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Abstract—Recently one of us proposed a new formalism for
modeling electromagnetic wave transformations for coherent
communication using a real, four-vector description instead of the
conventionally used Jones calculus or the Mueller matrices. The
four-vector can then handle all superpositions of two orthogonal
polarization basis and two orthogonal time bases (e.g., the in-
phase and quadrature phase). In developing this formulation it
was found that to provide a general but minimal framework
for such rotations, it is natural to divide the six generators of
4-D rotations into two groups of three generators, the right-
and the left-isoclinic matrices. Of the six transformations these
generators define, it was furthermore found that four of them are
readily implemented by linear optical components, while two of
then were impossible to implement by such means. In this paper
we detail the reason these two “unphysical” rotations cannot be
implemented with linear optics. We also suggest how they can be
implemented, but at a cost in the signal-to-noise ratio, and give
this minimum cost.

Index Terms—Coherent optical transmission, four-dimensional
modulation, optical polarization, quantum noise.

I. INTRODUCTION

MODERN long-haul fiber-optic transmission links are
based on coherent transmission techniques that are a

sophisticated combination of optics and electronics. Especially
the coherent receiver depends heavily on digital signal pro-
cessing (DSP) to recover the polarization and absolute phase
of the transmitted signal, which is often referred to as intra-
dyne detection [1]. Typically in these systems, binary phase-
shift keying is transmitted in parallel in all four quadratures,
or equivalently, independent quadrature phase shift keying
(QPSK) is transmitted in each polarization component. This
was originally demonstrated with a full online DSP imple-
mentation by Sun et al. in 2008 [2]. The signaling space is
then four-dimensional (4d), as explored early by Betti et al.
[3], and more recently in [4], where constellation optimization
and modulation format performances were studied.

The most common channel model of modern coherent links
is to use two-dimensional (2d) complex vectors to describe the
input/output signal vectors of the channel and a complex 2×
2 matrix to relate these vectors. This is the so-called Jones
calculus, pioneered by R. C. Jones et al. in a series of papers
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in the 1940s for the study of optical polarization effects [5],
[6].

Alternatively one may use a 4d real space to describe the
coherent channel, and this is actually more powerful, as the
4d transformations is a richer set than the complex 2d Jones
matrices. The connection and differences between the two
descriptions were recently described in some detail in [7] as
was mentioned in the abstract. For example, the Jones formal-
ism cannot correct for transmitter and receiver imperfections
related to power and/or phase errors between the in-phase
and quadrature signals. Thus the real 4d formalism is often
preferred in practical DSP implementations [8]. Recently, new
digital signal processing algorithms have been proposed that
perform simultaneous phase- and polarization tracking in the
4d space [9], [10].

In 4d, lossless transmission is described by a 4d rotation
matrix, that has six degrees of freedom, in contrast with the
unitary Jones matrix which has four. In [7] these two additional
rotations were referred to as “unphysical” in the sense that they
do not preserve the boson commutation relations in contrast
to the other, conventional, operations. However, as we will
discuss in this paper, this does not preclude their realization,
but their realization is accompanied with added noise, i.e., a
signal to noise ratio (SNR) penalty. These operations are sim-
ilar to, e.g., quantum mechanical cloning [11]–[13], or linear,
phase-insensitive amplification [14] in that unitarity and non-
commutation, respectively, prevent them from being performed
perfectly. Thus there is a limit to how similar to the original
one can clone an unknown state [15]. In the same vein, there
is an added noise penalty to pay when amplifying an unknown
state [14], [16]. It is also not possible to measure, perfectly,
the two quadrature components of a field. Any attempt of
doing so will add noise to the measurement [17]. This said,
nothing prevents one from measuring either quadrature with
arbitrary accuracy and precision [18]. The aim of this paper
is to quantify the penalty associated with these “unpysical”
rotations and, to achieve this goal, propose physical setups for
their realization.

II. SETTING THE STAGE

The starting point of the four-dimensional rotation formal-
ism is that classically, a transverse, electromagnetic field under
the slowly varying envelope approximation can be expressed
as the real four-vector

E =


Re(ex)
Im(ex)
Re(ey)
Im(ey)

 , (1)
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where ex and ey are the two linearly polarized and slowly
time evolving E-field components along the respective axis,
and where the (rapid) time evolution exp(iωt) of a carrier
wave has been assumed, but is suppressed in the notation. In
a quantum mechanical description it would be natural to work
in the Heisenberg picture, where we, if we here also work in
a rotating frame, can write

Ê =


â1
â2
b̂1
b̂2

 , (2)

where â1, . . . , b̂2 are the Hermitian, electric field in-phase and
quadrature-phase operators [19]. In analogy with a classical,
complex, electric field E, where Re(E) = (E + E∗)/2 and
Im(E) = (E − E∗)/(2i) they are defined â1 = (â + â†)/2
and â2 = (â − â†)/(2i), and similarly for b̂ = b̂1 + ib̂2. The
operator â (â†) is the non-Hermitian annihilation (creation)
operator, and just as E is a complex number and therefore is
not directly measurable, â and † are non-Hermitian operators
and therefore not directly measurable either. However, the
quadrature electrical fields are physical, measurable quantities
in both descriptions.

The operators â1 and â2 are normalized such that the
energy in the mode is h̄ω(â21 + â22). The quantum mechanical
expression makes the distinction between the temporal and
the polarization degrees of freedom more succinct. While any
of the a operators associated with the x-polarized E-field
component commutes with any of the b operators associated
with the y-polarized components, the â1 and â2 operators don’t
commute. From the standard bosonic commutation relation
[â, â†] ≡ ââ† − â†â = 1 and the defining relations above, one
can straightforwardly derive the commutation relation [19]

[â1, â2] = â1â2 − â2â1 =
i

2
. (3)

Relation (3) implies that the two quadratures cannot be
measured simultaneously without penalty. (Similarly the b̂1
and b̂2 operators don’t commute.) Classically, all four vector
components are “mode orthogonal”, either in polarization, in
time, or in both, so that a measurement of any combination of
them can be done without any “penalty”. This is not the case in
the quantum mechanical description, and this influences what
can be, and what cannot be done to the vector Ê.

A consequence of the non-commutability of the quadrature
amplitude operators is that they must have a minimum uncer-
tainty product. In this particular case the uncertainty relation
reads

〈â1 − 〈â1〉〉2〈â2 − 〈â2〉〉2 ≡ (∆â1)2(∆â2)2

≥ |〈[â1, â2]〉|2

4
=

1

16
(4)

according to (3). The analogous relation of course holds for
the b operators. If the state of the field is in a coherent state,
or in the vacuum state (also called zero-point field), then
the uncertainty relation above is satisfied with equality, and
moreover the two quadrature amplitude fluctuations are equal.
Hence, for such fields (∆â1)2 = (∆â2)2 = 1/4 and similar
for any other mode in such states.

III. THE ROTATION GENERATORS AND THEIR ASSOCIATED
ROTATION MATRICES

In [7] it was found that one complete but minimal set of
generators of four-vector rotations is given by the six matrices
ρ1 - ρ3 and λ1 - λ3 below. All six generator matrices are
needed since a vector-length preserving rotation in 4d real
spce has six degrees of freedom. When applied to a field
these generators give rise to rotations Rj , where j = 1, . . . , 6.
Under each generation matrix the resulting rotation Rj is
written. Here, e.g., R1 = exp(αρ1) and R6 = exp(αλ3).
Any 4d rotation can thus be written as the exponential of a
real coefficients, linear combination of ρ1 - ρ3 and λ1 - λ3.

ρ1 =


0 −1 0 0
1 0 0 0
0 0 0 1
0 0 −1 0

 ,

R1 =


cos(α) − sin(α) 0 0
sin(α) cos(α) 0 0

0 0 cos(α) sin(α)
0 0 − sin(α) cos(α)

 ,(5)

ρ2 =


0 0 0 −1
0 0 1 0
0 −1 0 0
1 0 0 0

 ,

R2 =


cos(α) 0 0 − sin(α)

0 cos(α) sin(α) 0
0 − sin(α) cos(α) 0

sin(α) 0 0 cos(α)

 ,(6)

ρ3 =


0 0 1 0
0 0 0 1
−1 0 0 0
0 −1 0 0

 ,

R3 =


cos(α) 0 sin(α) 0

0 cos(α) 0 sin(α)
− sin(α) 0 cos(α) 0

0 − sin(α) 0 cos(α)

 ,(7)

λ1 =


0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0

 ,

R4 =


cos(α) sin(α) 0 0
− sin(α) cos(α) 0 0

0 0 cos(α) sin(α)
0 0 − sin(α) cos(α)

 ,(8)

λ2 =


0 0 0 −1
0 0 −1 0
0 1 0 0
1 0 0 0

 ,

R5 =


cos(α) 0 0 − sin(α)

0 cos(α) − sin(α) 0
0 sin(α) cos(α) 0

sin(α) 0 0 cos(α)

 ,(9)
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λ3 =


0 0 1 0
0 0 0 −1
−1 0 0 0
0 1 0 0

 , and

R6 =


cos(α) 0 sin(α) 0

0 cos(α) 0 − sin(α)
− sin(α) 0 cos(α) 0

0 sin(α) 0 cos(α)

 .(10)

IV. LINEAR AND ANTI-UNITARY ROTATION MATRICES

Which physical transformations exist to implement the six
transformations R1 to R6? The natural candidates are the
linear polarization transformations describing a polarization
rotation, which will be called T1 and a variable birefringence
retardation T2 (the latter actually describes a relative time shift,
but is usually associated with polarization rather than with
time). They can be related to the previously defined rotation
matrices as

T1(α) = R3(α), and (11)
T2(α) = R1(α). (12)

In addition one can shift the entire field, both polarizations, in
time as

T3(α) = R4(α). (13)

Using these three well-known physical operations we can
realize the operations R1, R2, R3, and R4, from (11-13) and
the matrix product

R2 = T2(π/4)T1(α)T2(−π/4). (14)

However, no combination of the three transformations T1,
T2, and T3 will result in the vector rotations R5 or R6.
To be able to express these matrices as a combination of
“elementary” physical transformations we need to introduce
the transformation matrix

T4 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

 . (15)

This matrix leaves the a mode invariant and shifts the sign of
b̂2 without shifting the sign of b̂1. It thus represent the con-
jugation operator † on the b mode. On the classical, complex
field-vector Ey = Re(ey)+iIm(ey) it corresponds to E

∗
y . This

is an anti-unitary operation [20] and it can therefore not be
implemented without “cost” as the previous transformations T1
- T3. Quantum mechanically speaking, there is no Hamiltonian
that will result in the transformation T4, as any transformation
originating from a Hamiltonian generator will result in a
unitary transformation. However, with T4 in our possession
we find that

R5(α) = MT1(−α)M, and (16)
R6(α) = T4T1(α)T4, (17)

where M = T4T3(π/4)T2(π/4) is a transformation that we
will discuss in the next section. Thus, the transformations R5

and R6 are not unphysical in the strictest sense of the word, but

they cannot be implemented on the same footing and without
cost as can the rotations R1 - R4.

Alternatively this can be understood from the uncertainty
relation (3), which can be written for both polarizations in 4d
matrix form as

Êtλ1Ê = i. (18)

For an arbitrary 4d rotation operator R, the condition to
be “physical” is to satisfy (18), which is ÊtRtλ1RÊ =
i = Êtλ1Ê. The implication is, for arbitrary vectors Ê, that
[R, λ1] = 0. The reader may verify that rotations R1-R4

do indeed commute with λ1, whereas R5 and R6 do not.
This also shows that operations that may seem symmetric
in the 4d signal space may differ quantum mechanically, as
the polarization and quadrature degrees of freedom are not
equivalent with respect to the uncertainty relation.

V. HOMODYNING OF NON-COMMUTING QUADRATURES

In the previous section we saw that in order to achieve the
vector rotations R5 and R6 we need to employ an anti-unitary
operation. For example, the transformation

M =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 (19)

simply swaps b̂1 and b̂2. In the time domain it means we
should “advance” the quadrature (or sine-) field in time by
half a period in relation to the in-phase (or cosine-) field.
This is clearly an operation that will require a measurement
of the two quadratures separately, and then a re-modulation of
the time-swapped quadratures onto a carrier signal. However,
since b̂1 and b̂2 do not commute, we cannot measure them
both without penalty. The simplest, (and in fact optimal, from
an added noise point of view [16]) is to split the y-polarized
field in two equal parts by the means of a 50:50 beam-splitter.
Quantum mechanically this transformation will result in the
new operators ĉ and d̂ where

ĉ = (b̂+ v̂)/
√

2, and (20)

d̂ = (b̂− v̂)/
√

2. (21)

The operator v̂ is the annihilation operator associated to the
vacuum (or zero-point) field entering through the unused, open
port of the 50:50 beam-splitter. This operator and its associated
quadrature amplitude operators satisfy similar commutation re-
lations as do â and b̂ and their associated quadrature operators.
If the quadrature noise of the state in the b mode is much larger
than the vacuum field noise level, then one may neglect the
contribution from the vacuum fields, and then one ends up
in a purely classical description where the quadratures can be
measured simultaneously, with, in theory, arbitrary accuracy
and no added noise. However, if (as in practice) the b mode
is in a coherent state, then the quadrature noises of b̂ and v̂
are equally large, and the added quantum noise will degrade
the signal-to-noise ratio of the c and d modes by a factor 1/2
relative to the SNR of the b mode.

Having divided the b mode into two halves, we can in
principle make a perfect measurement of ĉ1 on one half and
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Fig. 1. A schematic setup generating the R5(α) transformation. Four
homodyne measurements need to be made of the appropriate quadrature
amplitudes. In the lower left one such measurement is outlined. The other
three of these measurements are only indicated by a dashed box. Where the
y-polarized vacuum fields v and u enter are shown in the figure. Vacuum
fields not contributing to the final output are not indicated. ROT denotes a
polarization rotator, BS a beam splitter, and PBS a polarizing beam splitter.

of d̂2 on the other half to get good estimates of b̂1 and b̂2,
respectively. This is done by making a balanced homodyne
measurement with a local oscillator whose amplitude is much
larger than the measured signal’s [16].

VI. IMPLEMENTATION OF “UNPHYSICAL” ROTATION
MATRICES

Using (16) and the information in the previous section we
are ready to draw a schematic setup that will implement the
transformation R5(α). The setup is shown in Fig. 1. In the
leftmost polarizing beam-splitter (PBS) the y-polarized b mode
is separated from the x-polarized a mode. The b mode is
subsequently split into two equal halves, resulting in the two
modes described by Eqns. (20) and (21). The in-phase and
quadrature-phase amplitudes of these two modes are measured
by two balanced homodyne receivers, respectively, and the
measured signals ĉ1 and of d̂2 are used to modulate a “new”
optical mode with the signal quadratures swapped with respect
to the mode b. Since we only measure one quadrature of
each mode, the measurement need not introduce any additional
noise into ĉ1 or d̂2. As can be seen from Fig. 1, the operations
up to this point corresponds to the matrix M in (19) acting
on the initial four-vector. The y-polarized field entering the
second PBS from the left is indeed b̂2 + ib̂1 with some added
noise.

This y-polarized field is recombined with the x-polarized
a mode in the second PBS from the left. The polarization
of this recombined field is subsequently rotated the angle α.
The polarization rotated field again is divided in its x- and y-
polarized components by a third PBS. The y-polarized compo-
nent is subsequently split in a 50:50 beam splitter, and a similar
sequence of homodyning, quadrature amplitude swapping, and
re-modulation as was described above, corresponding to the
matrix M , is again employed. Finally the two polarizations
are recombined in the rightmost PBS. The resulting signal
vector is 

cos(α)â1 − sin(α)(b̂2 − v̂2)

cos(α)â2 − sin(α)(b̂1 + v̂1)

sin(α)â2 + cos(α)(b̂1 + v̂1)− û2
sin(α)â1 + cos(α)(b̂2 − v̂2)− û1

 . (22)

If we assume that the input fields â and b̂ are in coherent
states, so that the quadrature amplitude variances (∆â1)2 =
(∆â2)2 = (∆b̂1)2 = (∆b̂2)2 = 1/4, then the input and output
signal-to-noise ratios (SNRs) are given in Table I.

TABLE I
INPUT AND OUTPUT SNR FOR TRANSFORMATION R5(α) IMPLEMENTED

AS IN FIG. 1.

Component SNR in SNR out

Re(ex) 4〈â1〉2 4〈cos(α)â1−sin(α)b̂2〉2
1+sin2(α)

Im(ex) 4〈â2〉2 4〈cos(α)â2−sin(α)b̂1〉2
1+sin2(α)

Re(ey) 4〈b̂1〉2 4〈sin(α)â2+cos(α)b̂1〉2
2+cos2(α)

Im(ey) 4〈b̂2〉2 4〈sin(α)â1+cos(α)b̂2〉2
2+cos2(α)

It is seen that overall, noise is added and the SNR is de-
graded. If, e.g., α is π/2 or 3π/2, so that both the polarizations
and the associated quadrature amplitudes are swapped, the
SNR in each channel suffers a 3 dB penalty. We also see
that the four channels suffer differently from the added noise.

An alternative way of implementing the transformation
R5(α) is to split both the a and the b mode into equal
parts and then making separate, homodyne measurements of
the four signals â1, â2, b̂1, and b̂2. This will decrease the
SNR of each of these signals with the factor 1/2 as is the
consequence of the splitting transformation in (20) and (21)
and the corresponding relations for the split a mode. The
signals, that after the measurement are classical, can then be
re-modulated in any desired superposition onto a two coherent
states, one x-polarized and one y-polarized, for example in the
combination given by R5(α). The two modulated fields can
subsequently be made to propagate into the same transverse
and longitudinal mode by merging the states in a polarizing
beam splitter. The corresponding SNR table in this case is
Table II.

TABLE II
INPUT AND OUTPUT SNR FOR TRANSFORMATION R5(α) IMPLEMENTED

BY HOMODYNING OF OF THE POLARIZATION SEPARATED, AND
SUBSEQUENTLY EQUALLY SPLIT FIELDS.

Component SNR in SNR out
Re(ex) 4〈â1〉2 2〈cos(α)â1 − sin(α)b̂2〉2
Im(ex) 4〈â2〉2 2〈cos(α)â2 − sin(α)b̂1〉2
Re(ey) 4〈b̂1〉2 2〈sin(α)â2 + cos(α)b̂1〉2
Im(ey) 4〈b̂2〉2 2〈sin(α)â1 + cos(α)b̂2〉2

Such an implementation of R5(α) distributes the unavoid-
able, added noise due to the anti-unitarity of R5(α) in a sym-
metric fashion by treating all four signal vector components
in a similar manner.

Yet another way of implementing the rotation R5(α) is to
amplify the classical signals from leftmost pair of homodyne
measurements in Fig. 1. If the (power) gain G� 1, the optical
field leaving the leftmost conjugate regeneration source has
a quadrature amplitude variance G/4 that is much above the
quantum limit 1/4, it can subsequently be treated as a classical
field.



5

In this case we also must amplify the a mode by the (power)
gain G in order to create the proper superposition after the
half-wave plate. However, linear, phase sensitive amplification
also results in added noise as the proper transformation law
to satisfy the bosonic commutator [ê†, ê] = 1 is

ê =
√
Gâ+

√
G− 1ŵ†, (23)

where â is the input mode, ê the output mode, ŵ is a amplifier
internal mode, nominally in a vacuum state, and G is the
(power) gain of the amplifier [14]. Thus, if G � 1, the
SNR of the amplified mode e is effectively reduced by the
factor 1/2 as compared with the a mode SNR, just as the
SNR of the b mode was reduced by the same factor by
the simultaneous measurement of b̂1 and b̂2. However, the
transformations including and following the half-wave plate
in Fig. 1 are now operating on what can be considered two
classical fields (the added quantum noise can be neglected), so
the output SNR table for such an implementation is identical
to Table II.

In a similar manner, the transformation R6(α) can be imple-
mented. If the implementation treats the two polarizations in a
symmetric fashion, again the SNR table of the transformation
is given by Table III.

TABLE III
INPUT AND OUTPUT SNR FOR TRANSFORMATION R6(α) IMPLEMENTED

BY HOMODYNING OF OF THE POLARIZATION SEPARATED, AND
SUBSEQUENTLY EQUALLY SPLIT FIELDS.

Component SNR in SNR out
Re(ex) 4〈â1〉2 2〈cos(α)â1 + sin(α)b̂1〉2
Im(ex) 4〈â2〉2 2〈cos(α)â2 − sin(α)b̂2〉2
Re(ey) 4〈b̂1〉2 2〈− sin(α)â1 + cos(α)b̂1〉2
Im(ey) 4〈b̂2〉2 2〈sin(α)â2 + cos(α)b̂2〉2

VII. AN EXAMPLE

In [7] it was pointed out that information encoded in the
polarization degree of freedom in a coherent communication
systems is generally easier to track than the information
encoded in the quadrature amplitudes of a fixed polarization.
The reason is due to differences between the noise spectra
of these degrees of freedom. While the dominant noise of
the polarization is at low frequencies, needing polarization
locking loops with a time response of milliseconds, the higher
frequency noise in the quadrature amplitudes require phase-
lock loops with a response in the microsecond regime. Thus
it can be advantageous to convert signals with much of the
information in the quadrature amplitude domain to a signal
that has more of the information to the polarization domain. As
an example, look at the 3 bit, polarization switched quadrature
phase-shift keying signals

{{±1, 0, 0, 0}t, {0,±1, 0, 0}t, {0, 0,±1, 0}t, {0, 0, 0,±1}t},
(24)

where the superscript t indicates transpose. These signals rep-
resent signals that use two orthogonal polarizations and a four-
fold, symmetric phase degeneracy. (In each of the polarizations
the amplitudes ±E and ±iE are used.) To convert some of

the information into the polarization degree of freedom the
transformation R6(π/8) can be used. The transformed signals
become

{±{c, 0, s, 0}t,±{0, c, 0,−s}t,±{−s, 0, c, 0}t,±{0, s, 0, c}t},
(25)

where c = cos(π/8) and s = sin(π/8). Here, four polariza-
tions are used, and for each of the four polarization states
an antipodal phase modulation is used. All four polarizations
states cannot be orthogonal, but in signal space the distance
between the signals remain invariant since all signals experi-
ence the same transformation. A result of the transformation
is that the SNR of all the signals will have decreased by 3 dB
(in the symmetric case and if the signals are coherent states).
However, this may be a price one is willing to pay since the
tracking of the polarization drift is simpler than tracking of
the phase drift. The noise added by the transformation from
one modulation constellation to the other is white, so it does
not contribute to neither the polarization drift nor to the phase
drift.

VIII. CONCLUSIONS

If a coherent communication system using phase- and po-
larization multiplexing is treated by the real, four-component
vector formalism suggested in [7] it has been shown that
any vector (and thus signal) transformation can be described
by six matrices, e.g., chosen as (5)-(10) [7]. Two of these
transformations (9) and (10) have been labeled “unphysical”,
a designation that is correct if only linear polarization trans-
formations and phase-shifts are considered. In this paper we
have discussed why these two transformations are different
from the other four, and shown that they involve anti-unitary
transformations. Such transformations are not prohibited per
se, but they can only be performed at the cost of a decreased
signal-to-noise ratio [21].

Perhaps the most important observation we make is to note
that while operators operating on orthogonal polarizations of
the field commute, the quadrature amplitude operators do not.
Thus, only operations common to the two quadrature ampli-
tudes in one polarization mode, such as a phase shift affecting
both quadratures equally, can be done without adding noise.
Swapping the quadrature amplitudes, i.e. the transformation
â1 ↔ â2, is not unitary and can only be done at an SNR cost.
Here, the classical description of the fields, that assume that
since the two quadrature are signal orthogonal they can be
treated on the same footing as orthogonal polarization signals,
differ from the quantum description. If the noise in the signals
is much larger than the minimum noise dictated by quantum
mechanics, then the classical description gives an accurate pre-
diction of how the signals can be manipulated and measured.
However, for signals in a coherent state, whose noise is at the
(standard) quantum limit, a quantum description must be used
to accurately assessing and predicting the transformation and
measurement of the signals.
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