4304

JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 34, NO. 18, SEPTEMBER 15, 2016

Low-Power 400-Gbps Soft-Decision LDPC FEC
for Optical Transport Networks

Kevin Cushon, Member, IEEE, Per Larsson-Edefors, Senior Member, IEEE, and Peter Andrekson, Fellow, IEEE

Abstract—We present forward error correction systems based
on soft-decision low-density parity check (LDPC) codes for appli-
cations in 100-400-Gbps optical transport networks. These sys-
tems are based on the low-complexity “adaptive degeneration”
decoding algorithm, which we introduce in this paper, along with
randomly-structured LDPC codes with block lengths from 30 000
to 60 000 bits and overhead (OH) from 6.7% to 33%. We also
construct a 3600-bit prototype LDPC code with 20% overhead,
and experimentally show that it has no error floor above a bit er-
ror rate (BER) of 10~!° using a field-programmable gate array
(FPGA)-based hardware emulator. The projected net coding gain
at a BER of 10~ ranges from 9.6 dB at 6.7% OH to 11.2 dB at
33% OH. We also present application-specific integrated circuit
synthesis results for these decoders in 28 nm fully depleted sili-
con on insulator technology, which show that they are capable of
400-Gbps operation with energy consumption of under 3 pJ per
information bit.

Index Terms—Application-specific integrated circuit (ASIC)
synthesis, forward error correction (FEC), low-density
parity-check (LDPC) codes, low power.

I. INTRODUCTION

ORWARD error correction (FEC) is a critical part of mod-
F ern high-performance communication systems. For opti-
cal communication in particular, there has been a great deal of
development in soft-decision FEC systems since the introduc-
tion of coherent transmission. Because soft-decision FEC can
make use of soft probability information for received symbols,
it can achieve superior error correction performance compared
to hard-decision FEC. This improvement is very appealing for
long-haul optical transport network (OTN) applications, which
place very high demands on FEC performance. Typically pro-
posed requirements for these applications include throughputs
of 100 Gbps or multiples thereof, low power consumption, cod-
ing gain approaching the theoretical limit, and special adapta-
tions for optical channels [1].
Low-density parity-check (LDPC) codes are a popular
choice for such systems, as these codes can readily achieve the

Manuscript received April 6, 2016; revised June 7, 2016; accepted July 25,
2016. Date of publication August 10, 2016; date of current version September
2, 2016. This work was presented in part at the 2015 European Conference
on Optical Communication, Valencia, Spain, September 2015. This work was
supported by the Knut and Alice Wallenberg Foundation.

K. Cushon and P. Larsson-Edefors are with the Department of Computer
Science and Engineering, Chalmers University of Technology, Gothenburg
SE-41296, Sweden (e-mail: cushon @chalmers.se; perla@chalmers.se).

P. Andrekson is with the Photonics Laboratory, Chalmers University
of Technology, Gothenburg SE-41296, Sweden (e-mail: peter.andrekson@
chalmers.se).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/JLT.2016.2598440

required coding gain and throughput with current application-
specific integrated circuit (ASIC) fabrication technology.
For example, Onohara et al. [2] proposes an FEC system
for 100 Gbps OTN with a soft-decision LDPC inner code,
concatenated with a hard-decision Reed—Solomon outer code
to suppress the LDPC code’s error floor [3]. An alternative
approach in [4] uses a non-concatenated LDPC code with
post-processing. Another proposed 100 Gbps OTN decoder
in [5] makes use of a convolutional LDPC code concatenated
with a Bose-Chaudhuri-Hocquenghem (BCH) outer code.
Other recent papers have proposed spatially coupled LDPC
(SC-LDPC) codes, which provide even greater coding gain
than conventional block LDPC codes [1], [6].

However, the iterative soft-decision message-passing algo-
rithms used to decode LDPC codes, such as the normalized
min-sum algorithm (NMSA), are very costly in terms of silicon
area and energy consumption, especially when they must meet
the aforementioned performance goals. In [7], it is estimated
that the LDPC decoder from [4] and corresponding encoder re-
spectively consume 15.8% and 6.6% of the total energy in a
100 Gbps DP-16-QAM link over 1100 km of fiber, and 10.1%
and 4.2% of the total energy in a DP-QPSK link over 2400 km.
Thus, the FEC components should be a high priority for energy
reduction efforts.

Many previous LDPC decoder designs have tried to improve
hardware and energy efficiency, often by trading off a small
amount of error correction performance. In particular, decoders
for 10 Gbps Ethernet applications are quite promising for adap-
tation to OTN, since they share the requirements of high through-
put and low error floors. Bit-serial min-sum [8], split-row min-
sum [9], and simplified variable weight min-sum [10] are sim-
plified min-sum variants that achieve very good trade-offs be-
tween error correction capability and efficiency. In addition to
these, there are binary message passing decoders, in which all
messages are single bits. This results in them having much sim-
pler computational units compared to min-sum, but usually at
a larger penalty in bit error rate (BER) performance. Stochastic
[11] and relaxed half-stochastic [12] decoders exchange mes-
sages as probabilistic bit streams. They achieve good BER per-
formance, but require a high number of iterations, which may
be troublesome in latency-sensitive OTN. Gradient descent bit
flipping [13] and noisy gradient descent bit flipping [14] are
recent variants on weighted bit flipping (WBF) decoding that
decode more quickly than previous WBF variants - these could
become candidates for OTN systems as well. Finally, the im-
proved differential binary (IDB) algorithm [15] is another soft
bit-flipping algorithm that decodes using accumulated sums of
binary messages.

0733-8724 © 2016 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution
requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

CUSHON et al.: LOW-POWER 400-GBPS SOFT-DECISION LDPC FEC FOR OPTICAL TRANSPORT NETWORKS

In our earlier conference paper [16], we introduced soft-
decision LDPC FEC systems based on IDB as a decoding
algorithm as a less complex and more energy-efficient alter-
native for 100+ Gbps OTN FEC. In Section II of this follow-up,
we present a revised version of IDB called the adaptive degen-
eration (AD) algorithm. In Section III, we describe the design
of the LDPC codes used in this work, and show that they have
low-complexity encoders. We present implementation results
and performance data for AD decoders in Section IV. We pro-
vide experimental proof that these systems have no error floor
above a BER of 10~ 13, obtained using an FPGA-based hardware
emulator. We evaluate the error rate performance of the AD al-
gorithm using 30 000- and 60 000-bit blocklength codes with
varying overhead (OH), and present ASIC synthesis results and
power estimations for these decoders using 28 nm fully depleted
silicon on insulator (FD-SOI) fabrication technology. Finally,
we conclude this work in Section V.

II. THE AD DECODING ALGORITHM

After briefly introducing LDPC codes in Section II-A, we will
give an overview of the AD decoding algorithm in Section II-B
after which we will discuss important algorithmic parameters in
Section II-C.

A. Introduction to LDPC Codes

An LDPC code is characterized by a sparse parity check
matrix H with dimensions m X n, where n is the number of
bits in the block and m is the number of parity checks. An
(n, k) LDPC code has k information bits per block. If H is full
rank, k = n — m. A frame x with length n is a valid codeword
iff Hx” = 0. Equivalently, an LDPC code may be represented
by a Tanner graph, where variable nodes (VNs) v; represent the
columns of H, and check nodes (CNs) c¢; represent the rows.
An edge exists between v; and ¢; iff H;; = 1. The degree of
a node (d, for VNs and d,. for CNs) is equal to the number
of edges connecting to it. The set of VNs neighboring CN c is
represented by V.., and the set of CNs neighboring VN v is C,,.

B. Algorithmic Description

The AD algorithm for decoding LDPC codes is a variant of
the IDB algorithm [15]. It is described in Algorithm 1.

During initialization, the VN memories M, are set to the
log-likelihood ratios (LLRs) of the received bits, with x, being
the transmitted bits and g, what is received from the channel.
The iteration count index ¢ is set to 0. Each M, (and LLR)
is quantized using ¢ bits. The vector u stores the number of
unsatisfied parity check equations for the current iteration (u)
and the previous / iterations (u; through wu,). These are all
initialized to m + 1, which is equal to one greater than the
number of parity checks in the LDPC code.

In lines 12-15, the VN-to-CN messages b,_.. and hard-
decision bits h, are computed. These are both equal to the
sign bit of M, . Note that only one message is generated per
VN, and that this same message is sent to all neighboring CNs.

4305

Algorithm 1: The AD Decoding Algorithm.

1 // Description of parameters:

[N

// ~0,7v1: Possible values of 4§, 0<~yy <.

“w

// £: Number of previous iterations to consider
when calculating §.

4 // Ty:
setting § =~1.

// s: CN-to-VN message scaling factor,

6 for ve[0..n—1] do

Threshold of unsatisfied parity checks for

[

0<s<1.

// Initialization

P(yy|z, =
7 | M, LLR, =In {M}
P(yv‘xv = 1)
8 end
91+ 0
10 Upy Up_1,...,Ug — Mm+ 1
11 repeat // Decoding
12 for ve [0..n—1] do
0, if M, >0
13 by—ye
1, if otherwise
14 h'U — bv—)c
15 end
16 for c€[0..m —1] do
17 Pe = @ (bvﬂc)
veV,
18 for v € V. do
19 | bc—m =pc D bv—)c
20 end
21 end

22 U—u<<1
23 Uy < O.p

24 if up = 0 then
25 | Declare decoding successful, output h
26 end
27 if up = max(u) and vy < T}, and i < i,, — { then
28 07
29 ‘ Up, Up—1,y...,Ug — m+1
30 else
31 | 6+
32 end
33 for ve [0..n— 1] do
34 o4 dy—2 Y beyn
ceCy
{]V[ers-a& if M, >0

35 M, «

M, +s-o+ 06, if otherwise
36 end

37 1 i+ 1
8 until ; = i,,
9 Declare decoding failed, output h

W W

Lines 16-21 describe the computations performed in the CNs.
These are the parities p and CN-to-VN messages b._.,,. The &
symbol indicates modulo-2 addition.

Next, in lines 22-26, the elements of u are shifted one place to
the left (uy < wp_1, u¢_1 < u¢_o, and so on). The new number
of unsatisfied parity checks is computed and stored in wug. If
ug = 0, then decoding has converged on a valid codeword. The
algorithm stops immediately and outputs the hard-decision bit
vector h.

Lines 27-32 determine the value of the degeneration factor 4.
The first condition on line 27 determines if decoding has made
progress (in terms of reducing the number of unsatisfied parity

4306

checks) within the last ¢ iterations. The second determines if
the number of unsatisfied parity checks is below a threshold 7;,,
which is a free parameter. The third determines if there are at
least £ more iterations before the maximum iteration limit 7,,, is
reached. If all three conditions are met, then a high magnitude
degeneration factor +; is used. In addition, all elements of u are
reset to m + 1, which ensures that ; cannot be used again in
the following ¢ iterations. If the conditions are unmet, then a
small magnitude degeneration factor =, is applied instead. The
possible values of 9, vy and -1, are free parameters as well. They
are positive numbers with ; > 7.

In lines 33-36, the VN memories M, are updated. For each
VN, all incoming messages b._,, are added, with each ‘0’ mes-
sage assigned a value of 41 and each ‘1’ assigned a value of
—1. This sum is scaled by a factor s that allows the weight of
incoming messages to be adjusted for improved performance (s
is analogous to the scaling factor « in the NMSA). Finally, the
degeneration factor ¢ is added or subtracted depending on the
sign of M,,.

At this point, the iteration count index ¢ is incremented, and
if it is equal to the maximum number of iterations %,,, failure
is declared and decoding stops. If not, then the next iteration
begins.

C. Error Floor Performance of the AD Algorithm

The differences between AD and IDB are that AD uses dif-
ferent values for § depending on the decoding state, and does
not use the IDB relaunching technique. Relaunching (in which
the decoder restarts and uses different parameters or applies per-
turbations to the initial LLRs) is not practical for use in OTN
applications because it requires too many decoding iterations.

The motivation for varying ¢ is to improve decoding perfor-
mance in the error floor region. LDPC codes are known to ex-
hibit error floors, where the slope of the BER curve diminishes
significantly below a certain BER. Error floors are primarily
caused by trapping sets, which are defined as subgraphs of the
Tanner graph of an LDPC code containing a small number of
incorrect symbols that reinforce one another through wrongly
satisfied parity checks [3], [17].

Since OTN applications require very low BERs (i.e., BER <
1071%), these error floors cause a significant loss in coding gain.
Many previously proposed LDPC-based FEC systems include
measures to mitigate or suppress the error floor, such as using
a concatenated outer code (as in [2] and [5]), or modifying the
decoding algorithm to avoid or break out of trapping sets (as in
[4], [18], and [10]).

In the IDB and AD algorithms, degeneration can correct trap-
ping sets by changing the signs of erroneous VNs, even if a
majority of inputs agree with their current values. Specifically,
degeneration will cause the magnitude of M, to decrease and
eventually change sign if

ey

where ¢y and ¢, are respectively the number of wrongly satis-
fied and unsatisfied CNs connected to the VN. However, degen-
eration can also wrongly cause correct VNs to change sign, as it

Cys — Cy < —,
S

JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 34, NO. 18, SEPTEMBER 15, 2016

is impossible to distinguish between a correctly satisfied parity
check and a wrongly satisfied one. If is constant, as in IDB,
then § < s (if d,, is odd) or § < 2s (if d,, is even) is required to
achieve good decoding performance, because otherwise degen-
eration will overpower legitimate majority inputs and propagate
errors throughout the graph [15]. Hence, IDB can only correct
trapping sets where participating VNs have ¢y = ¢,. If § is
variable, as in AD, then it becomes possible to have a small
¢ during normal decoding, and then use a larger when the
decoder detects the presence of a trapping set. Using this tech-
nique, the AD algorithm can correct trapping sets in which all
VNs have cys > ¢,. More specifically, a VN in a trapping set
satisfying the condition

2

will eventually change sign due to degeneration, because the
average value of § is greater than ~,. However, it is not guar-
anteed that all such trapping sets are correctable, because they
may collapse to a smaller trapping set in which none of the par-
ticipating VNs satisfy Equation 2. Furthermore, the possibility
remains for large values of § to cause correct VNs to wrongly
change sign.

Thus, while large values of § can be useful for correcting trap-
ping sets, a balance is needed to prevent introducing additional
errors. To achieve this balance, we set three separate conditions
that must all be met in order to use a large ¢, which are shown in
line 24 of Algorithm 1. The first condition, ©y = max(u), indi-
cates that decoding has not made any progress (as measured by
the number of unsatisfied parity check equations) within the last
{ iterations. The second, uy < T, places a maximum thresh-
old T}, on the number of unsatisfied checks. This is necessary
because a large number of unsatisfied checks implies the exis-
tence of many erroneous bits and low-magnitude values of M,,.
Using a large degeneration factor under these conditions can
flip hundreds of correct bits and cause an unrecoverable error.
Finally, the third condition, i < 4,, — ¢, prevents y; from being
used in the final ¢ iterations. Similarly to the previous condi-
tion, a large degeneration factor can cause many correct but
low-magnitude M, s to change sign. If this occurs near the end
of decoding, they will not have time to recover, and the frame
will have more bit errors as a result. We note that satisfaction
of these conditions does not prove that the decoder is stuck in a
trapping set - only that decoding has not progressed for the last
{ iterations.

Determining the value of § for a given iteration requires ac-
tively monitoring the number of unsatisfied parity check equa-
tions, which requires an m-input 1-bit addition. This is a sig-
nificant source of additional circuitry and critical path delay
as compared to the IDB algorithm. It is possible to avoid this
by controlling § using passive techniques, such as applying
7, only at certain values of 4, but simulations of this variation
determined that long “recovery periods” between successive ap-
plications of v, are necessary to avoid causing unrecoverable
errors. As aresult, 2 to 3 times as many iterations are necessary
to achieve the same level of BER performance compared to the
active method, which makes it difficult to meet the latency and

CUSHON et al.: LOW-POWER 400-GBPS SOFT-DECISION LDPC FEC FOR OPTICAL TRANSPORT NETWORKS

TABLE I
ENCODING COMPLEXITY

LDPC code Complexity (2-input XORs) Area (mm?)
(30 000, 26 786) 3.74-10° 0.326
(30 000, 25 000) 3.86-10° 0.336
(60 000, 56 235) 5.57-10° 0.485
(60 000, 53 570) 5.75-10° 0.500
(60 000, 50 000) 5.99-10° 0.521
(60 000, 48 000) 6.12-10° 0.533
(60 000, 45 000) 6.33-10° 0.551

throughput requirements of OTN applications. Our simulations
and ASIC synthesis results (see Section I'V) determined that the
active method is necessary to achieve throughputs greater than
100 Gbps, and that the m-input 1-bit adder this necessitates is
not a critical problem.

III. CODE DESIGN

While the IDB algorithm, and by extension the AD algorithm,
require LDPC codes with d,, > 6 to decode effectively [15], the
low circuit and wiring complexity makes it practical to imple-
ment fully parallel decoders using LDPC codes with long block
lengths and irregular structures. Since (constrained) randomly
structured codes are known to approach capacity at long block
lengths [19], we selected these for implementation, and found
that they perform very well under AD decoding.

We implement several LDPC codes to investigate the per-
formance of the AD algorithm over a range of block lengths
and code rates. The first two are 30 000-bit block length
codes with 12% and 20% OH, which correspond to (30 000,
26 786) and (30 000, 25 000) respectively in (n, k) notation.
The other codes have 60 000-bit block lengths and OHs of
6.7%, 12%, 20%, 25%, and 33.3%, respectively correspond-
ing to (60 000, 56 235), (60 000, 53 570), (60 000, 50 000),
(60000, 48 000) and (60 000, 45 000). Finally, we also have con-
structed a (3600, 3000) prototype code for use in FPGA decoder
implementations.

All of our codes have column weight and VN degree d,, ~ 6,
and are randomly constructed with certain constraints in place to
improve code quality, such as avoiding length-4 cycles [20]. To
permit efficient encoding using the Richardson—Urbanke (RU)
encoding algorithm [21], these codes are generated in approxi-
mate upper-triangular form with the gap size g = 600. This gap
size was chosen to minimize the appearance of trapping sets in
the codes. Trapping set searches on these codes using a heuristic
algorithm found nothing, suggesting that these codes have very
good error floor performance [22]. Since it is impossible for a
regular code with even d, to be full rank, each code was gener-
ated with d, = 6 and 1 redundant row, which was then deleted.
As a result, all codes are full rank but slightly irregular, with a
small number of VNs having d, = 5. The reason we do this is
that the RU algorithm requires the parity-check matrix to be full
rank. Adaptation to matrices with redundant rows is possible,
but requires non-trivial modifications.

Table I shows encoding complexity measured in terms of the
number of 2-input binary XOR operations required to encode

4307

a block for the LDPC codes used in this work, as well as the
estimated area of the encoder in 28 nm FD-SOI. Compared to
encoding with the G matrix, RU encoding reduces complex-
ity by factors of about 100 to 500. In [7], it is estimated that
G matrix encoding of a (24 576, 20 482) LDPC code con-
sumes 36 pJ per information bit with an ASIC encoder imple-
mented in 40 nm complementary metal-oxide-semiconductor
(CMOS), which accounts for 4.2-6.6% of the total link energy
in a 100 Gbps coherent optical fiber system. From this result,
we can conclude that encoding for our codes will consume an
insignificant amount of energy.

However, these encoders require a relatively large area com-
pared to encoders for certain types of structured codes. Special-
ized code constructions, such as irregular repeat-accumulate
(IRA) and extended IRA codes [23] have very simple encoders,
but these are unsuitable for use with the AD algorithm because
they have a large number of degree-2 VNs. Quasi-cyclic (QC)
codes, which are one of the most commonly used classes of
LDPC code, have serial and partially-parallel encoders with
highly compact circuit implementations [24]. However, these
encoders require a large number of combinational operations,
which leads to high energy consumption in spite of their low
area. QC-LDPC codes with long block lengths, such as those
proposed for use in OTN applications, require on the order of
millions to tens of millions of 2-input XOR operations using
the two-stage method described in [24]. In comparison, the RU
encoders listed in Table I have fewer total operations, but they
must all be implemented in parallel.

In this work, we investigate only randomly structured LDPC
codes, since they are easily constructed, have good error correc-
tion performance, appear to lack harmful trapping sets, and have
energy-efficient (if not necessarily area-efficient) encoders.

IV. IMPLEMENTATION RESULTS

We have implemented AD decoders for the seven aforemen-
tioned LDPC codes with 30 000-bit and 60 000-bit blocklengths
in software to characterize their error correction performance.
We have also implemented decoders for the (3600, 3000) pro-
totype code in software and on an FPGA, which we use to
measure the BER performance of this code to below 10~ 15 and
thus prove that it has no error floor above this level. Finally, we
present ASIC synthesis results using 28-nm FD-SOI fabrication
technology and standard cells from STMicroelectronics, use
these to estimate the silicon area, throughput, and power con-
sumption of our decoders, and compare our results with those
from previous works.

A. Parameter Selection

While the AD algorithm has many parameters that must be
set for implementation, some are tightly constrained by practical
considerations, while the rest can be determined empirically. To
begin, we set the number of quantization bits for input LLRs
and M, to ¢ = 5, as any lower value results in seriously de-
graded performance. Using a conventional fixed-point number
format with 1 sign bit, 3 integer bits, and 1 fractional bit, the
smallest representable positive number is 0.5, which is thus

4308

10—1 Lo b [T : — Uncoded

— - ¢ i i i]e—e 60K, OH=33%

N e 44 60K, OH = 25% [
10 : : »—> 60K, OH = 20%
v—v 30K, OH = 20%

1077 e R < < 60K, OH = 12% [
<8 @@ 30K OH = 12%

£ & 60K, OH = 6.7% ||

JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 34, NO. 18, SEPTEMBER 15, 2016

BER
= =
o o

IS 4

107 ! LN R S M i
\ \ vl \
| ! \\ \\ \
:|_()_13 \\ \i """ \ R SR Y \\
\ \
\ \ \
\ \ \ ' \
10—15 Looi Moo e L ! O B T R EETITPS STt Mvvesbeeeennid
A ' \\\ \ g i i i A i
3.7 39 41 43 45 47 49 51 53 55 57
Eo/No [dB]
Fig. 1. BER performance of 30 K and 60 K-bit blocklength codes with AD

decoding, measured using Monte Carlo simulations in software (solid lines) and
linear projections (dashed lines).

the optimal value of 7y [15]. This constrains the value of s to
0.25 < 5 < 0.5. Based on Equation 2, s should be as small as
possible to achieve the best error floor performance, so we set
s = 0.25. The maximum number of iterations %,, is determined
by the desired throughput and latency. To achieve 400 Gbps
in ASIC implementations with a reasonable clock frequency,
im = 49 is chosen (with one extra iteration reserved for loading
and unloading the decoder). The values of ; and ¢ were opti-
mized via a brute-force search, with 7, = ¢ = 3 determined to
be optimal or negligibly different from optimal for all codes. Fi-
nally, the threshold 7, was determined by removing it, running
simulations, and observing the values of uy when unrecover-
able mass sign flips of M, occurred. These were observed to
occur only when 1y > 200 during extensive simulations. This
is many times greater than the expected values of uy produced
by small trapping sets, so we can set 7,, = 64 to provide a mar-
gin of safety. Every implemented decoder, including the FPGA
prototype, uses these same parameter values.

B. Error Rate Performance

Fig. 1 shows plots of BER performance for each of the 30 000-
and 60 000-bit blocklength decoders, while Fig. 2 plots the BER
and frame error rate (FER) performance of the (3600, 3000) pro-
totype code. All plots assume binary phase-shift keying modu-
lation and additive white Gaussian noise.

The software results were obtained using multi-threaded C
programs, with which it is feasible to simulate at BERs of
roughly 10~ in a reasonable amount of time. At least 20 frame
errors were recorded for the lowest data points, with more errors
(generally 100) collected for higher data points. However, it is
not computationally feasible to perform software simulations
down to the OTN application target BER of 107!, It is also
not possible to implement these codes on currently available
FPGAs, both because of their long blocklengths, and because
they do not have any regular structure that can be exploited to

1072 bbb
1074 e — Uncoded
ARy e e (3600, 3000) FER SW
s i T e e—e (3600, 3000) BER SW
1or (3600, 3000) FER FPGA ||
] (3600, 3000) BER FPGA
@ 10 B F e N L T - g
o
w
B Q720 b S e
20712 b N T
1071 b e
20715 b e
10716 L i i i i i i i i i
46 47 48 49 50 51 52 53 54 55
Eo/No [dB]
Fig. 2. Error rate performance of the (3600, 3000) prototype code in software
and FPGA.

produce area-efficient partially parallel implementations, as can
be done with quasi-cyclic codes such as in [4] and [18].

Thus, to obtain experimental results for AD decoding at low
BERs, we constructed a (3600, 3000) prototype code using the
same method and column weight as the longer codes. We then
implemented an AD decoder for this code on a Xilinx Virtex-7
XC7VX690T FPGA [25]. The FER and BER of this system are
plotted in Fig. 2. The FPGA system includes XORshift random
number generators [26] to generate the input LLRs on-chip.
The uniform random numbers produced by these generators are
mapped to one of the 32 possible LLRs (given ¢ = 5) using a
binary decision tree. The system also includes a logger module
that keeps track of the number of completed blocks, block errors,
bit errors, and various other information. At high SNR, this
system achieves an information throughput of 34 Gbps. Even at
this rate, we observed only 5 frame errors for the lowest data
point in Fig. 2 after 30 days of operation, and 3 of those were
correctable with more decoding iterations. Despite the small
sample size for that data point, these results prove through direct
emulation that there is no error floor above a BER of 10~ for
this decoder.

To estimate the net coding gain (NCG) of the larger codes
at a BER of 10713, we plot linear projections of the lowest two
data points, which are shown as dashed lines in Fig. 1. This
requires assuming that none of our codes will have an error
floor above 10~ '3, However, we believe that this assumption
is well justified. As mentioned in Section III, we performed
trapping set searches on our codes using importance sampling
techniques [22], but these found no failure cases. This technique
was successful in finding trapping sets in codes constructed with
smaller values of g, however. Furthermore, this technique was
also used in [4] to discover the dominant trapping sets of a (24
576, 20 482) LDPC code and accurately predict its error floor
performance. Thus, the fact that our searches found no trapping
sets is evidence of absence of trapping sets that could produce
an impact at BERs above 1013,

CUSHON et al.: LOW-POWER 400-GBPS SOFT-DECISION LDPC FEC FOR OPTICAL TRANSPORT NETWORKS

4309

TABLE II
ASIC SYNTHESIS RESULTS AND DECODER PERFORMANCE SUMMARY

(30000, 26 786) (30 000, 25 000) (60 000, 56 235) (60 000, 53 570) (60 000, 50 000) (60 000, 48 000) (60 000, 45 000)

Area (mm?) 4.54 4.53 9.04 9.09 9.25 9.49 9.62
Area (core only) (mm?) 3.73 3.71 7.41 7.46 7.62 7.87 8.00
Clock frequency (MHz) 373 400 356 373 400 417 444
Max. iterations 49 49 49 49 49 49 49

Info. throughput (Gbps) 200 200 400 400 400 400 400
Latency (ns) 134 125 141 134 125 120 113
Coding OH (%) 12 20 6.7 12 20 25 333
Estimated NCG @ BER = 10~ (dB) 10.1 10.55 9.6 10.25 10.75 10.95 11.2
Gap to capacity (dB) 1.9 2.1 1.5 1.7 1.9 2.0 22

Power (mW) 369 418 688 760 941 974 1134
Power (core only) (mW) 301 346 558 624 759 824 975

Energy (pJ/info. bit) 1.85 2.09 1.72 1.90 2.35 2.44 2.85
Energy (core only) (pJ/info. bit) 1.50 1.73 1.40 1.56 1.90 2.06 2.44

LLRs in 3 I TR buffor I and k& CNs. In addition to the VNs and CNs, the decoder core
(from channel)

Decoder <
core

<
<

Hard decision bit buffer

HD bits out <—|

Fig. 3. Top level block diagram of the decoder circuit implementations show-
ing the major components. Labels in ifalics correspond to variable names in
Algorithm 1.

The BER performance of the FPGA prototype, as plotted in
Fig. 2, provides further evidence. These results prove that there
is no error floor above 10~ for the prototype code. We can
infer that this applies to the longer codes as well, since they
were constructed using the same algorithm and same column
weight. While some of the longer codes have lower OH than
the prototype code, they have lower density due to their much
longer blocklengths. We can therefore expect a lower incidence
of intersecting short cycles that cause trapping sets [22], even
for the codes with lower OH.

C. ASIC Synthesis and Power Estimation

We performed ASIC synthesis for all seven codes with
30 000- or 60 000-bit blocklengths previously described in this
work. The results are summarized in Table II, alongside the
estimated NCG and power consumption of each decoder.

Fig. 3 shows a top level block diagram of our hardware de-
coder design. All decoders are fully parallel, and include n VNs

also consists of a controller state machine, and a k-input 1-bit
adder to determine the number of unsatisfied parity checks wu.
The complete system includes an n x g-bit buffer for the input
LLRs and a k-bit buffer for the hard-decision bits. These are
implemented as addressable register banks rather than shift reg-
isters to reduce their dynamic power consumption. Clock gating
is used extensively in both the decoder core and the buffers.
Synthesis was performed with Cadence RTL Compiler ver-
sion 14.11 using 28-nm FD-SOI technology from STMicroelec-
tronics. We provide silicon area results for both the complete
system, as shown in Fig. 3, as well as for the decoder core only
(i.e., excluding the I/O buffers). The clock frequencies were cho-
sen to achieve exactly 200 Gbps information throughput with
the 30 000-bit blocklength decoders, and 400 Gbps with the
60 000-bit blocklength decoders. In addition, all designs have
a minimum of 400 ps of timing slack for later phases of ASIC
implementation. All of these results were obtained using worst-
case process and operating conditions (slow process, 0.8 V sup-
ply voltage, 125 °C junction temperature). Due to the low wiring
complexity of the AD algorithm, we do not anticipate routing
congestion or excessively low silicon area utilization. We note
that the IDB decoder of [15], which has identical inter-node
wiring complexity, achieved 95% utilization in a 65-nm process
with 7 metal layers, albeit with a much smaller (2048, 1723)
LDPC code. The 28-nm process used in this work is available
with up to 10 metal layers, and even more layers are available in
other modern processes. Thus, we do not expect these designs
to have serious routing problems, even with the larger codes.
The power and energy estimations were performed using Syn-
opsys PrimeTime version 2011.6, with post-synthesis data for
wiring parasitics and switching activity. Likewise as for sili-
con area, we provide results both including and excluding the
I/0 buffers. The switching activity data was obtained via sim-
ulations of 100 randomly generated blocks, with Ej, /Ny set
to the estimated BER = 10~" point of each decoder. Dur-
ing these simulations, data was streamed continuously in and
out of the decoder, at a rate of n/(i,, + 1) LLRs input and
k/(im + 1) hard-decision bits output per clock cycle, in order
to simulate operation in a practical setting. These power and

4310

energy estimates use typical process and operating conditions
(typical process, 0.9 V supply voltage, 25 °C junction temper-
ature). Static power consumption is estimated at approximately
60 mW for the 30 000-bit blocklength decoders, and 120 mW
for the 60 000-bit blocklength decoders. These estimates were
generated with Synopsys PrimeTime and are included in the
power figures listed in Table II.

D. Comparison With Previous Works

Compared with previously reported soft-decision FEC
schemes for OTN applications, AD decoders achieve much
higher throughput and lower energy consumption. To the best
of our knowledge, these are the first soft-decision FEC decoders
capable of 400 Gbps operation in the literature. However, they
provide lower NCG than several higher-complexity FEC sys-
tems, such as LDPC codes decoded using the NMSA [4], Turbo
product codes (TPCs) [27], and SC-LDPC codes [6]. This makes
AD decoding an attractive option for applications that do not
require the maximum attainable NCG [28].

While it is not an OTN decoder, [29] provides a useful ref-
erence as a layered offset min-sum LDPC decoder. It uses a
(2048, 1723) LDPC code with similar column weight (d, =
6) and OH (~20%) to codes used in this work. It also em-
ploys post-processing to suppress the error floor, and uses an
aggressively pipelined architecture that would be well suited
to high-throughput OTN applications. Implemented in 65-nm
CMOS, this decoder has a cell area of 4.52 mm?, minimum
guaranteed information throughput of 7.18 Gbps, and energy
consumption of 69.8 pJ per information bit. We then scale the
area and throughput linearly to a code size of 30 000, and apply
scaling factors of 1.6 to clock frequency, 0.4 to area, and 0.3 to
energy to estimate this design’s performance in 28-nm FD-SOI
(these are the scaling factors we observed while migrating our
designs from 65-nm CMOS in [16] to this work). This results in
an area of 26.5 mm?, throughput of 166.7 Gbps, and energy of
20.9 pJ/bit. Our (30 000, 25 000) AD decoder is 6 times smaller,
20% faster in terms of absolute throughput, 7 times faster in
terms of throughput per unit area, and 10 times more energy
efficient. Despite having a maximum iteration limit of 14 and
having a much higher clock frequency than the AD decoder,
the layered decoder achieves lower throughput due to requiring
12 clock cycles to complete an iteration. In contrast, the AD
decoders in this work all have maximum iteration limits of 49
and complete an iteration in a single clock cycle.

The NMSA-based LDPC decoder proposed in [4] achieves
NCG of 11.3 dB using a (24 576, 20 482) LDPC code with 20%
OH, and in [7] it is estimated this decoder would consume 60 pJ
per information bit in 28-nm CMOS. This is much higher than
the estimated energy consumption for the layered decoder de-
tailed above. However, we note that the estimates in [7] assume
a conventional parallel (i.e., non-layered) decoder, and also take
the higher wiring parasitics of a large decoder circuit into ac-
count. Unfortunately, there are no ASIC area estimates for this
decoder. The (60 000, 50 000) AD decoder in this work achieves
an estimated 0.55 dB lower coding gain, and a factor of 25 re-
duction in energy consumption. Due to the lower complexity of

JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 34, NO. 18, SEPTEMBER 15, 2016

the AD algorithm, we seek to make up some of the BER per-
formance gap with NMSA by using longer blocklengths; hence
we use the 60 000-bit blocklength decoder in this comparison.

A TPC decoder for OTN is proposed in [27]. Synthesized
in 40-nm CMOS, it has NCG of 11 dB at 15% OH, an area
of 23 mm?, and power consumption of 7 W (and thus energy
consumption of 70 pJ/bit, as it operates at 100 Gbps). Scaling
to 28-nm gives an area of 11.5 mm? and energy consumption
of 49 pJ/bit, using power scaling of 30% per process generation
at constant frequency [7]. This is a considerable improvement
over the layered LDPC decoder in terms of area and through-
put per unit area, though energy consumption is higher. Our
(60 000, 50 000) AD decoder achieves 5 times higher through-
put per unit area, and 21 times lower energy consumption. The
interpolated NCG of our decoders at 15% OH is 10.44 dB, so
the performance gap is similar to that between AD and NMSA.

SC-LDPC codes have achieved estimated NCG as high as
12.18 dB at 25% OH in FPGA implementations [6], but no ASIC
implementation or power consumption figures are available for
these codes at present. They can be reasonably assumed to be
comparable or slightly higher than the figures for conventional
block LDPC codes.

Another low-power soft-decision LDPC decoder for
100 Gbps optical applications is presented in [5]. This design
uses a convolutional LDPC decoder with a high-rate BCH outer
code. It achieves 10.2 dB NCG with 12% OH, and 100 Gbps
throughput in 2 W in 28-nm CMOS, giving an energy per bit of
20 pJ. The 12% OH AD decoders presented in this work achieve
similar NCG (10.1-10.25 dB) with approximately an order of
magnitude lower energy consumption.

Staircase codes are a class of hard-decision codes that achieve
NCG approaching that of soft-decision AD decoding, so a com-
parison with them is also apt. The NCG of practical staircase
codes ranges from 9.54 dB at 6.7% OH, to 10.41 dB at 20%,
to 10.70 dB at 33.3% [30]. Their maximum achievable per-
formance with infinite blocklengths is 9.56 dB at 6.7% OH,
10.64 dB at 20%, and 11.03 dB at 33.3% [31]. In comparison,
the AD decoders presented in this work achieve estimated NCG
of 9.6 dB at 6.7% OH, 10.75 dB at 20%, and 11.2 dB at 33.3%.
Thus, AD decoding outstrips both the practical and theoreti-
cal maximum performance of staircase decoding, particularly at
higher OHs. Unfortunately, no ASIC implementation or power
consumption figures are available for staircase decoders, nor
are they available for the component BCH decoders in modern
fabrication technologies. However, we note that staircase codes
require much longer blocklengths to achieve this level of error
correction performance (on the order of 400 000 bits).

V. CONCLUSION

In this paper, we presented soft-decision FEC systems for
OTN applications. These systems are based on randomly-
constructed LDPC codes in conjunction with the reduced com-
plexity AD decoding algorithm, which allows practical fully-
parallel ASIC implementations of codes with long block lengths.
The estimated NCG of these decoders ranges from 9.6 dB at
6.7% OH to 11.2 dB at 33.3% OH. Since the LDPC codes used

CUSHON et al.: LOW-POWER 400-GBPS SOFT-DECISION LDPC FEC FOR OPTICAL TRANSPORT NETWORKS

in this work do not need to have regular structure, it is possible to
construct them to have low complexity encoders. ASIC synthe-
sis results show that these decoders easily achieve 200-400 Gbps
information throughput, with low circuit complexity, and energy
consumption of less than 3 pJ per information bit, which is 10 to
25 times lower than previously reported soft-decision decoders
for OTN. AD decoding achieves a very good trade-off between
throughput, energy consumption, and error correction perfor-
mance for applications that do not require maximal coding gain.

[1]

[2]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(1]

[12]

[13]

[14]

REFERENCES

A. Leven and L. Schmalen, “Status and recent advances on forward er-
ror correction technologies for lightwave systems,” J. Lightw. Technol.,
vol. 32, no. 16, pp. 2735-2750, Aug. 2014.

K. Onohara et al., “Soft-decision-based forward error correction for
100 Gb/s transport systems,” IEEE J. Sel. Topics Quantum Electron.,
vol. 16, no. 5, pp. 1258-1267, Sep. 2010.

T. J. Richardson, “Error-floors of LDPC codes,” in Proc. 41st Annu. Aller-
ton Conf. Commun. Control Comput., Oct. 2003, pp. 1426-1435.

D. A. Morero, M. A. Castrillon, F. A. Ramos, T. A. Goette, O. E. Agazzi,
and M. R. Hueda, “Non-concatenated FEC codes for ultra-high speed
optical transport networks,” in Proc. IEEE Global Telecommun. Conf.,
Dec. 2011, pp. 1-5.

M. Li et al., “Low-overhead low-power-consumption LDPC-based FEC
solution for next-generation high-speed optical systems,” in Proc. Opt.
Fiber Commun. Conf. Exhib., Mar. 2015, pp. 1-3.

L. Schmalen, V. Aref, Junho Cho, D. Suikat, D. Rosener, and A. Leven,
“Spatially coupled soft-decision error correction for future lightwave sys-
tems,” J. Lightw. Technol., vol. 33, no. 5, pp. 1109-1116, Mar. 2015.

B. S. G. Pillai et al., “End-to-end energy modeling and analysis of long-
haul coherent transmission systems,” J. Lightw. Technol., vol. 32, no. 18,
pp. 3093-3111, Sep. 2014.

A. Darabiha, A. Chan Carusone, and F. R. Kschischang, “Power reduction
techniques for LDPC decoders,” IEEE J. Solid-State Circuits, vol. 43,
no. 8, pp. 1835-1845, Aug. 2008.

T. Mohsenin, D. N. Truong, and B. M. Baas, “A low-complexity message-
passing algorithm for reduced routing congestion in LDPC decoders,”
IEEE Trans. Circuits Syst. I Reg. Papers, vol. 57, no. 5, pp. 1048-1061,
May 2010.

F. Angarita, J. Valls, V. Almenar, and V. Torres, “Reduced-complexity
min-sum algorithm for decoding LDPC codes with low error-floor,” IEEE
Trans. Circuits Syst. 1, vol. 61, no. 7, pp. 2150-2158, Jul. 2014.

S. Sharifi Tehrani, A. Naderi, G.-A. Kamendje, S. Hemati, S. Mannor, and
W. J. Gross, “Majority-based tracking forecast memories for stochastic
LDPC decoding,” IEEE Trans. Signal Process., vol. 58, no. 9, pp. 4883—
4896, Sep. 2010.

F. Leduc-Primeau, A. J. Raymond, P. Giard, K. Cushon, C. Thibeault, and
W.J. Gross, “High-throughput LDPC decoding using the RHS algorithm,”
in Proc. Conf. Des. Archit. Signal Image Process., Oct. 2012, pp. 1-6.

T. Wadayama, K. Nakamura, M. Yagita, Y. Funahashi, S. Usami,
and I. Takumi, “Gradient descent bit flipping algorithms for decoding
LDPC codes,” IEEE Trans. Commun., vol. 58, no. 6, pp. 16101614,
Jun. 2010.

G. Sundararajan, C. Winstead, and E. Boutillon, “Noisy gradient descent
bit-flip decoding for LDPC codes,” IEEE Trans. Commun., vol. 62, no. 10,
pp. 3385-3400, Oct. 2014.

[15]

[16]

(17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

4311

K. Cushon, S. Hemati, C. Leroux, S. Mannor, and W. J. Gross, “High-
throughput energy-efficient LDPC decoders using differential binary mes-
sage passing,” IEEE Trans. Signal Process., vol. 62, no. 3, pp. 619-631,
Feb. 2014.

K. Cushon, P. Larsson-Edefors, and P. Andrekson, “Energy-efficient soft-
decision LDPC FEC for long-haul optical communication,” in Proc. Eur.
Conf. Opt. Commun., Sep. 2015, pp. 1-3.

L. Dolecek, Zhengya Zhang, V. Anantharam, M. J. Wainwright, and B.
Nikolic, “Analysis of absorbing sets and fully absorbing sets of array-
based LDPC codes,” IEEE Trans. Inf. Theory, vol. 56, no. 1, pp. 181-201,
Jan. 2010.

D. Chang et al., “FPGA verification of a single QC-LDPC code for
100 Gb/s optical systems without error floor down to BER of 10715
in Proc. Opt. Fiber Commun. Conf. Expo. Nat. Fiber Opt. Eng. Conf.,
Mar. 2011, pp. 1-3.

D. J. C. MacKay, “Good error-correcting codes based on very sparse
matrices,” IEEE Trans. Inf. Theory, vol. 45, no. 2, pp. 399-431, Mar.
1999.

D. J. C. MacKay. (2002) “Gallager code resources,” [Online]. Available:
http://www.inference.phy.cam.ac.uk/mackay/CodesFiles.html

T. J. Richardson and R. L. Urbanke, “Efficient encoding of low-density
parity-check codes,” IEEE Trans. Inf. Theory, vol. 47, no. 2, pp. 638-656,
Feb. 2001.

E. Cavus, C. L. Haymes, and B. Daneshrad, “Low BER performance
estimation of LDPC codes via application of importance sampling to
trapping sets,” IEEE Trans. Commun., vol. 57, no. 7, pp. 1886—1888, Jul.
2009.

M. Yang, W. E. Ryan, and Yan Li, “Design of efficiently encodable
moderate-length high-rate irregular LDPC codes,” IEEE Trans. Commun.,
vol. 52, no. 4, pp. 564-571, Apr. 2004.

Zongwang Li, Lei Chen, Lingqi Zeng, S. Lin, and W. H. Fong, “Efficient
encoding of quasi-cyclic low-density parity-check codes,” IEEE Trans.
Commun., vol. 54, no. 1, pp. 71-81, Jan. 2006.

Xilinx Inc., 7 Series FPGAs Overview, May 2015, v1.17.

G. Marsaglia, “Xorshift RNGs,” J. Statist. Softw., vol. 8, no. 1, pp. 1-6,
2003.

S. Dave, L. Esker, Fan Mo, W. Thesling, J. Keszenheimer, and R. Fuerst,
“Soft-decision forward error correction in a 40-nm ASIC for 100-Gbps
OTN applications,” in Proc. Opt. Fiber Commun. Conf. Expo. Nat. Fiber
Opt. Eng. Conf., Mar. 2011, pp. 1-3.

D. A.Morero, M. A. Castrillon, A. Aguirre, M. R. Hueda, and O. E. Agazzi,
“Design tradeoffs and challenges in practical coherent optical transceiver
implementations,” J. Lightw. Technol., vol. 34, no. 1, pp. 121-136, Jan.
2016.

Z.Zhang, V. Anantharam, M. J. Wainwright, and B. Nikolic, “An efficient
10GBASE-T ethernet LDPC decoder design with low error floors,” IEEE
J. Solid-State Circuits, vol. 45, no. 4, pp. 843-855, Apr. 2010.

L. M. Zhang and F. R. Kschischang, “Staircase codes with 6% to
33% overhead,” J. Lightw. Technol., vol. 32, no. 10, pp. 1999-2002,
May 2014.

C. Hager, A. Graell i Amat, H. D. Pfister, A. Alvarado, F. Brannstrom,
and E. Agrell, “On parameter optimization for staircase codes,” in Proc.
Opt. Fiber Commun. Conf. Exhib., Mar. 2015, pp. 1-3.

Authors’ biographies not available at the time of publication.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

