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Erik Agrell(1), Seb J. Savory(4), Polina Bayvel(2)

(1) Department of Signals and Systems, Chalmers University of Technology, Gothenburg, SE-412 96,
Sweden, czegledi@chalmers.se
(2) Department of Electronic and Electrical Engineering, Optical Networks Group, University College
London, London, WC1E 7JE, U.K.
(3) Department of Microtechnology and Nanoscience, Chalmers University of Technology, Gothenburg,
SE-412 96, Sweden
(4) Department of Engineering, Electrical Engineering Division, University of Cambridge, Cambridge,
CB3 0FA, U.K.

Abstract We study a modified DBP algorithm that accounts for PMD. Based on the accumulated
PMD at the receiver, the algorithm distributively compensates for PMD in the reverse propagation and
outperforms the conventional approach by up to 2.1 dB.

Introduction

Digital signal processing (DSP) allows modern
coherent fiber-optical systems to fully recover all
degrees of freedom of the optical field, improving
receiver sensitivity and allowing the use of higher-
order modulation formats. Having access to the
entire optical field, linear impairments are effec-
tively mitigated using DSP, whereas fiber nonlin-
earity is viewed as the ultimate obstacle towards
higher transmission rates. Various techniques
are available in the literature to mitigate fiber
nonlinearities, among which digital backpropaga-
tion (DBP) has proved to be promising1. DBP
compensates for the deterministic fiber nonlinear
impairments by solving the nonlinear propaga-
tion equation using the split-step Fourier (SSF)
method and backpropagating the received optical
field with inverted channel parameters, whereas
the remaining stochastic impairments, such as
polarization-mode dispersion (PMD), are com-
pensated after DBP.

Having exact knowledge of the fiber parame-
ters, it is believed that the deterministic nonlin-
ear signal–signal interactions are completely re-
moved using DBP and the performance of a fiber-
optical system is limited by the uncompensated
stochastic effects such as amplified spontaneous
emission noise, which leads to signal–noise in-
teractions2, and PMD leading to polarization-
dependent interactions3,4, which considerably de-
crease the effectiveness of DBP. In order to ac-
count for the signal–noise interactions, a modi-
fied DBP5 has been proposed that takes into ac-
count noise, getting the performance of the op-
tical fiber channel closer to the fundamental lim-
its. However, no such modification exists in the
literature that takes into account the stochastic

polarization-dependent interactions due to PMD.
PMD introduces a frequency-dependent delay

that accumulates as a random-walk-like process
along the fiber length. DBP applied the entire
reverse propagation with the accumulated delay
over the entire link; therefore the nonlinear com-
pensation is mismatched and its accuracy de-
grades with the backpropagated distance. In or-
der to remove this effect, PMD should be com-
pensated for as it naturally occurs, i.e., in a dis-
tributed fashion along the link, rather than doing it
at once after DBP. It has been shown numerically
that compensating for PMD on a per span-basis
decreases its impact on DBP significantly3. How-
ever, this approach requires a priori PMD knowl-
edge for every span, which is challenging to real-
ize.

In this work, we propose for the first time a
modified DBP algorithm to account for the inter-
play between nonlinearities and PMD. Besides
the nonlinear and chromatic dispersion blocks,
the modified algorithm applies the reverse prop-
agation also using PMD blocks that mimic the for-
ward propagation. Simulation results show the ef-
fectiveness of the algorithm, providing signal-to-
noise ratio (SNR) gains of 0.3–2.1 dB for a 1000
km link with 0.05–0.3 ps/

√
km PMD parameter,

compared to the traditional setup where the en-
tire PMD is undone at once after DBP.

Proposed Method

The conventional DBP algorithm is modified such
that the signal is backpropagated also through
NPMD PMD sections that concatenated have the
same frequency-dependent Jones matrix over the
signal spectrum as the inverse of the total accu-
mulated PMD in the forward propagation. The ac-
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Fig. 1: The SNR versus input power. The dashed lines rep-
resent the mean SNR obtained over 120 PMD realizations,
whereas the shaded areas represent the standard deviation.
For comparison, the performance of DBP without PMD and
with ideal knowledge of 25 PMD segments are shown.

cumulated PMD at the receiver can be obtained
from blind channel equalizers, such as the con-
stant modulus algorithm.

Each PMD section consists of a polarization
scrambler and a retardation plate uniformly in-
terleaved with the total number of DBP steps
NDBP. Each of the NPMD retardation plates is
equally divided into NDBP/NPMD plates and dis-
tributed in each DBP step between two consecu-
tive polarization scramblers that are placed at ev-
ery NDBP/NPMD DBP steps starting from step one.
Knowing the mean accumulated differential group
delay (DGD), the NPMD sections are randomly
initialized such that the overall expected mean
DGD is the same. Subsequently, the sections are
oriented such that the inverse of the frequency-
dependent Jones matrix over the signal spec-
trum in the forward propagation is obtained. The
orientation of the sequence is done using the
Nelder–Mead simplex optimization method6 over
the 4NPMD degrees of freedom (three for each
polarization scrambler and one for each retar-
dation plate) by minimizing over the entire fre-
quency range the mean-squared error of i) the
Jones matrices and ii) the DGD obtained from the
first derivative of the Jones matrices, with equal
weighting factors. It should be noted that the do-
main of this optimization is not convex and has
many possible solutions; therefore the obtained
orientation of the PMD sections is sensitive to the
initialization. Even though the obtained orienta-
tion of the PMD sections matches closely the ac-
cumulated PMD, it might not necessarily reflect
the orientation in the forward propagation. As
we will see in the Results section, this mismatch
leads to a performance penalty.

In this work, we focus on the potential gain by
DBP in the presence of PMD; therefore we as-
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Fig. 2: Average SNR obtained over 120 PMD realizations at
the optimal input power by compensating for PMD after DBP,
and by the modified DBP scheme with various number of PMD
sections NPMD.

sume ideal knowledge of the accumulated PMD,
rather than obtaining this information from equal-
izers.

Simulation Setup

We consider a single-channel point-to-point link
consisting of an ideal transmitter and coherent re-
ceiver, and 10×100 km spans of standard single
mode fiber with one erbium doped fiber amplifier
per span, compensating for the exact span loss,
having a noise figure of 4.5 dB. The transmitted
signal was 50 Gbaud polarization-multiplexed 16-
ary quadrature amplitude modulation shaped us-
ing a root-raised cosine (RRC) pulse with roll-off
factor 0.01. The signal propagation was simu-
lated by solving the Manakov-PMD7 equation us-
ing the SSF approach with steps of 0.1 km. PMD
was emulated at every SSF step consisting of
a polarization scrambler that uniformly8 scatters
the state of polarization and a retardation plate.
The DGD introduced by each retardation plate
was Gaussian distributed9 N (∆τp, (∆τp/5)2) with
mean ∆τp; thus the mean accumulated DGD is
√

8NSSF/(3π)∆τp, where NSSF is the total num-
ber of SSF steps.

We considered two receiver DSP setups: i)
DBP followed by an ideal linear PMD equalizer
that is assumed to operate under perfect knowl-
edge, and ii) modified DBP described in the pre-
vious section. For both setups NDBP = NSSF =
10000, and are followed by an ideal matched
RRC filter applied to the signal, after which the
SNR is estimated by comparing the transmitted
and received symbols.

Results and Discussion

Fig. 1 shows the achieved performance obtained
for a PMD parameter of 0.1 ps/

√
km, resulting

in a ∼3.16 ps expected DGD. As can be seen,
the performance of DBP degrades by 3 dB in
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Fig. 3: SNR versus fiber PMD parameter obtained for 10 dBm
input power. The dashed lines represent the mean SNR ob-
tained over 120 PMD realizations, whereas the shaded area
represents the standard deviation.

the presence of PMD. The modified DBP consists
of 25 PMD sections and improves the SNR by
0.6 dB compared to the classical DBP approach.
However, the proposed scheme is 2 dB worse
compared to the case with perfect knowledge of
the 25 PMD sections. The loss in performance is
due to the mismatch of the PMD evolution along
the fiber in the backward propagation compared
to the one in the forward propagation.

The achieved SNR at the optimal input power is
shown in Fig. 2 as a function of NPMD. As can be
seen, the performance increases with the num-
ber of sections, providing a gain of 0.7 dB with 75
sections.

Fig. 3 shows the performance of the two
schemes as a function of the PMD parameter. As
the PMD parameter increases, the performance
of both schemes degrades. However, the pro-
posed DBP provides an SNR gain that increases
from 0.3 dB at 0.05 ps/

√
km to 2.1 dB at 0.3

ps/
√

km, after which it saturates. The saturation
may occur due to the number of PMD segments
being insufficient to accurately emulate the higher
amount of accumulated PMD.

The histogram of the achieved SNR with the
proposed algorithm obtained for different opti-
mization solutions of the PMD sections starting
from different initializations is shown in Fig. 4.
The PMD realization in the forward propagation
is fixed and the red bar marks the obtained SNR
by compensating for PMD after DBP. As can be
seen, most (95%) of the realizations have bet-
ter performance than the conventional approach,
with the histogram peak at 25.5 dB achieving a
1.5 dB SNR gain.

Note that the algorithm’s efficiency can be im-
proved by running in parallel different PMD real-
izations in the backward propagation and select-
ing the best candidate at a latter stage.

22 23 24 25 26
0

0.1

0.2

0.3

SNR [dB]

R
e

la
tiv

e
F

re
q

u
e

n
cy

DBP with 25 PMD sections

PMD compensation after DBP

Fig. 4: Histogram of the SNR values obtained at 10 dBm input
power and 0.1 ps/

√

km PMD parameter by 330 different solu-
tions of the optimization algorithm for a fixed PMD realization
in the forward propagation. The red bar marks the obtained
SNR by compensating for PMD after DBP.

Conclusions

We demonstrated, as a proof of concept, a modi-
fied DBP algorithm that blindly reverses the PMD
effects in the backward propagation by gradually
passing the signal through NPMD PMD sections,
rather than doing the entire PMD compensation
at once after DBP. Based on an optimization algo-
rithm, the NPMD PMD sections are oriented such
that the inverse of the accumulated PMD at the
receiver is obtained. The algorithm provides SNR
gains of 0.3–2.1 dB for a 1000 km link with 0.05–
0.3 ps/

√
km PMD parameter.
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