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Abstract

The cultivation and processing of microalgal biomass is
resource- and energy-intensive, negatively affecting the sus-
tainability and profitability of producing bulk commodities,
limiting this platform to the manufacture of relatively small
quantities of high-value compounds. A biorefinery approach
where all fractions of the biomass are valorized might im-
prove the case for producing lower-value products. However,
these systems are still likely to operate very close to thresh-
olds of profitability and energy balance, with wide-ranging
environmental and societal impacts. It thus remains critically
important to reduce the use of costly and impactful inputs and
energy-intensive processes involved in these scenarios. Inte-
gration with industrial infrastructure can provide a number of
residual streams that can be readily used during microalgal
cultivation and downstream processing. This review critically
considers some of the main inputs required for microalgal
biorefineries—such as nutrients, water, carbon dioxide, and
heat—and appraises the benefits and possibilities for indus-
trial integration on a more quantitative basis. Recent litera-
ture and demonstration studies will also be considered to best
illustrate these benefits to both producers and industrial op-
erators. Additionally, this review will highlight some incon-
sistencies in the data used in assessments of microalgal
production scenarios, allowing more accurate evaluation of
potential future biorefineries.

Introduction
ver the past few decades, microalgal biotechnology
has seen significant contributions from the fields of
biology; engineering and physics relating to cellular
physiology and biochemistry; bioreactor design and
operation; and biomass downstream processing. High growth
rates, no arable land requirement, flexible use of water and
nutrient sources, and manipulatable biochemical composition
are all reasons to investigate microalgal-derived products. This
has resulted in a diverse and attractive array of products, the
value of which are increasingly being recognized and pursued
by the food, feed, cosmetic, and nutraceutical markets.! How-
ever, expansion into production of bulk products with lower
market values, i.e., fuel, animal feed, and biomaterials, is lim-
ited. Numerous factors limit the potential to fully exploit algae
in these market areas—not the least of which is profitability
(biomass >$470/t,%* biodiesel >$3/gal)>*—but also the energy
intensity, resources requirement, and global warming potential
(GWP) of production.> Commercial production is consequently
limited to a relatively small number of species—including
Chlorella, Spirulina, Dunaliella, and Haematococcus—and
products, including pigments and whole cell supplements.!-1°
Development of multi-product/service biorefineries, where
biomass components are separated to generate several products
while using residual nutrient streams and abatement of carbon
dioxide (CO,) from flue gases, may aid in reducing costs and
improving the sustainability of these approaches.>”!! Although
meaningful advances have been made in attaining larger scales
of production with high-performing strains,'? and more energy
efficient and environmentally viable biorefinery practices are in
development,’-!? it is still likely that these production platforms
will operate close to profitability and sustainability margins,
with high degrees of uncertainty.*7-%1415
To develop more feasible algal biorefineries, integration or
symbiosis with industrial infrastructure could provide many of
the resources required for large-scale production of biomass,
including nutrients, water, CO,, and heat. A more sustainable
supply of these resources can contribute significantly to de-
creasing the negative energy balance, GWP, and cost of pro-
duction. It should subsequently be of the utmost importance to
match appropriate outputs (quantity and quality) from different
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industrial or municipal sectors to microalgal biorefineries to
realize these benefits.!5~18

Life-cycle assessments (LCA) and techno-economic analy-
sis (TEA) will also play a key role in shaping the selection
and development of sustainable technologies and biorefinery
processes. LCA are critical for determining the life-cycle
greenhouse gas (GHG) reductions associated with biofuels. In
Europe, the Renewable Energy Directive states that by 2020 at
least 10% of energy in transport should be renewable and these
fuels need to provide a reduction of GHG emissions of at least
35%. From 2017 the reduction of GHGs should be 50%, and,
from 2018, 60% compared to fossil fuels. Production of biofuels
should not cause destruction of land with high biodiversity or
take place on land with high carbon stock.'® The Renewable
Fuel Standard developed by the United States Energy In-
dependence and Security Act of 2007 requires production of
renewable fuels to have at least a 50% CO, reduction compared
to petroleum fuels to be classed as an advanced biofuel. Com-
prehensive LCA that consider the whole production chain
cradle-to-grave (and land-use change implications) with a con-
sistent methodological approach are subsequently required.?%%!

Through examination of available literature, a detailed over-
view of the requirements of these inputs and processes for large-
scale microalgal production (nutrients, water, CO», and heat) is
presented with considerations on reducing/recycling them. Ar-
guments for the use of low-impact resources from industry in
terms of cost and sustainability criteria are presented where
appropriate. Furthermore, through a broad consultation of the
literature, inconsistencies in reported data for different inputs
and processes are highlighted, with an intention to improve fu-
ture analysis of microalgal production scenarios.

Microalgal Cultivation

The two most common systems for cultivation of microalgae
are open raceway ponds (ORP) and closed photobioreactors
(PBR). It is also possible to design algae cultivation systems where
ORPs and PBRs are combined.'? The location of the production
facility has a high impact on biomass production due to differences
in solar irradiation, temperature, and rainfall, but the availability of
resources such as CO», nutrients and, energy is also critical for
attaining maximal productivities in a given location.?*>2*

The ORP is a simpler construction that requires less financial
investment than most PBR designs, but volumetric algae yields
are usually lower in the ORP.?>-26 ORPs are sensitive to con-
tamination and are thus best suited for algae species that grow
under extreme conditions. Dunaliella, for example, tolerates
high salt concentrations, and Spirulina can tolerate high alka-
linity.! ORPs are also unsuitable for locations with high rainfall.

The advantage of closed PBRs over ORPs is the more con-
trolled growth environment. PBRs exhibit better contamination
avoidance and higher volumetric productivities due to the
greater surface-to-volume ratio. The major disadvantages are
the higher investment and operating costs. Several varieties of
photobioreactor designs exist, with tubular PBR, flat-panel
PBR, and bubble-column PBR the most common designs. PBRs
can, however, be relatively simple constructions as well, such as
hanging plastic bags.?’
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EXPECTED BIOMASS OUTPUT

There are large variations in the biomass productivity of
different algae production systems described in the literature
(Table 1).**" The theoretical maximum photosynthetic effi-
ciency of microalgae (the percentage of incident light energy
absorbed and fixed as biomass) has been calculated to be be-
tween 8—12% of incident irradiance, but growth trials fall a long
way from obtaining these values (Table 1).?%?° The inability to
attain predicted yields of biochemical energy from incident ir-
radiance is likely to be a critical factor limiting cost-effective
and energy-efficient production of microalgal biomass on a
large-scale. Achieving higher photosynthetic efficiencies should
subsequently be considered a critical aim in photobioreactor
location, design, and operation.*® Determining the photosyn-
thetic efficiency should also be prioritized during large-scale
trials to generate a more thorough understanding of factors
impacting this parameter, as well and for aiding development of
effective areal growth models.>!

ELECTRICITY REQUIREMENTS

The energy required for mixing in an ORP depends on depth,
which in turn can determine the biomass productivity.>® A deeper
pond has the potential to improve areal productivity, possibly at
the expense of volumetric productivities,® but it also increases
the energy needed for mixing; these factors need to be optimized
to achieve low energy consumption per unit of biomass produced.
Paddlewheels are typically used for mixing ORPs, and their en-
ergy consumption is dependent on several factors, including pond
depth, liquid velocity, and presence and number of baffles.?
There is subsequently a wide range of values used for paddle-
wheel energy consumption costs in the literature, 18—-288 MJ/ha/
d,%73738 which equates to 0.25-4.04 MJ/kg of dry weight (DW)
biomass produced in some studies.®!>378 However, in Rogers
et al., the energy demand of the paddlewheels in a 0.3 m deep
pond was predicted to be 190-630 MJ/ha/d (based on supplier
data), but was actually measured to be 7,050 MJ/ha/d (470 MJ/kg
DW) when operated, representing a significant proportion of the
total energy required for production.®

Gas injection into the ponds is also a costly process (0.09-0.15
MlJ/kg DW).374041 Taelman et al. calculated an energy input of
803.1 MJ/d for mixing, pumping, and gas injection into two
ponds, each with a depth of 0.6 m and a total area of 500 m? (1,885
MlJ/kg DW), with the operation of the air blower contributing
most significantly to this cost.’ These energy requirements are
significantly higher than many reported values, but were mea-
sured during pilot-plant operation rather than predictions. Ac-
cording to Brentner et al., the electricity required for aeration of an
ORP is 43.2 MJ/ha/d (0.02 MJ/m>/d).*? Lardon et al. assumed an
energy demand of 0.08 MJ/kg CO, injected based on literature
data.*® In a study by Mendoza et al., the power consumption of
different gas diffusers in an ORP was measured.** Aeration using
a membrane tube diffuser had a power consumption of up to 150
W. Aeration using a porous tube diffuser consumed 70 W, while
a plate diffuser consumed 56 W. The gas-transfer efficiency in-
creased linearly with decreased bubble size, and a porous tube
diffuser was considered the best choice.** Other attempts to
increase energy efficiency in the operation of ORPs include
substituting the paddlewheel for more efficient propellers,*> sump
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Table 1. Examples of Literature Data for Volumetric and Areal Algae Production Yields in Outdoor Pilot
and Large-Scale ORPs and PBRs

BIOMASS PRODUCTIVITY

VOLUMETRIC AREAL PHOTOSYNTHETIC
ALGAE SPECIES (kg DW/m?3/d) (g DW/m?/d) EFFICIENCY (%) COMMENTS REFERENCE

ORPs

Tetraselmis suecical - 8.37-8.9/10.44-14.1 - Florence, Italy 32

Nannochloropsis

Scenedesmus sp. 0.09 17.5+0.8 - 10-month average. Southern Spain 33

Nannochloropsis gaditana 0.20 224 = Southern Spain, Summer 34

0.09 10.3 - Southern Spain, Winter 34

Scenedesmus and Chlorella (mix) 0.09 11.5 - Yearly average. Lelystad, Netherlands 9

Scenedesmus acutus 0.09 6.6+23 0.3-0.7 Arizona, US 26

Nannochloropsis sp. CCAP 211/78 0.03-0.08 9.7-14.0 1.1-1.5 Wageningen, Netherlands, Summer 25

PBRs

Scenedesmus acutus - 19.0+0.6 1.3-2.2 Flat-panel. Arizona, US 26

Nannochloropsis gaditana 0.59 15.4 - Horizontal tubular. Southern Spain, 34
Winter

Nannochloropsis sp. CCAP 211/78 0.57-0.71 19-24 2.4-42 Vertically stacked horizontal tubular. 25
Wageningen, Netherlands, Summer

Nannochloropsis sp. CCAP 211/78 0.65-0.85 12-15 1.5-1.8 Horizontal tubular. Wageningen, 25
Netherlands, Summer

Nannochloropsis sp. CCAP 211/78 0.9-1.20 20-27.5 2.7-3.8 ProviAPT flat-panel. Wageningen, 25
Netherlands, Summer

Desmodesmus sp. 0.289 433 - Horizontal tubular. Hawaii, Summer 12

ORPs, open reaceway ponds; PBRs, photobioreactors.

configuration for improved gas transfer,>® and implementing
airlift mixing to improve gas transfer in the ponds.*

Predicting the cultivation energy requirement for PBRs is de-
pendent upon the geometry of the system. Flat-plate PBRs require
energy for only air/CO, injection, whereas in tubular PBRs en-
ergy is needed for both aeration and pumping the culture liquid.
The need for pumping in a tubular PBR could limit the species
that can grow in a tubular PBR, as some are inherently sensitive to
the shear stress caused by use of centrifugal pumps.?’ Several
studies use the value 4.6 MJ/m?/d for the electricity requirement
of flat-panel PBRs, whereas the energy consumption for tubular
PBRs has been estimated to be 173584 MJ/m?/d.*>%¢ Jorquera
et al. assumed an electricity input of 53 W/m? for flat-plate and
2,500 W/m? for tubular.*® In pumped systems where aeration is
not required for mixing, aeration/CO, injection can be avoided
during the dark cycle. Huntley et al. reported the use of a tubular
system with a low-pressure, high-volume airlift that had an en-
ergy requirement of 0.31 MJ/m*d (824 MlJ/ha/d)”!2—sig-
nificantly lower than other airlift systems.*”8

In addition to electricity consumption for mixing and aeration,
growing algae in high latitudes may require additional electricity

inputs for lighting for large proportions of the year. The provision of
the right amount and quality of incident light is critical in achieving
high growth rates and consistent production. Light-emitting diodes
are increasingly being used to illuminate cultures for lab-scale
experiments® and some large-scale applications.®>! However,
additional lighting will come at a heavy price in terms of investment
and operational costs. According to Sevigné Itoiz et al., the energy
required for illumination of an indoor bubble column PBR system
with fluorescent lamps was 158—167 MJ kg/DW.>? Blanken et al.
predicted that the use of artificial illumination would add $12.30-
19.10/kg DW to the cost of production,® limiting their use to just
the production of biomass for high-value products that are not so
sensitive to investment costs or energy balances, such as astax-
anthin from Haematococcus pluvialis ($15,000/kg pigment).!

Other electricity requirements during production include
pumping of the culture between different growth systems (in-
oculum to main system) and downstream processing equipment.
Energy requirements pertaining to dewatering and harvesting
are beyond the scope of this review, but several excellent texts
are available.>>>* Processes relating to heating and drying of
biomass are considered below.

MARY ANN LIEBERT, INC. e VOL. 12 NO. 4 e AUGUST 2016 INDUSTRIAL BIOTECHNOLOGY 221




MAYERS ET AL.

Resource and Energy Requirements
for Biomass Production
CONSIDERATION OF NUTRIENT REQUIREMENTS

LCA and resource assessments primarily consider the inputs
of nitrogen (N) and phosphorus (P) when developing microalgal
cultivation scenarios. However, there is a great deal of uncer-
tainty in the literature as to the true nutritional requirement of
cultivation, significantly skewing the environmental impact and
cost associated with their input, especially if they are derived
from fertilizers.

The elemental composition of microalgal biomass can be used
to determine the nutrient requirement of cultivation, but is lacking
in nearly 25% of LCA.?° Microalgae are typically 1.5-10% of
their DW as N> and 0.1-3% DW as P.5°% A number of as-
sessments use the Redfield elemental molar ratio of Cips:Ni6:P;
and a C content of 50% DW to determine the N and P require-
ment,**%0 resulting in 8.8% N and 1.2% P, or 88 g N and 12g P
per kg of biomass. This approach may be appropriate in some
circumstances, but practitioners must consider that this ratio has
been shown to be non-representative for a large number of species
and varies significantly.”®°! What is additionally worrying is that
many studies using the Redfield ratio do not understand the link
between nutrient supply and biochemical composition, in partic-
ular, lipid content. This results in lipid contents being assigned to
biomass that is highly unlikely given the cultivation conditions/
nutrient status. There has to be an awareness that the nutrient
concentration of the growth medium has a substantial impact upon
biochemical composition, i.e. the biomass N (or P) content is
intrinsically linked to the lipid content.38

Nutrient starvation of microalgae is a substantially researched
area of the algal field, with N-limitation in particular being a
common practice to bring about a change in composition. The
exhaustion of a key nutrient results in the cessation of cell di-
vision due to inability to synthesize key macromolecules, such
as proteins, DNA, or RNA. Despite this decrease in growth rate,
photosynthetic C-fixation proceeds, albeit at a lower rate, re-
sulting in an accumulation of C-enriched compounds such as
lipids (triglycerides) or carbohydrates.5> There is subsequently a
breadth of information available pertaining to changes in bio-
chemical composition in relation to nutrient supply, and this
should be more carefully considered in LCA/TEA.

In some cases during LCA/TEA, a high lipid content is as-
signed to biomass (also with high N requirements; Table 2), but
the negative effect on biomass productivity associated with
higher lipid contents under nutrient starvation is not considered.
This type of inventory results in the conclusions being heavily
skewed to the positive regarding many aspects of the process
assessment and energy balance. In a recent study, Collet et al.
found that only 20% of the LCAs examined considered the
implications of N-starvation and its effect on productivity.?°
This is not to say that there are not good examples in the liter-
ature. Lardon et al. considered two biochemical compositions of
Chlorella biomass, one with sufficient N (5% DW N, 18% DW
lipid) and low N (1.1% DW N, 39% DW lipid) based on pub-
lished compositions and found that producing high lipid biomass
significantly improves the energy balance of biodiesel produc-
tion.*> The use of accurate composition data is obviously im-
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portant in determining the correct quantities of nutrient inputs
and product composition for a given cultivation scenario,
leading to more accurate representation of the whole process
with regards to cost, energy input, and environmental impact.

Energetics and implications of fertilizer use. Common N- and P-
containing agricultural fertilizers have similar production en-
ergy demands (ammonium nitrate=51 MJ/kg N, triple super
phosphate, Ca(H,PO4)>=58.9 MJ/kg P), but since N makes a
greater contribution to the biomass, it represents a more sig-
nificant impact on the energy balance of cultivation. If 88 g N
and 12 g P are required to produce 1 kg of biomass, the energy
input would be approximately 4.5 MJ for N and 0.71 MJ for P.
Assuming a biomass energy content of approximately 24 MJ,
this would result in N and P inputs representing 18.7% and 3% of
the energy inherent in the biomass, respectively. The global
warming potential associated with the production of these fer-
tilizers is also significant, amounting to 0.82 and 0.04 kg CO»-
equivalents for the required N and P inputs for 1kg biomass,
respectively. Considering that approximately 1.5-2.0kg CO,
are required to produce 1 kg biomass (40-55% C), fertilizer use,
in particular N-based fertilizers, makes a significant negative
contribution to the net CO, emissions associated with cultiva-
tion. Decreasing or removing the use of fertilizers in large-scale
microalgal culture is hence a critical priority for the sustainable
production of bioenergy or chemical feedstocks if favorable
energy and emissions balance is to be attained.

Beyond issues regarding the cost and environmental impacts
of fertilizer use, two studies have highlighted how large-scale
microalgal cultivation could impact fertilizer use in the US.
The US Energy Independence and Security Act states that by
2022, advanced biofuel production—those with <50% GWP of
fossil fuels—should reach 79 billion L/year. To meet even 23%
of this requirement (5 billion L/y), Canter et al. calculated that
microalgal cultivation would require 20-22% of the total N and
12-18% of the total P used in the US during 2013.% The in-
crease in N demand for microalgal cultivation will lead to
increased prices, with significant impacts on other sectors, in
particular, agriculture. With regards to P fertilizers, there is
typically an annual surplus of production in the US, of which
microalgal cultivation would consume 19-30%.5* Hence, it is
imperative to identify suitable residual nutrient sources or
maximize the conservation and recycling of nutrients within a
biorefinery. Rosch et al. and Canter et al. provide more in-
depth reviews of the recovery of nutrients from different mi-
croalgal fractions.?-%4

Considerations for the use of waste nutrients for biomass pro-
duction. Understanding nutrient requirements for a given spe-
cies (in a given PBR/environment) is also critical in the
utilization of waste nutrient sources. There are now numerous
studies investigating the use of nutrients from different waste-
water (WW) or residual streams for the cultivation of micro-
algae.®3-%° The content and ratio of nutrients (N:P) in WW can
vary significantly between sources, as well as temporally from a
single source. This could ultimately determine the biomass
productivity and feasibility of using this source. A high N:P ratio
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Table 2. Summary of LCA Nutrient Input Data for Production of 1kg Dry Algal Biomass, the Types of Fertilizers Used,
and Values for Lipid Content and Higher Heating Values (HHV), if Reported

SPECIES REFERENCE
Generic algae marine 44 Ammonia 9.5 TSP 13.4 Potassium sulphate 500 25.8 41
Chlorella vulgaris 46 Calcium nitrate 9.9 SSP 8.2 Potassium chloride 175 19.3¢ 43
C. vulgaris 10.9 Calcium nitrate 2.4 SSP 2 Potassium chloride 385 24.9¢ 43
Generic alga freshwater 73 Urea 19.4 SSP - - - 24 38°
C. vulgaris 24 Ammonium nitrate 22 TSP - - 40 - 48
C. vulgaris 61 Ammonium sulphate 8.1 SSP 6.6 Potassium chloride - - 37
C. vulgaris 33 = 232 = = = = 76
Scenedesmus dimorphus 82 Ammonium nitrate 10 Calcium - - 250 - 42¢

phosphate
Haematococcus pluvialis 60 Potassium 8.3 SSP - - 250 - 59°
Nitrate
Nannochloropsis sp. 150 - 20 - - 500 - 77
Generic algae freshwater 38.3 MAP + urea 12.8 MAP - - 130 - 260 - 78°
Generic algae marine 42.8 MAP + urea 12.8 MAP - - 170 - 320 - 78°
Generic algae freshwater 90 Ammonia 13 Phosphoric - - 500¢ - 79°
acid
Nannochloropsis sp. 70 10 10 - - 20.1¢ 80°
Generic algae freshwater 82 - 12.8 - - 200 - 500 21 16°
Nannochloropsis sp. 82 Ammonium nitrate 7 Calcium - - 29 - 14¢
phosphate

SSP, single super phosphate (mixture of Ca(H2P04), and 2 CaSOs, ~9% P); TSP, triple super phosphate (Ca(H,P04)2.H,0, 25% P); MAP, monoammonium phosphate
(NH4H,PO4, ~12% N, ~23% P); DAP, diammonium phosphate ((NH4):HPO4, ~21% N, ~26% P).

2Average of multiple similar scenarios; °Calculated using Redfield ratio; “Calculated from ratio in Grobbelaar®®; “Refers to biocrude yield from biomass following
hydrothermal liquefaction; ¢Converted from lower heating value to HHV by multiplying by 1.18%; fCites nutrient usage data from paper that had uncorrected values.

is likely to lead to a P-limitation, decreased growth rates, and
effects on the biochemical composition.’® Many systems ana-
lyses optimistically assume that nutrient requirements can be met
quite satisfactorily by nutrients contained in WW and do not con-
sider that essential nutrients might not be balanced or too dilute/
concentrated. For instance, Handler et al. found that the study of
Clarens et al. had incorrectly assumed that, based on the nutrient
contents of three waste sources, all N and P requirements for
algal cultivation would be met, whereas in fact only one of the
three had sufficient nutrients.*®¢” Furthermore, it was recently
found that an anaerobic digester effluent (N:P 99:1) could supply
100% of N for microalgal growth, but additional P was required
to provide an appropriate ratio of N:P ratio (N:P 32:1).%8

An additional benefit for the utilization of nutrients is that
microalgal cultivation will replace traditional biological nutrient
removal (BNR) systems in WW treatment works, which are
inherently energy intensive due to electricity and chemical con-
sumption (in particular, external C-sources used in the denitrifica-
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tion process, such as methanol and acetic acid).%® The avoidance of
these processes through microalgal cultivation will generate credits
equal to the quantity of traditional BNR replaced. Sturm and Lamer
suggest that, from their inclusion of BNR credits, nutrient removal
accounts for 24-55% of the energy gained in the system.”® Handler
et al. also calculated the BNR credit for treatment of municipal
waste and found that it was equal to approximately 4.2 MJ of
electricity and 0.31 kg of methanol (<10 MJ) per kg of DW pro-
duced, which was greater than the electricity requirement of culti-
vation in this scenario.'! The exact amount of energy and resources
saved is dependent upon local WW treatment processes and water
nutrient release legislation.

Besides these benefits, however, another often neglected
factor needs to be considered. Most WW streams are rich in
ammonium ions, which are in a chemical equilibrium with
ammonia that can be lost to the environment via volatilization.”!
These emissions can subsequently contribute to indirect N>O
emissions, which is a potent GHG and has impacts on air quality,
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aerosol formation, and health human, and increases eutrophi-
cation through deposition of N in water bodies.”> Yuan et al.

Table 3. Water Footprint of Microalgal Biomass
Production for Different Microalgal Cultivation

receptly estimgtpd N loss V@a volatilization to be 4% of input,.73 Scenarios Using ORP in the Literature
but in an empirical ORP trial, 40% of ammonium was volatil-
ized (>500 mg NH4*/L/d) when operated semi-continuously for WATER WATER FOOTPRINT
30 d.”" High dissolved ammonia concentrations can be toxic to RECYCLING (%) (M*/KG DW) REFERENCE
cells,” so nutrient sources may require dilution before use, but 100 024 43
loss of N through volatilization will also increase the N re-
quirement of the system and result in decreased N:P ratios (N- 100 9.05 38
limited conditions). This is critical if nutrient removal from WW 99 011 82
is an intended aim of cultivation, as it may lead to incomplete P
assimilation. Maintaining the culture pH below 9 (pKa of am- e s - bk 83
monia) prevents shifts in this equilibrium, as ammonium is the 99 0.01 84
major form in both freshwater and seawater at pH of 7 at 15—
25°C.75 Accurate mass balances for N (and P) during the culti- % 0.33 8
vation stage would be of use in determining the magnitude of 90 051 g1d
these impacts.
90 0.388 - 0.726 6

WATER REQUIREMENTS FOR MICROALGAL CULTIVATION ~ _** 0005 ud

Microalgae cultivation requires large volumes of water, 80 0.56 - 1.08 429
which should be considered in sustainability assessments of - oo 81
microalgae. As described by Guieysse et al., there is a differ-
ence between water demand (WD) and water footprint (WF).8! 50 1.55 81
WD includes the water consumed by the process whereas WF 0 101 82
always includes indirect water requirements and makes a dif-
ference between different types of water (green, blue, and 0 0511 47"
grey). Most studies about microalgae concerns WD. To cal- 0 108 15

culate the WD of a microalgal process, one must consider the
volume of the system, the water lost in the biomass during
harvesting, the proportion of process water that is reusable, loss
due to leaks, and in the case of ORP systems, evaporation
(Fig. I). Different approaches to estimating the water re-
quirements lead to a relatively large variation in the total WD
of processes in different studies. Handler et al. reviewed the
water usage for several LCAs published between 2002 and
2011 and found that of the ones that considered it, the values
ranged from 0.001-0.11 m*/kg DW, depending on process
configuration.®’” They further found that additional water use
for fertilizer production increased the water requirement by
0.002-0.013 m*/kg DW produced and energy production ad-
ded an additional 0.003-0.070 m3/kg DW produced.®” These

Rainfall Evaporation

1st stage 2nd stage

Biomass slurry
Separation 'M%Centrifuganon'wk to downstream
processing

Make-up.
water

Open Pond
Cultivation

.»

Recycled
water A / \
Blowdown Blowdown
water water

Fig. 1. Schematic of water flow in a microalgal cultivation scenario. Water is lost in the
harvested biomass, but the majority is recyclable back to the cultivation system after
initial separation (e.g., flocculation/dissolved air flotation) and final dewatering by
centrifugation. Evaporation and rainfall will also contribute to water loss/gain in open
systems, affecting the overall make-up water requirement.
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2Used corrected values calculated by Guieysse et al. and a higher heating value of
24 MJ[kg DW®'; *Calculated from biodiesel to DW by accounting for lipid content
and a 90% lipid-to-biodiesel conversion efficiency. Range represents the effect of
biomass lipid content (40-70% DW); °Recalculated from volume of water required
to produce 1,000 t DW; “Values are for a tropical location (Hawaii), calculated
based on a higher heating value of 24.7 MJ/kg DW; °Range represents values
for different locations throughout the US; "Recalculated based on 3326 kg DW
being required to produce 1 t biodiesel. Also considered addition of water from
precipitation; 9Assumed a biodiesel higher heating value of 40 MJ/kg. Range
represents base-case to best-case scenarios.

factors should subsequently be considered in detailed LCA to
properly ascertain the WD for biomass production.

Prospects for process water recycling.
Recycling water from the harvested portion
of the culture is key in reducing overall
water usage.’®8! Studies assuming no re-
cycling of process water for microalgal
biodiesel production predict WDs of 1.75-
3.36 m*/L biodiesel (Table 3),'>*"%2 but this
was decreased by 85-99% to 0.004—1.49 m?/
L biodiesel for scenarios recycling over 95%
of the process water.*87682 [t is not possible
to recycle 100% of the process water fol-
lowing harvesting, as the methods typically
used (i.e., filtration, centrifugation) can only
concentrate suspensions to 10-20% solids.
Subsequently, for every 1kg DW of algal
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biomass, there is likely to be at least 0.004—0.009 m> of water still
associated with it if drying is not undertaken.

Guieysse et al. predict water demand for ORPs with 75%
water recycling of between 0.81-0.91 m*/kg DW, but as low as
0.51 m3/kg DW for scenarios with 90% recycling and as high as
1.55m3kg DW for 50% recycling.! The amount lost in the
harvested biomass and leak loss was kept constant in these
calculations, so variations depend on differences in evaporation
rate, which is approximately 10-36% of the total requirement. A
number of other studies are summarized in Table 3.

Finally, reuse of the process water prevents the loss of re-
sidual nutrients in the media, and thereby possible further water
treatment steps may be avoided. However, the recycling of
water must be carefully considered, as it could lead to the build-
up of inhibitory compounds®® or grazers and competing micro-
organisms after several rounds of reuse,®” which together could
lead to decreased culture productivity and culture crashes. There
is now a growing body of literature examining the process of
water recycling, with some studies finding no difference, a de-
crease, and even an improvement in growth rate with the reuse
of process water. These results appear to be influenced by both
species-specific effects and the method of harvesting employed.

Early studies examining Nannochloropsis sp. production found
that this species demonstrated significantly lower volumetric
biomass productivities following recycling of centrifuged culture
media, which was mainly attributed to an increase in residual cell
material causing an increase in cell aggregation and bacterial
numbers.®® More recently, Gonzalez-Ldpez et al. found that cul-
tures of Nannochloropsis gaditana grew with a comparable rate on
recycled process water following biomass harvesting via centri-
fugation, which was treated with either filtration or ozonation, as
on fresh media.?® These results highlight the requirement for ad-
ditional levels of treatment beside centrifugation to remove bac-
teria and cell debris prior to reuse of water in algal cultivation.
Cross-flow membrane microfiltration may be one relatively cost-
effective solution for such a process.”

Flocculation could be used to increase the biomass concentra-
tion of approximately 1-7% solids before further dewatering by
more energy-intensive centrifugation or filtration.> Different re-
sults have been seen for cultures grown on recycled water fol-
lowing flocculation. In particular, results with the common
chemical flocculant alum showed both reduced biomass produc-
tivity®! and unchanged productivities,®? suggesting that the used
concentration of this flocculant may be critical. Recently, the
growth of Tetraselmis sp. was tested in both ‘clean water’ and
recycled media under semi-continuous operation over 5 months.”
The recycled water after harvest by electro-flocculation was found
to not significantly affect the growth of this species, despite an
increase in salinity from 5.5 to 12%, thereby considerably re-
ducing the freshwater demand of production.®® The difference in
growth rates may be due to the ability of some production systems
to maintain low levels of bacteria or contaminating organisms in
the media during the initial cultivation and the effectiveness of
different harvesting techniques in the removal of such organisms.
It also appears that some specific effects exist with the use of some
species, such as the accumulation of cell debris during cell division
in the case of Nannochloropsis sp.5® and dissolved organic com-
pounds in cultures of Scenedesmus.3
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A recent report from the company Sapphire Energy Inc. (San
Diego) suggests that more than 97% of their process water is
recycled at their pilot facility,** and it is mainly coming from the
primary dewatering step using dissolved air flotation of algal
biomass (4—7% solids). The rest of the water removed during
secondary dewatering via centrifugation is sent to evaporation
ponds. They have maintained this continuous, stable operation
for over two years, and state that their water requirements are
significantly lower than predicted by Guieysse et al.}! So there
appears to be some success stories, but many studies only test
one cycle of reuse, whereas it would be expected that the water
would be reused many dozens of times during long production
cycles, and the water will come from different processes at
different stages of dewatering. The reuse of water should be
considered on a case-by-case manner for different species,
cultivation systems, and harvesting methods to conclusively
determine the feasibility of reusing a high proportion of process
water in large-scale systems.

Water evaporation in cultivation systems. Evaporation is an
important issue for ORP systems. The rate of evaporation is
likely to be highly variable and location-specific depending on
climatic factors such as temperature (water and air), relative
humidity, and wind velocity, but also reactor design and oper-
ation. Evaporation and process water loss together accounted for
between 50-70% of water usage depending on location, ac-
cording to Zaimes and Khanna.®

Evaporation can cause additional problems in cultivations
utilizing marine species, where increases in the concentration of
inorganic salts may negatively affect growth due to osmotic or
ion stress. Selection of marine strains with a wide tolerance to
changes in salinity may subsequently be critical for cultivation
using seawater in ORPs in locations with expected high rates of
evaporation.”® Replacing evaporated water with water of low
salinity may also be necessary to maintain suitable growth
conditions. Indeed, a recently isolated halo-tolerant Tetraselmis
strain was grown continuously in ORPs where the media salinity
increased from 5.5% to 12.0% w/v NaCl due to evaporation
(average =0.02 m*/m?/d during summer in Western Australia),
with no significant effect on growth.®® Venteris et al. also found
that production scenarios utilizing species with flexible salinity
tolerances will have a greater chance of finding a favorable
location with regards to utility availability and maintaining
consistent biomass productivities.”> They also conclude that
there may be a trade-off regarding the siting of potential pro-
duction facilities with regards to the ideal climatic conditions
affecting growth rate and evaporation, and the proximity to an
adequate water source.?

Accurate prediction of evaporation rates is hence critical, not
only in determining the water demand of the process, but also for
informing the selection of appropriate production sites. Eva-
poration has typically been calculated using forms of pan-
evaporation, lake-evaporation, or Penman models, which all
require measurement of climatic conditions and were developed
to estimate water evaporation from shallow water bodies.”> Pan-
and lake-evaporation models have subsequently been used in a
number of LCA studies, but could lead to underestimation of
evaporation for the pond systems they examined.®!%38.76:85
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Béchet et al. further refined evaporation models for ORPs by
more accurately predicting temperature changes.”® However,
none of these approaches have been confirmed with empirical
data for ORPs, and Guieysse et al. found that these models,
applied to locations in different climates, resulted in a relative
error of 17-25% for most locations, but was as high as 44% in
the tropical location (Hawaii), due to differences in the way that
the models dealt with air emissivity in such humid locations.?®!

Subsequently, based on average meteorological data, the
calculations of Guieysse et al. predicted a maximum evapo-
ration rate of 2.27 m*/m?/y in arid climates (Arizona),?! which
is similar to the reported rate of evaporation of 2.03 m*/m?/yr
for large-scale trials run in raceways (~ 39 ha) by Sapphire
Energy in a similar climate in New Mexico.’* The rates of
evaporation from open ponds in tropical (0.48 m*/m?%/y, Ha-
waii), temperate (0.74 m*/m?/y; Hamilton, New Zealand), sub-
tropical (1.15m*m?/y; Florida), and Mediterranean (1.32m?/
mz/y; California) climates have also been calculated.®' Similar
values are predicted by Zaimes and Khanna using a modified
Penman model for different US locations,® but when the rate of
precipitation is considered, Arizona, Southern California, and
part of Texas were found to still require considerable make-up
water due to evaporation.

To more accurately predict evaporation from algal ponds,
highly detailed temporal meteorological data is required for
specific locations, which should be used alongside appropriate
modeling approaches. Ideally, these should in turn be validated
at these locations with long-term empirical data. This suggests
that input from companies such as Sapphire Energy, Cyanotech
Corporation (Kailua-Kona, HI), and Cellana (San Diego, CA),
or multipartner and location collaborations such as the Arizona
Testbed Public-Private Partnership Plant (Mesa, AZ) would
greatly improve the accuracy of modeling approaches.

CARBON REQUIREMENT FOR BIOMASS PRODUCTION

Inorganic carbon is essential for photoautotrophic growth and
needs to be supplied to cultures (most typically as CO,) to
achieve high growth rates and biomass production. The litera-
ture is rich in examples explaining the requirements of C for
biomass production®”*® and is generally well covered in system
assessments due to the availability of empirical data, both from
lab-scale and, more recently, pilot-scale studies, for simulated
and actual waste gases. For CO, supply, an obvious source will
be flue gases from different industrial processes, e.g., combus-
tion and processing. Even during the early 1990’s, research
groups were investigating the abatement of CO, from flue gases
using microalgal cultivation,”*1°! and the topic has received
considerable attention ever since.

From a biological point of view, microalgal biomass is re-
ported to contain 40-60% DW as C;>° this results in a CO,
fixation of 1.5-2.2 kg CO,/kg DW. Based on recently published
productivity data from ORPs and flat-panel systems, average
biomass productivities could be 6.6 and 19.0 g DW/m?%*/d (Ta-
ble 1),%® respectively, which corresponds to a fixation of ap-
proximately 42.3 and 121.8 t CO»/ha/y in biomass, respectively
(assuming a 50% DW C content). A recent study from a large
ORP trial in Korea examined the fixation of CO, under ambient
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environmental conditions and found that CO, fixation was
64.4-142 t CO»/haly, depending upon the daily incidence irra-
diance and temperature.'°> A readily available CO, supply is
hence critical for large-scale microalgal cultivation.

CO: is highly soluble in water, but when bubbled into a cul-
ture, depending on the reactor geometries, mixing, bubble size,
temperature, pH and, biomass concentration (among many other
factors), a certain quantity of CO, will not dissolve and is ef-
fectively lost in the off-gas. The percentage that is not lost is
sometimes referred to as the CO,-use efficiency. Collet et al.
found that only 44% of LCA accounted for these losses, with
those that did having an average CO,-use efficiency of 82%.%°
de Godos et al. recently examined the amount of CO, released
from an ORP at different liquid velocities in the absence of algal
cells.?* They found that once the culture media was saturated the
percentage of CO, dissolved into the culture media was ap-
proximately 87%. However, when live cells were added, 90%
dissolved into the media and 66% of the total C added to the
media was fixed in the biomass, with the rest remaining as
dissolved inorganic C (DIC) in the media.** These results serve
to highlight the importance of optimizing CO, addition (flow
rate, pH) to minimize CO; loss, while maintaining high growth
rates. CO,-fixation efficiency is considered to be significantly
higher in closed systems, with many LCA not considering it or
assuming a 0% loss to the environment.*”-’® The CO,-uptake
efficiency is critical in determining the overall GHG-emission
avoidance associated with using flue gas; for an inefficient
system, large quantities of gas are needed that will require lig-
uefaction/transportation, which are inherently energy-intensive
processes.'%* Additionally, if large quantities of DIC are lost in
the harvested culture media (>24% of C for de Godos et al.),*?
this places added importance on the recycling of culture media
to reduce the need for additional CO,. It is unclear whether
fixation of CO; as DIC in discharged waters would be accept-
able for contributing to hypothetical CO, fixation credits gen-
erated from microalgal cultivation.”® Calculations of CO,
requirements should subsequently consider this when calculat-
ing the rate of supply to meet culture requirements.

Flue gas composition and considerations for use. Flue gases
from the combustion of fossil resources contain CO, contents of
8-20% (v/v), with those derived from natural gas having a lower
CO, content than those from coal, which can have contents
>15%.%8:194105 The gases from the production of ammonia fer-
tilizer, hydrogen, lime, or fermentation exhaust gases can typi-
cally contain >90% CO, content.!%4106

The delivery of CO; to cultures needs to be such that the
media DIC concentration is non-limiting for microalgal growth,
but not added at a concentration that would significantly acidify
the cultivation media and negatively affect the growth. Toler-
ance to high CO; concentrations in gases is dependent on the
loading rate (both CO, content and gas flow rate) and cell
density,”®197 culture pH,' cultivation conditions such as light
and nutrient regime,'?” and species-specific traits.3198

Untreated flue gases also contain significant quantities of
sulphurous and nitrogenous oxides (SO, and NOy), carbon
monoxide, as well as metals and particulates—particularly if
from coal or oil combustion.?81%4-19° These compounds have
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been shown to have numerous environmental and human
health impacts, and their removal post-combustion is heavily
regulated.''® Both SO, and NOy have the potential to acid-
ify the growth media. SO, forms sulphite (SOs*, > pH 6) or
bisulphite (HSOs", pH 2—6), which have been found to be toxic
to a number of green algae.!!! Nitric oxide (NO) and nitrogen
dioxide (NO) are the major NOx compounds found in flue
gases.”® NO, is more soluble, although some algae species
were reportedly able to utilize NO directly.!!? Desulphuriza-
tion and denitrification processes can remove up to 90% of
these oxides from gases (<ppt), and 90% of dust and heavy
metal contaminants can also be removed.''”

Several studies have examined the ability of microalgae to
grow on gases containing varying concentrations of CO, in
combination with ppm concentrations of NOy and SOy, as well
as actual flue gases; results are summarised in several re-
views.””*® Of particular note is the work of Douskova et al.,
which found that Chlorella vulgaris was able to grow on cooled
flue gas containing 10-13% CO; (gas flow rate=1.2 L/L/min v/
v), and that the level of SO, (1.56 ppm), NOy (88—136 ppm), and
other contaminants (metals, polycyclic aromatic, poly-
chlorinated biphenyls) did not impair growth.!%® However, the
resulting biomass had a mercury concentration greater than
permitted by EU food product legislation (>1 mg/kg), despite
the gas having undergone post-combustion treatment to remove
NOy, SOy, and metals. Further treatment of the flue gas by
passing over activated carbon absorbed the remaining mercury
and resulted in biomass meeting the requirements.

Considering the bioaccumulation of potentially toxic com-
pounds is imperative if the production of food-grade products is
intended; however as removal processes for many harmful
contaminants are now mandated by government legislation in
many industrial economies, many
flue gas sources may subsequently
be suitable for growth of micro-
algae. A more detailed review of
flue gases, NOx and SOy species
formation, remediation, and their
effects on microalgal growth and
physiology is provided by Van Den
Hende et al.*®

amine stripping of concentrated CO; sources, such as from fer-
mentation facilities or ammonia production from natural gas.'®
The total energy demand for the production of liquefied CO» is
difficult to determine for commercial operations, but pre-
combustion capture from ammonia production facilities is cal-
culated to be 400-500 MJ/tonne (t) CO,,''* and CO, liquefac-
tion by conventional processes accounts for an additional 359 MJ/t
CO,."'3 A price of $40/t s often used for liquefied CO, delivered on
site.”** The additional energy requirement of storing liquefied CO»
on site is also rarely considered. Campbell et al. suggest that onsite
storage and cooling of liquefied CO, would require approximately
5.4 MJ/t CO, (assumed liquid state of ~ 1 t/m* at 350 psi).*® Un-
fortunately, several older LCA only consider the energy required for
delivery and distribution of CO,, and not the upstream bur-
dens associated with liquefied CO, production or its storage
on site.*®5%78 QOther studies have shown significant lifecycle
impacts for these processes.”***? Some studies have allocated
burdens associated with the use of commercial liquefied CO,
equally between the CO, producer and the algae producer, as the
coproducts of ammonia production are equal parts saleable hy-
drogen and CO, production, decreasing the energy and environ-
mental impacts of CO, supply for microalgal cultivation 3878113

The CO, requirements for a cultivation facility (ORPs and
PBRs) based in Arizona?® were considered, and the energy and
costs of supplying this site calculated (Table 4). The energy
requirements of CO; supply represent 8.0 and 6.6% of the en-
ergy contained in the produced biomass for ORP and PBRs,
respectively (assuming higher heating value of 24 MJ/kg DW).
These values highlight how critical the use of CO, from waste
gas streams will be for large-scale cultivation; however, this will
only be effective if production facilities are sited close to the
CO, source to minimize the cost of transport.?>#%-106

Table 4. The CO, Requirements of Two Biomass Production Scenarios Based
on the Average Areal Biomass Productivity of ORPs and Flat-Panel
PBRs Operated in Arizona®® and the Subsequent Energy Requirements

and Cost of Using Liquefied CO, to Meet the Cultivation Requirements

Considering CO, supply in LCA and

TEA. The availability of adequate
flue gases for supply of CO, has been
reported to be a major factor con-

Biomass production 23.1 66.5
(t DW/haly)

CO, fixation (%) 82 100

CO; requirement 51.6 121.79

(t/hafy)®

straining the geographic placement

Per area (/haly)

Per biomass (/t DW) Per area (/haly) Per biomass (/t DW)

of large-scale microalgal production
facilities in the US***—more so

than land, water, and nutrient avail-
ability.* Most LCAs consider the
CO, requirements of their production

€O, (§)

Energy requirement 527 1129 1242 926
for liquefied CO, (GJ)°
Cost of liquefied 2131 92.2 5029 75.6

scenarios to be met from flue-gas
sources,>*>4880 with a few compar-
ing this process against the use of li-
queﬁed C02.6,7, 14,40,113

Commercially produced liquid CO,
is assumed to be generated using

transport.
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The biomass C content is assumed to be 50% DW; ®The energy required for liquefied gas production were based on
LCA data from Ecolnvent,''® and the energy of storage calculated to be 5.36 MJ/t C0O,.** These calculations do not
include the energy required for transport. The cost of CO, is based on a $40/t CO,, and the price of industrial
electricity was $0.24/MJ, which is the average US price for December 2015."7 This does not include the cost of
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The benefits of utilizing flue gases over liquefied CO, have
also been highlighted in several LCA and TEA, but results show
sensitivity to the concentration of CO; in the gas.®7:1440:103 The
lower the CO, percentage, the greater a volume of gas that
requires transportation which may subsequently limit the dis-
tance a gas can be transported before any potential benefits are
eroded.?>!%% If the CO, concentration of the flue gas is 15%,
approximately 6-times the volume of gas would require
transportation compared flue gas containing >95% CO, from
an ammonia plant, for example— resulting in 53 vs. 7.9 MJ/t
CO, for each scenario for plants located <2.5km away.*°
Based on these values, it is estimated that the use of CO; in
flue gases or from ammonia production instead of liquefied
CO; could reduce operational energy usage by as much as 94
and 99%, respectively, corresponding to cost savings of 69 and
95%, respectively. These calculations assume any post-
combustion treatment of the gases would be included in the
operators costs and energy expenditure. These values are quite
ambitious, as opportunities for siting large cultivation facili-
ties within 2.5km of CO, sources are very few. However,
Coleman et al. still predict the cost will be lower than liquei-
fied CO, if transported less than 25km from a concentrated
CO, producer (>95% CO», $11.8/t) and 10km for flue gases
(5% CO», <$25/1).1%¢

A 30-MW steam boiler combusting natural gas (92% effi-
ciency) produces enough energy to provide power to approxi-
mately 20 US households (67 in the EU) and emits 26,680 t CO»/
yr (12% CO3) on average (data from own source). The ORP or
PBR systems described above®® covering 1 ha would fix be-
tween 0.13-0.19% and 0.37-0.55% (40-60% DW C content),
respectively, of this plant’s annual CO, emissions. This is a
relatively small percentage of the emissions for such a boiler,
which is also a relatively small capacity boiler compared to
those at many large-scale power plants (>1,000 MW). The
abatement of such small quantities of CO, would only margin-
ally benefit the emitter, unless the microalgal process is scaled-
up dramatically (and CO; is paid for), in which case land
availability becomes a critical issue.>>>* The benefits to the
biomass producer of procuring a cheap and more sustainable
CO, source are evident, in particular for bulk products such as
feed and fuel, and is one of the key selling points of many
microalgal technologies. Nevertheless, further work is required
at larger scales with gases of different composition and quality
(after processing) to understand their effect on biomass pro-
duction to identify technology gaps, as well as give more ac-
curate predictions on the cost and energy requirements of
installation and operation. This would allow for more accurate
calculation of the benefits of integration on both a life cycle and
techno-economic basis.

OPPORTUNITIES FOR HEAT INTEGRATION

Heat integration of the downstream processing stages of mi-
croalgal biorefineries, identified using, for example, pinch
analysis, can be another way to reduce the primary energy de-
mand of the overall process.!'® Depending on climatic condi-
tions, heating or cooling of the culture broth may be required to
maintain the temperature in the range that allows for maximum
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growth rates (20-30°C).3%°6 Downstream processes may also
require additional heat; this could be for drying microalgal
biomass post-harvest, improving product extraction efficiency,
evaporation and recovery of solvents post biomass extraction, or
processing biomass via thermochemical conversion routes. The
amount and quality (temperature) of heat required for each of
these processes will be very different. For example, maintaining
pond temperatures a few degrees above ambient may require hot
water of only approximately 60°C,'" drying of biomass may
require heat above 80°C, and thermochemical techniques typi-
cally operate above 200°C. The supply of heat from industrial
sources, either as hot gases, such as flue gases (typically
>130°C), or process cooling water could be leveraged for use in
one of these heat-requiring processes. Another study using pinch
analysis indicated a reduction of cooling and heating utilities by
11-13% for a process where biodiesel was produced from mi-
croalgae oil in two sequential esterification/transesterification
reactions.!'?°

Although the definition of industrial excess heat and similar
concepts (e.g., waste heat, surplus heat, secondary heat) varies
widely, 21122 it is, inarguably, a large resource that could be
used to increase the energy efficiency of an industrially-
integrated microalgal biorefinery. Industrial excess heat, not
only from power plants, but also from, for example, oil and
petrochemical refineries or pulp and paper mills, is being used
today, mainly for district heating purposes, but there is still a large
potential for increased heat recovery.!?!122 Use of industrial waste
heat is currently thought to be limited by a knowledge gap, not just
in the production of microalgae, but across a range of industries.'*

Regional estimations of excess heat potentials can be ob-
tained using top-down or bottom-up approaches.!?* However,
the potential for the supply of heat from industrial sources to a
microalgal process is, ultimately, highly site-specific and de-
pends on the amount, temperature profile, and short-term and
seasonal variations of the heat available. It also depends on the
potential alternative uses of heat—for example, internal heat
recovery for district heating, as a heat source in refrigeration
plants, or for low-temperature electricity generation.'*> An issue
to consider is that the availability of industrial excess heat tends
to be the highest when the demand from the microalgal process
is the lowest (typically on a warm summer day).

Culture temperature. For most microalgae there is a relatively
small temperature range in which they obtain their maximum
growth rates (20-30°C).°%126:127 At high culture temperatures,
there is decreased protein functionality and photosynthetic in-
hibition,'?” eventually leading to loss of viability. At suboptimal
temperatures, cells can become light saturated at lower irradi-
ances.'?’” Seasonal variations as well as daily fluctuations in
temperature are a significant determining factor on microalgal
productivity for cultivation systems sited outdoors.”® At higher
latitudes, outdoor production systems with no system for
maintaining temperature above ambient are highly unlikely to
be productive enough to warrant operation during winter months
(also due to low irradiances).

A case study of an algae cultivation and biofuel production
process integrated with an industrial cluster consisting of two oil
refineries and a waste water treatment plant in West Sweden is
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one of the few studies considering geographically explicit and
site-specific conditions for industrial heat supply to a microalgal
biorefinery.'® Depending on growth-rate assumptions, estimates
show that excess heat from the refineries (175 MW) can make a
significant contribution to the heating demand of the ORP (112-
372 MW in February), but is still not sufficient to maintain
acceptable growth rates during winter at these climate condi-
tions. Nevertheless, the study points to the importance of in-
cluding utilization of industrial excess heat when performing
LCA studies of similar biorefinery concepts. Laamanen et al.
also demonstrate the potential of using industrial excess heat—
in their case from a nickel smelter—to maintain year-round
cultivation of microalgae at different geographical locations.!?®

The problem of excessive ambient temperatures has also been
highlighted using a model to predict culture temperature fluc-
tuations and heating and cooling demands for a PBR of different
geometries and location.”®'2® They found that for PBRs located
in California, culture temperatures would regularly surpass
40°C in summer months; this study predicted that, maintaining
temperatures at or below 25 and 30°C would require the removal
of 18,000 and 5,500 Gl/ha/y of heat energy, respectively.!®
Considering that flat-panel PBR systems located in Arizona are
predicted to have an annual biomass production of ~ 65 t/ha/y,®
with an estimated energy yield of ~ 1600 GJ/haly, this result
indicates that the required cooling could make the concept at this
location entirely unfeasible if energy feedstock generation is the
aim. These results show the serious implications of attempting to
control temperature of outdoor systems for the production of
bioenergy feedstocks and bulk products. Innovative pond de-
signs that are responsive to climatic conditions have recently
been investigated and patented with the aim of maintaining
relatively constant pond temperatures, even in arid locations,
such as Arizona,'? which may help reduce costs, compared to
use of cooling systems.3!:94+130

An alternative strategy that may improve annual production is
to operate a system of crop rotation with different strains that can
tolerate different temperatures cultivated in

tegration opportunities by which waste heat associated with dryer
exhaust gas and the top stream of a distillation column is re-
compressed to provide heat for drying and oil extraction, thereby
reducing energy demand of the process by more than 50%.!3
Perhaps the easiest way to envisage the use of heat recovery
in downstream processing operations is the drying of biomass
(Fig. 2). Biomass may need to be dried to preserve compo-
sition, or to facilitate other downstream processes, requiring a
very low moisture content, such as pyrolysis or conventional
gasification.!> A number of different drying options may be
suited for the drying of algae (in terms of preservation and
product characteristics), but should also be selected for based
on the operational requirements (scale and capacity), capital
cost, and operational energy demand. Freeze-drying, spray-
drying, and roller-dryers have all seen use for drying of dif-
ferent algal species.!>3133 Most LCAs include a drying step
in bioenergy production scenarios to evaluate the use of
natural gas-based dryers and find this process to be a critical
energy demand for microalgal biorefineries.>** Conse-
quently, the importance of wet biomass processing techniques
has been emphasized.>*”%!3* Two recent studies have shown
that the use of mild acids and moderate temperatures can aid in
valorization of wet biomass via sequential fermentative ethanol
production from biomass carbohydrates and residual lipid ex-
traction.!33136 Water evaporation requires approximately 2.26
MJ/kg H,0, but values quoted in systems analysis can be as
much as 3.6 MJ/kg H,O, depending on the equipment em-
ployed.>»*13* Combined with differences in the solids content
before and after drying and the different equipment being used,
results in the literature for the energy required to dry 1kg of
microalgal biomass were calculated to be 11.6-70.7 MJ/kg DW
for conventional drying systems (Table 5), but lower for more
advanced systems (<5 MJ/kg DW). Ventura et al. evaluated
calculations of thermal drying energy costs from other LCA
(0.24-0.40 MJ/kg DW),®* but were an order of magnitude
lower than have been calculated here using the data in the

the corresponding seasons. Hueseman et al.
recently presented results suggesting that an
8-25% increase in biomass productivity
(depending upon location and pond depth)

can be achieved by rotating between two
strains relative to using just one.'*° This
strategy may also aid in the management
of contaminants and pathogens, as is done
in traditional arable agriculture.!3! Identi-
fying strains with optimal growth rates
close to the extremes of temperature expe-
rienced in a particular location may be key Flue gas
in achieving economically feasible year co,
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10-20% solids 80-95% solids Dried

Harvesting Bi
lomass

Cooled flue gases/
Steam/

Hot water
40-100°C

round production.

<l
«

Integration downstream. Heat integration
of the downstream processing stages of mi-
croalgal biorefineries is another way to re-
duce the primary energy demand of the
overall process. A good example of this,
presented by Song et al., identifies heat in-
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Fig. 2. Schematic of possible routes for integration with an industrial facility, using flue
gases as a source of CO, and heat. Flue gases are typically cleaned (*) to remove
particulates, metals, and nitrogen and sulphur oxides. Depending on treatment methods
required, flue gases will have different temperatures. Flue gases could be supplied
directly to cultures as a CO, source (dashed arrow), but is dependent on gas composition
and will likely require cooling. Alternatively, hot gas streams can first be utilized for
biomass drying and then used for heating of cultures and CO, supply.
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Table 5. Predicted Energy Requirements for Drying Microalgae Biomass
from the Literature

BIOMASS DRY

has been suggested as a solution for
drying of algae,''* but might not be suit-
able for fine powders. Collet et al. cal-
culated that a 500-MW, gas-fired power

ENERGY MATTER BEFORE WATER plant would produce 12 MJ/d of waste
REQUIREMENT| AND AFTER DRYING REMOVED heat,37 which is 3,000-times greater than
(MJ/kg DW) (% DW) (m*/kg DW) DRYING METHOD =06 the energy required to dry the quantities of
_ ) . biomass predicted to be produced daily on
0.12 ? 90 Integrated steam rotary dryer 138 a hectare basis (65-300 t/ha/d).7’36
5.0 16 — 30 — 85 292+2.16 Mech. + Delta dryer® 134 Rickman et al. also considered the use of
7.76 24 — 80 292 Rotary kiln dryer 15 waste heat in flue gas for the drying of
biomass from 10% DW to 85% DW
1.2 16 — 85 5.07 Delta dryer® 134 (98.8% water removal).!*> They esti-
116 30 - ? } NGD 149 mate that flue gas (150°C) from a 500-
MW power plant would supply not only
120 20 — 90 3.89 NGD ’ enough CO, for the growth of micro-
13.4 15 — 98 563 Freeze-dryer 133¢ algae over a 120-ha area, but also en-
ough heat to dry the daily production of
136 25— 90 289 HED & biomass for this area, even if drying ef-
146 ? 3 ? 479 ficiency was 50%.'%3
N Aziz et al. modelled the use of a state-
15.2 20 — 90 3.89 Belt dryer 43 of-the-art steam tube rotary dryer (com-
16.2 22 — 90 3.43 NGD 6f pressed steam flows counter-current
16 102 — 89 668 - 5 through. a (;entral. tube inside a rotary
i i - drum) in-line with 2 preheaters for

NGD, Natural Gas Dryer; Mech., Mechanical vacuum dryer.

Based on a theoretical steam tube rotary dryer with two inline pre-heaters integrated with waste heat from flue gas;
°An advanced and more efficient dryer estimated to require 2.3 MJ/kg H,0 evaporated'*?; <Combination of mechanical
vacuum drying from 16 to 30% DW followed by Delta dryer; Calculated based on 3.87 kg DW required to produce
1 MJ biodiesel. 1.12 MJ heat reportedly required for drying of 1 MJ biodiesel. Assumes 30% DW solids after
centrifuging; “Empirical data: Freeze dryer had an energy consumption of 190 MJ/d, and an ability to remove 80 kg
H.0/d, resulted in 14.2 kg DW/d processed based on solid concentration before and after drying; fCalculated based on
data in the text, suggesting drying constitutes 73 and 87% of the produced energy for filter press (25% DW) or
centrifugation (22% DW) scenarios, respectively. Lower heating value=18.7 Ml/kg DW; 9%Assumed 40 MJ/kg biodiesel
resulted in 1,121kg DW required to produce 10 GJ biodiesel; "Summed total of electrical and heat energy.

original studies (5.0-15.2 MJ/kg DW; Table 5). Even low pre-
dictions of the energy requirement for drying make bioenergy
feedstocks energetically unfavourable, while also contributing
significantly to GHG emissions and fossil resource usage.54>>*
This places the emphasis on developing more energy efficient
dewatering techniques to remove as much extracellular moisture
as possible before drying.5+!34

Integration with an industrial plant that supplies excess heat
for the drying of biomass may subsequently reduce the primary
energy demand and GHG emissions of the microalgal pro-
cesses,'?® which may lead to economic gains over stand-alone
processes. However, consideration must be given to the type of
dryer that would be suitable for use with the waste heat. Those
integrated with flue gas for wood biomass drying are typically in
the form of conveyor belt dryers or drum dryers, where the flue
gas can be directly passed over the material.'*’” Indirect drying
via heat exchangers could be used for the transfer of heat from
gases to liquids, which might be more flexible with regard to
equipment and avoid direct exposure of the biomass and
equipment to potentially corrosive or toxic gases.'?

At fossil-fuel power plants, residual heat in flue gases is used to
heat air in a conveyor dryer to improve the thermal efficiencies. This
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drying of microalgal biomass using
flue gases.!*® The preheaters are di-
rectly fed with hot flue gas (110°C),
while steam (90-130°C) generated
from flue gases exiting a gasification
process is fed to the rotary drum. The
lowest input of energy per kg was
found for a process drying the biomass
to 90% DW, for which they calculated
that the energy requirement could be
decreased to 0.12 MJ/kg DW using
their system (Table 5).!3® Furthermore, the exiting temperature
of the flue gas from the preheaters was predicted to be 40-57 °C,
which would be suitable for maintaining the temperature of the
culture during cooler months via heat exchangers (Fig. 2).
Results from these and other studies also conclude that the
level of heat integration has a significant effect on both the
environmental performance®!”!® and economics of microalgal
processes.!” These results highlight the potential for further
studies in this area, both with regards to hypothetical process
models and demonstration at an appreciably large scale.

Conclusions

Production of microalgal biomass for high-value applications is
a viable business, but lower value bulk products such as fuels and
feed still suffer from problems related to low profitability, nega-
tive energy balance, and wide-ranging environmental and societal
impacts. The use of waste residues or outputs from industrial
infrastructure may represent lower-cost, impactful alternatives
for supplying nutrients, water, CO,, and heat for microalgal
cultivation. Promoting this integration needs research-led dem-
onstration of these processes at large scales for the remaining
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engineering and biological issues to be identified and resolved.
The end use of the biomass may obviously exclude the use of
some of these outputs (nutrients in waste for feed/food pro-
duction), but for every source that may be prohibited there is
likely to be one that is not, due to the diverse range of processes
producing nutrient-rich residues.

LCA and TEA, alongside resource assessments, are valuable
tools to aid selection and design of the most appropriate tech-
nologies and biorefinery scenarios. However, the analyses need
to done on a case-by-case basis with as accurate and compre-
hensive input data as possible. Our intention is that the examples
included in this review will aid in LCA inventory data analysis
with regards to nutrient, water and CO, usage and relevant en-
ergy inputs for these and processes such as drying. A more
unified and considered approach to these assessments will also
significantly benefit the field as a whole.?%?! For continued in-
vestment in this field, these types of analysis need to develop
into tools for choosing the appropriate technologies and driving
innovation towards more cost-effective and sustainable solu-
tions to advance microalgal production platforms.
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