redshift and more compact) and r = 5′
for XLSSC-d and XLSSC-f. The large contiguous area of the
XXL Survey allowed us to expand our search for X-ray AGN at
large radii.

To calculate the expected number Nexp of X-ray sources in
the field, we followed the procedure described below, consider-
ing each time the same area of the detector and the same charac-
teristics of the actual observation:

1. From the log N − log S we derived the total number (Nf ) of
expected sources in the area per flux bin.
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Fig. 2. Voronoi tessellations (VT) and X-ray images of the three superclusters (XLSSC-e: top, XLSSC-d: middle, XLSSC-f: bottom). Left panels:
Voronoi tessellation using CFHTLS photometric redshift data. All galaxies within δz = ±0.05 of the supercluster redshift are included. The side
bar illustrates the colour-coding of the galaxy number-density. Only areas above the average number-density are coloured in the plots. Right
panels: the corresponding X-ray maps overplotted with the positions of the studied areas (dashed circles) and of the X-ray detected clusters
(large black circles with XLSSC ID numbers). The small black circles denote X-ray point-like sources above the luminosity limit (L(0.5−2 keV) >
2.7 × 1042 erg s−1), while the red circles denote the ones with spectroscopic redshift consistent with the supercluster (within 2×δz, see Sect. 4.1.2).
The supercluster centres are marked with an X. The scale of the VT plots and their corresponding X-ray images is the same. The X-ray clusters can
be easily identified in the high-density areas of the Voronoi plots. In the VT plots of XLSSC-d and XLSSC-f at least one more non-X-ray-detected
overdensity can be seen, probably below the detection limit of the XXL Survey.
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2. We considered 1000× Nf sources with random fluxes within
the flux range of each bin and random positions within the
area of interest.

3. We derived the probability Pi that the source Nfi is actually
detected in the specific area of the detector. The probability is
a function of the off-axis position (vignetting), background,
and exposure time (Elyiv et al. 2012).

4. We calculated the sum
∑nbin

j=n

∑1000Nf

i=1 Nfi × Pi/1000, which
gives the total number, Nexp, of expected X-ray sources that
have fluxes above the respective value of the nth bin of the
log N − log S , where the total number of bins, nbin, is 160.

4.1.2. Spatial overdensity of X-ray point-like sources

Most optical counterparts of relatively bright X-ray sources
( f(0.5−2 keV) > 1.0×10−14 erg s−1 cm−2) in our three superclusters
have spectroscopic redshifts. In more detail, in XLSSC-e five out
of six sources have spectroscopy within a 10′ radius of the cen-
tre of the supercluster. Similarly, within the 25′ of XLSSC-d and
-f we find 38 out of 41, and 38 out of 51, respectively. On the
contrary, only 4 out of the 13 sources below this flux have spec-
troscopy in XLSSC-e (we note that in XLSSC-e the flux limit is
f(0.5−2 keV) = 4.5 × 10−15 erg s−1 cm−2, see Sect. 4.1).

The results of the current analysis are based mainly on spec-
troscopic data, although the photometric redshifts of all sources
were available. The optical counterparts of the sources with no
available spectra are either too faint or totally absent and are
therefore improbable supercluster members. In fact, studying
their redshift probability distributions (PDZ), only one source in
Field-3 is possibly at the redshift of the supercluster. Photometric
redshifts were calculated for all our sources with suitable AGN
and quasar templates (Fotopoulou et al., in prep.).

In the case of the non-virialised superclusters the boundaries
and the geometry cannot be easily defined and the clusters that
form the superclusters have a spread in redshift space. Therefore,
we initially based our selection of supercluster members on the
condition δz = |zspec − zmean| < 2000(1 + zcl) km s−1, where zspec
is the galaxy redshift and zmean is the mean redshift of the super-
cluster members, which is a good approximation of more sophis-
ticated cluster membership selection algorithms (e.g. Old et al.
2014 and references therein). Then, we extended the search for
AGN to 1.5 × δz and 2 × δz.

The expected spatial X-ray point-like density is calculated
from the luminosity function of Hasinger et al. (2005). To this
end we first calculated the volume that is defined by the limits
described in the previous paragraph. This is actually a cylinder
of volume V given by V = πR2 × h, where R is the projected
radius and h is the height of the cylinder that corresponds to
the distance between the lower and upper redshift6. Then, we
integrated the luminosity function within the luminosity range of
interest to calculate the expected number of sources per Mpc3.
Finally, by multiplying the two values we found the expected
number of sources in the area of the superclusters. In all cases
the expected number of X-ray point-like sources was less than
one.

The results of the projected and the spatial X-ray overdensity
analysis are summarised in Table 3.

6 The height h used in the above calculations is based on the selected
δz and is larger than R so that the effect of galaxy peculiar velocities on
the observed redshift distance between two sources is included.

Table 3. 2D and 3D analysis.

2D 3D
Name R N ±δz ±1.5 × δz ±2 × δz
(1) (2) (3) (4) (5) (6)
XLSSC-e 10 19 (22) 2 (<1) 2 (<1) 2 (<1)
XLSSC-d 25 41 (41) 0 (<1) 0 (<1) 0 (<1)
XLSSC-f 25 51 (42) 2 (<1) 3 (<1) 4 (<1)

Notes. (1) Supercluster name; (2) projected search radius in arcmin;
(3) number of detected X-ray point-like sources (in parentheses the ex-
pected number of sources calculated by the log N – log S ); (4)−(6)
number of AGN found within 1×, 1.5×, and 2 × δz of the superclus-
ter redshift zs, where δz = ±2000(1 + zs) km s−1 (in parentheses the
expected number of sources in the respective area calculated by the lu-
minosity function).

4.1.3. Optical galaxy spatial overdensity

Any excess of X-ray point-like sources in the area of galaxy
clusters can be due to the obvious abundance of galaxies with
respect to the field (see Koulouridis & Plionis 2010). Therefore,
to reach a meaningful interpretation of the X-ray point source
overdensity analysis, and to reach a conclusion on the enhance-
ment or suppression of AGN, we needed first to study the opti-
cal galaxy overdensity profile in the three fields. To this end, we
used the photometric redshifts of the CFHTLS-T0007 W1 field
(Ilbert et al. 2006; Coupon et al. 2009) computed from three to
five optical bands. The accuracy is 0.031 at i < 21.5 and reaches
σδz/(1+zsp) ∼ 0.066 at 22.5 < i < 23.5. The fraction of outliers
increases from ∼2% at i < 21.5 to ∼10−16% at 22.5 < i < 23.5.

The relevant expression of the optical galaxy overdensity is
similar to that of the X-ray overdensity in Eq. (1), i.e.

δo =
No

No,exp
− 1, (2)

where No is the number of optical sources found in the area and
No,exp the expected background number within the same area.
For the calculation of the galaxy density, we considered the re-
gions previously defined for the X-ray analysis. The expected
galaxy density was calculated from a 2 deg2 field within the
XMM-LSS area, free from clusters in the redshift range of the
superclusters.

4.2. Results

From the 2D analysis of the 10′ of XLSSC-e we expect
∼22 point-like sources above the lower flux limit, f(0.5−2 keV) =

4.5×10−15 erg s−1 cm−2, and we actually find 19. These numbers
are consistent within the 1σ confidence level (Gehrels 1986). In
XLSSC-d and -e, ∼41 and ∼42 X-ray point-like sources are ex-
pected above f(0.5−2 keV) = 1 × 10−14 erg s−1 cm−2, respectively.
Indeed, 41 X-ray point-like sources are found in XLSSC-d.
Nevertheless, in XLSSC-f we discover 51 and therefore a sig-
nificant X-ray overdensity is found in the area, not consistent
with the expected value at the 1σ confidence level.

Considering the available photometric and spectroscopic
data (3D analysis within ±2 × δz, see Table 3) we find in to-
tal six AGN with compatible spectroscopic redshifts in the area
of the three superclusters (for the individual analysis see the next
three paragraphs). The corresponding expected number of AGN
calculated from the luminosity function (Hasinger et al. 2005) is
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∼1.5 (∼0.5 AGN per field) and therefore we calculate a total spa-
tial AGN overdensity, δx = 3. As we have already pointed out,
before reaching any definite conclusion we also had to consider
the high density of optical galaxies in the area of superclusters.
Therefore, we also assessed the total spatial overdensity of op-
tical galaxies in the three fields, δo = 0.42. We conclude that
there is indeed a significantly higher overdensity of AGN with
respect to the corresponding overdensity of optical galaxies at
the 95% confidence level (Gehrels 1986). This could indicate
extra triggering of AGN caused by the environment. We note
that the above result is not affected by the selection of a different
redshift range (±δz or ±1.5×δz, see Table 3); although we detect
fewer AGN, we also consider a much smaller volume.

Next, we proceed with the 3D analysis of each supercluster
individually. We find two AGN at the redshift of the XLSSC-e
(Field-1) within 10′ radius (Fig. 2, top). Both are low-luminosity
AGN with L(0.5−2 keV) ∼ 4 × 1042 erg s−1. The detailed overden-
sity of optical galaxies, divided into five annuli in each field,
is plotted in Fig. 3. It is apparent that in the area of XLSSC-e
the bulk of the galaxies are concentrated in the central 4′, while
in the last annulus the galaxy density reaches the field level.
The AGN overdensity in the whole field is significantly higher
than the optical galaxy overdensity at the 90% confidence level
despite the small number statistics (Gehrels 1986). We also
note that for the XLSSC-e, radio observations were obtained in
Paper IX, but no large radio galaxies were found within the over-
densities. They only associated eight radio sources with potential
supercluster member galaxies; however, they are not associated
with any of our X-ray point-like sources.

Similarly, in XLSSC-f (Field-3) we find two to four spec-
troscopically confirmed AGN compatible with the supercluster
redshift (depending on the redshift range, see Sect. 4.1.2 and
Table 3) and another possible member with compatible photo-
metric redshift (Fig. 2, bottom). The optical galaxy overdensity
profile (Fig. 3) is almost flat over the whole field. This is proba-
bly due to cluster XLSSC 111, which is very massive with a large
r500,MT radius and affects the full field. The X-ray overdensity
is significantly higher than the optical overdensity at the 99%
confidence level. Similar to the two AGN found in XLSSC-e,
the four AGN found in XLSSC-f are low-luminosity sources
(L(0.5−2 keV) < 7 × 1042 erg s−1). The list of AGN can be found in
Table 4.

In contrast, no AGN is found within a 25′ radius in XLSSC-d
(Fig. 2, middle). In this field the large number of optical galax-
ies are located in annuli 2 to 4 (Fig. 3), as expected from the
location of the three clusters, while in the first and last annuli
the density reaches the expected field value. The overdensity of
AGN in Field-2 is δx = −1, but the null hypothesis that it is con-
sistent with the optical galaxy overdensity cannot be rejected at
any statistically significant level.

We note that a low-luminosity source is actually detectable in
a smaller fraction of XLSSC-e compared to the other two super-
clusters because of their different redshift (∼15% smaller effec-
tive area for a source with f(0.5−2 keV) ∼ 5 × 10−15 erg s−1 cm−2).
In addition, the spectroscopic completeness in XLSSC-e is less
than 50%, while in XLSSC-d and -f it is 93% and 75%, respec-
tively. Therefore, there is some probability that we have missed
supercluster members in XLSSC-e, although, as we have al-
ready discussed, the photometric redshift PDZs and the images
of the optical counterparts render this probability small. Only in
XLSSC-f is the probability of one extra AGN high, but in this
supercluster the X-ray overdensity is already high without in-
cluding the non-spectroscopic sources.
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Fig. 3. Spatial overdensity profile of optical galaxies within annuli of
2′ (XLSSC-e) and 5′ (XLSSC-d, XLSSC-f) centred at the geometri-
cal centre of the superclusters. For the calculation of the overdensity,
CFHTLS photometric redshifts of galaxies were used. The error-bars
are 1σ Poissonian uncertainties and are shown only for the first two or
three annuli of each field. For the others the errors are smaller than the
height of the symbols.

Table 4. AGN in superclusters.

Name RA Dec z L(0.5−2 keV)

(1) (2) (3) (4) (5)

3XLSS J021046.2-060854 32.6928 –6.1485 0.428 4.15 × 1042

3XLSS J021053.0-061809 32.7211 –6.3026 0.423 3.66 × 1042

3XLSS J021309.2-055142 33.2886 –5.8618 0.298 6.03 × 1042

3XLSS J021153.5-053810† 32.9729 –5.6363 0.288 3.58 × 1042

3XLSS J021213.7-060408† 33.0571 –6.0690 0.283 6.21 × 1042

3XLSS J021235.9-053210 33.1499 –5.5364 0.299 6.70 × 1042

Notes. (1) X-ray source name; (2), (3) field coordinates in the
J2000 system; (4) redshift; (5) Soft X-ray luminosity in units of erg s−1.
(†) Included in the 1000 brightest XXL X-ray point source catalog
(Fotopoulou et al. 2016, Paper VI).

The results imply some intrinsic differences between the
superclusters. XLSSC-e includes five merging clusters in tight
configuration, while the three clusters of XLSSC-f are not part
of any further significant overdensity. Nevertheless, their total
mass is a factor of 2.5 larger than that of the three clusters of
XLSSC-d. On the other hand, although the three clusters of
XLSSC-d form the less massive structure, they are part of a
larger overdensity that includes at least another four clusters that
we have not probed with the current observations. Therefore, we
cannot conclude in the current paper on the reasons that produce
the observed differences because of the small number of super-
clusters studied. We will extend our study to the full XXL Survey
in order to understand these differences better and to quantify
any trend regarding the AGN frequency in the environment of
superclusters.
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5. Conclusions

In the first part of the current paper we presented the multifi-
bre spectroscopic observations in three 0.55 deg2 fields in the
XXL-N survey with the 4.2 m WHT. Our targets were candidate
member galaxies of clusters and optical counterparts of X-ray
point-like sources. We obtained spectra for 455 galaxies, 56 of
which are AGN. We determined the redshift of 25 clusters, 6 of
which belong to the merging supercluster XLSSC-e at z ∼ 0.43,
and confirmed 2 more superclusters in looser configurations at
z ∼ 0.3.

In the second part, we investigated the AGN frequency in the
environment of the superclusters. To this end, we identified all
possible AGN supercluster members, which we define as sources
with L(0.5−2 keV) > 2.7 × 1042 erg s−1, and compared their pro-
jected and spatial overdensity with the expected overdensity of
optical galaxies in the region. In more detail:

– XLSSC-d: the supercluster presents no significant 2D over-
density of X-ray point-like sources and the total lack of AGN
found by the 3D analysis is statistically consistent with the
expected number of AGN within the area.

– XLSSC-f: in sharp contrast to XLSSC-d, a high projected
overdensity of X-ray point-like sources was found by the
2D analysis. This result was confirmed by the 3D anal-
ysis, where the high number of spectroscopically con-
firmed AGN significantly exceeded the optical galaxy den-
sity expectations.

– XLSSC-e: similarly to XLSSC-f, we find a relatively high
number of spectroscopically confirmed AGN that again ex-
ceed the optical galaxy density expectations. The statistical
significance of this result is not as high as for XLSSC-f and
it is not supported by the 2D analysis. However, the proba-
bility that we have missed some AGN in this field is higher
than in the other two fields.

Overall, the number of AGN in the area of the three superclus-
ters significantly exceeds the field expectations at the 95% con-
fidence level.

All six AGN found in the area of the superclusters have
X-ray luminosities below 7 × 1042 erg s−1 and we can argue
that they are low-luminosity sources. Similarly, a high number
of low-luminosity AGN was reported in studies of AGN in rich
clusters (e.g. Martini et al. 2002, 2006; Davis et al. 2003), but not
above the field expectations (e.g. Martini et al. 2007; Haggard
et al. 2010). In addition to our own data, optical spectroscopy
by the SDSS-BOSS project (Dawson et al. 2013) also exists for
these sources. Except for 3XLSS J021235.9-053210, none of the
AGN spectra presents broad permitted emission lines. A more
thorough investigation of the AGN population in superclusters
will be presented in a future paper.

The reason for the difference between the AGN frequency in
the three superclusters cannot be completely understood by the
present study because of the small sample. To better understand
the relation between AGN and the environment of superclusters,
we will need to apply the same analysis to a larger number of
massive formations. The wide area of the XXL Survey will soon
give us the opportunity to realise this kind of study.
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