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From BIM to VR - The design and development of BIMXplorer 

MIKAEL JOHANSSON 

Department of Civil and Environmental Engineering 

Chalmers University of Technology 

Abstract  

The architecture, engineering and construction (AEC) industries are currently undergoing a 

change from a drawing-based form of information exchange to a model-based. Using the 

concept of Building Information Models (BIM), the content produced by architects and 

designers has evolved from traditional 2D-drawings to object-oriented 3D-models embedded 

with information to describe any building in detail. This, in turn, has opened up new 

possibilities of using real-time visualization and Virtual Reality (VR) as a tool for 

communication and understanding during the design process. However, as primarily created 

to describe a complete building in detail, many 3D dataset extracted from BIMs are too large 

and complex in order to be directly used as real-time visualization models. Because of this, it 

is still difficult to integrate VR and real-time visualizations as a commonly used tool during 

the design process. The recent introduction of a new generation of Head-Mounted Displays 

(HMD) has also made the situation even more challenging. Although these new types of VR 

devices offer huge potential in terms of realism, sense of scale and overall suitability for 

design and decision-making tasks, they are also far more demanding when it comes to real-

time rendering performance. 

In order to address the current situation this thesis contributes with the design and evaluation 

of a new software application that provides a simple interface from BIM to VR. Following a 

design science research approach this application has been developed in order to fulfil a set of 

requirements that has been identified as important in order for VR and real-time visualization 

to become an everyday used tool for design and communication during the building design 

process. Along that path, three new technical solutions have been developed: 

• An efficient cells- and portals culling system automatically realized from BIM-data. 

• An efficient approach for integrating occlusion culling and hardware-accelerated 

geometry instancing. 

• An efficient single-pass stereo rendering technique. 

The final system – BIMXplorer – has been evaluated using several BIMs received from real-

world projects. Regarding rendering performance, navigation interface and the ability to 

support fast design iterations, it has been shown to have all the needed properties in order to 

function well in practice. To some extent this can also be considered formally validated, as the 

system is already in active use within both industry and education. 

Key words: Building Information Modeling, BIM, Virtual Reality (VR), Real-time rendering, 

Head-mounted display (HMD). 
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1 Introduction 

Real-time visualization and Virtual Reality (VR), have many applications within the 

Architecture, Engineering and Construction (AEC) industries (Bouchlaghem et al., 2005; 

Woksepp and Olofsson; Greenwood et al., 2008). With the ability to navigate freely through 

3D scenes from a first-person perspective, it is possible to present and communicate ideas 

regarding future projects in a way that facilitates understanding among all involved parties, 

despite their background or professional expertise (Kjems, 2005; Westerdahl et al., 2006). For 

people with limited experience of interpreting traditional design documents, such as 2D 

drawings, the technology offers a representation that avoids misunderstanding and allows for 

a thorough apprehension of any type of building or facility (Mobach, 2008).  

However, despite all the documented benefits that VR technology offers, it is still not used as 

an everyday tool during the design process. Instead, its use remains restricted to certain 

projects of high importance (Bullinger et al., 2010; Liu at al., 2014). In the past, this was 

mainly due to lack of affordable hardware offering sufficient computing power, but also the 

fact that the actual design was almost always performed in 2D. As a consequence, any use of 

VR required the time-consuming creation of a separate 3D model (Westerdahl et al., 2006; 

Sunesson et al. 2008), using the original design documents as a reference. As this was 

typically done by someone else than the architect, it severely affected a natural integration of 

the technology. Even when 3D CAD data was available from the actual design, it still had to 

be converted to a representation suitable for real-time visualization by optimizing it and 

adding material properties, such as textures. 

Nevertheless, with the introduction of Building Information Models (BIM) within the AEC 

field new possibilities have emerged. Using modern modelling tools, such as Autodesk Revit 

or ArchiCad, the content produced by architects and designers has evolved from traditional 

2D-plans and elevations to  object-oriented 3D-models embedded with information to 

describe any building or facility in detail (Eastman et al., 2011). In theory, BIM then supports 

an easier and more natural integration of VR during the design process. As 3D data is 

available from the actual design work, there is no longer a need to create a separate 3D-model 

for the sole purpose of visualization. 

However, as primarily created to describe a complete building in detail, many 3D dataset 

extracted from BIMs are too large and complex in order to be directly used as real-time 

visualization models (Dvorak et al., 2005; Jongeling et al., 2007; Pelosi, 2010; Steel et al., 

2012; Dalton and Parfitt, 2013; Shi et al., 2015). To support interactive, real-time navigation 

the dataset often has to be significantly reduced or otherwise optimized – a process that may 

involve hours or even days to perform (Dubler et al., 2010; Liu at al., 2014). With current 

solutions users and stakeholder thus have to either resort to time-consuming pre-processing 

steps or accept that the visualization may not always be considered fully interactive or free of 

visual artefacts, i.e. errors. Because of this, it is still difficult to integrate VR as a commonly 

used tool for design and communication. Although visualizing large amounts of 3D-data in 
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real-time is an active research topic by itself (Yoon et al., 2008), there has been surprisingly 

little attention given to the specific case of visualizing large BIMs in real-time. 

With the recent introduction of a new type of consumer-directed Head Mounted Displays 

(HMD), such as the Oculus Rift, the problem of managing large BIMs interactively has 

become even more relevant to solve. Although these new types of VR devices offer huge 

potential in terms of realism, sense of scale and overall suitability for design and decision-

making tasks, they are also far more demanding when it comes to real-time rendering 

performance. Not only do they require a 3D scene to be rendered twice in order to produce the 

stereoscopic effect, but they also require a much higher update rate. Compared to typical 

desktop VR applications, the performance requirements have essentially increased three-

folded, making an existing problem become far worse. Fortunately, this thesis has only one 

real purpose – to deliver a solution to this problem. 

1.1 Aim and objectives 
The main aim of the work presented in this thesis is to develop a software application that will 

allow VR to become an everyday used tool for design and communication during the building 

design process. As already outlined, one of the biggest obstacle for this to be realized today 

lies in the difficulties to directly – i.e. without any time-consuming pre-process – visualize 

BIMs in real-time. The main objectives are therefore to develop techniques and algorithms 

that allow large and complex BIMs to be directly visualized in real-time. 

To better guide this process, the following research questions are investigated and considered: 

RQ1: What is the current state when considering real-time visualization of BIMs? 

The problem of visualizing BIMs has been highlighted in earlier studies, but it hasn’t really 

been thoroughly investigated. The current literature contains many examples where problems 

of using large BIMs for visualization purposes have been expressed but often the exact 

details, such as what type of models, software and hardware that has been used are simply 

omitted. Similarly, this question also relates to the type of models that can be expected in real-

world cases. 

RQ2: What is a suitable acceleration technique for typical 3D building models? 

There are a number of existing techniques and algorithms that can be utilized in order to 

accelerate real-time rendering. These have all strengths and weaknesses and a suitable choice 

is highly dependent on the type of 3D environment that it should be applied to. For instance, a 

vast, open landscape seen in a flight simulator is very different from a detailed city 

environment seen from the ground level when it comes to performance optimization. When 

considering buildings in general – which BIMs typically represent – they often feature a lot of 

occlusion, i.e. enclosed regions. Can we take advantage of this in an efficient manner? 
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RQ3: How can we take advantage of BIM-data in order to accelerate rendering? 

When considering existing acceleration techniques they have primarily been developed with 

general 3D-models in mind, i.e. as received from CAD or DCC tools. As such, they become 

inherently limited by the lack of information beyond pure geometrical data.  BIMs, on the 

other hand, contain much more information, i.e. metadata, such as detailed object properties 

as well as any relations to other objects. Can this additional information be utilized in order to 

accelerate real-time rendering? 

RQ4: How can we support a natural integration of VR within the building design 

process? 

In order for VR to become a natural and integrated part of the building design process, several 

barriers needs to be overcome. In this context the technical ability to visualize large and 

complex BIMs in real-time only represents one of them. How these techniques are actually 

implemented with regards to accessibility, as well as usability and interface becomes equally 

important consider. For instance, if time-consuming processes – although automated – are 

required to realize a VR session this will probably affect an integration negatively. Similarly, 

if the actual navigation interface is found too complex for non-experts, it will be difficult to 

support end-user participation. 
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2 Background and related work 

2.1 Definition of Virtual Reality (VR) 
Ever since Sutherland (1965) first articulated the term Virtual Reality (VR) it has been 

defined and used in many different ways. Ranging from simple environments presented on a 

desktop computer to fully immersive environments experienced through head-mounted 

displays and tracker systems, the term now means different things in various contexts. Within 

the scope of this thesis, VR is defined as a computer-generated visualization of spatial data 

that can be interactively controlled by a user and displayed on any type of screen. 

Furthermore, the primary application that has been considered is that of real-time 

architectural walkthroughs where users can explore and navigate through interior and exterior 

spaces of a virtual building model (Mobach, 2008; Liu at al., 2014).  

2.2 Real-time rendering 
The field of 3D computer graphics includes several techniques that aim at producing 2D 

images – often called frames – of three-dimensional geometric data. This is realized using a 

process known as 3D rendering, where the input 3D-data is converted to pixels in a 2D image 

based on the location of a virtual camera (Figure 1). When the resulting 2D image is displayed 

onto a computer screen it basically represents a window into a three-dimensional world from 

a specific location. The 3D rendering process can either be done in real-time or performed 

offline, i.e. non-real-time. When non-real time rendering is used the purpose is to produce a 

single image – or multiple images that are composed into an animation sequence or film – of 

high quality that later can be displayed on a computer screen. Depending on the size and 

complexity of the input 3D-data, the processing time ranges from minutes to hours or even 

days, but the end result will in turn be able to realistically simulate lighting, shadows, 

reflections and other natural phenomena. The end result, however, is a static image or film 

sequence that once created cannot be changed by the user – it only represents a single view of 

the input 3D-data. 

Real-time rendering, on the other hand, takes a different approach as the process is repeated 

continuously. During this process, the virtual camera can be moved freely, thus giving the 

user the impression that he or she is travelling around in a virtual world. The actual navigation 

can be controlled by an input device, such as a mouse or joystick, and gives the user the 

ability to interact with the system. However, to make this “virtual journey” smooth and 

interactive, the computer has to generate a sufficient number of frames per second to prevent 

the user from experiencing motion sickness (Hettinger, 1992). In order to be able to perform 

this computational expensive process, dedicated graphics hardware, also known as GPU 

(Graphics Processing Unit), has to be used. Using a technique known as rasterization, the 

GPU handles all the computations required to produce 2D image views of the 3D-data 

(Akenine-Möller et al., 2008). Although powerful, the GPU still has limitations on the amount 

of data that can be processed within a given time frame. This basically means that there 

always exists an upper limit on the amount of 3D-data that can be interactively visualized. 
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Figure 1: With 3D rendering, an input 3D model is converted into an image based on the position of a 

“virtual” camera. 

2.3 Display systems 
Although real-time rendering is the main technology for producing images of non-existing 

objects or environments, the result may be displayed in a wide variety of ways. Ranging from 

display on regular computer screens to solutions where a user is wearing a head-mounted 

display (HMD), the basic difference is the level of immersion they enable. Here, the level of 

immersion may be defined as the degree to which a user feels completely surrounded by the 

virtual world. When considering Immersive VR, the most used solutions today are either a 

CAVE (Cruz-Neira et al., 1992) or Head-Mounted Display (HMD) (Burdea and Coiffet, 

2003). Examples of these are shown in Figure 2. 

The HMD naturally supports stereoscopic vision in that it uses a small display for each eye: 

one for the left and one for the right. By rendering the virtual world from two slightly 

horizontally separated (virtual) cameras for each eye, the user experiences stereoscopic vision 

similar to that in real life (Kjellin, 2008). For the CAVE solution LCD shutter glasses are 

often used in order to provide the stereoscopic vision. These shutter glasses work by blocking 

one eye’s view of the screen (or wall). When an image is rendered for the left eye, the shutter 

glasses block the right eye view. For the right eye the process is then reversed. The switching 

process is synchronized with the graphics card and performed at a high frequency, thus giving 

the user a perceived true stereoscopic vision. 
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Figure 2: HMD (left) and CAVE (right) (Courtesy NASA and Chalmers) 

A semi-immersive alternative to the CAVE is the Powerwall (Westerdahl et al., 2006). As 

shown in Figure 3, it is basically a small cinema screen allowing for many people to view the 

VR simulation simultaneously. By using stereographic shutter glasses or polarized glasses, 

stereoscopic vision is enabled. 

 

Figure 3: A Powerwall solution. 

Finally, Desktop VR (Modjeska, 2003) refers to the case when the real-time rendering is 

displayed on a regular computer screen or portable computer screen, without stereoscopic 

vision. This solution is the simplest in terms of required hardware, and by using a projector 

the system is also suitable for a larger audience. When using the “projector-assisted” approach 
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of Desktop VR, the solution thus basically becomes a small Powerwall without stereoscopic 

vision. 

Until very recently, HMDs have been either low-cost-low-performance or high-cost-high-

performance devices (Dörner et al., 2011), making them less useful in practice. However, 

with the introduction of a new generation of consumer-directed HMDs, such as the Oculus 

Rift and HTC Vive (Figure 4) this has completely changed. These devices provide a high 

resolution, large field-of-view as well as orientation and positional tracking ability at a very 

competitive price (around $600-1000). Within the scope of this thesis, both the Desktop VR 

solution as well as the new generation of HMDs has been targeted. 

 

Figure 4: Oculus Rift (left) and HTC Vive (right) 

2.4 BIM and real-time visualization 
A Building Information Model (BIM) may be defined as a digital representation of the 

physical and functional characteristics of a building. Compared to a general 3D-CAD model, 

a BIM is a different kind of representation since it defines not only geometrical data but also 

specifications and information regarding spatial relations and connections among the included 

components. The creation of a BIM is typically done in a modern modeling tool, such as 

ArchiCAD or Autodesk Revit. These systems represent each component in a building as an 

object with parametric properties and relations to other parts of the building. The collection of 

objects is not seen as a 2D-drawing or 3D-model, but is instead stored in a single database 

that represents the complete building. From this database it is then possible to derive different 

representations, such as a 2D drawing or 3D model (Figure 5). As all representations originate 

from the same data, any change in the database will automatically update all representations. 

This property makes the system especially efficient when considering revisions and updates. 

As a repository of information a BIM support a multitude of applications along the design and 

construction process, including cost-estimation, energy analysis and production planning 

(Eastman et al., 2011). 

For the majority of BIM authoring tools the underlying data-model closely resembles that of 

the Industry Foundation Classes (buildingSMART, 2007). The IFC was designed to provide a 

universal basis for the information sharing over the whole building lifecycle (Eastman, 1999), 

and is the de facto standard for representing BIMs. It differs from general 3D-file formats, 

such as 3D Studio, FBX or COLLADA (Arnaud and Barnes, 2006), in that it represents a 
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building or facility with specific (virtual) building objects instead of pure geometrical entities. 

The IFC scheme supports a wide variety of buildings objects, such as IfcWall, IfcDoor, 

IfcWindow, IfcSlab and IfcRoof together with an unlimited set of properties connected to 

each object. Using the IfcRelation feature, any object can also relate to other objects, making 

it possible to form constraints and relations between building parts. For instance, a door 

“knows” that it is placed in a particular wall. Another major difference between IFC and 

general 3D-file formats is the representation of space. Every instance of an IFC-object must 

belong to a spatial context. Special space-enclosing structures are the sites (IfcSite), buildings 

(IfcBuilding), storeys (IfcBuildingStorey) and rooms (IfcSpace). Additionally, any window or 

door placed in a wall results in an opening element (IfcOpening) that represents the cut-out in 

the affected wall. 

 

Figure 5: A BIM created in Autodesk Revit. 

Although practically all BIM authoring applications follows the IFC-specification they still 

differ in many ways when considering the level of information they contain and the ability to 

extract that information. In that sense, it can be said that each application defines BIM in its 

own way. In order to support the whole range of possible authoring environments, the work 

presented in this thesis therefore defines a BIM according to the IFC-specification. That is, 

the acceleration techniques presented within the scope of this thesis have been designed to 

work with models defined according to the IFC-specification, and do not rely on any 

additional data or features beyond that. 

The introduction of BIM within the AEC field is interesting, as it makes it possible to use a 

single source of data for 2D-drawings, offline renderings as well as real-time renderings and 

VR. In theory, this should make it much easier to integrate real-time visualizations as a design 

and communication tool during the actual design process. As 3D-models can be extracted 

directly from the BIM-systems, there is no longer a need for the additional creation of a 
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separate 3D-model for visualization purposes. However, in practice, this development has 

also introduced a new set of challenges. As primarily created to describe a complete building 

in detail, BIMs can be too large and complex in order to be directly used for real-time 

rendering (Dvorak et al., 2005; Svidt and Christiansson, 2008; Steel et al., 2012; Dalton and 

Parfitt, 2013). Although commonly used software tools for BIM visualization is able to 

directly load models regardless of size and complexity it is often difficult to achieve smooth 

frame rates without further processing of the input dataset or by introducing non-conservative 

acceleration techniques (Dubler et al., 2010). It is therefore common that a visualization 

session has to be preceded by an optimization step in order to make the dataset more suitable 

for use in a real-time environment. However, as this step has to be repeated as soon as the 

design changes it severely affects an efficient integration of real-time visualization as a 

communication tool (Dubler et al., 2010; Liu at al., 2014). 

Recent times have also seen the use of so-called game engines for the purpose of real-time 

visualization of BIMs (Yan et al., 2011; Shi et al., 2015; Merschbrock et al., 2016). Given the 

image quality and immersion offered by modern computer games, game engines are often put 

forward as a better alternative to conventional BIM-viewers, such as Navisworks, as they 

offer high rendering performance and more elements of interactivity. However, although it’s 

true that it is possible to use game engines to produce impressive visualizations, they still 

require a lot of manual work in order for this to be realized (Shi et al., 2015; Merschbrock et 

al., 2016). In Figure 6, a typical workflow from BIM to VR using game engines is illustrated 

(Halaby, 2015).  As can be seen, there are several steps that needs to be performed, including 

model optimizations and other processes to provide real-time performance, e.g. occlusion 

bake. Even with a streamlined process as the one described in Figure 6, this can easily add up 

to several hours or even days, depending on the size and complexity of the BIM. As discussed 

previously, this is a process that needs to be repeated for every major change of the design. 

 

Figure 6: Typical software workflow from BIM to game engine (Halaby, 2015) 
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Looking forward, it could be argued that the ever increasing speed of CPUs and GPUs will 

solve this problem simply by brute-force performance. However, at the same time we also see 

that BIMs tend to become more detailed in terms of geometry and amount of objects as this 

field matures. In addition, new display hardware puts even higher performance demands as 

resolution (e.g. 4K screens) and frame rate requirements (e.g. Oculus Rift and HTC Vive) 

increase. As such, the problem of interactivity and real-time performance is still important to 

solve. 

2.5 Frame rate and interactivity 
An important property for any type of real-time visualization system is its ability to maintain a 

sufficiently high frame rate. As defined by the frequency at which new images are presented 

on screen it inherently affects user experience and task performance. A too low frame rate 

will make the system less responsive and make navigation and other interaction tasks more 

demanding at the same time as it greatly diminishes the sense of continuous motion. When 

considering a minimum frame rate, many studies have found that user performance becomes 

significantly reduced below 15 Hz for a number of different applications. Reddy (1997) 

investigated the effects of different frame rates on human performance when faced with a 

simple heading task in a virtual environment. During these tests low frame rate substantially 

degraded user performance and a frame rate of around 15 Hz was suggested to serve as a 

minimum requirement for a generally acceptable degree of performance. However, it was also 

suggested that a higher frame rate should be strived for, as this was shown to improve 

performance even further. 

Barfield et al (1998) studied the perceived level of presence within a virtual environment as a 

function of input device type and update rate. Although the type of input device had limited 

effect, it was found that an update rate of at least 15 Hz was a critical value in order to 

experience a sense of presence. Regarding ease and comfort of navigation, interactivity and 

smoothness of motion, an update rate of 15 Hz was considered equally important. The study 

further revealed consistently higher ratings for all factors when the update rate was increased 

to 20 Hz. 

In a more recent study, Claypool (2007) investigated the impact of frame rate on player 

performance in first person shooter games. For movement tasks it was found that an increase 

of frame rate from 7 Hz to 15 Hz significantly improved player performance. Unfortunately, 

no data were collected beyond 15 Hz. For shooting tasks, the frame rate was found to be even 

more important. Although the rate of improvement was steeper below 15 Hz, player 

performance was increased all the way up to 60 Hz. 

For everyday 3D design and engineering applications the importance of maintaining a 

sufficiently high frame rate has also been highlighted. Experiments at The Boeing Company 

show that low frame rate decreases the feeling of continuous motion and that improved 

continuity helps user performance when searching for objects in a complex 3D model (Kasik 
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et al., 2002). Furthermore, empirical studies revealed that, although 10 Hz was considered 

useful, massive model visualization users require at least 16 Hz in order to be considered 

acceptable (Yoon et al., 2008). 

Still, in practice, 15 Hz is not generally considered a sufficient level of interactivity. For 

applications such as architectural walkthroughs, 30 Hz is often recommended as a minimum 

frame rate in order to provide a suitable experience (Shiratuddin and Fletcher, 2006). Below 

this number users will typically start to experience lag to such a degree that the impression of 

continuous movement is lost (Herwig and Paar, 2002; Göttig et al., 2004). 

Looking at the computer games industry it also becomes clear that 15 Hz is not enough to 

satisfy player demands. For so-called first-person shooter games (FPS) 30 Hz is generally 

considered the absolute minimum and many game developers even target 60 Hz in order to 

give players a smooth and responsive experience (Rubino and Power, 2008). 

In this context it is also important to highlight the main difference between film (e.g. motion 

pictures) and real-time rendering in terms of frame rate. With current cinema using a 

standardized frame rate of 24 Hz, it may not be obvious to see the benefit of going beyond 

this number. However, while the rendered images represent singular moments in time, film 

can record motion-blurred images which effectively integrate information over time. As a 

consequence, smooth motion can be displayed at a comparably lower frame rate without 

suffering from apparent "jumps" between discrete moments in time (Rubino and Power, 

2008). 

Nevertheless, with the introduction of a new generation of HMDs, such as the Oculus Rift and 

HTC Vive the frame rate requirements have changed significantly compared to that of 

desktop VR. In order to provide a useful VR experience 90Hz is now considered critical 

(Hasan and Yu, 2015). This requirement is also different compared to that of desktop VR, 

where a lower frame rate may still give a sufficient experience, albeit with less fidelity. Due 

to a very strong connection to the tracker system, any update rate below 90Hz will produce 

such visual artefacts that the system essentially becomes useless. 

2.6 Rendering performance and acceleration techniques 
In Figure 7 the graphics pipeline is illustrated. As can be seen it is built up by a number of 

different stages and involves both the CPU and the GPU. The interaction between the CPU 

and GPU can be thought of as a client-server pair, where an application acts as the client on 

the CPU-side and uploads data and issues commands through the graphics driver that the 

GPU then processes. To take advantage of hardware-accelerated rendering an application will 

upload 3D positions that represent the vertices (i.e. corners) of a set of triangles to GPU 

memory, and then issue draw commands that specifies which triangles to draw on screen. The 

GPU will then transform and project each one of these triangles according to the position of a 



 

“virtual” camera and, finally, convert it to a two

rasterization. 

While the processes performed on the GPU used 

programmable using so-called shader programs which offer developers more flexibility when 

it comes to processing geometry and compute lighting. As illustrated in more detail in Figure 

8 there is typically three main shader stages 

Figure 8: 

During the vertex shader stage, each vertex is individually processed. This stage transforms 

and projects vertices to match the current view position (i.e. camera). During the geometry 

shader stage complete primitives (i.e. triangles) are processed. A geom

and takes a single primitive as input and may output zero or more primitives. As such, it has 

the ability to amplify geometry. Finally, the fragment shader processes individual fragments 

(i.e. pixels) generated by the rasterization 

When an application takes advantage of hardware

all of the geometry of a given 3D scene has to go through at least some parts of the graphics 

pipeline every frame. Even with very powerful CPUs and GPUs such a scen
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“virtual” camera and, finally, convert it to a two-dimensional image using a process known as 

Figure 7: The graphics pipeline. 

While the processes performed on the GPU used to be “fixed-function”, it is nowadays fully 

called shader programs which offer developers more flexibility when 

it comes to processing geometry and compute lighting. As illustrated in more detail in Figure 

main shader stages – vertex, geometry and fragment.

 Different shader stages in the graphics pipeline. 

During the vertex shader stage, each vertex is individually processed. This stage transforms 

and projects vertices to match the current view position (i.e. camera). During the geometry 

shader stage complete primitives (i.e. triangles) are processed. A geometry shader is optional 

and takes a single primitive as input and may output zero or more primitives. As such, it has 

the ability to amplify geometry. Finally, the fragment shader processes individual fragments 

(i.e. pixels) generated by the rasterization into colors that will appear on screen. 

When an application takes advantage of hardware-accelerated 3D rendering “out

all of the geometry of a given 3D scene has to go through at least some parts of the graphics 

pipeline every frame. Even with very powerful CPUs and GPUs such a scen

dimensional image using a process known as 

 

function”, it is nowadays fully 

called shader programs which offer developers more flexibility when 

it comes to processing geometry and compute lighting. As illustrated in more detail in Figure 

vertex, geometry and fragment. 

 

During the vertex shader stage, each vertex is individually processed. This stage transforms 

and projects vertices to match the current view position (i.e. camera). During the geometry 

etry shader is optional 

and takes a single primitive as input and may output zero or more primitives. As such, it has 

the ability to amplify geometry. Finally, the fragment shader processes individual fragments 

into colors that will appear on screen.  

accelerated 3D rendering “out-of-the-box”, 

all of the geometry of a given 3D scene has to go through at least some parts of the graphics 

pipeline every frame. Even with very powerful CPUs and GPUs such a scenario will therefore 
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always have an upper limit in the amount of geometry that can be processed at a certain frame 

rate. However, by taking advantage of additional acceleration techniques it is often possible to 

go beyond this limitation (Akenine-Möller et al., 2008). In general, these acceleration 

techniques can be assigned into three different categories: pipeline optimizations which 

increase performance by streamlining data flow through the graphics pipeline, Level-of-detail 

(LOD) which increases performance by reducing the geometric complexity of far-away 

objects and visibility culling which increase performance by rejecting non-visible objects. In 

the following subsections each one of these acceleration techniques are explained in more 

detail. 

2.6.1 Pipeline optimizations 

As with any other type of pipeline, the speed at which data can flow through the graphics 

pipeline is inherently dictated by the slowest stage. The general idea behind pipeline 

optimizations is to remove the bottlenecks without reducing the amount of geometry to 

process. For instance, it is very often the case that an application is CPU-bound as opposed to 

GPU-bound. What that means is that the GPU processes data and rendering tasks at a faster 

rate than the CPU is able to feed it with new data and commands. In essence, the GPU 

becomes underutilized. One of the main reasons for this behaviour is the amount of draw 

commands and state changes that are made every frame (Hillaire, 2012). Rendering a set of 

triangles in graphics APIs such as OpenGL usually involves two main steps: (1) modifying 

the OpenGL states and objects in order to setup resources (i.e. textures and vertex arrays) used 

for rendering and (2) issuing the actual draw call to tell the GPU to render the triangles. Both 

these steps involve multiple calls to the graphics driver and therefore incur a certain cost (i.e. 

time) on the CPU-side. In CPU-bound situations it is therefore possible to improve 

performance by reducing state changes and draw calls. When considering state changes many 

of them can often be removed by sorting the objects to render based on state, such as 

materials and textures. By doing so, the states required for each material only has to be set 

once per frame (as opposed to multiple times if objects are rendered in an unsorted way). 

Furthermore, in order to reduce draw calls there are mainly two ways – geometry batching 

and geometry instancing. With batching the idea is to combine geometry that share the same 

state (e.g. material) in order to form larger, but fewer, “chunks” of geometry to render 

(Wloka, 2003). By doing so, the same amount of geometry can be rendered, but with much 

fewer draw calls. In contrast, geometry instancing takes advantage of the fact that many 3D 

scenes contain replicated geometry, such as the wheels on a car or all the chairs around a 

dining table (Dudash, 2007). With the instancing abilities on modern GPUs it is possible to 

submit a single draw call when rendering several objects that share the same geometry. By 

uploading each instance´s unique position to the GPU in a previous steps, they can all be 

transformed to their correct place during the vertex shader stage. 

2.6.2 Level-of-detail (LOD) 

In contrast to pipeline optimizations, the idea behind LOD is to reduce the amount of 

geometry that has to be drawn every frame. When objects are far away from the viewer it is 
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often possible to use a much simpler representation of them without affecting the visual 

quality too much (Luebke et al., 2002). As illustrated in Figure 9, this technique involves the 

creation of several different versions of an object, each one being represented by fewer 

triangles than the previous one. The selection of which version to use for rendering is then 

based on the distance to the viewer. However, although techniques exist to automate the 

creation of simplified versions of an object, they usually involve some sort of manual 

interaction in order to reach satisfying results (Garland and Heckbert, 1997). 

 

Figure 9: Illustration of LOD. The original object is replaced by simplified representations when far 

away from the viewer. 

2.6.3 Visibility culling 

As with LOD, the idea behind visibility culling is to increase performance by reducing the 

amount of geometry to draw. However, instead of rendering simplified objects, visibility 

culling tries to identify non-visible objects that don’t need to be drawn at all (Cohen-Or et al., 

2003). As illustrated in Figure 10, left, there will always be objects in a 3D scene that cannot 

be seen from a certain point of view, because they are either outside the field-of-view or 

hidden by other objects. The simplest form of visibility culling is view-frustum culling, which 

rejects objects that are outside the visible field-of-view (Figure 10, middle). This operation is 

typically not performed per-triangle but instead per-object using the objects bounding box 

(i.e. a box that fully encloses the object) for quick rejection. A more complex form of 

visibility culling is occlusion culling which rejects objects that are hidden by other objects 

(Figure 10, right). Compared to view-frustum culling this is a much more complex process as 

it requires computing how objects in a 3D scene affect each other. However, with the 

introduction of occlusion queries it has been possible to take advantage of the GPU to 

perform the actual visibility detection (Bartz et al., 1998). In essence, occlusion queries allow 

an application to render some geometry and then “ask” the GPU if it turned out to be visible. 

This way, proxy geometries (i.e. bounding boxes) can be used to test an object for visibility 

before it is actually rendered (Figure 11). 



 

Figure 10: Illustrating no culling (left), view

“Dimmed” objects are not sent to the GPU for rendering.

Figure 11: Using hardware occlusion queries it is possible to test the tree for visibility using a 

bounding box representation (dashed lines) before rendering the actual tree model.

As described above, both view

therefore requires no offline pre

techniques that works by pre-

3D scene. During run-time, this set is then indexed in order to 

are potentially seen from a certain region in the scene (Funkhouser and Séquin1993). 

A somewhat hybrid approach is 

indoor environments (Luebke and Georges 1995

creation of cells that are connected by 

restrict rendering only to objects that are in the same cell as the camera as well as objects that 

can be seen in adjacent cells trough
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Illustrating no culling (left), view-frustum culling (middle) and occlusion culling (right). 

“Dimmed” objects are not sent to the GPU for rendering. 

 

Using hardware occlusion queries it is possible to test the tree for visibility using a 

bounding box representation (dashed lines) before rendering the actual tree model.

As described above, both view-frustum culling and occlusion culling is performed 

therefore requires no offline pre-computations. However, there is also visibility culling 

-computing a potentially visible set from multiple regions in the 

time, this set is then indexed in order to quickly obtain the objects that 

seen from a certain region in the scene (Funkhouser and Séquin1993). 

A somewhat hybrid approach is cell-and-portal culling which primarily lends itself for use in 

indoor environments (Luebke and Georges 1995). As illustrated in Figure 12 it involves the 

that are connected by portals. By using this data structure it is possible to 

restrict rendering only to objects that are in the same cell as the camera as well as objects that 

trough the portals. 

 

frustum culling (middle) and occlusion culling (right). 

Using hardware occlusion queries it is possible to test the tree for visibility using a 

bounding box representation (dashed lines) before rendering the actual tree model. 
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Figure 12: Cell-and-portal culling 
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3 Research approach 

The work presented in this thesis mainly falls into the category of technology and design 

science. As such, it represents constructive research. As opposed to natural science, 

technology and design related research may be considered “artificial” in that it produces new 

artefacts and knowledge within a problem-solving paradigm. The concept is further explained 

by March and Smith (1995, p.253) who states: “Whereas natural science tries to understand 

reality, design science attempts to create things that serve human purposes.” 

Within this paradigm, several research approaches that share a similar philosophy exists. 

When considering the area of Information Systems (IS), the design science research approach 

has mainly been popularized by Hevner et al. (2004). However, in many ways it has already 

been a principal approach in engineering research and computer science for a long time 

(Kuechler and Vaishnavi, 2008). Similarly, it is also very closely related to the constructive 

research approach (Piirainen and Gonzalez, 2014). 

Nevertheless, regardless of specific research approach, design–oriented research is mainly 

concerned with the task of designing and evaluating an artefact. As discussed by Hevner et al. 

(2004), such an artefact needs to address an existing unsolved problem, should build on and 

contribute to theoretical knowledge of the problem domain and should be proven to actually 

improve on existing solutions or attempts to solve the problem. 

Since this approach exhibit many similarities to what software developers and engineers do as 

part of their regular jobs, it may not be obvious what distinguishes design science research – 

as well as constructive research – from conventional design work. According to Hevner, there 

are two important differences between design research and the practice of design. First, design 

science involves thorough and careful use of existing theories and methods from the scientific 

knowledge base in order to build and evaluate the particular artefact. Secondly, it contributes 

to the scientific knowledge base by scholarly dissemination. As an effect of the latter, design 

research also tries to solve a class of problems as opposed to a specific situated problem, 

which is more common in design practices. 

As for the actual artefacts, it has become well established within the design science field to 

identify four different types; constructs, models, methods, and instantiations (March and 

Smith, 1995; Hevner et al. 2004; Johannesson and Perjons, 2014). 

Constructs are definitions and concepts that form the “language” of a domain. They are the 

smallest conceptual parts that make it possible to understand and communicate about various 

phenomena. Typical examples are the concepts of method in Java or class in the Unified 

Modeling Language (UML). 
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Models represent possible solutions to practical problems. They are sets of propositions or 

statements that express relationships among constructs. For instance, a database model can be 

used for developing a database system. 

Methods are a set of steps (an algorithm or guideline) used to perform a task or solve a 

defined problem. Typical examples are methods for database design or a search algorithm. 

Instantiations are working systems that can be used in a practice. They are realizations of an 

artefact in its environment, such as a database for electronic medical records or a Java 

program realizing a search algorithm. Instantiations can always embed constructs, models, 

and methods. 

Furthermore, Gregor and Hevner (2013) discuss how different design science contributions, 

i.e. artefacts, can be classified according to the maturity of the solution, as well as the 

application domain. As illustrated in Figure 13, they identify four different types of 

contributions – improvements, inventions, exaptations, and routine design.  

Improvements are new solutions for known problems. These kinds of contributions address an 

existing problem with a new or enhanced solution, such as one offering better efficiency, 

usability or utility compared to the previous state of the art. 

Inventions are new solutions for new problems. These kinds of contributions involve an 

innovation that addresses a new and unexplored problem by offering a novel solution, such as 

the first X-ray machine or the first data mining system. As such, they are typically much less 

common than improvements. 

Exaptations are known solutions extended to new problems. These kinds of contributions 

adapt or extend an existing solution to address a problem for which it was not intended for in 

the first place, such as the use of data mining in meteorology. 

Routine designs are known solutions to known problems. These types of designs are often the 

application of existing knowledge to a well-known problem, such as the creation of a business 

application using best practice solutions extracted from the knowledge base. In contrast to the 

previous discussed types, routine designs do not offer the same opportunity to contribute to 

the archival knowledge base of foundations and methodologies. As such they typically do not 

count as design science research contributions. 
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Figure 13: Design science research knowledge contribution framework (Gregor and Hevner, 2013) 

When positioning the design science contribution presented in this thesis it falls within the 

improvements quadrant in that it improves on the previous state of the art with respect to 

efficiency as well as utility. As such, this research offers potential to contribute new 

knowledge to the scientific knowledgebase. As for the actual artefact, it is considered an 

instantiation in that it is a working system that can be used in practice. 

When considering the actual research approach, Hevner et al. (2004) and Hevner (2007) 

propose a framework containing three cycles that places the design activity into a scientific 

framework (Figure 14). The three cycles are the design cycle, relevance cycle and rigor cycle. 

The core of the framework is the design cycle, which represents an iterative process where 

design alternatives are generated and evaluated against the requirements until a satisfactory 

design is achieved. The other two cycles connect the design cycle to the environment and to 

the scientific knowledge base. The relevance cycle first identifies an opportunity or an 

existing unsolved problem in the environment which then translates into a set of requirements 

that needs to be addressed by the designed artefact. An evaluation of the artefact then shows 

how well it meets the requirements to solve the stated problem. If it is shown to improve on 

existing solutions or attempts to solve the problem, the artefact is then fed back into the 

environment. However, the cycle repeats if the problem is only partially addressed or new 

problems emerge. The rigor cycle is the part that separates design science research from 

conventional design in a work environment (Hevner, 2007). During this cycle, the scientific 

knowledge base provides past knowledge to the project in order to ensure that the designs 

produced are research contributions and not routine designs and that appropriate and rigorous 
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methods are used for evaluation of the artefact. At the end of the cycle the newly developed 

knowledge on how to solve the identified problem is added to the knowledge base (e.g. by 

academic publication). 

 

Figure 14: Design science research framework and cycles (Hevner, 2007) 

In addition to the framework, Hevner et al. (2004) also outlines a set of guidelines for 

effective design science research. As illustrated in Figure 15 it consists of seven guidelines 

that highlight issues that should be addressed when performing this type of research. 

When mapping the work in this thesis onto Hevners research framework, it can essentially be 

said that each appended paper represents a single design loop, encompassing all three cycles. 

Starting from the recognized opportunity (i.e. the use of BIMs for VR simulations have great 

potential) as well as related problems (e.g. BIMs provide a challenge to manage in real-time), 

an initial technology-based solution has been designed using input from the knowledge base. 

This solution has then been evaluated to show how well it solves the problem which 

essentially ends the design loop. Using the discoveries from the previous loop together with 

any changes in the environment and knowledge base as input, the problem formulation and 

evaluation criteria has then been updated and further addressed for each subsequent paper. 

Each design loop thus represents an incremental step towards realizing the final software 

application, which as of the last paper encompasses all the properties that have been identified 

as important in order support everyday use of VR during the building design process. The 

complete process will be described in more detail in Section 4, where each of the five 

appended papers is summarized, followed by a description of the final software application – 

BIMXplorer. As for the identification of required properties this will be discussed in the 

following subsection. 
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Figure 15: Design science research guidelines (Hevner et al., 2004) 

3.1 Requirements 
One of the most important parts of a design science project is to formulate the acceptance 

criteria for the ultimate evaluation of the designed artefact. As already stated, the starting 

point for the work presented in this thesis was the recognized opportunity of combining BIM 

and VR in an efficient way, as well as the related performance problems already identified in 

the literature and observed in an actual practise (Johansson, 2010). Thus, already from the 

start, the ability to provide real-time rendering performance stood out as a fundamental 

requirement to satisfy. However, during the course of this work new opportunities and 

problems have emerged which have called for updates and changes to the list of requirements 

that the final artefact should be evaluated against. In order to give a better understanding of 

how the individual contributions relate to the relevance cycle, the final set of requirements is 

presented in advance (i.e. before the summary of the papers) below: 

The system should provide real-time rendering performance. As a fundamental feature of any 

real-time visualization system this requirement needs no further motivation. Still, when 

considering the actual definition of what real-time is, the concept becomes somewhat fluid 

and has to be mapped to the actual use case. As compiled from the literature, this thesis 

defines the satisfactory as well as optimal level of frame rate for desktop VR as 30 and 60 Hz, 
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respectively. However, with the introduction of a new generation of HMDs, this requirement 

has then been transformed into a strong 90Hz demand. 

The system should support architectural BIMs taken from real-world projects. Although 

posed as a requirement, this should be read more as a delimitation. As of today, a BIM-based 

design and construction project will, eventually, include several different BIMs, each on 

representing a single discipline (i.e. architectural, structural, etc.). However, the primary use-

case that has been considered in this thesis is that of architectural walkthroughs. Given VR’s 

ability to convey scale and overall experience of space it naturally lends itself especially 

useful in order to study architectural qualities (Westerdahl et al., 2006; Mobach, 2008). In 

addition, this use-case is related to many non-professional stakeholders (e.g. clients or 

building end-users) who naturally have less experience in interpreting traditional design 

documents, such as 2D drawings. This group of people therefore have much to benefit from 

the use of VR in terms of communication and enhanced understanding. Thus, as reflected by 

the type of models that has been evaluated in the papers, this requirement (or delimitation) has 

primarily been posed in order to clarify that the application of visualizing structural or 

mechanical, electrical and plumbing (MEP) BIMs in isolation has not been explicitly 

addressed. However, this does not necessarily mean that the system cannot be used for this 

use-case as well. 

The system should accurately reflect the input dataset. When considering acceleration 

techniques it is possible to resort to solutions that favour interactivity at the expense of 

accuracy, such as contribution or drop culling. However, seen from a scientific perspective 

this introduces another level of complexity when it comes to verification and evaluation. As 

the visualization is no longer guaranteed to truly reflect the input dataset, these types of 

solutions also has to be evaluated based on how well they perform in terms of accuracy. In 

order to not introduce this level of complexity into the evaluation, this requirement has been 

posed. 

The system should not rely on time-consuming pre-processing steps. A viable option when 

considering the isolated task of providing real-time rendering performance of large 3D 

datasets is to perform a pre-computation step that will allow the final visualization session to 

run at high frame rates. However, such a solution will inherently pose itself as a potential 

obstacle in that an additional process is needed before any visualization session can be 

realized. This requirement is thus based on the simple logic that if we can omit any additional 

process, it will make the use of the technology more accessible and therefore easier to 

integrate as an everyday tool into real practise. 

The system should support a wide range of users. A typical building project will involve a 

number of different stakeholders with different backgrounds and expertise. When considering 

a successful integration of VR within this setting, it is thus highly desirable that the medium 

can be easy to use and, ultimately, controllable by anyone.  
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4 Summary of the papers 

4.1 Paper I 
 

Efficient Real-Time Rendering of Building Information Models 

Background and purpose 

Due to a large number of individual objects and high geometric complexity, typical BIMs are 

not easily rendered in real-time. However, compared to a general 3D-model, a BIM defines 

not only geometrical data, but also information regarding spatial relations and semantics. The 

idea behind Paper I was to investigate if it’s possible to take advantage of the additional data 

in order to accelerate real-time rendering. 

Method 

By extracting spaces (cells) and openings (portals) from a BIM we can automatically create a 

cells-and-portals partitioning. Using this data structure, the rendering is accelerated by 

rejecting objects that are not in, or can be seen from, the specific room that the viewer is 

currently in. To make this algorithm efficient also in outdoor cases, additional mechanisms 

had to be developed. These included a technique that utilizes frame-to-frame coherence and a 

procedure to efficiently reject non-visible exterior walls. The proposed technique was tested 

on two fairly large BIMs and evaluated against traditional view-frustum culling. 

Results 

Compared to traditional view-frustum culling, the new technique was often 10 times faster, 

for both exterior and interior view points, essentially making real-time rendering of large 

BIMs possible. 

4.2 Paper II 
 

Real-Time Visualization of Building Information Models (BIM) 

Background and purpose 

Paper I showed the benefit of rejecting hidden objects (i.e. cull away) with respect to real-time 

performance. However, the technique developed in Paper I relied heavily on specific BIM-

data (i.e. spaces) being present in order to function properly. As evident from many BIMs 

received from real-world projects, the required data is not always present. The idea behind 

Paper II was to evaluate and analyze commercial BIM viewers in terms of real-time rendering 

performance and to evaluate more general acceleration techniques (i.e. that do not rely on 

specific BIM-data). 
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Method 

Four commercial BIM viewers were in-depth analyzed in terms of acceleration techniques 

and real-time rendering performance. In addition, a general occlusion culling algorithm, 

CHC++, was implemented in a prototype BIM viewer and further refined. All viewers, 

including the prototype, were evaluated using four different BIMs taken from real-world 

projects. 

Results 

All four commercial viewers shared limitations in their ability to handle large BIMs 

interactively. The prototype viewer had no such problems. Consequently, the CHC++ 

algorithm was found to be a suitable acceleration technique for efficient real-time rendering of 

BIMs. 

4.3 Paper III 
 

Integrating Occlusion Culling and Hardware Instancing for Efficient Real-

Time Rendering of Building Information Models 

Background and purpose 

In Paper II, occlusion culling, and more specifically, CHC++ were found to provide a suitable 

acceleration technique for typical BIMs. However, for viewpoints when many objects are, in 

fact, visible, occlusion culling alone may not always be able to guarantee sufficiently high 

performance. Based on the observation that typical BIMs contain many replicated objects, the 

idea behind Paper III was to evaluate the combination of occlusion culling and hardware-

accelerated geometry instancing – a feature of modern GPUs that allow replicated geometry 

to be rendered very efficiently. 

Method 

By taking advantage of temporal coherence together with the development of a lightweight 

data transfer approach, occlusion culling could be performed at the object level at the same 

time as visible, replicated geometry can be efficiently rendered using hardware-accelerated 

geometry instancing. The combination of techniques was evaluated on four different BIMs 

taken from real-world projects. 

Results 

Compared to only using occlusion culling the new technique were shown to offer additional 

speed-ups of 1.25x-1.7x in viewpoints that represent the worst case scenarios when only 

occlusion culling is utilized. 
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4.4 Paper IV 
 

From BIM to VR – Integrating immersive visualizations in the current design 

process 

Background and purpose 

When considering the use of immersive visualization technology within the AEC field, the 

introduction of consumer-directed, low-cost-high-performance HMDs devices, such as the 

Oculus Rift, has opened up new possibilities. Compared to previous solutions, such as 

CAVEs and PowerWalls, many inherent barriers, including investment costs and limited 

accessibility can now be broken. However, the performance demands required by stereo 

rendering are still difficult to satisfy without additional acceleration techniques. The idea 

behind paper IV was to investigate the acceleration techniques proposed in Paper II and III in 

a stereo setting as well as setup and evaluate a system that allowed immersive visualizations 

to become a natural and integrated part of the current design process. 

Method 

The rendering engine developed in Paper II & III was implemented as a plugin in Revit, 

thereby offering direct visualization from a BIM authoring environment. To support a wide 

range of users (i.e. from gamers to construction site workers) a simple navigation interface 

was developed by means of a so-called PowerPoint remote. The proposed system was tested 

on a BIM taken from a real world project and evaluated from three different perspectives - 

rendering performance, navigation interface and the ability to support fast design iterations. 

Results 

Compared to current immersive solutions (i.e. CAVEs and PowerWalls) the proposed system 

is non-expensive, portable (i.e. accessible) and has very good BIM support. Furthermore, 

regarding rendering performance, navigation interface and the ability to support fast design 

iterations, it has all the needed properties to function well in practice. 

4.5 Paper V 
 

Efficient Stereoscopic Rendering of Building Information Models (BIM) 

Background and purpose 

Stereo rendering is traditionally done by performing two individual and serial rendering 

passes – one for the left eye and one for the right eye. This was the method used in Paper IV 

and compared to monoscopic rendering, this setup essentially increase the number of draw 

calls and rasterized triangles by a factor of two. One way to remove the requirement of a 

second pass is by taking advantage of the geometry shader in order to duplicate and present 

the geometry for the left and right eye. However, even if this reduces the number of draw 

calls, the geometry shader typically introduces significant overhead on the GPU side. The idea 
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behind paper V was to explore the possibilities of using hardware-accelerated geometry 

instancing in order to provide a single-pass stereoscopic rendering in a split-screen stereo 

setup (i.e. as found in the Oculus Rift) 

Method 

With the instancing capabilities of modern GPUs it is possible to produce multiple output 

primitives from a single input, without introducing the geometry shader. As such, it becomes 

suitable for producing both the left and right eye view of the scene within a single rendering 

pass. However, the main difficulty with this approach is that current graphics API does not 

support multiple viewport output from the vertex shader. In the proposed technique this is 

solved by performing a screen-space transformation of the geometry, together with user-

defined clipping planes. In addition to reduce the number of draw calls the proposed 

technique were shown to integrate very well with occlusion culling based on hardware-

accelerated occlusion queries (i.e. as used in Paper II, III and IV). With a single depth buffer 

used for both the left and right eye, only a single occlusion query is ever needed per visibility 

test, effectively reducing the number of occlusion tests by a factor of two compared to the 

traditional two-pass stereo rendering technique. Furthermore, with little modifications, the 

new stereo instancing technique could be extended to also support the geometry instancing 

technique developed in Paper III. 

Results 

The new stereo instancing technique is very well suited for integration with occlusion query-

based occlusion culling as well as conventional geometry instancing and has been shown to 

outperform traditional two-pass stereo rendering approach, geometry shader-based stereo 

duplication, as well as brute-force stereo rendering of typical BIMs on recent hardware. 
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5 BIMXplorer v1.0 

BIMXplorer represents the final system (i.e. artefact) that is the result of the research 

presented in this thesis (Figure 16). In essence, this is a working software application that 

allows large and complex BIMs to be directly visualized in real-time, either through a 

traditional desktop interface (i.e. screen, mouse and a keyboard) or by using a modern HMDs 

such as the Oculus Rift. Many of the systems features, such as the navigation interface and the 

integration as a plugin within Autodesk Revit are described in detail in Paper IV. It also 

incorporates the acceleration techniques developed and presented in Paper II, III and V. In 

addition, BIMXplorer has support to directly load IFC-files through the xBIM (eXtensible 

Building Information Modelling) software development toolkit. Also, in order to allow for a 

more user-friendly navigation the system takes advantage of the PhysX SDK to support 

collision detection. Upon model loading, collision meshes can be automatically generated 

which prevents user from navigating “through” objects, such as walls and floors, in a similar 

fashion as modern 3D games. 

 

Figure 16: BIMXplorer interface as a plugin in Autodesk Revit. 

To improve the visual quality BIMXplorer takes advantage of a technique known as Screen-

Space Ambient Occlusion (SSAO), which calculates how exposed each point in a 3D scene is 

to ambient lighting (McGuire et al., 2012). Compared to a constant ambient term, this gives 

much better depth perception and provides clues on how objects relate to each other as seen in 

Figure 17. 
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Figure 17: A BIM containing approx. 40,000,000 triangles rendered in real-time in BIMXplorer with 

constant ambient term (left) and SSAO (right) (Revit model courtesy of Jason Halaby, WRNS Studio). 

Although not yet publicly available, BIMXplorer has already been used during several 

courses at Chalmers University of Technology. These courses involve the design of a 

suburban area as well as the design of a new university campus area featuring several new 

buildings created in Autodesk Revit. Throughout these projects BIMXplorer has been used as 

an integrated visualization tool in order evaluate different designs and to communicate ideas 

among team members. At the end of these courses each team then presents their proposal by 

performing live walkthroughs during a final seminar (Figure 18). Being that a diverse set of 

BIMs have been created during these projects the courses have served as a form of continuous 

beta testing of the software. 

In addition BIMXplorer has been in active use for over a year at NCC Construction Sweden 

(Jörnebrant and Tomsa, 2015; Roupé et al., 2016; Brännström and Ljusteräng, 2016) and has 

also been used during several projects at WRNS Studio, an architecture and planning firm 

located in San Francisco, California. As such, it has been proven useful in actual practise. 



31 

 

 

Figure 18: Students at Chalmers University of Technology presenting design proposals using live 

walkthroughs in BIMXplorer. 
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6 Discussion 

In this section the results from the five appended papers are discussed in relation to the four 

research questions posed in Section 1 as well as the requirements outlined in Section 4. 

6.1 Current state of BIM visualization 
Going back to the initial problem statement, previous literature had already recognized the 

challenges of using BIMs for the purpose of real-time visualization. Still, many questions 

remained, such as the magnitude of the problems and how these were related to hardware and 

model complexity. However, based on the results from the five appended papers we can now 

conclude that this is, in fact, a real issue. In essence, all papers reveal this in that additional 

acceleration techniques – i.e. beyond that of conventional view-frustum culling or brute-force 

rendering – are needed in order to provide a suitable level of interactivity when rendering 

large BIMs taken from real-world projects. Furthermore, the in-depth analysis in Paper II 

shows that existing BIM-viewers are currently unable to address the problem in a satisfying 

manner. Also, given the huge spread in terms of rendering performance these problems can no 

longer only be discussed in relation to model complexity and lack of efficient hardware, but 

needs to include software capacity as an additional variable. For instance, with BIMSight any 

model may be seen as large and complex. 

Still, it is also very important to acknowledge that several BIM-viewers have techniques to 

guarantee a certain level of interactivity by sacrificing correctness (e.g. drop culling). 

However, as identified in Paper II, the use of drop culling does not only produce an incorrect 

image but also gives very obvious “popping” artefacts as the priority of which objects to 

render constantly changes. Although no formal evaluation has been conducted as to what 

degree, if any, that this influences experience and usage negatively, these ”popping” artefacts 

has been reported as very distracting in previous literature (Willmott et al., 2001; Giegl and 

Wimmer, 2007). As such, this thesis argues that non-conservative acceleration techniques 

such as drop culling are not an adequate solution to the interactivity problem. 

Furthermore, when considering the actual interactivity problem as well as the corresponding 

requirements on frame rate, this is something that has changed during the course of this work. 

Although 60 Hz was initially considered an optimal level of interactivity this is no longer the 

case for all display systems. With the introduction of a new generation of HMDs, such as the 

Oculus Rift, 90Hz is now considered the absolute minimum (Hasan and Yu, 2015). Due to 

very strong connection to the tracker system, any update rate below 90 Hz will provide such 

visual artefacts that the system essentially becomes useless. As such, this requirement is 

different compared to desktop VR, where lower frame rates may still give an ok experience, 

although with less fidelity (Claypool, 2007; Rubino and Power, 2008). When also taking into 

account that these devices require the 3D scene to be rendered twice it should be no doubt that 

existing systems or techniques will not be able support HMDs in their current state. 
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In this context it is also important to highlight the recent trend within the AEC industry to use 

game engines for the purpose of real-time visualizations. Although game engines typically 

share the same performance problems as dedicated BIM-viewer they often have in-built tools 

or overall support to optimize or prepare 3D models for real-time performance. As such, it is 

then possible to prepare or optimize a BIM for the purpose of real-time visualization. 

However, this process typically involves a lot of labour-intensive, manual work making it less 

suitable in practise (Shi et al., 2015; Merschbrock et al., 2016). 

Recent times have also seen the introduction of a couple of commercial applications, such as 

Revizto and Enscape, which mimics the behaviour of BIMXplorer in that they provide a 

plugin interface to a BIM authoring environment, e.g. Revit. These applications have not been 

thoroughly evaluated as part of this thesis. However, as of an initial investigation it is clear 

that these systems primarily rely on brute-force performance, and therefore will have 

difficulties to scale up to the large type of BIMs that have been evaluated in this thesis. 

In relation to the above discussion it is also relevant to pose the question of whether or not we 

truly need to be able to visualize large BIMs in the first place. A simple solution to the 

interactivity problem would instead be to only visualize sub-sets of a complete building 

model, which is already a commonly used approach (Dubler et al., 2010; Shi et al., 2015). 

Assuming a reasonably powerful hardware it is very likely that the interactivity demands can 

be fulfilled as long as we restrict the visualization session to a certain region of a building. 

However, being forced to work with a sub-set of a complete model for the sake of 

performance is, by all means, a restriction. Although this thesis have only addressed actual 

user studies to a small degree (i.e. Paper IV), there are other recent publications that have 

conducted user studies with this particular system (Jörnebrant and Tomsa, 2015; Roupé et al., 

2016; Brännström and Ljusteräng, 2016). Here, the ability to interactively navigate a complete 

building have been identified as a major feature in that it allows stakeholders to inspect the 

building as a whole and study and get an understanding of internal logistics and 

communication, e.g. ”how many doors needs to be passed in order to get from the entrance to 

the lab area?”. Also, the ability to have everything in a single model has been expressed as an 

important aspect in order to truly have a virtual representation of the actual building (Roupé et 

al., 2016). Nevertheless, the techniques and, ultimately, the final system – BIMXplorer – 

developed within the scope of this thesis naturally supports the ability to only show sub-set of 

a complete model.  

Connecting to all of this is of course on what premises existing solutions as well as the 

developed techniques have been evaluated. In other words, are the models used relevant test 

cases? Except for the two models used in Paper I, all models have been received from real-

world projects. Ranging from apartment and office buildings to more open ones, such as a 

library or hotel, they represent the wide variety of building types that can be encountered in 

practise. Also, these models have not primarily been chosen to showcase the developed 

technique, but instead been used as drivers for the development of new techniques. To better 

simulate a worst-case scenario two of the models (the hotel and the office building) have been 
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”completed”  in that furniture and other interior equipment have been placed at all levels (i.e. 

floors) in the building(s). Among Swedish architects the general strategy today appears to be 

to only add interior equipment at certain levels in order to not make the models too large and 

complex. This, however, appears not to be the case in the US (Maller, 2011) and in order to 

better mimic an international situation additional levels have therefore been ”completed”. 

6.2 Efficient real-time rendering of BIMs 
Regarding ways to accelerate real-time rendering of BIMs two main ideas were initially 

considered: (1) to take advantage of the natural occlusion present in typical buildings and (2) 

to take advantage of the additional information (e.g. metadata) contained in a BIM. Both these 

ideas were explored and combined in Paper I, where information about spaces and openings 

was used to take advantage of portal culling (Luebke and Georges, 1995) without the need for 

any manual interaction or offline pre-processing. Although portal culling has been primarily 

used for indoor scenes it was shown to be efficient also for exterior viewpoints if additional 

techniques were added.  However, even if the developed technique solved the performance 

problem of rendering large BIMs it turned out to be less suitable in practise. Because of the 

strong requirement that spaces and openings has to be correctly defined in the model, it would 

only be fully functional in situations where complete BIMs (i.e. complete in the sense that all 

spaces and openings are present) can be guaranteed. Although openings are typically 

generated automatically in a BIM authoring system as soon as a door or window is placed in a 

wall, the same is not true for spaces. Instead, spaces have to be manually added to the model 

as any other object - a process typically done during later stages of the design. Consequently, 

to support real-time visualization during all stages of the design process, it becomes difficult 

to have the main acceleration technique depend on a specific type of object - or specific data - 

being present in the model. Instead, a much more versatile solution could be found simply by 

looking at the general characteristics of a typical BIM – high level of geometry occlusion. As 

identified in Paper II, CHC++ (Mattausch et al., 2008), a state-of-the art occlusion culling 

algorithm, turned out to be a very good fit for real-time rendering of BIMs, essentially 

outperforming all existing BIM viewers on the market. Although perhaps seen as an obvious 

choice in retrospect, a general occlusion culling system is by far not guaranteed to always be a 

suitable solution. As seen from the performance results from the Navisworks occlusion 

culling system, it may very well perform worse than simple view frustum culling for many 

viewpoints. Nevertheless, CHC++ turned out to be very efficient, not only in interior, but also 

for exterior viewpoints, making it a very good starting point for further improvements. Still, 

even if the rejection of hidden objects provide a huge speed-up, there are typically several 

viewpoints that contain many objects that are, in fact, visible. Based on the simple logic that 

there is a high probability that such viewpoint contain many replicated objects, e.g. imagine 

all the windows seen in a hotel facade , Paper III then explored the possibility of combining 

occlusion culling with hardware-accelerated instancing – a feature on modern GPUs to render 

replicated objects efficiently. Although the use of instancing as well as occlusion culling has 

many examples in the literature, no known efforts had been previously made to combine these 

two techniques. 
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As seen from the results in Paper III, the idea of providing instanced rendering of un-occluded 

replicated objects, turned out to be a very good complement to the original CHC++ algorithm. 

As with the portal culling approach, the use of instancing requires specific data being present 

in the BIM. However, this information forms an integral part of any modern BIM authoring 

system – once an object of a certain type is added to the model it essentially becomes an 

instance of that type, meaning that the required data becomes available from the model. Also, 

the main difference compared to the portal culling approach is that the instancing technique is 

implemented in a way that takes advantage of replicated objects if present, but simply 

degrades to a standard CHC++ solution if there are no visible replicated objects. In other 

words, the technique does not negatively affect performance if no replicated objects are found 

visible. 

However, with the introduction of a new type of consumer-directed HMDs, the rendering 

performance requirements changed. Not only became frame-rate requirements higher, but also 

the requirement of producing two different views every frame. As identified in Paper IV, the 

developed techniques were suitable also for stereo rendering. Even if two rendering passes 

was now required (i.e. one for each eye) the current acceleration technique was still efficient 

enough to support real-time frame rates. Nevertheless, as the performance demands, in terms 

of resolution and frame rate, became higher for each version of the HMDs it became clear that 

additional acceleration techniques were eventually needed. Fortunately, the concept of 

hardware instancing turned out to offer a solution also in this case. As identified in Paper II, 

the occlusion culling system was mainly CPU-bound on high end systems due to a large 

number of draw-calls. With a traditional stereo setup, this amount essentially doubled. 

Although the instancing technique (Paper III, IV) made the situation better, the amount of 

draw-calls still needed to be reduced in order to reach the required frame rates. The successful 

use of instancing then naturally sparked the idea of also using it for stereo rendering. After all, 

stereo rendering is essentially a process of rendering almost two replicates of the complete 

3D-scene. Ultimately, this idea then became stereo instancing – an efficient single-pass stereo 

rendering technique. As seen from the results in Paper V, this also made a perfect fit for the 

occlusion culling system, in that not only draw-calls, but also occlusion tests became reduced 

by a factor of two, i.e. as compared to a traditional two-pass stereo setup.  

As it would turn out, however, the concept and potential of stereo instancing had 

independently been recognized by developers from the game development community 

(Wilson, 2015). At the time of formal publication of Paper V, the stereo instancing technique 

was already considered a best practise within the game development industry (Vlachos, 

2015). Still, the paper contributes the first detailed description of the technique and a thorough 

performance evaluation. For the purpose of efficiently rendering BIMs it is also the actual 

combination of the different techniques – i.e. occlusion culling, stereo instancing, 

conventional instancing and batching of walls – that is important in order to provide the 

required frame rates. 
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So, in perspective, the initial idea of taking advantage of the natural occlusion present in 

buildings as well as metadata actually turned out to be a successful approach, albeit in a 

different form. 

Nevertheless, in this context it may also be relevant to further discuss the brute-force 

approach. Given that this alternative was surprisingly close to deliver sufficient frame rates 

for the Hotel model (Paper V), it does seem like a viable option in the near future. However, 

although this was true for the Hotel model, this was not nearly the case for the Student house 

or Office buildings. With the Hotel model only having roughly half the amount of triangles 

compared to the Office building, this puts things in perspective. Another aspect to consider is 

that with the brute-force approach essentially all of the GPUs power will be used simply to 

rasterize triangles. That is, even if the brute-force performance of future GPUs will be able to 

manage all of the dataset within an acceptable time frame, there will be less processing power 

left to do better shading, like SSAO, for instance. As such, it will always make sense to use 

additional acceleration techniques in order to better utilize the GPUs resources. 

6.3 Integration of VR within the AEC field 
In order for VR to become a natural and integrated tool within the design process there is 

more to consider than just the ability to visualize large BIMs in real-time. For instance, if 

time-consuming pre-processing steps or manual interactions are needed in order to support 

real-time performance it is highly likely that this will affect a natural integration negatively 

(Liu at al., 2014). However, following a design science approach, the techniques presented as 

part of this thesis have all been developed with the requirements and the integrational aspects 

in mind. Going back to the requirements that the final artefact should be evaluated against 

(Section 4), these can essentially be summarized as “Being able to support instant/direct, 

artifact-free and user-friendly real-time VR walkthroughs of architectural BIMs taken from 

real-world projects on systems that exist today”. When considering real-time performance as 

well as the actual definition of what real-time is the previous subsections have already 

discussed this. It has been shown that, when combined, the developed techniques and 

algorithms allow architectural BIMs taken from real-world projects to be rendered, in stereo, 

at more than 90 frames per second on off-the-shelf laptops. Moreover, contrary to the 

approach taken by several existing BIM-viewer, the developed techniques do not introduce 

any visual artefacts, e.g. omitting objects that should be visible.  

When considering the actual integration of VR within the design process, Paper IV introduced 

the idea of using the rendering engine as a plugin in a BIM authoring application instead of a 

stand-alone application. Together with the use of a new type of consumer-directed HMD, the 

Oculus Rift, it essentially offers a “one button click” connection between the design 

environment, i.e. the BIM authoring software, and immersive VR. Compared to previous 

immersive solutions, like CAVEs and Powerwalls, this opens up a number of possibilities 

within the design process. With a low cost, portable solution that directly support BIMs it is 

possible to take advantage of immersive visualizations anywhere at any time during the 
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design process. Although the very existence of the Oculus and HTC Vive made much of this 

possible, it must be highlighted that the techniques developed in this thesis are very important 

in order for the VR-technology to be used as an everyday tool during the design. As already 

discussed, the real-time rendering strategy used by any of the tested BIM viewers will not 

support modern HMDs. That is, even if stereo VR support was formally added, none of the 

tested viewers would be able to provide the required frame rates without introducing severe 

visual artefacts. Nevertheless, if we also include the use of game engines several examples 

can be found where modern HMDs has been used to provide immersive visualizations of 

BIMs. Still, as discussed, the use of game engines for the purpose of BIM visualizations 

currently requires additional optimization and preparation time. Even if an efficient pipeline 

or work procedure has been established (Halaby, 2015), this process can easily range from 

hours to days. In comparison, the technical contributions presented in this thesis cut this 

process down to, on average, 60 seconds for complete architectural BIMs. Not only does this 

make the use of immersive VR highly accessible in the first place, but it also supports an 

active use during fast design iterations.  

Furthermore, as evaluated in Paper IV, the simple navigation interface makes it suitable also 

for inexperienced users. Especially when considering building end-users this becomes an 

important property. As of today user involvement is mostly restricted to reviewing traditional 

2D-plans which may be difficult to fully interpret for all the different stakeholders in a 

project. With the ability for any type of user to freely navigate proposed designs from an 

immersive, first person perspective a much better understanding can often be achieved 

(Heydarian at al., 2015). 

To what extent the technical contributions and, ultimately, the final system will pave the way 

for a more integrated use of VR during the design process remains somewhat an unanswered 

question. As evaluated against the technical requirements it has all the properties needed in 

order to function well in practise. Still, except for the evaluation of the navigation interface, 

no formal/documented user-studies have been conducted within the scope of this thesis. 

However, early versions of the system, as well as the final system have already been used in 

several other studies, where its suitability as a tool to enhance understanding and 

communication has been highlighted (Kreutzberg, 2015; Roupé et al., 2016; Hermund and 

Klint, 2016). It has also been used during several courses at Chalmers University of 

Technology. In addition, it has been in active use in several construction projects for over a 

year at NCC Construction Sweden (Jörnebrant and Tomsa, 2015; Roupé et al., 2016; 

Brännström and Ljusteräng, 2016). Simple logic tells us that this would not have been the 

case if the system was found unfit for use in real-world projects. 
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7 Conclusions and future work 

The research presented in this thesis has contributed to a better understanding regarding the 

complexity and challenges involved in visualizing large and detailed BIMs in real-time. It has 

been shown that additional acceleration techniques are, indeed, needed in order to solve the 

interactivity problem and that existing BIM-viewers are currently unable to address this issue 

in a satisfying manner – this at the same time as a new generation of VR hardware calls for 

even higher performance demands. 

In order to address the current situation this thesis contributes with the design and evaluation 

of a new software application that provides a “one-button-click” solution from BIM to VR. 

Following a design science research approach this application has been developed in order to 

fulfil a set of requirements that has been identified as important in order for VR and real-time 

visualization to become an everyday used tool for design and communication during the 

building design process. Along that path, three new technical solutions have been developed: 

• An efficient cells- and portals culling system that is automatically realized from BIM-

data. 

• An efficient approach for integrating occlusion culling and hardware-accelerated 

geometry instancing. 

• An efficient single-pass stereo rendering technique based on hardware-accelerated 

geometry instancing. 

The final system – BIMXplorer – has been evaluated using several BIMs received from real-

world projects. Regarding rendering performance, navigation interface and the ability to 

support fast design iterations, it has been shown to have all the needed properties in order to 

function well in practice. To some extent this can also be considered formally validated, as the 

system is already in active use within both industry and education.  

For future work there are several different directions possible. For instance, when considering 

ways to improve rendering performance there is still much work to be done within the 

following areas: 

 Spatial hierarchy The culling efficiency is inherently dependent on how well the 

 spatial hierarchy can represent the 3D scene with respect to occluding and enclosing 

 objects, such as walls and floors. As of now, the bounding volume hierarchy (BHV) is 

 constructed based on surface area and do not take into account any natural 

 containment, e.g. due to occluding walls or floors. It would be interesting to see how 

 the spatial hierarchy could be improved by taking advantage of any space objects – 

 e.g. IfcSpace or Rooms in Revit – present in the model. Interior objects, e.g. furniture, 

 could then be clustered per space object before feeding them to the BVH construction 

 procedure.  
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 Another way to improve the spatial hierarchy and, hence, the culling efficiency, would 

 be to take advantage of oriented bounding boxes (OBB) instead of axis-aligned ones 

 (AABB). As OBBs typically provides a much “tighter” fit around objects, the number 

 of visibility tests that provides false negatives would decrease. However, instead of 

 creating “true” oriented bounding boxes, it would be interesting to explore the concept 

 of building-oriented bounding boxes. With the interior and exterior walls of most 

 buildings following a local, orthonormal coordinate frame, it makes much sense to 

 then orient all of the 3D scenes bounding boxes accordingly. This would then prevent 

 many situations where object bounds intersect walls and becomes (falsely) detected as 

 visible from the other side. Even if the local coordinate frame is not explicitly known, 

 it should be straightforward to calculate it based on the normals of the wall geometry 

 weighted against its surface area for all the walls contained in a BIM. 

 Occlusion culling The biggest disadvantage of using occlusion queries is the latency 

 introduced by waiting for the result of the queries to return to the CPU-side of the 

 application. CHC++ hides this latency fairly efficient by rendering previously visible 

 objects during the wait-time, but it is still not an optimal solution. The readback of 

 data from the GPU is required mainly because of the GPUs inability to feed itself with 

 draw calls (Rákos, 2012). However, with recent extensions to the OpenGL API this 

 restriction has been relaxed and it has been shown possible to implement an occlusion 

 culling system mainly on the GPU (Boudier and Kubisch, 2015). Further exploring 

 these features thus represents an obvious direction for future research. 

 Level-of-detail (LOD) As BIMs become even more detailed and several of them are 

 to be visualized together, the concept of LOD needs to be considered in order to 

 reduce the sheer amount of triangles that has to be rendered. Ultimately, in order to 

 provide a scalable solution, this has to be done both locally, i.e. per object, as well as 

 globally, i.e. for a whole facade or a whole building. However, neither of these tasks is 

 trivial to address automatically – especially if it also has to be done in a short amount 

 of time (Luebke et al., 2002; Arroyo Ohori, 2016). When considering per-object 

 simplification it makes sense to initially focus on furniture and other interior 

 equipment, as these types of objects often contain an excessive amount of triangles. A 

 good starting point would probably be to first explore and evaluate the results that can 

 be achieved by simplifying individual interior objects using edge collapse 

 (Luebke et al., 2002; Melax, 1998).  

Going beyond that of acceleration techniques, there is also much room for further research 

and development regarding suitable interaction interfaces for different types of applications – 

e.g. design review or information extraction on-site – as well as user-studies related to 

perception and spatial understanding with modern HMDs. Moreover, when looking at these 

things in a larger context, it would be interesting to see to what degree an integrated use of 

VR will affect the design process and, ultimately, the buildings that are a result of it. 
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