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Symptom Quantification for Parkinson’s Disease
MAREIKE WENDEBOURG

Department of Signals and Systems

Chalmers University of Technology

ABSTRACT

Today, Parkinson’s disease is the second most common age related degenerative disorder
presenting a complex set of both cognitive and motor symptoms. Medication for the
treatment of motor symptoms exists but the development of effective treatment plans
without technical aids is tedious. These aids could include sensor systems for the objective
evaluation and quantification of symptoms in short- and long-term settings for both the
clinical and the home environment. Recently, several studies have shown the feasibility
of symptom quantification with the help of gyroscopes or accelerometers. Utilizing such
measurements, this work aims at a comparison of several supervised learning methods in
order to find the most suitable model structure and therefore the best modeling approach
for the quantification of bradykinesia in Parkinson’s patients using the example of repeated
forearm-rotation, which is a routine motion from Parkinson’s test protocols.

The measurement characteristics applied for model development were based on knowl-
edge about the considered movement and motion patterns in Parkinson’s disease as well
as on insights provided by the literature on other studies concerning the quantification
of Parkinson’s symptoms. The considered parametric and non-parametric models were
developed for a number of sensor subsets and compared in terms of cross-validated mean
squared prediction errors obtained for data not utilized during model development. As
expected, it was found that when considering only gyroscopes, those measurements of an-
gular velocities around the axis of the forearm were most relevant to model development.
Additionally, results generally improved when using principal component analysis for di-
mension reduction prior to model development. The best results were obtained for local
regression when applied to only two characteristics of measurements of angular velocities
around the forearm, closely followed by linear regression using the same two characteristics.

Keywords: Symptom quantification, Parkinson’s treatment, statistical learning, machine
learning, supervised learning, bradykinesia, gyroscope, accelerometer
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Chapter 1

Introduction

For the past decades, interest in technical solutions to medical problems has risen rapidly.
Simultaneously, an ever advancing standard of living and improvements in medical care
have led to an increase in life expectancy in many parts of the world. The resulting ageing
population presents one of the major challenges imposed on health care systems today,
and besides further development of rehabilitation techniques, advances in technical aids
are needed.

According to Przedborski [24], the most common age related degenerative disorders
are Alzheimer’s and Parkinson’s disease. The latter presents easily measurable but highly
variable motor symptoms including e.g. bradykinesia (slowness of movements), postu-
ral instability and freezing of gait. The variability of symptom severity complicates the
development of effective treatment plans. Imprecise medication is a great concern as over-
medication promotes the development of side effects as e.g. involuntary and exaggerated
movement known as dyskinesia in absence of voluntary movement, while sufficient medi-
cation is necessary to prevent a reduced quality of life as movement restricting symptoms
may limit a patient’s ability to perform daily tasks independently.

Today, symptoms are evaluated and manually quantified by physicians with help of
patient journals and through observation. However, most patients struggle to report
symptom severity and nature accurately [5]. This leads to the undesirable situation of a
physician’s assessment depending mainly on the display of symptoms within a very short
time frame.

Additionally, similar symptoms may be rated differently depending on the physician’s
training and experience. Consequently, the development of each individual patient’s treat-
ment plan as well as its adjustment as the disease progresses is cumbersome and time-
consuming, since an objective evaluation of patient symptoms is not available. Therefore,
the development of technical aids for short- and long-term objective symptom evalua-
tion in both the clinical and the home environment is necessary in order to improve the
treatment of each patient as well as the objective assessment of new treatment methods.

According to Marsden and Schachter [I7], devices for measuring tremor (involuntary
shaking or repeated movement) in Parkinson’s patients with help of mechanical and pneu-
matic components were invented as early as in the 1880s. In the second half of the 20th
century, these devices were replaced by electromyographs (EMG) and accelerometers which
were utilized for studies on the possibility of objective descriptions of several symptoms
present in Parkinson’s disease.

Recently, several research groups have successfully quantified symptoms using ac-
celerometers and gyroscopes (compare [I}, 2, 3] [5, O, 211, 26], B1]). These studies illustrate
that symptoms can be quantified using measurements of both pre-defined motion protocols



and motions resulting from daily-life activities. However, most studies so far considered
only a small number of measurement characteristics referred to as predictors or features
and each only a single statistical or machine learning method. Counterexamples include
Patel et al. [21I] who utilized support vector machines (SVM) with three different kernels
as well as Cancela et al. [3] and Tsipouras et al. [31] who compared several non-parametric
methods including k-nearest neighbors (KNN), decision trees and neural networks with
regard to bradykinesia and/or dyskinesia.

Additionally, Patel et al. [21] quantified tremor. Both bradykinesia and tremor respond
well to medication, thus their objective quantification may be used to evaluate medical
treatment [16]. However, tremor is not seen as one of the most disabling symptoms of
Parkinson’s disease [16]. Therefore, this work focuses on the quantification of bradykinesia
which describes slowness of both initiation and execution of movements.

While bradykinesia has been quantified by several research groups, this work aims
to provide a comparison of the usefulness of various statistical machine learningﬂ meth-
ods in terms of minimal prediction errors using the example of one pre-defined motion.
For this purpose, several parametric and non-parametric models are considered including
linear regression, forward selection, backward selection, ridge regression, the lasso, local
regression, multivariate adaptive regression splines, KNN, decision trees, support vector
machines and principal component analysis as a pre-processing step for linear regression,
local regression, smoothing splines, KNN and decision trees.

Parametric models are of interest because they may reflect the underlying mathemat-
ical correlation between motion characteristics of movements of Parkinson’s patients and
the corresponding rating of their symptoms, while non-parametric models can offer greater
flexibility since they avoid the explicit assumption of a pre-specified model structure.

Furthermore, a number of different predictor sets are evaluated. Within each predictor
set, predictor selection is left to statistical machine learning methods as e.g. forward
selection and the lasso which are designed to choose the most useful out of all available
predictors. The 120 predictors defined in this work are based on the literature (compare
[, 2, 8, 5, @, 211, 26], 31, 34]) as well as on knowledge regarding the measured movement
and symptoms of Parkinson’s disease.

The results are reported in the form of the average mean square error (MSE) where
the average MSE is determined as the average of all test errors resulting from comparison
of known and predicted symptom scores for data sets which were not used for model
development. Due to the limited amount of available data, the test errors are estimated
using cross-validation. Additionally, nested cross-validation is used for parameter selection
and model assessment for models requiring the selection of a tuning parameter.

The following chapters include some information on Parkinson’s disease and the utilized
data (chapter , an overview of the applied statistical machine learning methods (chapter
3) as well as their implementation (chapter [5)), a description of the defined predictors
(chapter [4)) and a discussion of the obtained results (chapters [6] - 7))

The term “statistical machine learning” describes machine learning using statistical methods and will
be used in order to avoid ambiguities connected to the terms “machine learning” and “statistical learning”.



Chapter 2

Background

The objective of this work is to find the most suitable model structure and therefore the
best modeling approach for the quantification of bradykinesia in Parkinson’s patients.
This requires insights not only into modeling but also into Parkinson’s disease and the
data utilized for model development. The mathematical methods applied in this work are
described in chapter 3, while an overview of Parkinson’s disease and the utilized data is
provided in this chapter.

2.1 Parkinson’s Disease

Parkinson’s disease is a degenerative disorder mainly affecting dopamine generating cells
in the substantia nigra located in the mesencephalon (midbrain) which is part of brain
stem [24].

According to the Swedish Parkinson’s Association (Parkinsonférbundet) about 22.000
people are living with Parkinson’s disease in Sweden [20]. Studies from all over the world
indicate that about 5 to 26 per 100.000 persons are diagnosed with Parkinson’s disease an-
nually [27]. These numbers imply between 363.000 and 1.926.200 new diagnoses worldwide
every year.

It has been estimated that 10 — 15% of all Parkinson’s cases are inherited, but the
“vast majority of PD cases occur sporadically with no obvious cause” [I§]. According to
McNaught et al. [I§], several risk factors as toxins, infectious agents and occupational
hazards have been investigated without conclusive results. Some studies found indications
of correlations between Parkinson’s disease and exposure to pesticides, rural living, well-
water drinking, employment in agriculture and repeated head trauma, but according to
Schrag [27] neither one of these factors is likely to be the single cause of Parkinson’s
disease.

Parkinson’s symptoms include motoric problems as tremor, rigidity, bradykinesia (slow-
ness of movements), postural instability and freezing of gait (walking) but also dementia,
depression, sleeping disorders and autonomic dysfunctions as constipation as well as uri-
nary and sexual dysfunction [22] 24 32]. Furthermore, sensory symptoms as numbness,
burning, tingling, heat, coldness and pain emerge in 40 — 50% of all Parkinson’s patients
[22]. A diagnosis requires the presence of bradykinesia as well as tremor, postural insta-
bility or rigidity for which no other cause can be found [32].

Parkinson’s patients face shortened life expectancies although it is not evident whether
their increased mortality is due to the disease itself or due to the physical impairment
caused by the disease [24, 27]. Untreated or advanced Parkinson’s patients are more likely
to suffer from aspiration pneumonia (lung inflammation caused by the inhalation of foreign



matter), pressure sores, malnutrition, dehydration and potentially disabling or even fatal
falls [24].

Symptomatic treatment includes dopamine-replacing drugs such as levodopa as well as
dopamine agonists [30]. These treatments are crucial for the prolongation of patients’ em-
ployability and independence and may even increase life expectancy [30]. Unfortunately,
drug treatments can cause serious side-effects, as for example insomnia, somnolence (sleepi-
ness), nausea, vomiting, dizziness, bradycardia (slow heart rate), hallucinations, psychosis
and leg edema (swelling) [30, 22].

Generally, the process of determining the correct medication dosage is extremely diffi-
cult due to the fact that Parkinson’s symptoms vary greatly depending on fatigue, stress,
time of the day, medication, and many other factors, such as bowel movements. Addi-
tionally, long-term usage of levodopa induces dyskinesia (involuntary movement) and an
increase in symptom fluctuations due to shortening of the intervals in which medication
is effective [30].

Usually, medication intake results in periods of diminished motor symptoms described
as “on” phases followed by a return of symptoms in so called “off” phases. In advanced
Parkinson’s disease dyskinesia may be present in both the “on” and the “off” stage, which
can alternate rapidly. These symptom variations explain why according to Tolosa and
Katzenschlager [30], “It often requires a determined patient and a doctor with patience to
achieve significant improvements”.

Evidently, patients would benefit immensely from simultaneously more accurate and
easily adaptable medication schemes. Readily accessible quantitative long-term informa-
tion regarding symptom severity and development could aid physicians in the preparation
of such schemes. However, although research has shown the feasibility of the utilization
of technical tools for the generation of quantitative long-term information, much is still
unknown about their optimal set-up. This work aims to contribute to the development of
such systems.

2.2 Available Data

The data used in this work was obtained at Uppsala’s Akademiska Sjukhuset in a study
incorporated in the MuSyQ project (multimodal motor symptoms quantification plat-
form for individualized Parkinson’s disease treatment), project number 2014-03727 [33],
financed by Vinnova, Sweden’s innovation authority.

Measurements were recorded with commercial Shimmer3 sensors [29] fixed to the par-
ticipants’ wrists, ankles and chest with elastic bands in order to enable recording of motions
of all limbs as well as the overall posture. Each of these sensor units included three-axial
gyroscopes and accelerometers. 19 patients diagnosed with advanced Parkinson’s disease
participated in the study. All patients provided signed consent prior to participation and
all tests were approved by the Uppsala Ethical Review Board.

Each patient completed a set of tasks including some tasks defined in the unified
Parkinson’s disease rating scale (UPDRS) protocol. One of those tasks was the continuous
alternating rotation of the forearm as shown in figure [2.1) which is the task whose wrist
sensor measurements will be utilized in this study. This movement corresponds to item
25 in the UPDRS protocol. The execution of all tasks was filmed and the individual
symptoms present were evaluated independently by three physicians trained in the field of
movement disorders. The resulting scores on individual UPDRS items, the total UPDRS
and the treatment response scale (TRS) were available for this work.

According to Kompoliti et al. [13], the UPDRS is “the international gold standard of
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Figure 2.1: Rotation, i.e. supination and pronation, of the forearm [6]

clinical rating scales for PD”. It ranges from 0 to 4, where a score of 0 indicates the absence
of symptoms while a patient receives a 4 if he or she is not remotely able to execute the
task. Parkinson’s symptoms are often more severe on one side of the patient’s body. In
this study, the evaluating physicians were instructed to assign one UPDRS item score for
both hands and in case of mismatch of symptoms in both hands, to give more weight to
the hand displaying more severe symptoms.

The TRS ranges from —3 to +3. Negative scores imply bradykinesic symptoms as
derived from the UPDRS, while positive scores describe dyskinetic symptoms and a score
of 0 implies the absence of symptoms. However, often bradykinesia and dyskinesia are
present simultaneously. In such cases, the TRS score describes the more pronounced
Symptom.

Both the UPDRS and the TRS are commonly used for clinical evaluation of Parkinson’s
symptoms and allow the intuitive interpretation of measured symptoms by physicians and
patients. Generally, dyskinetic symptoms are less prevalent during voluntary movement
as the forearm-rotation considered here. Due to this and the ambiguity of TRS scores for
concurrent bradykinetic and dyskinetic symptoms, this work focuses on the quantification
of bradykinesia. More specifically, the symptoms present in the wrist sensor measurements
will be quantified in terms of and compared to corresponding ratings for item 25 of the
UPDRS.

In order to allow the recording of symptoms present in an unmedicated state, i.e.
the state of maximal bradykinesia, the study’s participants were asked to refrain from
medication intake the morning of the study. After each of the tasks specified in the test
protocol was completed once, the patients took medication equivalent to 150% of their
usual morning dosage to enable measurements of a wide range of symptoms.

Following the medication intake, the test protocol was repeated four times in 20 minute
intervals, and then in 30 minute intervals for as long as the patient was willing to continue.
The patients could abort the study at any time and resume their normal medication
intake. Considering wrist measurements of only each patients’ more affected hand, 10
to 15 measurements of approximately 20 seconds of forearm rotation were obtained per
patient and sensor.

Both, the total number of wrist measurements recorded for each patient’s more affected
hand and the number of measurements of each patient’s more affected hand corresponding
to each UPDRS score are summarized in table Here, the provided UPDRS score is
the median of the scores assigned by the three physicians. The last row of the table shows
the total number of measurements and the number of measurements available for each
score on the UPDRS scale for each patient’s more affected hand.

The indicated fold numbers were utilized for cross-validation purposes described in



later chapters. Cross-validation is explained in section

Considering table one may observe that the UPDRS scores of the obtained mea-
surements are not evenly distributed. Especially measurements with the most extreme
UPDRS scores 0 (no symptoms) and 4 (not able to execute movement) are lacking while
many measurements received UPDRS scores of 1 (mild symptom severity) or 2 (moderate
symptom severity). Additionally, all measurements which received the highest possible
UPDRS score belong to only two different patients.

Table 2.1: Distribution of UPDRS scores over available measurements considering only
the hand with more severe symptoms

Measurements per UPDRS score

Patient Fold Measurements

0 1 2 3 4

1 1 13 2 9 2 0 0
2 2 14 0o 12 2 0 O
3 3 11 1 8 2 0 0
4 4 12 2 4 1 0
5 5 12 2 6 4 0 0
6 6 13 0 10 3 0 O
7 7 11 0 2 0 0
8 8 13 0 6 0 0
9 9 14 0 11 3 0 0
10 10 14 o 12 2 0 0
11 11 11 0O 0 11 0 O
12 12 15 0 0 15 0 O
13 13 12 0 0 1 1 0
14 14 10 0 0 1 6 3
15 - 14 0 0 14 0 0
16 15 14 0 10 4 0 O
17 16 11 0 0 4 5 2
18 17 14 0 5 0 0
19 18 14 0 4 10 0
> of measurements 242 7 108 99 23 5

For a better understanding of the available UPDRS scores, a confusion matrix showing
the physicians’ agreement among each other is given in figure This matrix illustrates
how often the individual physicians agreed with the median score of their ratings which
was used as the assumed true UPDRS score for model development.

The numbers in the green boxes on the diagonal indicate the number of ratings for
which a physician’s score agreed with the median of the three scores assigned to the same
measurement, while the numbers in the red boxes show how often a physician assigned
the UPDRS score denoted on the vertical axis when the median of the assigned UPDRS
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Figure 2.2: Confusion matrix relating the UPDRS scores assigned by each individual
physician to the median of the UPDRS scores assigned by all three physicians

scores for the same measurement corresponded to the score given on the horizontal axis.

For example, for seven measurements the median of the UPDRS scores assigned by
the three physicians was 0. However, out of all 21 ratings assigned to these seven mea-
surements, 15 were equal to 0 while six were equal to 1. Consequently, an assumed true
UPDRS score of 0 is supported by 71.4% of all physicians’ ratings. On the other hand,
an UPDRS score of 0 was assigned 64 times in total. However, in 76.6% of all cases when
one physician assigned an UPDRS score of 0, the other two physicians assigned a higher
score.

Of course, at least one third of the individually assigned UPDRS scores are equal to
the median UPDRS score by design since this median score is defined as one of the three
UPDRS scores assigned to each measurement. Nonetheless, one may observe that the
physicians’ assessment frequently differed by one step on the UPDRS scale but seldom by
more. Furthermore, the physicians disagreed most often in the lower range of the UPDRS
scale.

Overall, only 69.2% of all ratings corresponded to the UPDRS score that was used for
model development. This number illustrates the difficulties of manual symptom quantifi-
cation.



Chapter 3

Statistical Machine Learning

Statistical machine learning describes a number of methods useful for understanding data.
These include supervised learning methods which, according to James et al. [10], aim at
the prediction of some outcome based on knowledge gained from similar observations whose
outcomes are known, where each observation is described by p characteristics referred to
as predictors or features. In other words, given n outcomes or responses Y := {y1,...,yn}
and corresponding observations X := {zy,...,x,}, each represented by p predictors such
that x; = (z41,...,%ip), one strives to estimate the mathematical relationship between
X and Y in order to enable the prediction of unknown responses corresponding to new
observations. This estimation process includes both the formulation of a model, also
known as training, and the validation of the obtained model.

Once a model has been developed, a measure for the models quality is given by the
mean square error (MSE), where x; and y; are the observations and responses of a new
data set while f describes the previously determined model:

MSE =23 (5 Fan) (3.1)
= — Yi — ZT; ) . .
"o
In this work, the median of the ratings assigned by the three physician individually was
used as the true response y;.

3.1 Model Formulation

Today, a vast number of approaches for model formulation are available. These include
models for continuous as well as discrete response values, usually described as regression
and classification models respectively. Regression models may be utilized for the prediction
of discrete response values as well, if the response values have a natural ordering and thus,
the continuous responses may be rounded in order to obtain discrete response values.

The data available has response values 0, 1, 2, 3 and 4 corresponding to UPDRS
scores, where an increase of the response value implies an increase in symptom severity.
Therefore, both regression and classification methods may be applied.

In this work, linear regression, forward selection, backward selection, ridge regression,
the lasso, local regression, smoothing splines, multivariate adaptive regression splines, k-
nearest neighbors, decision trees and support vector machines were applied. Furthermore,
principal component analysis was utilized for dimension reduction as a pre-processing step
for some methods including linear regression, local regression, smoothing splines, k-nearest
neighbors and decision trees. Each of the mentioned methods is explained in detail in the
following utilizing information given by James et al. [10] and Hastie et al. [7].



3.1.1 Linear Regression

Linear regression is the most basic statistical machine learning method which assumes a
linear relationship between the observations X and the corresponding responses Y':

Yi = Bo + Brain + Boziz + ...+ Bpip

P
~ Bo+ Y Bjaij. (32)
=1
It is insensitive to scaling of predictors since the model coefficients Sy, ..., 3, are ad-

justed accordingly.

The optimal model coefficients in the least-squares sense are estimated as the coeffi-
cients fo, ..., Bp minimizing the residual sum of squares (RSS). The RSS describes the
squared prediction error of the model for training data, where gy; denotes the response y;
as estimated by the linear regression model:

RSS =7 (yi — ;)
i=1
= Z (yz —Bo— Prwin — ... — Bpxip)2- (3.3)
i=1

The RSS defines a training error, i.e. a measure of the error resulting from prediction of
responses for data that was utilized for development or so called training of the prediction
model. This implies that the RSS will probably be considerably smaller than the error
resulting from application of the model to previously unknown data.

Nonetheless, the minimization of the RSS provides the best linear fit for the training
data, i.e. data used during model development, and may be utilized for comparison of how
well two models obtained using the same training data, model structure, tuning parameter
(if applicable) and number of predictors are able to fit to the data.

3.1.2 Forward Selection

One disadvantage of the linear regression approach is that it takes into account all p pro-
vided predictors. However, in reality some of the p predictors may not actually be related
to the response. These predictors will act as noise in the obtained model. Therefore, it
would often be preferable to have a model which selects the predictors most relevant for
the response. One may attempt to find the best subset of predictors by testing all 27
possible combinations, but this approach easily becomes computationally infeasible as the
number of predictors p increases.

A more efficient alternative is provided by forward selection, which adds predictors to
the model one by one. However, one should be aware that forward selection is a greedy
approach, i.e. it always chooses the currently best option without planning ahead and does
not reconsider the value of choices of previous iterations. Consequently, forward selection
does not guarantee to find the optimal model out of all 2P possible models. The procedure
is the following:

1. Determine the null model Mg containing only the intercept Bo

2. For each number of predictors k =1,...,p:



(a) Find all 0 = p—k+1 models My, that result when each of the remaining p—k+1
predictors is added to the predictors used in the previously determined model

M1

(b) From all models My,, select the one with the smallest RSS as the best model
for k predictors and define it as My

3. Choose the best model from all models M, ..., M, with help of the cross-validated
test error (explained in section (3.2.2)

According to James et al. [I0], forward selection is suitable for model development in
high-dimensional predictor spaces and can even be applied when the number of predictors
exceeds the number of observations with known responses available for model development.
Furthermore, it is possible to consider only models utilizing a smaller number of predictors
than available, hereby limiting the number of iterations of the shown procedure.

3.1.3 Backward Selection

A similar idea as for forward selection is employed in backward selection, but instead of
adding the predictor with the greatest positive impact to the model, one removes the
predictor with the least positive impact. Initially, backward selection considers the linear
regression model containing all predictors, referred to as M,. The subsequent procedure
is the following:

1. Fork=1,...,p:

(a) Find all 0 = p — k + 1 models My, that result when each of the remaining
p — k + 1 predictors is removed from the previously determined model M,,_ 11

(b) From all models My,, select the one with the smallest RSS as the best model
for p — k + 1 predictors and define it as M,,_,

(c) Remove the predictor not present in M,_j, from the predictor set

2. Choose the best model from all models My, ..., M, using the cross-validated test
error as described in section [3.2.2]

As forward selection, backward selection is a greedy approach which does not guarantee
to deliver the optimal model but is suitable for regression in high-dimensional settings.
However, contrary to forward selection, backward selection requires the number of available
training observations to be greater than the number of predictors in order to enable the
development of the full model M,,.

3.1.4 Ridge Regression

Instead of selecting specific predictors as in forward and backward selection, one may
alter their relative importance. Modification of linear regression through the addition of a
shrinkage penalty to the objective function given by the RSS as defined in equation ((3.3))
results in weighting of the coefficients Bo, ..., Bp relative to each other while shrinking
them towards zero.

Contrary to linear regression, ridge regression requires the standardization of the pre-
dictors to a comparable scale prior to model development. This holds true for most
modeling methods which rely on either the distance between observations in the predictor
space or penalize the magnitude of model coefficients.

10



The quantity minimized for ridge regression is the following:

p n p
RSS 4NN =3 (0~ o~ B — o~ Byry) + A
j=1 i=1 J=1

2

n p p
= Z Yi — ,30 — Z Bjx,;j + A Z A]2. (3.4)
i=1 j=1 j=1

Here, the shrinkage penalty A Z§:1 BJZ promotes the selection of small coefficients which
are desirable as they decrease the variance of the resulting predictions at the price of a small
increase in bias. These effects stem from a reduction in flexibility of the ridge regression
model in comparison to the linear regression model due to the constraints imposed by the
shrinkage penalty. According to James et al. [10], less flexible models are more useful in
high-dimensional predictor spaces.

The shrinkage penalty’s impact is determined by the tuning parameter A. One may
estimate the value of the tuning parameter resulting in the optimal trade-off between
variance reduction and bias enlargement with help of the nested cross-validated test error
as described in section B.2.3

3.1.5 The Lasso

Contrary to ridge regression, the lasso selects features by shrinking some coefficients to
exactly zero for sufficiently large values of the tuning parameter A\ due to its more restrictive
shrinkage penalty of the form A Z?:l‘ Bj|. Hereby, it can reduce the predictor space and
increase model interpretability. Furthermore, its ability to exclude predictors means that
the lasso is useful for model development in high-dimensional settings [10].

The lasso utilizes the following minimization criterion for estimat