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Abstract
Today, Parkinson’s disease is the second most common age related degenerative disorder
presenting a complex set of both cognitive and motor symptoms. Medication for the
treatment of motor symptoms exists but the development of effective treatment plans
without technical aids is tedious. These aids could include sensor systems for the objective
evaluation and quantification of symptoms in short- and long-term settings for both the
clinical and the home environment. Recently, several studies have shown the feasibility
of symptom quantification with the help of gyroscopes or accelerometers. Utilizing such
measurements, this work aims at a comparison of several supervised learning methods in
order to find the most suitable model structure and therefore the best modeling approach
for the quantification of bradykinesia in Parkinson’s patients using the example of repeated
forearm-rotation, which is a routine motion from Parkinson’s test protocols.

The measurement characteristics applied for model development were based on knowl-
edge about the considered movement and motion patterns in Parkinson’s disease as well
as on insights provided by the literature on other studies concerning the quantification
of Parkinson’s symptoms. The considered parametric and non-parametric models were
developed for a number of sensor subsets and compared in terms of cross-validated mean
squared prediction errors obtained for data not utilized during model development. As
expected, it was found that when considering only gyroscopes, those measurements of an-
gular velocities around the axis of the forearm were most relevant to model development.
Additionally, results generally improved when using principal component analysis for di-
mension reduction prior to model development. The best results were obtained for local
regression when applied to only two characteristics of measurements of angular velocities
around the forearm, closely followed by linear regression using the same two characteristics.

Keywords: Symptom quantification, Parkinson’s treatment, statistical learning, machine
learning, supervised learning, bradykinesia, gyroscope, accelerometer
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Chapter 1

Introduction

For the past decades, interest in technical solutions to medical problems has risen rapidly.
Simultaneously, an ever advancing standard of living and improvements in medical care
have led to an increase in life expectancy in many parts of the world. The resulting ageing
population presents one of the major challenges imposed on health care systems today,
and besides further development of rehabilitation techniques, advances in technical aids
are needed.

According to Przedborski [24], the most common age related degenerative disorders
are Alzheimer’s and Parkinson’s disease. The latter presents easily measurable but highly
variable motor symptoms including e.g. bradykinesia (slowness of movements), postu-
ral instability and freezing of gait. The variability of symptom severity complicates the
development of effective treatment plans. Imprecise medication is a great concern as over-
medication promotes the development of side effects as e.g. involuntary and exaggerated
movement known as dyskinesia in absence of voluntary movement, while sufficient medi-
cation is necessary to prevent a reduced quality of life as movement restricting symptoms
may limit a patient’s ability to perform daily tasks independently.

Today, symptoms are evaluated and manually quantified by physicians with help of
patient journals and through observation. However, most patients struggle to report
symptom severity and nature accurately [5]. This leads to the undesirable situation of a
physician’s assessment depending mainly on the display of symptoms within a very short
time frame.

Additionally, similar symptoms may be rated differently depending on the physician’s
training and experience. Consequently, the development of each individual patient’s treat-
ment plan as well as its adjustment as the disease progresses is cumbersome and time-
consuming, since an objective evaluation of patient symptoms is not available. Therefore,
the development of technical aids for short- and long-term objective symptom evalua-
tion in both the clinical and the home environment is necessary in order to improve the
treatment of each patient as well as the objective assessment of new treatment methods.

According to Marsden and Schachter [17], devices for measuring tremor (involuntary
shaking or repeated movement) in Parkinson’s patients with help of mechanical and pneu-
matic components were invented as early as in the 1880s. In the second half of the 20th
century, these devices were replaced by electromyographs (EMG) and accelerometers which
were utilized for studies on the possibility of objective descriptions of several symptoms
present in Parkinson’s disease.

Recently, several research groups have successfully quantified symptoms using ac-
celerometers and gyroscopes (compare [1, 2, 3, 5, 9, 21, 26, 31]). These studies illustrate
that symptoms can be quantified using measurements of both pre-defined motion protocols
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and motions resulting from daily-life activities. However, most studies so far considered
only a small number of measurement characteristics referred to as predictors or features
and each only a single statistical or machine learning method. Counterexamples include
Patel et al. [21] who utilized support vector machines (SVM) with three different kernels
as well as Cancela et al. [3] and Tsipouras et al. [31] who compared several non-parametric
methods including k-nearest neighbors (KNN), decision trees and neural networks with
regard to bradykinesia and/or dyskinesia.

Additionally, Patel et al. [21] quantified tremor. Both bradykinesia and tremor respond
well to medication, thus their objective quantification may be used to evaluate medical
treatment [16]. However, tremor is not seen as one of the most disabling symptoms of
Parkinson’s disease [16]. Therefore, this work focuses on the quantification of bradykinesia
which describes slowness of both initiation and execution of movements.

While bradykinesia has been quantified by several research groups, this work aims
to provide a comparison of the usefulness of various statistical machine learning1 meth-
ods in terms of minimal prediction errors using the example of one pre-defined motion.
For this purpose, several parametric and non-parametric models are considered including
linear regression, forward selection, backward selection, ridge regression, the lasso, local
regression, multivariate adaptive regression splines, KNN, decision trees, support vector
machines and principal component analysis as a pre-processing step for linear regression,
local regression, smoothing splines, KNN and decision trees.

Parametric models are of interest because they may reflect the underlying mathemat-
ical correlation between motion characteristics of movements of Parkinson’s patients and
the corresponding rating of their symptoms, while non-parametric models can offer greater
flexibility since they avoid the explicit assumption of a pre-specified model structure.

Furthermore, a number of different predictor sets are evaluated. Within each predictor
set, predictor selection is left to statistical machine learning methods as e.g. forward
selection and the lasso which are designed to choose the most useful out of all available
predictors. The 120 predictors defined in this work are based on the literature (compare
[1, 2, 3, 5, 9, 21, 26, 31, 34]) as well as on knowledge regarding the measured movement
and symptoms of Parkinson’s disease.

The results are reported in the form of the average mean square error (MSE) where
the average MSE is determined as the average of all test errors resulting from comparison
of known and predicted symptom scores for data sets which were not used for model
development. Due to the limited amount of available data, the test errors are estimated
using cross-validation. Additionally, nested cross-validation is used for parameter selection
and model assessment for models requiring the selection of a tuning parameter.

The following chapters include some information on Parkinson’s disease and the utilized
data (chapter 2), an overview of the applied statistical machine learning methods (chapter
3) as well as their implementation (chapter 5), a description of the defined predictors
(chapter 4) and a discussion of the obtained results (chapters 6 - 7).

1The term “statistical machine learning” describes machine learning using statistical methods and will
be used in order to avoid ambiguities connected to the terms “machine learning” and “statistical learning”.
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Chapter 2

Background

The objective of this work is to find the most suitable model structure and therefore the
best modeling approach for the quantification of bradykinesia in Parkinson’s patients.
This requires insights not only into modeling but also into Parkinson’s disease and the
data utilized for model development. The mathematical methods applied in this work are
described in chapter 3, while an overview of Parkinson’s disease and the utilized data is
provided in this chapter.

2.1 Parkinson’s Disease

Parkinson’s disease is a degenerative disorder mainly affecting dopamine generating cells
in the substantia nigra located in the mesencephalon (midbrain) which is part of brain
stem [24].

According to the Swedish Parkinson’s Association (Parkinsonförbundet) about 22.000
people are living with Parkinson’s disease in Sweden [20]. Studies from all over the world
indicate that about 5 to 26 per 100.000 persons are diagnosed with Parkinson’s disease an-
nually [27]. These numbers imply between 363.000 and 1.926.200 new diagnoses worldwide
every year.

It has been estimated that 10 − 15% of all Parkinson’s cases are inherited, but the
“vast majority of PD cases occur sporadically with no obvious cause” [18]. According to
McNaught et al. [18], several risk factors as toxins, infectious agents and occupational
hazards have been investigated without conclusive results. Some studies found indications
of correlations between Parkinson’s disease and exposure to pesticides, rural living, well-
water drinking, employment in agriculture and repeated head trauma, but according to
Schrag [27] neither one of these factors is likely to be the single cause of Parkinson’s
disease.

Parkinson’s symptoms include motoric problems as tremor, rigidity, bradykinesia (slow-
ness of movements), postural instability and freezing of gait (walking) but also dementia,
depression, sleeping disorders and autonomic dysfunctions as constipation as well as uri-
nary and sexual dysfunction [22, 24, 32]. Furthermore, sensory symptoms as numbness,
burning, tingling, heat, coldness and pain emerge in 40− 50% of all Parkinson’s patients
[22]. A diagnosis requires the presence of bradykinesia as well as tremor, postural insta-
bility or rigidity for which no other cause can be found [32].

Parkinson’s patients face shortened life expectancies although it is not evident whether
their increased mortality is due to the disease itself or due to the physical impairment
caused by the disease [24, 27]. Untreated or advanced Parkinson’s patients are more likely
to suffer from aspiration pneumonia (lung inflammation caused by the inhalation of foreign
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matter), pressure sores, malnutrition, dehydration and potentially disabling or even fatal
falls [24].

Symptomatic treatment includes dopamine-replacing drugs such as levodopa as well as
dopamine agonists [30]. These treatments are crucial for the prolongation of patients’ em-
ployability and independence and may even increase life expectancy [30]. Unfortunately,
drug treatments can cause serious side-effects, as for example insomnia, somnolence (sleepi-
ness), nausea, vomiting, dizziness, bradycardia (slow heart rate), hallucinations, psychosis
and leg edema (swelling) [30, 22].

Generally, the process of determining the correct medication dosage is extremely diffi-
cult due to the fact that Parkinson’s symptoms vary greatly depending on fatigue, stress,
time of the day, medication, and many other factors, such as bowel movements. Addi-
tionally, long-term usage of levodopa induces dyskinesia (involuntary movement) and an
increase in symptom fluctuations due to shortening of the intervals in which medication
is effective [30].

Usually, medication intake results in periods of diminished motor symptoms described
as “on” phases followed by a return of symptoms in so called “off” phases. In advanced
Parkinson’s disease dyskinesia may be present in both the “on” and the “off” stage, which
can alternate rapidly. These symptom variations explain why according to Tolosa and
Katzenschlager [30], “It often requires a determined patient and a doctor with patience to
achieve significant improvements”.

Evidently, patients would benefit immensely from simultaneously more accurate and
easily adaptable medication schemes. Readily accessible quantitative long-term informa-
tion regarding symptom severity and development could aid physicians in the preparation
of such schemes. However, although research has shown the feasibility of the utilization
of technical tools for the generation of quantitative long-term information, much is still
unknown about their optimal set-up. This work aims to contribute to the development of
such systems.

2.2 Available Data

The data used in this work was obtained at Uppsala’s Akademiska Sjukhuset in a study
incorporated in the MuSyQ project (multimodal motor symptoms quantification plat-
form for individualized Parkinson’s disease treatment), project number 2014-03727 [33],
financed by Vinnova, Sweden’s innovation authority.

Measurements were recorded with commercial Shimmer3 sensors [29] fixed to the par-
ticipants’ wrists, ankles and chest with elastic bands in order to enable recording of motions
of all limbs as well as the overall posture. Each of these sensor units included three-axial
gyroscopes and accelerometers. 19 patients diagnosed with advanced Parkinson’s disease
participated in the study. All patients provided signed consent prior to participation and
all tests were approved by the Uppsala Ethical Review Board.

Each patient completed a set of tasks including some tasks defined in the unified
Parkinson’s disease rating scale (UPDRS) protocol. One of those tasks was the continuous
alternating rotation of the forearm as shown in figure 2.1, which is the task whose wrist
sensor measurements will be utilized in this study. This movement corresponds to item
25 in the UPDRS protocol. The execution of all tasks was filmed and the individual
symptoms present were evaluated independently by three physicians trained in the field of
movement disorders. The resulting scores on individual UPDRS items, the total UPDRS
and the treatment response scale (TRS) were available for this work.

According to Kompoliti et al. [13], the UPDRS is “the international gold standard of
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Figure 2.1: Rotation, i.e. supination and pronation, of the forearm [6]

clinical rating scales for PD”. It ranges from 0 to 4, where a score of 0 indicates the absence
of symptoms while a patient receives a 4 if he or she is not remotely able to execute the
task. Parkinson’s symptoms are often more severe on one side of the patient’s body. In
this study, the evaluating physicians were instructed to assign one UPDRS item score for
both hands and in case of mismatch of symptoms in both hands, to give more weight to
the hand displaying more severe symptoms.

The TRS ranges from −3 to +3. Negative scores imply bradykinesic symptoms as
derived from the UPDRS, while positive scores describe dyskinetic symptoms and a score
of 0 implies the absence of symptoms. However, often bradykinesia and dyskinesia are
present simultaneously. In such cases, the TRS score describes the more pronounced
symptom.

Both the UPDRS and the TRS are commonly used for clinical evaluation of Parkinson’s
symptoms and allow the intuitive interpretation of measured symptoms by physicians and
patients. Generally, dyskinetic symptoms are less prevalent during voluntary movement
as the forearm-rotation considered here. Due to this and the ambiguity of TRS scores for
concurrent bradykinetic and dyskinetic symptoms, this work focuses on the quantification
of bradykinesia. More specifically, the symptoms present in the wrist sensor measurements
will be quantified in terms of and compared to corresponding ratings for item 25 of the
UPDRS.

In order to allow the recording of symptoms present in an unmedicated state, i.e.
the state of maximal bradykinesia, the study’s participants were asked to refrain from
medication intake the morning of the study. After each of the tasks specified in the test
protocol was completed once, the patients took medication equivalent to 150% of their
usual morning dosage to enable measurements of a wide range of symptoms.

Following the medication intake, the test protocol was repeated four times in 20 minute
intervals, and then in 30 minute intervals for as long as the patient was willing to continue.
The patients could abort the study at any time and resume their normal medication
intake. Considering wrist measurements of only each patients’ more affected hand, 10
to 15 measurements of approximately 20 seconds of forearm rotation were obtained per
patient and sensor.

Both, the total number of wrist measurements recorded for each patient’s more affected
hand and the number of measurements of each patient’s more affected hand corresponding
to each UPDRS score are summarized in table 2.1. Here, the provided UPDRS score is
the median of the scores assigned by the three physicians. The last row of the table shows
the total number of measurements and the number of measurements available for each
score on the UPDRS scale for each patient’s more affected hand.

The indicated fold numbers were utilized for cross-validation purposes described in
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later chapters. Cross-validation is explained in section 3.2.2.
Considering table 2.1, one may observe that the UPDRS scores of the obtained mea-

surements are not evenly distributed. Especially measurements with the most extreme
UPDRS scores 0 (no symptoms) and 4 (not able to execute movement) are lacking while
many measurements received UPDRS scores of 1 (mild symptom severity) or 2 (moderate
symptom severity). Additionally, all measurements which received the highest possible
UPDRS score belong to only two different patients.

Table 2.1: Distribution of UPDRS scores over available measurements considering only
the hand with more severe symptoms

Patient Fold Measurements
Measurements per UPDRS score

0 1 2 3 4

1 1 13 2 9 2 0 0

2 2 14 0 12 2 0 0

3 3 11 1 8 2 0 0

4 4 12 2 5 4 1 0

5 5 12 2 6 4 0 0

6 6 13 0 10 3 0 0

7 7 11 0 9 2 0 0

8 8 13 0 7 6 0 0

9 9 14 0 11 3 0 0

10 10 14 0 12 2 0 0

11 11 11 0 0 11 0 0

12 12 15 0 0 15 0 0

13 13 12 0 0 11 1 0

14 14 10 0 0 1 6 3

15 - 14 0 0 14 0 0

16 15 14 0 10 4 0 0

17 16 11 0 0 4 5 2

18 17 14 0 9 5 0 0

19 18 14 0 0 4 10 0∑
of measurements 242 7 108 99 23 5

For a better understanding of the available UPDRS scores, a confusion matrix showing
the physicians’ agreement among each other is given in figure 2.2. This matrix illustrates
how often the individual physicians agreed with the median score of their ratings which
was used as the assumed true UPDRS score for model development.

The numbers in the green boxes on the diagonal indicate the number of ratings for
which a physician’s score agreed with the median of the three scores assigned to the same
measurement, while the numbers in the red boxes show how often a physician assigned
the UPDRS score denoted on the vertical axis when the median of the assigned UPDRS
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Figure 2.2: Confusion matrix relating the UPDRS scores assigned by each individual
physician to the median of the UPDRS scores assigned by all three physicians

scores for the same measurement corresponded to the score given on the horizontal axis.
For example, for seven measurements the median of the UPDRS scores assigned by

the three physicians was 0. However, out of all 21 ratings assigned to these seven mea-
surements, 15 were equal to 0 while six were equal to 1. Consequently, an assumed true
UPDRS score of 0 is supported by 71.4% of all physicians’ ratings. On the other hand,
an UPDRS score of 0 was assigned 64 times in total. However, in 76.6% of all cases when
one physician assigned an UPDRS score of 0, the other two physicians assigned a higher
score.

Of course, at least one third of the individually assigned UPDRS scores are equal to
the median UPDRS score by design since this median score is defined as one of the three
UPDRS scores assigned to each measurement. Nonetheless, one may observe that the
physicians’ assessment frequently differed by one step on the UPDRS scale but seldom by
more. Furthermore, the physicians disagreed most often in the lower range of the UPDRS
scale.

Overall, only 69.2% of all ratings corresponded to the UPDRS score that was used for
model development. This number illustrates the difficulties of manual symptom quantifi-
cation.
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Chapter 3

Statistical Machine Learning

Statistical machine learning describes a number of methods useful for understanding data.
These include supervised learning methods which, according to James et al. [10], aim at
the prediction of some outcome based on knowledge gained from similar observations whose
outcomes are known, where each observation is described by p characteristics referred to
as predictors or features. In other words, given n outcomes or responses Y := {y1, . . . , yn}
and corresponding observations X := {x1, ..., xn}, each represented by p predictors such
that xi = (xi1, ..., xip), one strives to estimate the mathematical relationship between
X and Y in order to enable the prediction of unknown responses corresponding to new
observations. This estimation process includes both the formulation of a model, also
known as training, and the validation of the obtained model.

Once a model has been developed, a measure for the models quality is given by the
mean square error (MSE), where xi and yi are the observations and responses of a new
data set while f̂ describes the previously determined model:

MSE =
1

n

n∑
i=1

(
yi − f̂ (xi)

)2
. (3.1)

In this work, the median of the ratings assigned by the three physician individually was
used as the true response yi.

3.1 Model Formulation

Today, a vast number of approaches for model formulation are available. These include
models for continuous as well as discrete response values, usually described as regression
and classification models respectively. Regression models may be utilized for the prediction
of discrete response values as well, if the response values have a natural ordering and thus,
the continuous responses may be rounded in order to obtain discrete response values.

The data available has response values 0, 1, 2, 3 and 4 corresponding to UPDRS
scores, where an increase of the response value implies an increase in symptom severity.
Therefore, both regression and classification methods may be applied.

In this work, linear regression, forward selection, backward selection, ridge regression,
the lasso, local regression, smoothing splines, multivariate adaptive regression splines, k-
nearest neighbors, decision trees and support vector machines were applied. Furthermore,
principal component analysis was utilized for dimension reduction as a pre-processing step
for some methods including linear regression, local regression, smoothing splines, k-nearest
neighbors and decision trees. Each of the mentioned methods is explained in detail in the
following utilizing information given by James et al. [10] and Hastie et al. [7].
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3.1.1 Linear Regression

Linear regression is the most basic statistical machine learning method which assumes a
linear relationship between the observations X and the corresponding responses Y :

yi ≈ β0 + β1xi1 + β2xi2 + . . .+ βpxip

≈ β0 +

p∑
j=1

βjxij . (3.2)

It is insensitive to scaling of predictors since the model coefficients β0, . . . , βp are ad-
justed accordingly.

The optimal model coefficients in the least-squares sense are estimated as the coeffi-
cients β̂0, . . . , β̂p minimizing the residual sum of squares (RSS). The RSS describes the
squared prediction error of the model for training data, where ŷi denotes the response yi
as estimated by the linear regression model:

RSS =
n∑
i=1

(yi − ŷi)2

=
n∑
i=1

(
yi − β̂0 − β̂1xi1 − . . .− β̂pxip

)2
. (3.3)

The RSS defines a training error, i.e. a measure of the error resulting from prediction of
responses for data that was utilized for development or so called training of the prediction
model. This implies that the RSS will probably be considerably smaller than the error
resulting from application of the model to previously unknown data.

Nonetheless, the minimization of the RSS provides the best linear fit for the training
data, i.e. data used during model development, and may be utilized for comparison of how
well two models obtained using the same training data, model structure, tuning parameter
(if applicable) and number of predictors are able to fit to the data.

3.1.2 Forward Selection

One disadvantage of the linear regression approach is that it takes into account all p pro-
vided predictors. However, in reality some of the p predictors may not actually be related
to the response. These predictors will act as noise in the obtained model. Therefore, it
would often be preferable to have a model which selects the predictors most relevant for
the response. One may attempt to find the best subset of predictors by testing all 2p

possible combinations, but this approach easily becomes computationally infeasible as the
number of predictors p increases.

A more efficient alternative is provided by forward selection, which adds predictors to
the model one by one. However, one should be aware that forward selection is a greedy
approach, i.e. it always chooses the currently best option without planning ahead and does
not reconsider the value of choices of previous iterations. Consequently, forward selection
does not guarantee to find the optimal model out of all 2p possible models. The procedure
is the following:

1. Determine the null model M0 containing only the intercept β̂0

2. For each number of predictors k = 1, . . . , p:
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(a) Find all o = p−k+1 modelsMko that result when each of the remaining p−k+1
predictors is added to the predictors used in the previously determined model
Mk−1

(b) From all models Mko, select the one with the smallest RSS as the best model
for k predictors and define it as Mk

3. Choose the best model from all modelsM0, . . . ,Mp with help of the cross-validated
test error (explained in section 3.2.2)

According to James et al. [10], forward selection is suitable for model development in
high-dimensional predictor spaces and can even be applied when the number of predictors
exceeds the number of observations with known responses available for model development.
Furthermore, it is possible to consider only models utilizing a smaller number of predictors
than available, hereby limiting the number of iterations of the shown procedure.

3.1.3 Backward Selection

A similar idea as for forward selection is employed in backward selection, but instead of
adding the predictor with the greatest positive impact to the model, one removes the
predictor with the least positive impact. Initially, backward selection considers the linear
regression model containing all predictors, referred to as Mp. The subsequent procedure
is the following:

1. For k = 1, . . . , p:

(a) Find all o = p − k + 1 models Mko that result when each of the remaining
p− k+ 1 predictors is removed from the previously determined modelMp−k+1

(b) From all models Mko, select the one with the smallest RSS as the best model
for p− k + 1 predictors and define it as Mp−k

(c) Remove the predictor not present in Mp−k from the predictor set

2. Choose the best model from all models M0, . . . ,Mp using the cross-validated test
error as described in section 3.2.2

As forward selection, backward selection is a greedy approach which does not guarantee
to deliver the optimal model but is suitable for regression in high-dimensional settings.
However, contrary to forward selection, backward selection requires the number of available
training observations to be greater than the number of predictors in order to enable the
development of the full model Mp.

3.1.4 Ridge Regression

Instead of selecting specific predictors as in forward and backward selection, one may
alter their relative importance. Modification of linear regression through the addition of a
shrinkage penalty to the objective function given by the RSS as defined in equation (3.3)
results in weighting of the coefficients β̂0, . . . , β̂p relative to each other while shrinking
them towards zero.

Contrary to linear regression, ridge regression requires the standardization of the pre-
dictors to a comparable scale prior to model development. This holds true for most
modeling methods which rely on either the distance between observations in the predictor
space or penalize the magnitude of model coefficients.
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The quantity minimized for ridge regression is the following:

RSS + λ

p∑
j=1

β̂2j =

n∑
i=1

(
yi − β̂0 − β̂1xi1 − . . .− β̂pxip

)2
+ λ

p∑
j=1

β̂2j

=
n∑
i=1

yi − β̂0 − p∑
j=1

β̂jxij

2

+ λ

p∑
j=1

β̂2j . (3.4)

Here, the shrinkage penalty λ
∑p

j=1 β
2
j promotes the selection of small coefficients which

are desirable as they decrease the variance of the resulting predictions at the price of a small
increase in bias. These effects stem from a reduction in flexibility of the ridge regression
model in comparison to the linear regression model due to the constraints imposed by the
shrinkage penalty. According to James et al. [10], less flexible models are more useful in
high-dimensional predictor spaces.

The shrinkage penalty’s impact is determined by the tuning parameter λ. One may
estimate the value of the tuning parameter resulting in the optimal trade-off between
variance reduction and bias enlargement with help of the nested cross-validated test error
as described in section 3.2.3.

3.1.5 The Lasso

Contrary to ridge regression, the lasso selects features by shrinking some coefficients to
exactly zero for sufficiently large values of the tuning parameter λ due to its more restrictive
shrinkage penalty of the form λ

∑p
j=1|βj |. Hereby, it can reduce the predictor space and

increase model interpretability. Furthermore, its ability to exclude predictors means that
the lasso is useful for model development in high-dimensional settings [10].

The lasso utilizes the following minimization criterion for estimation of coefficients
β̂0, . . . , β̂p:

RSS + λ

p∑
j=1

|β̂j | =
n∑
i=1

(
yi − β̂0 − β̂1xi1 − . . .− β̂pxip

)2
+ λ

p∑
j=1

|β̂j |

=
n∑
i=1

yi − β̂0 − p∑
j=1

β̂jxij

2

+ λ

p∑
j=1

|β̂j | (3.5)

The tuning parameter λ can be optimized using nested cross-validation as explained
in section 3.2.3.

3.1.6 Local Regression

One method for obtaining a non-linear approximation of the mathematical relationship
between observations and responses is given by local regression.

Given a new observation x0, a non-zero weight Ki0 = K(xi, x0) is assigned to each
known observation xi within some pre-defined distance l from the new observation. These
weights may be uniformly distributed within some radius l and zero outside the radius l,
or weights may be assigned to smoothly decrease with increasing distance from the new
observation. The optimal area to consider for a certain model may be estimated with help
of nested cross-validation as explained in section 3.2.3.
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Once the weight of each utilized observation has been determined, a weighted linear
regression problem is solved through minimization of the following criterion:

n∑
i=1

Ki0

yi − β̂0 − p∑
j=1

β̂jxij

2

. (3.6)

Then, the response of the new observation can be estimated with help of the obtained
linear function as f̂(x0) = β̂0 +

∑p
j=1 βjx0j . However, note that all training data is needed

for the prediction of responses of unknown observations with help of a local regression
model.

One may solve the minimization problem for a quadratic form of the regression function
given in equation (3.2) as well. Furthermore, local regression is suitable for unevenly
distributed data sets since distant data points have less or no effect on other parts of the
model even if their occurrence in some region of the predictor space is prevalent. However,
local regression may not perform well for many more than three or four predictors per
observation [10].

3.1.7 Regression and Smoothing Splines

Splines describe a modeling approach involving the definition of a number of interconnected
non-overlapping d-degree polynomial functions for different regions of the predictor space,
hereby allowing a flexible non-linear model. Several approaches for the derivation of splines
exist, out of which regression and smoothing splines are explained here.

Smoothing splines result from an adapted optimization criterion, namely the mini-
mization of

RSS + λJ(f) =

n∑
i=1

(yi − f(xi))
2 + λJ(f) (3.7)

where λ denotes a tuning parameter and f(xi) is some function to be determined. The
optimal function f(xi) found with help of this criterion will be a piecewise cubic polynomial
function which is continuous in its first and second derivatives at all knots ξ located at
each observation xi.

The penalty function J(f) differs depending on the dimensions of the predictor space
[7]. For a single predictor xi,

J(f) =

∫ (
f ′′(xi)

)2
dxi, (3.8)

while in two dimensions, i.e. for xi = (xi1, xi2),

J(f) =

∫∫
R2

[(
∂2f(xi)

∂x2i1

)2

+ 2

(
∂2f(xi)

∂xi1∂xi2

)2

+

(
∂2f(xi)

∂x2i2

)2
]

dxi1dxi2. (3.9)

According to Hastie et al. [7], this optimization criterion does not scale well with
dimensionality of the predictor space and therefore, in this work, smoothing splines were
only used in combination with principal component analysis as described in section 3.1.12.

A different approach is given by regression splines. The idea fundamental to regression
splines is the non-linear transformation of predictors to a number of basis functions which
are then used to develop a linear model. This linear model can be easily constructed
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utilizing a least-squares approach while the resulting model is non-linear in terms of the
original predictors.

The model functions of a regression spline are continuous in their derivatives up to
degree d− 1 at the points in the predictor space where two functions meet. These points
are called knots ξ. Considering K knots and some polynomial basis functions b(xi), a
regression spline can be described by

yi ≈ β0 + β1b1(xi) + β2b2(xi) + ...+ βK+dbK+d(xi). (3.10)

Here, most basis functions are described by so called truncated power functions, i.e.
these basis functions are equal to zero in some parts of the predictor space. For a single
predictor x, i.e. a one-dimensional predictor space, the set of basis functions is defined by

bb(x) = xb, b = 1, . . . , d (3.11)

bk+d(x) = (x− ξk)d+, k = 1, . . . ,K

:=

{
(x− ξk)d, x > ξ,
0, x ≤ ξ, (3.12)

where ξ ∈ R are knots placed at pre-defined locations in the predictor space while x
describes all points on the predictor axis.

Knots may be placed anywhere in the predictor space but usually a uniform distribution
is chosen. The number of knots under consideration can be determined with help of nested
cross-validation as described in section 3.2.3.

As for linear regression models described in section 3.1.1, the model coefficients β0, . . . , βK+d

of the regression spline may be estimated through minimization of the RSS defined by

RSS =
n∑
i=1

(yi − ŷi)2

=
n∑
i=1

(
yi − β̂0 − β̂1b1(xi)− β̂2b2(xi)− ...− β̂K+dbK+d(xi)

)2
. (3.13)

According to Hastie et al. [7], the number of basis functions grows exponentially
with increasing dimension of the predictor space. Therefore, one should employ a greedy
alternative as for example multivariate adaptive regression splines (explained in section
3.1.8) for high-dimensional predictor spaces as the ones considered here. Consequently,
multivariate adaptive regression splines were applied instead of regression splines in this
work.

3.1.8 Multivariate Adaptive Regression Splines

Multivariate adaptive regression splines (MARS) produce piecewise linear models which,
contrary to simple regression splines, are suitable for high-dimensional predictor spaces.

For this purpose, MARS creates a knot ξi at the location of each observation xi. Then,
a so called reflected pair of basis functions is created at each knot, composed of one basis
function which is zero on the left hand side of the knot and one basis function which is zero
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on the right hand side of the knot with respect to the predictor axis under consideration:

bl(x) = (xi − x)+,

= (ξi − x)+,

=

{
ξi − x, x > ξi,
0, x ≤ ξi,

(3.14)

br(x) = (x− xi)+,
= (x− ξi)+,

=

{
x− ξi, x < ξi,
0, x ≥ ξi.

(3.15)

Here, x denotes values on the axis of each of the p predictors xp under consideration,
leading to a total number of 2np basis functions.

After construction of the basis functions and an initial model with a constant value
of 1, MARS iteratively selects the reflected pair of basis functions which results in the
largest decrease of training MSE for multiplication with the model defined in the previous
iteration. This multiplication corresponds to the addition of basis functions to the model
of the previous iteration. The training MSE results if the definition of the MSE as given
in equation (3.1) is applied to the training data.

The resulting model will usually overfit the available data, i.e. it will resemble the data
used for model development too closely to be applicable to new data. Therefore, another
iterative procedure is employed to delete those basis functions from the model whose
deletion increases the RSS the least until some stop criterion is reached. One possible stop
criterion is the specification of a number of basis functions to be used in model after the
removal process. The optimal number of basis functions used in the final model may be
determined with help of nested cross-validation as described in section 3.2.3.

3.1.9 K-Nearest Neighbors

The application of k-nearest neighbors (KNN) is based on the assumption that the response
of an observation is likely to resemble the responses of observations in close proximity in
the p-dimensional predictor space P . In the classification case, i.e. when only discrete
response values are considered, the estimation of this conditional probability assumption
can be described mathematically as

Pr (yi = r|xi = x0) =
1

K

∑
l∈N0

I (yl = r) . (3.16)

where Pr (yi = r|xi = x0) denotes the probability that the response yi has some value r,
if the observation xi has the characteristics x0, i.e. it is located at x0 in the predictor
space. Here, N0 denotes the neighborhood surrounding the point x0 ∈ P which contains
K other observations. The indicator variable I (yl = r) has a value of 1 if the response yl
has the value r, otherwise it is 0. In this work, the response variables represent scores on
the UPDRS and therefore r ∈ {0, 1, 2, 3, 4}.

Contrary to the parametric methods discussed in sections 3.1.1 to 3.1.5, no underlying
structure is assumed. Instead, all training data must be available for the prediction of the
responses for new observations. Then, given some new observation xnew, KNN identifies
the K training observations in closest proximity to the new observation and estimates the
probability of the response ynew of the new observation xnew to have each of the response
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values r:

ŷi = arg max
r=0,...,4

Pr (yi = r|xi = x0) (3.17)

According to James et al. [10], KNN performs well when many observations, each
described by only a few predictors, are available. However, in the case of high-dimensional
predictor spaces, an observation’s nearest neighbors may not be in close proximity and
consequently, KNN’s basic assumption looses meaningfulness. This reflects a phenomenon
known as the curse of dimensionality and applies to other neighborhood based methods
as e.g. local regression described in 3.1.6 as well.

In this work, KNN was applied to both a high-dimensional predictor space and a
predictor space composed of the first two principal components (compare section 3.1.12).
Nested cross-validation as described in section 3.2.3 was used for selecting the optimal
number of neighbors and for model assessment.

3.1.10 Decision Trees

Tree based methods aim to stratify the predictor space into rectangular subsets corre-
sponding to the possible responses. This is achieved through minimization of the residual
sum of squares (RSS) as defined for decision trees which is given by

L∑
l=1

∑
i∈Rl

(yi − ȳRl)
2 . (3.18)

Here, ȳRl describes the mean value of all responses located inside the lth region R. Note
how, in comparison with the RSS defined for linear models in section 3.1.1, this definition
of the RSS is adapted to the classification setting.

However, a greedy approach called recursive binary splitting is employed since consid-
eration of all possible subsets R would be computationally infeasible. Using this approach,
the predictor space is iteratively divided into subsets Rl called branches, where in each
step the subset division resulting in the largest decrease in RSS is chosen. The response of
a new observation is predicted as the most commonly occurring response for the training
observations located in the same region as the new observation.

Unfortunately, the best number of divisions is unknown and consequently, decision
trees tend to overfit the available data. This issue should not be resolved by limiting
the minimum decrease in RSS per division, since some beneficial divisions may require the
presence of some seemingly unimportant subset separations before they can be considered.

Therefore, a better approach is to first grow a large tree T0 where each region Rl
contains only a handful of observations and to subsequently remove or prune any outside
branches Rm lacking a reasonably strong effect on the RSS. This may be achieved with
help of the tuning parameter λ and the following minimization criterion:

|T |∑
m=1

∑
i:xi∈Rm

(yi − ȳRm)2 + λ|T |. (3.19)

Here, |T | denotes the number of final nodes of the subtree T ⊂ T0 while ȳRm describes the
mean of the available responses of the observations in the region Rm. The optimal value
for the tuning parameter λ may be estimated using nested cross-validation as explained
in section 3.2.3.
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According to James et al. [10], trees present easily interpretable prediction models
which may perform better than parametric models when applied to data exhibiting com-
plex highly non-linear relationships. However, their predictions are often less accurate and
may change drastically for small changes in the training data.

3.1.11 Support Vector Machines

Support vector machines (SVM) are based on the idea that the most likely boundary to
distinctively define two response classes will usually cause some cases of misclassification
and that the optimal decision boundary may be predicted with some confidence through
consideration of those potentially misclassified observations as well as observations in close
proximity of the decision boundary.

The hyperplane defining the decision boundary for a binary classification problem with
responses yi ∈ {−1, 1} can be found using the optimization criterion

maxM s.t. yi

β0 +

p∑
j=1

d∑
k=1

βjkx
k
ij

 ≥M(1− εi), (3.20)

p∑
j=1

d∑
k=1

β2jk = 1,

n∑
i=1

εi ≤ C,

εi ≥ 0

where M describes the width of an area known as the margin around the resulting deci-
sion boundary while C denotes a tuning parameter limiting the number and severity of
margin violations by training observations. εi are so called slack variables which allow
some observations to fall into the margin. Those observations form the set of support
observations.

According to James et al. [10], one may replace the polynomial function

f(xi) = β0 +

p∑
j=1

d∑
k=1

βjkx
k
ij (3.21)

in the maximization problem described in equation 3.20 by

f(xi) = β0 +
n∑
i=1

αiK(xi, xi′). (3.22)

Here, the optimization variables β11, . . . , βpd are replaced by combinations of αi and xi′j
where xi′j denotes all training observations xij , i.e. xixi′ describes the sum of the products
of an observation with all other observations and with itself.

K is referred to as a kernel and may take various forms. For example, a linear kernel
is defined by

K(xi, xi′) =

p∑
j=1

xijxi′j , (3.23)
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a polynomial kernel by

K(xi, xi′) =

1 +

p∑
j=1

xijxi′j

2

, (3.24)

and a radial kernel by

K(xi, xi′) = e−γ
∑p
j=1(xij−xi′j)

2

. (3.25)

Once the optimal parameters β0 and αi have been estimated, one may utilize the
resulting function

f(x0) = β̂0 +
∑
i∈S

α̂iK(x0, xi). (3.26)

for the prediction of responses for new observations x0, where S is the set of indices of the
support observations. Note that α̂i will be zero for all training observations which are not
located inside the margin.

However, in this work, the response variable yi is not binary. Therefore, a so called
one-versus-all approach is applied, where one SVM is constructed for each pair of response
classes. Eventually, the response of a new observation is predicted as the response assigned
most often after consideration of each of the constructed SVMs.

The optimal value of the tuning parameter C can be estimated with help of the cross-
validated test error described in section 3.2.3. If the two classes, i.e. observations with the
response −1 and observations with the response 1, can be separated perfectly, the support
vector machine will aim to find the decision boundary with the largest distance to those
observations of both classes which are closest to each other.

3.1.12 Principal Component Analysis

In many settings, a large number of predictors is available and one may need to reduce the
predictor space’s dimensions. One method for dimension reduction is given by principal
component analysis which is based on the assumption that the spread of observations
in the p-dimensional predictor space contains information about the relative importance
of predictors for the corresponding response values. This is not necessarily the case as
responses are not taken into account, but according to James et al. [10] “it often turns
out to be a reasonable enough approximation to give good results”.

One may utilize the assumed information to reduce the predictor space’s dimension
by considering each observation’s projection onto the axes of largest spread instead of
using the original predictor. The predictors for each observation can be projected onto
the principal components zim as follows:

zim =

p∑
j=1

φjmxij . (3.27)

Here, m = 1, . . . ,M where M < p defines the number of principal components or axes
considered while j = 1, . . . , p represents the predictors for each observation.

The transformation factors φjm can be determined through consideration of the spread
of the observations along every axis in the predictor space:

max Var

 p∑
j=1

φjm

n∑
i=1

(
xij −

∑n
i=1 xij
n

) s.t. ‖φm‖ =

p∑
j=1

φjm = 1 (3.28)
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Then, one may fit models to the principal components instead of to all predictors. This
is especially useful for the development of models which do not handle high-dimensional
predictor spaces well.

The optimal number of principal components M can be approximated with help of
nested cross-validation as described in section 3.2.3. Other approaches include the uti-
lization of all principal components needed to reflect some specified fraction of the overall
variance present in the available data set.

In this work, the first two principal components will be utilized as predictors for linear
regression, local regression, smoothing splines, KNN and decision trees as described in sec-
tions 3.1.1, 3.1.6, 3.1.7, 3.1.9 and 3.1.10. Furthermore, a number of principal components
chosen with help of nested cross-validation as explained in section 3.2.3 will be used for
the development of a linear regression model.

3.2 Validation

In contrast to models obtained for e.g. system identification, statistical machine learning
models are intended to be used on observations of similar but not necessarily identical sys-
tems. Unfortunately, the variation between different data sets is usually unknown. There-
fore, testing of the obtained model on independent observations with known responses is
crucial to ensure that a model does not only describe the relationship of observations and
responses of the data set used for model formulation, but that the model is applicable to
new data sets as well.

The simplest validation method is known as the validation set approach. In this
work, the concepts of cross-validation and nested cross-validation, each explained in the
following, were used.

3.2.1 Validation Set Approach

Often, independent observations are not available for testing of the model. A simple
solution to this problem is the division of the original data set into a training set and a
test set prior to model development. Only the training set is utilized for model building.
Then, the obtained model can be used to predict the response of each of the test set
observations. The test error of the model may be estimated as the validation or test set
error with help of equation (3.1).

However, a smaller training set may decrease the quality of the model since less data
is available for training while the test set has to be sufficiently large to represent potential
future data. Furthermore, the test MSE may be highly variable depending on the choice
of training and test set. Consequently, the validation set approach performs well if a large
amount of data is available.

3.2.2 Cross-Validation

Cross-validation describes the repeated use of the validation set approach on various di-
visions of the original data set into different training and test data sets. In each iteration,
one subset of data is used as test data while the remaining data is utilized for model
development as depicted in figure 3.1. The subsets of data which are combined to form a
large training set as well as the subset forming the test set are referred to as folds.

The number of cross-validation iterations corresponds to the number of subsets into
which the original data is divided. Therefore, one may speak of F -fold cross-validation
where F denotes the number of folds into which the data has been divided.
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Test setTraining setIteration

1 Fold 1Fold 2 Fold 3 Fold F

2 Fold 2Fold 1 Fold 3 Fold F

F Fold FFold 1 Fold 2 Fold F-1

Figure 3.1: Composition of training and test data for each iteration of cross-validation

The cross-validation test error is given by the average MSE of all repetitions. The
procedure can be described in more detail as follows:

1. Divide data set into F folds

2. For f = 1, ..., F :

(a) Define f -th fold as test set TESTf and all other folds as training set TRf

(b) Fit a model to the training set TRf

(c) Use model to predict responses of the test set TESTf

(d) Calculate MSE of predicted responses and define it as MSEf

3. Determine the cross-validated MSE as MSE = 1
F

∑F
f=1MSEf

In contrast to the validation set approach, cross-validation is suitable for validation
of models obtained from small data sets as well. However, it does not provide one single
model with a corresponding MSE. Instead, the average MSE gives an estimate of the MSE
that can be expected if the model is tested on new data after it was trained on all available
data.

3.2.3 Nested Cross-Validation

Many statistical learning methods require the selection of tuning parameters used during
model development. In order to find a reasonably good value for the tuning parameter,
one may utilize cross-validation for comparison of models resulting from various possible
values of the tuning parameter. The choice of tuning parameter resulting in the smallest
average MSE approximates the optimal value of the tuning parameter.

Once the optimal tuning parameter has been estimated, it can be utilized for model
development. However, the model determined using the estimated optimal tuning pa-
rameter must be validated with help of the validation set approach or cross-validation as
well.

In case cross-validation is chosen, two cross-validation loops result, where one is en-
capsulated by the other, i.e. a cross-validation procedure for tuning parameter selection
is applied to each of the outer loop training sets. Once a tuning parameter has been
chosen, it is utilized for model development using the outer loop training set for which it
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was determined. Then, the MSE resulting from application of the developed model to the
outer loop test set is calculated.

This procedure is repeated for each iteration of the outer cross-validation loop as
summarized in the following:

1. Divide data set into F folds

2. For f = 1, ..., F :

(a) Define f -th fold as outside test set TESTout,f and all other folds as outside
training set TRout,f

(b) For fin = 0, ..., F − 2 and the outside training set TRout,f :

i. Define TESTin,k where k = (f + fi mod F ) + 1 as inside test set and all
sets currently not defined as inside or outside test set as inside training set
TRin,k

ii. For each discrete tuning parameter value λ under consideration:

A. Build a model using the inside training set TRin,k

B. Use the model to predict responses of inside test set TESTin,k

C. Calculate the MSE of the predicted responses and define it as MSEk,λ

(c) Calculate the average MSE for each tuning parameter λ and define it asMSEave,λ

(d) Choose tuning parameter corresponding to smallest average MSE and define it
as λ∗f

(e) Build model using the chosen tuning parameter λ∗ and the outside training set
TRout,f

(f) Use model to predict responses of outside test set TESTout,f

(g) Calculate the MSE of the predicted responses and define it as MSEf

3. Calculate the average MSE over all folds as the average of MSEf and define it as
the test error MSEave

4. Calculate an estimate of the optimal value for the tuning parameter λ as the average
of the chosen tuning parameters λ∗f over all folds

The use of cross-validation for parameter selection and model assessment as well as the
application of nested cross-validation for parameter selection followed by model assessment
has been described by Krstajic et al. [14]. Furthermore, Krstajic et al. [14] illustrate
the benefits of repeated nested cross-validation where the folds are composed of different
measurements in each repetition.
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Chapter 4

Predictors

Statistical machine learning methods relate observations X to corresponding responses Y ,
with the aim to apply the determined relations to the prediction of unknown responses Ynew
for comparable sets of observations Xnew. However, in many settings the observations may
be described by a large number of characteristics. In such situations, the prior definition
of characteristics to consider in model development becomes a necessity.

The choice of characteristics applied, also known as features or predictors, is crucial for
the success of any statistical learning method. Choosing predictors which are not related
to the response under investigation will not yield a useful model.

Simultaneously, it is not advisable to choose characteristics for their great correlation
to the response since this strong relationship may only be present in the current data set.
In other words, choosing predictors whose strong correlation to the response of the given
data is known, will lead to a seemingly well-fitting model but its application to a new data
set might give poor results, i.e. the model may have been overfitted.

The discrepancy between model fits arises due to the bias introduced through the choice
of predictors. In other words, the obtained model is too well-fit for the application to other
datasets. For statistical machine learning purposes, a less well-fit model is preferable in
order to enable the model’s application to comparable data sets.

Similarly, even consideration of the obtained observations can jeopardize objectiveness
in predictor selection since one will be tempted to favor features that appear promising to
the human eye. The only way to ensure that knowledge of the data at hand is not applied
for predictor selection is to not consult the data before selecting predictors. However, when
using statistical machine learning one has no choice but to select predictors manually.
Instead of utilizing knowledge of the collected data, one may use general knowledge of the
observed events in order to formulate potentially relevant predictors.

Most likely, the number of formulated predictors may exceed the number of truly
relevant features. The number of predictors used in the final model can be determined with
help of model reduction techniques. Additionally, one might hypothesize several predictor
sets to be tested on various model types, while keeping in mind that a large number of
options increases the probability that a set of predictors combined with a certain model
type may produce good results purely by chance. Therefore, it is advisable to not only
cross-validate the computed models, but to employ another previously unseen set of test
data for comparison of the obtained models. Unfortunately, this was not possible in this
work due to a lack of available data. However, for the number of considered models it is
unlikely that a low MSE will be obtained by chance.

The considered predictors and predictor set hypotheses as well as necessary pre-
processing of the available measurement data are presented in the following.
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4.1 Pre-Processing of Measurement Data

The sensors recording the utilized data were started before each patient’s first conduction
of the test protocol and shut off when a patient decided to return to their usual medication
intake. The time intervals of interest were generously extracted by hand with consideration
of starting times specified in the study protocol.

Then, the relevant time interval within each extracted time series was determined
through selection of a threshold value related to each measurement’s largest amplitude
as well as visual inspection. Finally, the utilized measurements were defined as the data
present within as well as 2 seconds before and after the relevant time interval.

After the raw measurement data was available in the desired format, further pre-
processing was needed to remove measurement characteristics that may conceal the char-
acteristics of interest for this study. For instance, the accelerometer measurements not only
reflect a person’s movement but also the accelerometer’s orientation in space. Hence, a
motionless accelerometer provides non-zero measurement components directed away from
the center of the earth. Additionally, both accelerometer and gyroscope measurements
may present drift over time. These issues effect only very low frequency components.

On the other hand, intentional human movement seldom exceeds frequencies of 3.3Hz
(compare [25]). Bradykinesia by definition implies slower than normal movement and
thus, it is well represented in frequencies below 3.3 Hz. According to Salarian et al. [26],
frequencies between approximately 4 and 6 Hz are common for tremor, another symptom
of Parkinson’s disease which is not investigated in this work.

Therefore, an IIR Butterworth bandpass filter with a lower passband frequency of
0.75 Hz and an upper passband frequency of 3 Hz was used to filter the measurement data
forward and backward with help of Matlab’s filtfilt function before predictors were
calculated. The lower and upper stopband frequencies were chosen as 0.25 Hz and 3.5 Hz
respectively, each with a stopband attenuation of 3 dB. The effect of this filter on the
measurements is by way of example shown in figures 4.1 and 4.2.

4.2 Defined Predictors

A number of predictors were chosen based on knowledge about motion patterns in Parkin-
son’s disease and the experimental set-up as well as on insights provided by the litera-
ture on other studies concerning the quantification of Parkinson’s symptoms (compare
[1, 2, 3, 5, 9, 21, 26, 31, 34]). Some of the chosen predictors may measure similar char-
acteristics of the observed motion. However, one can only guess the usefulness of each of
these predictors and therefore, the choice was mostly left to statistical machine learning
methods aiming at model reduction as e.g. forward selection, backward selection and the
lasso described in chapter 3. Furthermore, principal component analysis was used for
dimension reduction as a pre-processing step for several other methods.

The predictors xp were derived from measurements x[n]1 obtained from a continuous
motion signal x(t) where t denotes the time. The continuous signal was sampled at a
sampling frequency of fs = 102.4Hz (Ts = 98ms), which according to Oppenheim and
Schafer [19] results in the discrete time signal

x[n] = x

(
n

fs

)
= x (nTs) = x (n · 98ms) , n = 1, 2, . . . , N. (4.1)

1In this work, all discrete-time signals are denoted with square brackets while continuous-time signals
are described using parentheses.
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Figure 4.1: Recorded and bandpass filtered gyroscope measurement of the more affected
hand of patient 1 of UPDRS item 25 on the 6th run of the UPDRS protocol

Figure 4.2: Recorded and bandpass filtered gyroscope measurement of the more affected
hand of patient 17 of UPDRS item 25 on the 11th run of the UPDRS protocol
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Here, N denotes the index of the final measurement sample.
This notation is valid for the measurements of all six sensors, for the three gyroscope

measurements as well as for the three accelerometer measurements. Each of the measured
signals covers approximately 20 seconds and each feature was calculated once for each
measurement.

Additionally to several time domain predictors, some features were based on the fre-
quency domain representations of the measured signals as some characteristics may not
become apparent in the time domain. One can determine the frequency domain repre-
sentation of a signal with help of the Discrete Fourier Transform (DFT) as described by
Proakis and Manolakis [23]:

X[k] =
N−1∑
n=0

x[n]e−j
2πkn
N . (4.2)

As shown in appendix A, this definition of the DFT is not affected by the sampling
frequency. The relationship between a frequency index k = 0, . . . ,K/2 = 0, . . . , N/2 and
the corresponding continuous time frequency f is given by

f =
k

N
fs. (4.3)

Apart from time and frequency domain characteristics, the variations of the proposed
predictors as time progresses are of interest as well since the measured motion was specif-
ically designed to emphasize changes in movement patterns. This design derived from
the observation that, according to Wipenmyr and Bergquist [34], a steady decrease of
amplitude and frequency of motion measurements presents one of the major symptoms of
Parkinson’s disease.

According to the Dictionary of Physics [15], the standard deviation σ is a measure of
the distribution of a signal around its mean value µ given by

σ =

√√√√ 1

N

N∑
n=1

(x[n]− µ)2 (4.4)

=

√√√√ 1

N

N∑
n=1

(
x[n]− 1

N

N∑
n=1

x[n]

)2

. (4.5)

In order to calculate the standard deviation of a predictor xp instead of the standard
deviation of a measurement x[n] at hand, one may divide each measurement of length N
into M overlapping intervals of 2s length and with 50% overlap. Then, one can calculate
the value of a predictor xp for each of these intervals, i.e. xp[m] denotes the value of a
predictor derived from samples of the measurement x[n] which lie within the m-th time
window. Once the value of a predictor has been calculated for each of the M time windows,
the standard deviation of the predictor can be determined as

σp =

√√√√ 1

M

M∑
m=1

(
xp[m]− 1

M

M∑
m=1

xp[m]

)2

. (4.6)

However, a predictor with slightly varying large values may exhibit the same standard
deviation as a predictor with strongly varying small values. Therefore, the standard

24



deviation σp of a predictor relative to the total value of each predictor xp as obtained
when considering the whole measurement sequence was taken into account:

σrx =
σp
xp

=

√
1
M

∑M
m=1

(
xp[m]− 1

M

∑M
m=1 xp[m]

)2
xp

. (4.7)

A convenient tool for the implementation of the standard deviation of frequency domain
features is the Matlab function spectrogram which calculates the Short Time Fourier
Transform (STFT) XSTFT [m, fSTFT ], also known as time-dependent Fourier Transform,
as well as the frequencies fSTFT and an estimate of the energy spectrum ESTFT [fSTFT [m]]
over time. According to Oppenheim and Schafer [19], the STFT is defined by

XSTFT [s, fSTFT ] =
∞∑

n=−∞
x [s+ n]w[n]e−j2πfSTFTn (4.8)

where s describes a discrete time variable. The window function w[n] allows the calculation
of the DFT for some windowed time intervals.

One should increase the number of time domain samples in each window to a multiple
of 2 by adding samples with the value zero in order to allow for a more efficient computation
of the DFT with help of the Fast Fourier Transform (FFT) algorithm (compare [19]). To
avoid confusion between the original number of time domain samples per window and the
zero-padded measurement sequence per window, the number of samples of the latter is
denoted as lSTFT , namely the length of the DFT used in the STFT. The frequency indices
kSTFT of fSTFT = kSTFT fs/lSTFT are defined as kSTFT = 0, . . . , lSTFT /2.

For the purpose of calculating the DFT in M windowed intervals, the spectrogram

function allows the specification of window length (2 s), overlap (50%), length of the DFT
(lSTFT ) and sampling frequency (fs). In order to divide the original measurement x[n] into
2 s intervals, the spectrogram function applies a Hamming window designed to minimize
the largest sidelobes.

In the following, each of the predictors considered in this work is described in detail.
Any constant factors equivalent for all measurements may be neglected in the implemen-
tation of the feature calculation but are included here for completeness. These factors
have no impact on the developed models since the models utilize only differences between
observations which are unaffected by constants.

4.2.1 Greatest Acceleration and Angular Velocity

Bradykinesia is characterized by slowness of both the initiation and execution of move-
ments which should be reflected by the measured angular velocities and accelerations of
bradykinetic and dyskinetic patients.

Considering that the usefulness of the greatest acceleration as a predictor has been
shown by Griffith et al. [5], the maximum absolute values xmax of both the measured
accelerations and angular velocities was taken into account. These are defined as

xmax = max
n=1,...,N

(|x[n]|) . (4.9)
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4.2.2 Standard Deviation of Greatest Acceleration and Angular Velocity

The standard deviation of the greatest acceleration and angular velocity xmax[m] of each
time interval m relative to the overall greatest acceleration and angular velocity respec-
tively, may be calculated with help of equation (4.7) as follows:

σrxmax =

√
1
M

∑M
m=1

(
xmax[m]− 1

M

∑M
m=1 xmax[m]

)2
xmax

. (4.10)

4.2.3 Range of Accelerations and Angular Velocities

One may consider the range of accelerations as measured by the accelerometer, as shown
by Cancela et al. [3], as well as the range of angular velocities detected with help of the
gyroscope. These ranges rx are given by

rx = max
n=1,...,N

(x[n]) − min
n=1,...,N

(x[n]) . (4.11)

4.2.4 Standard Deviation of Range of Accelerations and Angular Veloc-
ities

With help of equation (4.7), the standard deviations of the range of accelerations and
angular velocities relative to the total range of accelerations or angular velocities can be
determined as follows:

σrrx =

√
1
M

∑M
m=1

(
rx[m]− 1

M

∑M
m=1 rx[m]

)2
rx

. (4.12)

4.2.5 Signal Energy or Root Mean Square Value

Both, the signal energy and the Root Mean Square (RMS) value are measures of the
amount of movement exhibited.

According to Haykin and van Veen [8], the energy E of a continuous time signal is
given by

E =

∫ ∞
−∞

x2(t)dt (4.13)

while the energy of a discrete time signal is defined as

E =
∞∑

n=−∞
x2[n]. (4.14)

However, the formulation in equation (4.14) only approximates the integral in equation
(4.13) when the sequence x[n] is sampled at a frequency of fs = 1 Hz resulting in a sampling
period Ts = 1/fs = 1 s.

Instead, at a sampling frequency of fs = 102.4 Hz the time difference between two
samples x[n] and x[n + 1] amounts to ∆t = 1/fs = 98 ms. Consequently, the energy of
the available measurements is given by

Et =
1

fs

N∑
n=1

x2[n]. (4.15)
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In statistics, the Root Mean Square (RMS) value of a signal is given by

RMSx =

√√√√ 1

N

N∑
n=1

x2[n]. (4.16)

as described in the Dictionary of Physics [15].
The RMS was also used for accelerometer signals by Patel et al. [21] and Cancela et

al. [3] and for gyroscope signals by Salarian et al. [26] while the signal energy’s useful-
ness has been shown by Bonato et al. [1] for accelerometer measurements. Additionally,
Tsipouras et al. [31] utilized the energy of gyroscope and accelerometer measurements for
the assessment of dyskinesia.

As may be seen in the formulas given above, the energy of a signal and its RMS are
closely related and consequently, only the energy was applied in this work. However, since
the signal energy increases with the length of the measured signal, the total energy Et of
each measurement was divided by the measurement’s duration, namely ttot = N/fs, to
achieve comparability between the energies of different measurements:

Et,c =
Et
ttot

=

1
fs

∑N
n=1 x

2[n]

N
fs

=

∑N
n=1 x

2[n]

N
(4.17)

4.2.6 Standard Deviation of Signal Energy

Considering equation (4.7), the standard deviation of the signal energy relative to the
total energy per second can be calculated as

σrEt,c =

√
1
M

∑M
m=1

(
Et,c[m]− 1

M

∑M
m=1Et,c[m]

)2
Et,c

(4.18)

where Et,c[m] describes the signal energy for each of the M time intervals.

4.2.7 Signal Entropy

Signal entropy is a measure of the information content of a signal, i.e. of the uncertainty
associated with the signal. According to Tsipouras et al. [31], it shows strong distinctions
for dyskinetic movements. However, it was also used for the quantification of bradykinesia,
dyskinesia and tremor with help of accelerometer measurements by Patel et al. [21].

Signal entropy was defined by Shannon [28] as

H = −K
B∑
b=1

pb log pb (4.19)

where K is a positive constant assumed to be K = 1 in this work. This assumption has
no relevance for model development in this work since all predictors were standardized as
described in section 5.1 before any statistical learning methods was applied.
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In the context of equation (4.19), pb denotes the probability of samples of the signal
x[n] to lie within a certain range. For this purpose, the full range of samples was divided
into intervals or bins of uniform width and each sample was assigned to the bin within
whose range it fell. The total number of bins is denoted as B, while each individual bin
is described by bb where b = 1, ..., B. The number of samples assigned to a bin bb is given
by kb. Then, the probability of samples to lie within each of the defined ranges may be
estimated as follows:

pb =
kb∑B
b=1 kb

. (4.20)

These probabilities can be estimated with help of MATLAB’s histcounts function
which utilizes a binning algorithm to determine the number of bins b optimal for revealing
the shape of the distribution of x[n]. The chosen bins bb have a uniform width and cover
the full range of x[n]. The number of bins b was not pre-defined since the shape of the
distribution of the various measurements x[n] may vary considerably. However, its value
remains constant throughout the calculation of signal entropy for each measurement.

4.2.8 Standard Deviation of Signal Entropy

Similarly as for the signal energy, the standard deviation of the signal entropy relative to
the total signal entropy can be determined with help of equation (4.7):

σrH =

√
1
M

∑M
m=1

(
H[m]− 1

M

∑M
m=1H[m]

)2
H

. (4.21)

Here, H[m] describes the signal entropy in each of the M time intervals.

4.2.9 Dominant Frequency

Once the frequency domain representation of a measurement has been calculated with
help of the DFT as defined in equation (4.2), one may determine the frequency index
corresponding to the dominant frequency fdom as the index kdom for which the frequency
amplitude X[k] is maximal, or equivalently as the index kdom with the greatest energy
content:

kdom = arg max
k=0,...,N/2

(X[k]) . (4.22)

Then, with help of equation (4.3), the dominant frequency fdom of the one-sided spec-
trum follows from the obtained frequency index kdom ≤ N/2:

fdom =
kdom
N

fs. (4.23)

The dominant frequency component was also used as a predictor by Patel et al. [21] and
Bonato et al. [1] for accelerometer measurements. Furthermore, Burkhard et al. [2] used
the dominant frequency for the quantification of dyskinesia using gyroscope measurements.
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4.2.10 Standard Deviation of Dominant Frequency

Utilizing equation (4.7) defining the relative standard deviation and Matlab’s spectrogram
function, one may estimate the relative standard deviation σfdom of the dominant frequency
fdom as the standard deviation of frequencies fSTFT = kSTFT fs/lSTFT corresponding to
the greatest amplitudes of the STFT XSTFT [m, fSTFT ] defined in equation (4.8), where
f̂dom[m] denotes the estimated dominant frequency for each time interval m:

f̂dom[m] = arg max
fSTFT

(XSTFT [m, fSTFT ]) , (4.24)

⇒ σ̂rfdom =

√
1
M

∑M
m=1

(
f̂dom[m]− 1

M

∑M
m=1 f̂dom[m]

)2
fdom

. (4.25)

4.2.11 Dominant Frequency Energy

Burkhard et al. [2] employed the amplitude Xmax of the dominant frequency as a predic-
tor for dyskinesia using gyroscope measurements, while Hoff et al. [9] applied the same
predictor to accelerometer measurements in order to quantify dyskinesia. The objective
of this study is the quantification of bradykinesia and not dyskinesia. However, the am-
plitude or energy of the dominant frequency may be useful in this context as well since
both provide a measure of the dominance of the most prevalent frequency fdom.

The greatest frequency amplitude Xmax independent of the signal length is defined as

Xmax = max
k=0,...,N/2

(
2X[k]

N

)
. (4.26)

A comparable measure which was used in this work is provided by the energy of the
dominant frequency.

According to Proakis and Manolakis [23], the energy of a discrete frequency domain
signal2 is defined by

E =
1

N

N−1∑
k=0

|X[k]|2. (4.27)

However, a similar argument as for the energy of the signal in the time domain may be
employed to find that the energy in the frequency domain in this case corresponds to

Ef =
fs
N

N−1∑
k=0

|X[k]|2. (4.28)

In order to gain comparable frequency domain energies, one must divide the energy given
in equation (4.28) by the overall signal length N :

Ef,c =
fs
N2

N−1∑
k=0

|X[k]|2. (4.29)

2The definition of the energy is dependent on the definition of the DFT and inverse DFT. Other authors

as e.g. Haykin and van Veen [8] define the DFT as X[k] = 1
N

∑N−1
n=0 x[n]e−j

2πkn
N which corresponds to the

energy definition E =
∑N−1
k=0 |X[k]|2.
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To avoid effects caused by the resolution of the frequency domain, the dominant fre-
quency energy was approximated as the average of the frequency energy of the dominant
frequency and the nearest surrounding frequencies:

Edom,c ≈
2

3
· fs
N2

kdom+1∑
k=kdom−1

|X[k]|2. (4.30)

4.2.12 Standard Deviation of Dominant Frequency Energy

The results of the spectrogram function used for determining the estimated dominant
frequencies f̂dom[m] may be utilized for finding an estimate of the energy corresponding
to the dominant frequency Edom[m] of each time interval relative to the signal length as

Êdom,c[m] ≈ 2

3
· fs
l2STFT

k̂dom[m]+1∑
i=k̂dom[m]−1

∣∣∣∣X [m, ifs
lSTFT

]∣∣∣∣2 (4.31)

where the index k̂dom[m] of the dominant frequency of each window is given by

k̂dom[m] =
f̂dom[m]

fs
lSTFT . (4.32)

Therefore, an estimate of the standard deviation σEdom of the dominant frequency
energy Edom,c relative to the total dominant frequency energy can be calculated with help
of equation (4.7) as follows:

σ̂rEdom =

√
1
M

∑M
m=1

(
Êdom,c[m]− 1

M

∑M
m=1 Êdom,c[m]

)2
Edom,c

. (4.33)

4.2.13 Ratio of Dominant Frequency Energy to Total Energy

Another possible predictor is given by the ratio rE of the energy of the frequency index
kdom, which corresponds to the dominant frequency fdom, to the total energy Ef,c, given
by

rE =
Edom,c[kdom]

Ef,c
. (4.34)

This predictor was also used for accelerometer signals by Patel et al. [21].

4.2.14 Standard Deviation of Energy Ratio

The energy spectral density ESTFT [fSTFT [m]] obtained with help of the spectrogram

function describes the energy corresponding to each frequency. Therefore, one may esti-
mate the ratio rE between the estimated dominant frequency energy Êdom,c[m] and the

estimated total energy ÊSTFT [m] of each 2s time interval as follows:

r̂E [m] =
Êdom,c[m]

ÊSTFT [m]
. (4.35)
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Applying equation (4.7), one can determine an estimate of the relative standard de-
viation σrE of the ratio between the dominant frequency energy and the total energy of
each 2s time interval as follows:

σ̂rrE =

√
1
M

∑M
m=1

(
r̂E [m]− 1

M

∑M
m=1 r̂E [m]

)2
rE

. (4.36)

4.2.15 Energy Content in Three Frequency Bands

The energy content of various frequency bands may provide further insights beneficial to
the quantification process, although its value for quantification of Parkinson’s symptoms
has only been shown for the dyskinesia case using broad sub-bands of the frequency spec-
trum [31]. However, energy content of narrow sub-bands has been used successfully as a
predictor in the context of epileptic seizure detection by Czarnecki and Gustafsson [4].

In this work, the energy content of the frequency bands 0.75 − 1.5 Hz, 1.5 − 2.25 Hz
and 2.25 − 3 Hz was considered. These may be determined as follows, where bli and bui
describe the lower and upper frequency band boundaries respectively while i = 1, 2, 3:

ECbli−bui
= 2

fs
N2

bui N

fs∑
k=

bl
i
N

fs

|X[k]|2. (4.37)

4.2.16 Standard Deviation of Energy Content in Three Frequency Bands

In order to calculate the standard deviation of the energy content, one may utilize the
STFT defined in equation (4.8) as calculated with help of the spectrogram function. The
energy content ECbli−bui

[m] of each frequency band for each time interval m is given by

ECbli−bui
[m] = 2

fs
l2STFT

blulSTFT
fs∑

i=
bl
i
lSTFT
fs

∣∣∣∣XSTFT

[
m,

ifs
lSTFT

[m]

]∣∣∣∣2 . (4.38)

Then, one may use equation (4.7) to calculate the relative standard deviation of the
energy content of each of the previously defined frequency bands as follows:

σrEC
bl
i
−bu
i

=

√
1
M

∑M
m=1

(
ECbli−bui

[m]− 1
M

∑M
m=1ECbli−bui

[m]
)2

ECb1i−bui
. (4.39)

4.3 Predictor Set Hypotheses

In order to achieve a broader picture of feasible qualities of model fits as well as possible
configurations of sensors in a future monitoring systems, several predictor set hypotheses
were considered.

Each hypothesis proposes the usage of a different subset of the 120 available predic-
tors resulting from the calculation of each of the predictors described in section 4.2 per
gyroscope and accelerometer for each of the three axes.
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The formulated hypotheses include the following:

� only features of the gyroscope around the y-axis are relevant (20 predictors)

� only gyroscope features are relevant (60 predictors)

� only accelerometer features are relevant (60 predictors)

In the narrowest setting, it was assumed that only gyroscope measurements around
the longitudinal axis of the forearm are of interest for symptom quantification. This
assumption appears natural since the measured motion is rotational about this axis and
it implies the consideration of 20 predictors for each measurement.

One may wonder whether the fundamental assumption of the first predictor set hy-
pothesis is correct or whether the addition of gyroscope measurements around the x- and
z-axes might improve model performance. Therefore, the second predictor set hypothesis
investigated in this work includes the utilization of predictors for gyroscope measurements
around all axes, i.e. 60 predictors per movement execution per patient.

In the literature, most studies considered accelerometer measurements along three axes
[1, 3, 5, 9, 21]. Although rotational motion is measured in form of centripetal acceleration
by accelerometers as well, the usage of accelerometers for the quantification of symptoms
from rotational movement may seem less intuitive than the utilization of gyroscope mea-
surements. However, the results of this third hypothesis are especially interesting with
an eye to future applications particularly in the home environment, since the use of ac-
celerometers would be more convenient for the patient as accelerometers typically consume
less power than gyroscopes, which require constant excitation. Less power consumption
implies either the need of smaller batteries or a longer battery life, both of which would
be desirable.

The predictor sets defined for the three hypotheses may be used in the modeling meth-
ods directly. Other options include the utilization of the predictors’ principal components
or of a subset of predictors.

In this work, a number of principal components determined with help of cross-validation
were applied to linear regression, later referred to as principal component regression. Fur-
thermore, the first two principal components of all predictors of each predictor set hy-
pothesis were used for the development of decision trees as well as local regression models,
smoothing splines and KNN models since these are known to be susceptible to the curse
of dimensionality.

The number of principal components used on the latter was not varied since this would
have required the selection of two tuning parameters. A large number of settings under
consideration increases the probability of obtaining a low MSE by chance. Unfortunately,
the present lack of data does not allow for further validation after model development and
therefore, the number of principal components applied to methods requiring the choice of
a tuning parameter was not investigated further.

Alternatively, one may consider only a subset of the original predictor set for model
development. As explained in the beginning of this chapter, predictors should not be
chosen subjectively. Instead, one may take into account the first few predictors selected by
forward selection, the last predictors which remain when employing backward selection,
or the predictors contributing most to the first few principal components, if a distinct
tendency towards a subset of predictors is identifiable.
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Chapter 5

Model Development

This chapter describes the application of the defined predictors as well as the implemen-
tation of the considered statistical learning methods.

5.1 Standardization of Predictors

Some statistical machine learning methods, as e.g. the lasso and KNN, require predictors
to be provided in a comparable form, namely, the predictors must be normalized to have
zero mean and standard deviations scaled to identical values.

According to James et al. [10], one may achieve equal standard deviations with help
of the following equation:

x̃ij =
xij√

1
n

∑n
i=1(xij − x̄j)2

. (5.1)

Here, x̄j describes the mean value of each predictor j = 1, . . . , p over all observations xi.
Zero mean can be achieved by extending equation (5.1) through the subtraction of the
mean value x̄j :

x̃ij =
xij − x̄j√

1
n

∑n
i=1(xij − x̄j)2

. (5.2)

The standardized predictors x̃ij as defined in equation (5.2) were used for all models.

5.2 Rounding of Predicted Responses

The applied regression and spline models predict responses on a continuous scale. However,
it is unclear whether a physician would utilize the provided information on a continuous
scale or might instead round the received UPDRS score to an integer before its utilization,
since the currently used UPDRS allows only integer scores. Consequently, the MSE as
defined in equation (3.1) may result in overly optimistic test error estimates.

In order to obtain an estimate of the test error relevant in the clinical context, one can
round the predicted response to an integer value before comparing it to the true response.
This leads to the following adaptation of the MSE which was applied for all implemented
regression and spline models:

MSE =
1

n

n∑
i=1

(
yi − round

(
f̂ (xi)

))2
. (5.3)
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5.3 Division of Data Set for Cross-Validation

It was found that the measurements of patient 15 have a three to five times higher ampli-
tude than all of the other patient’s measurements while the videos featuring patient 15’s
movement show a comparably slow motion. Therefore, one may conclude that the sensors
used for the measurements of patient 15 were calibrated incorrectly and consequently,
those measurements will not be considered further.

After removal of patient 15’s measurements, the utilized data includes 228 measure-
ments obtained from 18 different patients. Unfortunately, all measurements of one pa-
tient are implicitly correlated due to their dependence on the patient’s general physiology,
physical proportions, their characteristic movement patterns and personal manifestation
of Parkinson’s symptoms. Therefore, a natural division of all data into cross-validation
folds is given by patient affiliation, resulting in 18 folds containing 10 to 15 measurements
each as shown in table 2.1.

Due to this predefinition of folds, it is not possible to repeat nested cross-validation
for a number of recomposed folds as recommended by Krstajic et al. [14]. The benefits
of the suggested procedure are outweighed by the disadvantage of overly optimistic test
error estimates which can be expected when training and test data are correlated.

5.4 Implementation

The pre-processing and predictor calculation as well as all model development were exe-
cuted in Matlab. The functions, settings and procedures used for model development are
summarized in the following. The range and frequency of tuning parameters under con-
sideration were estimated through visual inspection of the resulting cross-validated MSEs,
i.e. values exceeding the utilized ranges were found to either be infeasible, or to lead to
large constant or monotonically increasing MSEs.

5.4.1 Linear Regression

The linear regression model for each cross-validation training set (compare section 3.2.2)
was obtained with help of the Matlab function fitlm(X,Y). Each calculated model was
then used to predict the responses of the respective test set utilizing Matlab’s evalua-
tion function feval(model,Xnew). The predicted responses were compared with the true
responses and the MSE was determined according to equation (5.3). Finally, the average
MSE over all cross-validation test sets was calculated.

5.4.2 Forward Selection

Forward selection requires the choice of a tuning parameter in the form of the number of
predictors considered. Therefore, nested cross-validation as described in section 3.2.3 can
be applied, where the maximal number of predictors under consideration was specified as
the number of all available predictors. The necessary calculations are summarized in the
following:

1. For each outer loop, i.e. for f = 1, ..., 18:

(a) Define f -th fold as outside test set TESTout,f and all other folds as outside
training set TRout,f

(b) For fin = 1, ..., 17 and the outer loop training set TRout,f :
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i. Define TESTin,k where k = ((f + fin) mod (18) + 1) as inside test set
and all sets currently not defined as inside or outside test set as inside
training set TRin,k

ii. Determine the null model M0,k containing only the intercept β̂0 using the
inside training set TRin,k and Matlab’s fitlm function

iii. Predict responses of inside test set TESTin,k using M0,k and Matlab’s
feval function.

iv. Compare predicted and true responses and calculate the resulting inner
test error MSE0,k

v. For each number of predictors j = 1, ..., p:

A. Using the function fitlm in Matlab, find all models Mjo that result
when each of the remaining p−j+1 predictors is added to the predictors
used in the previously determined model Mj−1

B. From all modelsMjo, select the one with the smallest RSS as the best
model for j predictors and define it as Mj,k

C. Use modelMj,k and Matlab’s feval function to predict responses of
inside test set TESTin,k

D. Compare predicted and true responses and calculate the resulting inner
test error MSEj,k

(c) Calculate the average MSE of the inner loop for each number of predictors using
MSEj,k

(d) Choose the best number of predictors pbf as the number corresponding to the
lowest average MSE

(e) Determine the null model M0,f containing only the intercept β̂0 using the
outside training set TRout,f and Matlab’s fitlm function

(f) For each number of predictors j = 1, ..., pbf :

i. Using Matlab’s fitlm function, find all models Mjo that result when
each of the remaining pbf − j + 1 predictors is added to the predictors used
in the previously determined model Mj−1

ii. From all models Mjo, select the one with the smallest RSS as the best
model for j predictors and define it as Mj,f

(g) Use modelMpbf ,f
and Matlab’s feval function to predict responses of outside

test set TESTout,f

(h) Compare predicted and true responses and calculate the resulting outer test
MSE denoted by MSEf

2. Calculate the average MSE over all outside loop folds as the average of MSEf and
define it as the cross-validated test error denoted by MSEave

3. Calculate an estimate of the optimal number of predictors as the average of the
chosen best number of predictors pbf over all folds

The resulting average test error is an approximation of the MSE that can be expected
when a forward selection model trained on all available data is applied to new data.
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5.4.3 Backward Selection

As in forward selection, the number of predictors to consider in the backward selection
model as well as the resulting average test MSE were determined with help of nested cross-
validation. The procedure is identical to the one described for forward selection with the
exception of steps 1.(b)ii.-v. and 1.(f). Steps 1.(b)ii.-v. are replaced as follows:

ii. Determine the full model Mp,k considering all predictors using the inside
training set TRin,k and Matlab’s fitlm function

iii. Predict responses of inside test set TESTin,k using Mp,k and Matlab’s
feval function

iv. Compare predicted and true responses and calculate the resulting inner
test error MSEp,k

v. For each number of predictors under consideration j = 0, ..., p− 1:

A. Using the function fitlm in Matlab, find all models Mp−j−1o that
result when each of the remaining p− j−1 predictors under considera-
tion is removed from the predictor set used in the previously determined
model Mp−j,k

B. From all modelsMp−j−1o , select the one with the smallest RSS as the
best model for j predictors and define it as Mp−j−1,k

C. Use model Mp−j−1,k to predict responses of inside test set TESTin,k
D. Compare predicted and true responses and calculate the resulting inner

test error MSEp−j−1,k

Similarly, step 1.(f) is replaced by

(f) For each number of predictors j = 1, ..., pbf :

i. Using the function fitlm in Matlab, find all modelsMpbf−j−1o
that result

when each of the remaining pbf − j − 1 predictors under consideration is
removed from the predictor set used in the previously determined model
Mp−j

ii. From all models Mpbf−j−1o
, select the one with the smallest RSS as the

best model for j predictors and define it as Mpbf−j−1,f

5.4.4 Ridge Regression

A convenient tool for the implementation of ridge regression is provided by the Matlab
function ridge(X,Y,λ,0) which returns the p+1 model coefficients β0, . . . , βp. The return
of the intercept β0 is enabled by the final function entry 0. One may employ nested cross-
validation as described in section 3.2.3 for selection of the tuning parameter λ as well as
model assessment in terms of the cross-validated MSE as follows:

1. For f = 1, ..., 18:

(a) Define f -th fold as outside test set TESTout,f and all other folds as outside
training set TRout,f

(b) For fin = 1, ..., 17 and the outer loop training set TRout,f :

i. Define TESTin,k where k = ((f + fin) mod (18) + 1) as inside test set
and all sets currently not defined as inside or outside test set as inside
training set TRin,k
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ii. For each discrete value of the tuning parameter λ under investigation:

A. Find model Mλ,k using the function ridge in Matlab

B. Using the coefficients β̂0, . . . , β̂p of the model Mλ,k predict responses
of inside test set TESTin,k

C. Compare predicted and true responses and calculate the resulting inner
test error MSEλ,k

(c) Calculate the average MSE of the inner loop for each value of the tuning pa-
rameter λ using MSEλ,k

(d) Choose the best tuning parameter λbf as the tuning parameter corresponding
to the lowest average MSE

(e) Using Matlab’s ridge function and λbf as the tuning parameter, find the model
Mλbf

(f) Use the coefficients β̂0, . . . , β̂p of the modelMλbf
to predict responses of outside

test set TESTout,f

(g) Compare predicted and true responses and calculate the resulting outer test
MSEf

2. Calculate the average MSE over all outside loop folds as the average of MSEf and
define it as the test MSEave

3. Calculate an estimate of the optimal value of the tuning parameter λ as the average
of the estimated optimal tuning parameters λbf over all folds

In this work, tuning parameter values between 0 and 5000 were considered.

5.4.5 The Lasso

The implementation of the lasso is equivalent to the one of ridge regression with the
difference that the Matlab function ridge is replaced by the Matlab function lasso.
Here, the coefficients β̂ including the intercept may be obtained by [[β̂1, ..., β̂p], β̂0] =

lasso(X,Y ,’Alpha’,1,’Lambda’,λ) where Alpha=1 specifies that the shrinkage penalty
is used as described in section 3.1.5. Values of the tuning parameter λ between 0 and 0.5
were considered.

5.4.6 Local Regression

Unfortunately, local regression is only defined in Matlab for up to two predictors. In-
stead, the function lwppredict(X,Y,parameters,Xnew) provided in the Locally Weighted
Polynomials toolbox by Jekabsons [11] was employed for the prediction of responses of test
data using a local regression model.

The needed input parameters are calculated by the function lwpparams(kernel,

degree,useKNN,windowSize,weightIterations,[],standardization,safety) given
in the same toolbox.

The kernel, i.e. the region employed for model development, was chosen to have a
tricubic shape (’TRS’) and the degree was set to 1 for locally linear functions. The option
useKNN was set to false implying that the kernel size is defined as a metric window
and not as a neighborhood. The size of the kernel assigned in windowSize as a fraction
of the largest distance between observations in the predictor space presents the tuning
parameter determined in the inner loop of nested cross-validation (compare section 3.2.3).
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The number of iterations for the calculation of the predictor’s weights were set to 5 while
the standardization option was set to false. The last option, the safety option specifying
whether a response should only be predicted in the presence of a sufficient number of
observations in proximity, was applied (true).

The nested cross-validation procedure for selection of the best kernel or window size
relative to the space spanned by all observations as well as assessment of the obtained
models were similar to those described in sections 5.4.4 and 5.4.5 for ridge regression and
the lasso. For local regression, the relative window size represents the tuning parameter
λ and instead of the model coefficients β̂0, . . . , β̂p, the function predict is used for the
prediction of responses.

The relative window size was investigated for values between 0.4 and 1. Values below
0.4 proved infeasible due to the presence of a number of observations insufficient for local
model development within smaller relative windows. A relative window size of 1 implies
consideration of all available observations.

5.4.7 Smoothing Splines

Matlab provides the function tpaps(X,Y,λ) for the development of smoothing splines
in a two-dimensional predictor space. In this work, the function tpaps was applied in
the predictor space spanned by the first two principal components as described in section
5.4.12.

Responses can be predicted with help of Matlab’s function fnval(model,Xnew) and
λ may be selected in a cross-validation scheme. Here, tuning parameter values between 0
and 0.2 were considered.

5.4.8 Multivariate Adaptive Regression Splines

MARS is not part of Matlab’s standard functions. Therefore, its implementation in the
ARESLab by Jekabsons [12] was utilized. Using this toolbox, one may build a multivariate
adaptive regression spline with help of the function aresbuild(X,Y,parameters).

The necessary parameters are determined by the function aresparams which allows,
among other options, the choice of piecewise-linear or piecewise-cubic models and the
specification of a maximal number of basis functions including the intercept. In this work,
a piecewise-linear model was chosen while the greatest number of basis functions was
selected with help of nested cross-validation. Numbers of basis functions between 0 and
20 were investigated.

The overall procedure for the selection of a number of basis functions and assessment
of the obtained model is similar to the one utilized for ridge regression as described in
section 5.4.4. For MARS, one may use the toolbox’s function arepredict(model, Xtest)

to predict the responses of some new observations instead of using model coefficients
β̂0, . . . , β̂p as for ridge regression.

5.4.9 K-Nearest Neighbors

KNN can be implemented with help of the Matlab functions fitcknn(X,Y) and predict

(model,Xnew) for model development and response prediction respectively. The optimal
number of neighbors may be estimated using nested cross-validation as described in section
3.2.3. Here, it was decided to investigate numbers of neighbors ranging from 1 to 190.

The procedure is similar to the one employed for ridge regression, the lasso, local re-
gression and MARS as described in sections 5.4.4 - 5.4.8 with the difference that the values
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of the tuning parameter λ are replaced by the number of neighbors under consideration
and that the responses of new data are predicted with help of the function predict instead
of using model coefficients β̂0, . . . , β̂p.

5.4.10 Decision Trees

The procedure implemented for the development and assessment of decision trees is almost
identical to that of ridge regression, the lasso, local regression, MARS and KNN. In this
case, the full tree may be determined with help of the Matlab function fitctree(X,Y,

’Prune’,’on’) where the option ’Prune’ defines whether or not an estimate of the op-
timal sequence of pruned subtrees should be included in the model description.

After the tree has been calculated, the Matlab function prune(model,’Alpha’,λ)
can be utilized to prune it. In this function, the option ’Alpha’ specifies that the tuning
parameter λ should be used as described in section 3.1.10. In this work, tuning pa-
rameter values between 0 and 1 were considered. After pruning, the function predict

(model,Xnew) may be used to predict responses for new data.

5.4.11 Support Vector Machines

SVMs may be implemented using Matlab’s function fitcecoc([X,Y],’Learners’,

parameters) where the kernel type can be specified with help of the function parameters

= templateSVM(’KernelFunction’,’polynomial’,’BoxConstraint’,C). In this work,
a polynomial kernel was chosen since Patel et al. [21] concluded that for the quantification
of Parkinson’s symptoms, SVMs with polynomial kernels are more suitable than SVMs
with radial or exponential kernels.

After model building, responses for new observations can be predicted using the Mat-
lab function predict(model,Xnew). In this case, the tuning parameter to be optimized
is the parameter C as defined in section 3.1.11. Its optimal value was estimated with help
of nested cross-validation using the same procedure as described for ridge regression in
section 5.4.4. In this work, tuning parameter values between 0 and 0.2 were investigated.

5.4.12 Principal Component Analysis

Principal component analysis describes the calculation of principal components prior to the
development of a model, where the determined components can be utilized as predictors
in another statistical machine learning method. One may find the principal components of
a predictor set with help of the Matlab function [φ, z] = pca(X,’Centered’,false).
This function returns the coefficients necessary for the transformation of predictors, i.e. φ,
as well as the resulting principal components zim =

∑p
j=1 φjmxij as described in section

3.1.12.
The option ’Centered’ instructs the function to subtract the predictor mean from each

predictor prior to the calculation of principal components. Its default setting is true, i.e.
predictors are centered unless specified otherwise. However, centering is not necessary
here since the predictors have all been standardized already.

The model development and assessment procedure for models requiring the selection
of a tuning parameter is summarized in the following:

1. For f = 1, ..., 18:

(a) Define f -th fold as outside test set TESTout,f and all other folds as outside
training set TRout,f
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(b) Determine the principal components zim,out and coefficients φjm,out of the out-
side training set

(c) For fin = 1, ..., 17 and the outer loop training set TRout,f :

i. Define TESTin,k where k = ((f + fin) mod (18) + 1) as inside test set
and all sets currently not defined as inside or outside test set as inside
training set TRin,k

ii. Determine the principal components zim,in and coefficients φjm,in for the
inside training set using Matlab’s pca function

iii. For each discrete value of the tuning parameter λ under investigation:

A. Find model Mλ,k using some modeling method on the principal com-
ponents zim,in

B. Determine the principal components of the test set TESTin,k through
multiplication with the coefficients φjm,in

C. Using the model Mλ,k and the principal components of the inside test
set TESTin, predict responses of TESTin,k

D. Compare predicted and true responses and calculate the resulting inner
test error MSEλ,k

(d) Calculate the average MSE of the inner loop for each value of the tuning pa-
rameter λ using MSEλ,k

(e) Choose the best tuning parameter λbf as the tuning parameter corresponding
to the lowest average MSE

(f) Using some modeling method, the principal components zim,out of the outer
training set and λbf as the tuning parameter, find the model Mλbf

(g) Determine the principal components of the outer test set TESTout,f through
multiplication with the coefficients φjm,out

(h) Using the model Mλbf
and the principal components of the outer test set

TESTout,f , predict responses of outside test set

(i) Compare predicted and true responses and calculate the resulting outer test
error denoted byMSEf

2. Calculate the average MSE over all outside loop folds as the average of MSEf and
define it as the cross-validated test error MSEave

3. Calculate an estimate of the optimal value of the tuning parameter λ as the average
of the estimated optimal tuning parameters λbf over all folds

This procedure may be utilized for any of the modeling methods described in 5.4.4 -
5.4.11. For modeling methods as e.g. linear regression without tuning parameters, steps
1.(c)-(e) can be omitted.

Additionally, one may estimate the optimal number of principal components to employ
for methods which do not require the selection of a tuning parameter. In such a cross-
validation procedure, the greatest possible number of principal components is equal to the
number of available predictors and instead of values of the tuning parameter λ, possible
numbers of principal components are investigated.
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Chapter 6

Results

The models were implemented as described in chapter 5 and assessed in terms of the
test MSE of predicted responses. Cross-validation was employed for evaluation of models
obtained using methods without tuning parameters. Methods which require the choice
of a tuning parameter were addressed with help of nested cross-validation as described in
section 3.2.3, where an inner cross-validation loop was applied in order to approximate
the optimal tuning parameter, while the outer cross-validation loop provided the MSEs
utilized for model assessment.

Additionally, the MSE that would result if the UPDRS scores assigned individually
by the three physicians were assumed to be predicted UPDRS scores was determined
for comparison. This MSE provides a measure of the physicians’ agreement among each
other and of the intrinsic variance of the available data. Hence, one may not expect the
statistical learning methods to perform better than the trained human raters.

For clarity of notation, the cross-validated MSE defined as the average of the test MSEs
of all folds will be denoted as MSEcv. Unless indicated otherwise, the MSEcv refers to
the cross-validated MSE of the outer cross-validation loop used for model assessment.

6.1 Results for First Predictor Set Hypothesis

The first predictor set hypothesis claims that the 20 predictors calculated for the gyroscope
measurements around the y-axis are sufficient for the quantification of bradykinesia present
in the measured motion. This hypothesis was evaluated for all modeling methods directly
applying the 20 predictors, as well as using the first two principal components and only
two predictors for local regression, smoothing splines, KNN and decision trees.

6.1.1 Consideration of 20 Predictors

The MSEcv as well as the standard error (SE) of the MSEcv for models obtained directly
considering the 20 predictors derived using only the gyroscope measurements around the
y-axis are summarized in table 6.1. The standard errors were always rounded upward to
avoid underestimation of confidence intervals. One may observe that, due to large standard
errors, most of the obtained results do not differ significantly on the one standard error
level.

As explained in chapter 2, the physicians evaluated motor symptoms of each patient
as recorded over the course of one day. Therefore, the discrete-time sequence of assigned
ratings describes the development of symptoms over time. Some examples of the true
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Table 6.1: Results of modeling methods utilizing first predictor set hypothesis

Method Cross-validated MSE ± SE Tuning parameter ± SE

Linear regression 0.80± 0.18 -

Forward selection 0.57± 0.12 2.56± 0.50

Backward selection 0.75± 0.15 2.56± 0.44

Ridge regression 0.59± 0.13 408± 28

Lasso 0.67± 0.15 0.12± 0.02

Principal component regression 0.55± 0.11 1.89± 0.34

Local regression 0.78± 0.14 0.57± 0.01

Linear MARS 0.69± 0.15 3.44± 0.82

K-nearest neighbors 0.74± 0.18 82.3± 5.8

Decision tree 0.71± 0.16 (52± 6)× 10−3

SVM linear kernel 0.75± 0.17 (41± 4)× 10−3

SVM quadratic kernel 1.03± 0.18 (11± 2)× 10−3

SVM 3rd degree polynomial kernel 0.90± 0.16 (67± 12)× 10−3

Physicians’ ratings 0.35± 0.30 -

UPDRS assigned by the physicians compared to the UPDRS as predicted by the linear
regression model are shown in figure 6.1.

The depicted UPDRS scores correspond to measurements recorded in chronological
order. The first test set contains measurements of patient 9 which received the smallest
MSE. The second depicted patient (test fold 18) provided the result closest to the MSEcv
while the last patient received the worst result (test fold 16). The correspondence between
patients and test folds is given in table 2.1.

One may observe that the linear model was able to predict most of patient 9’s UPDRS
scores correctly. For patient 19, the UPDRS scores predicted by the linear regression
model followed the overall shape of the UPDRS score’s variation as it changed over time,
indicating a strong correlation, but for most time instances, the model did not predict the
precise correct score. The last test fold received a poor MSE because the model was not
able to predict the worst UPDRS scores correctly. Considering the lack of measurements
assigned a UPDRS score of 4 and linear regression’s equal consideration of all observations
in the predictor space, this is not a surprising result.

A graphical comparison of the MSEcv for linear regression, forward selection and
backward selection as well as the test MSEs resulting in each cross-validation loop are
depicted in figure 6.2, while a similar comparison of linear regression, ridge regression and
the lasso is given in figure 6.3. In both figures, one may observe that neither one of the
five compared methods resulted in a smaller test MSE than the other depicted models
for all folds. The two test folds containing measurements of the two patients with the
highest possible UPDRS score (test fold 14 and 16) received some of the worst MSEs.
However, patient 5 was assigned a comparably high MSE as well, despite the utilization
of measurements with similar UPDRS scores for model development. Similar illustrations
for all other methods using 20 predictors are given in figures B.19 to B.21 in appendix B.
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Figure 6.1: True UPDRS scores (blue) and UPDRS scores as predicted by linear regression
models (red) for three patients, each used as test fold during model development

Figure 6.2: MSE corresponding to each outer loop test fold andMSEcv for linear regression
(red), forward selection (blue) and backward selection (green) respectively
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Figure 6.3: MSE corresponding to each outer loop test fold andMSEcv for linear regression
(red), ridge regression (blue) and the lasso (green) respectively

Furthermore, an illustration of the average of the MSEcv of the inner cross-validation
loop used for parameter selection in forward and backward selection is given in figure
6.4. Here, the average of the inner loop MSEcv is related to the number of predictors
considered for model building. The inner loop MSEcv for 20 considered predictors is
approximately equivalent to the MSEcv of the linear regression model. Comparison of
the average of the MSEcv shows that backward selection results in a larger MSEcv than
forward selection for most numbers of predictors, a difference that is caused by the greedy
approach of both methods.

Equivalent figures as 6.4 depicting the average of the inner loop MSEcv for all other
methods when using the first predictor set hypothesis are provided in figures B.1 to B.18
in section B of the appendix. Note that these figures do not depict the inner loop MSEcv
that was used for selection of the best tuning parameter value in each iteration. Instead,
they show the average of all the inner loop MSEcv that were used for this purpose. The
inner loop MSEcv for some folds as obtained using forward selection is given in figure 6.5.
Similar variations as the ones shown here occur across the different test folds for other
modeling methods as well.

Out of the predictor selection methods, forward selection provided the best results
even though the differences in MSEcv are not significant. Nonetheless, the first three
predictors chosen by forward selection for each outside training set, as shown in table 6.2,
clearly indicate which of the 20 predictors may be most useful for the development of a
linear model of the data.

Here, the relative standard deviation of the signal energy σrEt,c of the gyroscope around
the y-axis was chosen as the most important predictor sixteen out of eighteen times. For
the second predictor, the choice is less conclusive with nine times the greatest angular
velocity xmax around the y-axis, six times the energy Et,c of the same gyroscope measure-
ment and three times the range rx of the angular velocity around the y-axis.
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Figure 6.4: Average of the inner loop MSEcv for forward selection models (green) and
backward selection models (blue) with respect to the number of predictors used

Figure 6.5: Average of all inner loop MSEcv (red) as well as the MSEcv for the individual
inner cross-validation procedures (blue) when folds 4 (top left), 5 (top right), 8 (bottom
left) and 13 (bottom right) where used as outside test set for forward selection models
with respect to the number of predictors used
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Table 6.2: First three predictors chosen by forward selection per training set using first
predictor set hypothesis. Here, the indicated test fold denotes the fold that was not used
during model development.

Test fold 1st predictor 2nd predictor 3rd predictor

1 σrEt,c xmax σrEC
bl2−b

u
2

2 σrEt,c xmax σrEC
bl2−b

u
2

3 σrEt,c xmax rx

4 σrEt,c xmax rx

5 σrEt,c Et,c σ̂rEdom
6 σrEt,c xmax σrEC

bl2−b
u
2

7 σrEt,c Et,c σ̂rEdom
8 σrEt,c rx xmax

9 σrEt,c Et,c σ̂rEdom
10 σrEt,c Et,c σ̂rrE

11 σrxmax xmax fdom

12 σrEt,c xmax rx

13 σrEt,c xmax rx

14 σrEt,c Et,c σ̂rEdom
15 σrEt,c rx σrEC

bl1−b
u
1

16 σrrx rx σrEC
bl1−b

u
1

17 σrEt,c Et,c fdom

18 σrEt,c xmax σrEC
bl1−b

u
1

Simultaneously, one may observe that twelve out of twenty defined predictors were
chosen as one of the three most important predictors at least once. The only measures
that neither appear directly nor in terms of their relative standard deviation are the signal
entropy and the energy content of the highest frequency band (2.25− 3 Hz).

The abundance with which the relative standard deviation of the signal energy was
chosen as a first predictor suggests that this measure may carry a great deal of information.
Therefore, it was decided to evaluate the performance of some methods when utilizing only
two predictors as well, namely the relative standard deviation of the signal energy σrEt,c
and the greatest angular velocity xmax around the y-axis. The results of these settings are
provided in section 6.1.3.

Returning to the results obtained considering all 20 predictors, one may observe that
principal component regression performed better than linear regression on all 20 predictors.
The reason for this performance difference could lie in linear regression’s consideration of
all predictors. When some of the information of the 20 predictors is discarded during
analysis of the principal components, this may remove unrelated information, i.e. noise,
from the model. Here, the number of principal components best suited for the linear
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regression model was determined with help of nested cross-validation.
The more flexible linear multivariate adaptive regression splines did not perform better

than the linear models. Even more so than for the linear predictor selection and shrinkage
methods, this is caused by the differences among results obtained for different folds.

Local regression and KNN are known to not handle large dimensions well, thus their
poor performance is not surprising. Decision trees are known for inaccurate predictions and
tend to only outperform parametric models when these are based on incorrect assumptions
regarding the mathematical relationship between observations and responses.

6.1.2 Consideration of Two Principal Components

As described in section 3.1.12, principal component analysis aims to reduce the predictor
space’s dimension by considering each observation’s projection onto the axes of largest
spread instead of using the original predictor. The results for models utilizing the first
two principal components of the first predictor set hypothesis are given in table 6.3. The
first of those two principal components is on average influenced most by the relative
standard deviation of the greatest angular velocity σrxmax , the relative standard deviation
of the range of the angular velocity σrrx , the relative standard deviation of the signal energy
σrEt,c , and the relative standard deviation of the dominant frequency energy σ̂rEdom .

However, all other predictors, with exception of the relative standard deviation of the
ratio of the dominant frequency energy to the total energy denoted by σ̂rrE , are considered
with at least half the weight of the previously mentioned predictors as well, i.e. neither of
their transformation factors φjm approaches zero.

Table 6.3: Results of modeling methods applied to the first two principal components of
predictors considered in the first predictor set hypothesis

Method Cross-validated MSE ± SE Tuning parameter ± SE

PC linear regression 0.51± 0.11 -

PC local regression 0.53± 0.11 0.62± 0.05

PC smoothing splines 0.53± 0.11 (2± 1)× 10−3

PC k-nearest neighbors 0.71± 0.15 38.6± 5.7

PC decision tree 0.61± 0.14 (40± 3)× 10−3

Physicians’ ratings 0.35± 0.30 -

Considering table 6.3, one may observe that the performance of all methods improved
with the application of the first two principal components instead of all 20 predictors.

6.1.3 Consideration of Two Predictors

Forward selection chooses predictors based on their contribution to a least square model
fit. Therefore, it may give some indication of predictors of interest depending on the
true underlying mathematical relationship between observations and responses. As shown
in table 6.2, the relative standard deviation of the signal energy σrEt,c and the greatest
angular velocity xmax around the y-axis were chosen by forward selection as the first two
predictors, i.e. the predictors causing the greatest decrease of the RSS, most often. The
results obtained from application of linear regression, local regression, smoothing splines,

47



KNN and decision trees to these two predictors are given in table 6.4. These results were
better than the results found utilizing any other predictor set.

Table 6.4: Results of modeling methods applied to only two predictors chosen by forward
selection out of predictors considered in the first predictor set hypothesis

Method Cross-validated MSE ± SE Tuning parameter ± SE

Linear regression 0.50± 0.10 -

Local regression 0.49± 0.09 0.60± 0.03

Smoothing splines 0.54± 0.10 (20± 9)× 10−3

K-nearest neighbors 0.51± 0.10 7.72± 0.36

Decision tree 0.55± 0.07 (9± 2)× 10−3

Physicians’ ratings 0.35± 0.30 -

The MSEcv and the MSE for each fold obtained for linear regression and local re-
gression, the two methods receiving the lowest MSEcv, are depicted in figure 6.6. Both
methods lead to approximately equivalent results for more than half of all folds.

For further comparison, the median of the UPDRS scores assigned by the three physi-
cians and the UPDRS scores predicted by the linear regression and the local regression
models for patient 8, 10 and 14 are given in figures 6.7 and 6.8. Both models received
the smallest test MSE for patient 10 and the highest test MSE for patient 14 while the
test MSE of patient 8 was closest to the MSEcv. One may observe that linear regression
and local regression returned identical predictions with the exception of the prediction for
measurement 8 of patient 14.

Figure 6.6: MSE for each outer loop test fold and MSEcv for linear regression (red) and
local regression (blue)
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Figure 6.7: True UPDRS scores (blue) and UPDRS scores as predicted by linear regression
models obtained using two predictors (red) for three patients, each used as test fold during
model development

Figure 6.8: True UPDRS scores (blue) and UPDRS scores as predicted by local regression
models obtained using two predictors (red) for three patients, each used as test fold during
model development
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Additionally, the confusion matrices for linear regression and local regression relating
predicted to true UPDRS scores are depicted in figures 6.9 and 6.10. Here, the predicted
UPDRS scores are the UPDRS scores obtained for all measurements of each outer cross-
validation test fold.

The confusion matrices in figures 6.9 and 6.10 show that about 61% of all predicted
responses for test observations were correct while the majority of mispredicted UPDRS
scores deviated by one step from the median of the UPDRS scores assigned by the physi-
cians. For both linear and local regression only six out of 228 observations, i.e. 2.6% of
the available data, were misclassified by more than one step.

Considering the overall accuracy given in the depicted confusion matrices, one may
observe that linear regression correctly predicted 139 out of 228 test observations, while
local regression assigned the desired score to 138 out of 228 predictions. Nonetheless, the
MSEcv of local regression when applied to only two predictors was found to be marginally
lower than the MSEcv found using linear regression and the same two predictors. This
discrepancy stems from the procedure for calculation of the MSEcv.

For example, two methods may predict responses for two folds where one fold contains
ten observations, while the other fold consists of 15 observations. If both methods mis-
classified six observations by one step but these were distributed differently over the two
folds, this may lead to a situation where the MSEcv for the first method is given by

MSEave,1 =
2
10 + 4

15

2
= 0.23, (6.1)

while the MSEcv for the second method amounts to

MSEave,2 =
4
10 + 2

15

2
= 0.27. (6.2)

Although these effects are less pronounced for 18 folds, one may conclude to not attach
importance to small differences in the obtained MSEcv.

Neither smoothing splines, KNN or decision trees utilizing the relative standard devi-
ation of the signal energy σrEt,c and the greatest angular velocity xmax around the y-axis
misclassified observations by a large margin as may be seen in figures B.22 to B.24 in
appendix B. However, both KNN and decision trees did not predict an extreme UPDRS
score (0 or 4) for any of the test observations. For comparison, a confusion matrix for the
method which received the largest MSEcv overall (local regression for the second predictor
set hypothesis) is depicted in figure B.25.

One advantage of linear regression compared to local regression and KNN is that once
a function describing the mathematical relationship between observations and responses
has been found, the training data is no longer necessary for the prediction of new data.
Instead, the derived function contains sufficient information for the prediction of responses
for new observations. Additionally, a linear model is easily interpretable.

For the linear regression model obtained utilizing only the relative standard deviation of
the signal energy σrEt,c and the greatest angular velocity xmax around the y-axis, averaging
of the coefficients derived for all folds results in the relationship

ŷi = 1.614 + 0.468 σrEt,c − 0.137 xmax, (6.3)

where ŷi denotes a predicted response.
This result indicates that greater variations in the signal energy imply a larger UPDRS

score while an increasing greatest angular velocity implies a decrease of the expected
UPDRS score, indications that concur with the initial assumptions used for predictor
formulation in chapter 4.
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Figure 6.9: Confusion matrix for linear regression with two predictors, where the UPDRS
score for each measurement as predicted by linear regression is related to the median of
the physicians’ UPDRS scores for the same measurement

Figure 6.10: Confusion matrix for local regression with two predictors, where the UPDRS
score for each measurement as predicted by local regression is related to the median of the
physicians’ UPDRS scores for the same measurement
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6.2 Results for Second Predictor Set Hypothesis

The second predictor set hypothesis includes all 60 predictors per measurement derived
from gyroscope measurements around the x-, y- and z-axis.

6.2.1 Consideration of 60 Predictors

Application of the previously described statistical machine learning methods employing
all gyroscope measurement predictors directly yields the results shown in table 6.5.

Table 6.5: Results of modeling methods utilizing second predictor set hypothesis

Method Cross-validated MSE ± SE Tuning parameter ± SE

Linear regression 1.38± 0.56 -

Forward selection 0.61± 0.45 2.89± 1.31

Backward selection 0.84± 0.13 2.56± 0.70

Ridge regression 0.61± 0.12 920± 99

Lasso 0.59± 0.13 0.15± 0.01

Principal component regression 0.55± 0.12 2.73± 0.39

Local regression 1.61± 0.81 0.63± 0.03

Linear MARS 0.82± 0.15 4.11± 1.00

K-nearest neighbors 0.67± 0.11 78± 4.2

Decision tree 0.68± 0.14 (59± 4)× 10−3

SVM linear kernel 0.91± 0.17 (32± 10)× 10−3

SVM quadratic kernel 1.34± 0.35 (17± 3)× 10−3

SVM 3rd degree polynomial kernel 0.88± 0.14 0.01± 4.2× 10−19

Physicians’ ratings 0.35± 0.30 -

Comparison of the results obtained utilizing predictors considered in the first and
second predictor set hypotheses shows that only the lasso, KNN, decision trees and SVMs
with 3rd degree polynomial kernels performed better when applied to predictors derived
from all three gyroscopes. In other words, the addition of predictors did not enhance
model performance generally.

In the previous section, the first two predictors chosen by forward selection were found
to be beneficial for the results obtained using other modeling methods as well. The first
three predictors chosen by forward selection in each outer cross-validation fold considering
predictors for measurements of all three gyroscopes are given in table 6.6.

Here, as for the first predictor set hypothesis, the relative standard deviation of the
signal energy σrEt,c of the gyroscope around the y-axis was chosen as the most important
predictor sixteen out of eighteen times. For the second predictor, the greatest angular
velocity xmax around the y-axis was chosen eight times, the energy Et,c of the same
gyroscope measurement four times and the range rx of the angular velocity around the
y-axis three times. Additionally, some features derived from gyroscope measurements
around the x- and z-axis appear once each.
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These choices indicate that the additional predictors carry relevant information, thus
they appear within the first three most relevant predictors from a least squares approach
standpoint. Simultaneously, the increase in MSEcv implies that the supplemented pre-
dictors contribute more noise than useful information to the models.

Table 6.6: First three predictors chosen by forward selection per training set using second
predictor set hypothesis. Here, the indicated test fold denotes the fold that was not used
during model development.

Test fold 1st predictor 2nd predictor 3rd predictor

1 σrEt,c y-axis xmax y-axis σrEC
bl2−b

u
2

y-axis

2 σrEt,c y-axis xmax y-axis σrEC
bl2−b

u
2

y-axis

3 σrEt,c y-axis xmax y-axis rx y-axis

4 σrEt,c y-axis xmax y-axis rx y-axis

5 σrEt,c y-axis Et,c y-axis σ̂rEdom y-axis

6 σrEt,c y-axis xmax y-axis σrEC
bl2−b

u
2

y-axis

7 σrEt,c y-axis Et,c y-axis σ̂rEdom x-axis

8 σrEt,c y-axis rx y-axis xmax y-axis

9 σrEt,c y-axis Et,c y-axis σ̂rEdom y-axis

10 σrEt,c y-axis Et,c y-axis rx x-axis

11 σrxmax y-axis xmax y-axis σ̂rEdom z-axis

12 σrEt,c y-axis σrEC
bl2−b

u
2

z-axis ECbl2−bu2
z-axis

13 σrEt,c y-axis xmax y-axis rx y-axis

14 σrEt,c y-axis fdom x-axis σrEC
bl1−b

u
1

z-axis

15 σrEt,c y-axis rx y-axis σrEC
bl1−b

u
1

y-axis

16 σrrx y-axis rx y-axis σrEC
bl1−b

u
1

y-axis

17 σrEt,c y-axis rx x-axis σrxmax y-axis

18 σrEt,c y-axis xmax y-axis σrEC
bl1−b

u
1

y-axis

Consideration of the two predictors chosen most often as the first or second predictor
that cause the greatest decrease in RSS leads to the same two predictors as chosen for
the first predictor set hypothesis. The results of the application of these two predictors to
several modeling methods have already been shown in section 6.1.3.

6.2.2 Consideration of Two Principal Components

The results obtained utilizing the first two principal components of the 60 gyroscope
predictors are shown in table 6.7. With the exception of local regression and KNN, model
performance did not improve compared to that using the first predictor set hypothesis.
Additionally, as for the first predictor set hypothesis, the results obtained using KNN and
decision trees were worse than those of the regression and spline models.
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Table 6.7: Results of modeling methods applied to first two principal components of
predictors considered in the second predictor set hypothesis

Method Cross-validated MSE ± SE Tuning parameter ± SE

PC linear regression 0.55± 0.11 -

PC local regression 0.52± 0.12 0.60± 0.05

PC smoothing splines 0.57± 0.12 (11± 6)× 10−5

PC k-nearest neighbors 0.66± 0.14 23.5± 5.6

PC decision tree 0.67± 0.17 (49± 5)× 10−3

Physicians’ ratings 0.35± 0.30 -

6.3 Results for Third Predictor Set Hypothesis

The third predictor set hypothesis proposes that the usage of accelerometer measurements
may be sufficient for the quantification of bradykinesia.

6.3.1 Consideration of 60 Predictors

The MSEcv as well as the standard error of the MSEcv for models obtained considering
the 60 predictors derived using accelerometers along all three axes are summarized in table
6.8.

Table 6.8: Results of modeling methods utilizing third predictor set hypothesis

Method Cross-validated MSE ± SE Tuning parameter ± SE

Linear regression 0.84± 0.16 -

Forward selection 0.59± 0.13 17.4± 3.1

Backward selection 0.87± 0.17 4.50± 0.85

Ridge regression 0.64± 0.10 323± 45

Lasso 0.65± 0.12 (59± 6)× 10−3

Principal component regression 0.71± 0.11 8.60± 1.50

Local regression 1.00± 0.21 0.56± 0.01

Linear MARS 0.92± 0.21 5.00± 0.74

K-nearest neighbors 0.83± 0.19 66.9± 6.1

Decision tree 0.96± 0.16 (36± 6)× 10−3

SVM linear kernel 0.78± 0.13 (44± 6)× 10−3

SVM quadratic kernel 0.95± 0.18 (13± 2)× 10−3

SVM 3rd degree polynomial kernel 0.84± 0.13 0.01± 4.2× 10−19

Physicians’ ratings 0.35± 0.30 -
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The obtained results did not improve compared to the results derived using the first
predictor set hypothesis, with exception of improvements for the lasso and SVMs with
quadratic kernels. The predictors chosen by forward selection were not considered further
since the results for all 60 predictors indicate that about 17 out of the 60 accelerometer
predictors are relevant for model development, a number too large to promise improved
performance for methods suffering from the curse of dimensionality. Backward selection
performed worse than forward selection, thus its chosen number of 4.5 predictors does not
appear promising.

6.3.2 Consideration of Two Principal Components

The results obtained considering the first two principal components of the 60 accelerometer
predictors are shown in table 6.9. Here, as for the other two predictor set hypotheses when
utilizing principal component analysis, local regression obtained the lowest MSEcv.

Table 6.9: Results of modeling methods applied to first two principal components of
predictors considered in the third predictor set hypothesis

Method Cross-validated MSE ± SE Tuning parameter ± SE

PC linear regression 0.61± 0.11 -

PC local regression 0.60± 0.12 0.60± 0.07

PC smoothing splines 0.72± 0.15 (12± 10)× 10−4

PC k-nearest neighbors 0.81± 0.18 80.7± 7.9

PC decision tree 0.63± 0.12 (45± 5)× 10−3

Physicians’ ratings 0.35± 0.30 -
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Chapter 7

Discussion of Results

As expected, the predictors defined in the first predictor set hypothesis, including only
predictors derived from gyroscope measurements around the axis of the forearm, were
sufficient for the prediction of UPDRS scores for the considered rotational motion. The
addition of predictors derived from measurements of angular velocities around the x- and
z-axis did not enhance the models, although these predictors appeared to contain some
relevant information as well.

The results obtained utilizing only accelerometer measurements as included in the
third predictor set hypothesis were worse than those of the first predictor set hypothesis.
However, the results obtained for methods applied to the first two principal components
of predictors included in the third predictor set hypothesis may be sufficient for usage in
the home environment, if their performance deficiency is outweighed by large increases in
battery life.

Across all hypotheses, the results obtained considering only two principal components
were superior to the results obtained utilizing all predictors directly. This suggests that
not all predictors are relevant. Indeed, model performance increased most when only two
predictors, chosen by forward selection as the predictors reducing the RSS of a linear
model most, were utilized for model development.

Results for both forward selection and principal component analysis indicate that the
addition of predictors reflecting the standard deviation of a predictor’s value over time was
beneficial for the quantification of bradykinesia for the considered movement. One pre-
dictor from the literature that did not seem to have a great impact on the derived models
was signal entropy. However, this predictor was previously only utilized for accelerometer
measurements for which it may have greater importance.

Additionally, other studies mostly relied on the application of KNN, decision trees
and support vector machines. Here, although not performing significantly worse than the
other methods under consideration, the mentioned modeling methods did most often not
achieve prediction accuracies equivalent to those of linear models.

In theory, all linear predictor selection and shrinkage methods should yield improved
results compared to linear regression, the simplest linear modeling method, unless all
predictors are equally important for the prediction of the UPDRS score. Forward selection,
backward selection, ridge regression and the lasso all lead to improved results. However,
the differences are not statistically significant because, as shown in figure 6.5, the MSEs
obtained for the various test folds vary too much to offer a clear indication of the optimal
number of predictors or the optimal value for the tuning parameter λ to choose. These
large variations across the different folds explain why more advanced modeling methods
as e.g. MARS and SVM did not perform better than the less sophisticated methods.
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In this work, the cross-validation folds were defined in such a way that all measure-
ments of one patient were assigned to the same fold. This appears reasonable to avoid
optimistic test MSEs due to correlations between each patient’s measurements. However,
for the small number of measurements available, these patient-dependent characteristics
may be one reason for the large variations observed across different test folds. One might
argue that these correlation effects are harmless since a future application could rely on a
larger database in which each patient is likely to find a counterpart displaying similar char-
acteristics. However, it is unclear whether sufficient data will be available in the future. In
any case, the obtained results represent the worst case scenario, thus application to new
data should always yield similar or better results than the ones presented in chapter 6.

Furthermore, the estimation of the optimal tuning parameter λ∗ as the average of
the optimal tuning parameters found for each fold may not behave as intended for some
complex methods. For example, when the folds can be divided clearly into two groups
favoring two distinct intervals of the range of the tuning parameter, the average of the
chosen tuning parameter values for all folds may be located nowhere near the actual
optimal tuning parameter value.

However, neither linear nor local regression were affected by this issue. The optimal
window size for local regression considering two predictors was estimated to span 60% of
the largest distance between training observations. In other words, predictors in more than
half of the occupied predictor space were considered for the development of a linear model
around each test observation. This and the good results obtained for linear regression
suggest that either the underlying mathematical relationship is effectively a linear one,
or that advantages of more complex models are outweighed by their sensitivity to the
variability across patient folds.

The confusion matrices given in figures 6.9 and 6.10 may not seem too promising since
only about 61% of all test observations were quantified correctly. However, considering the
large deviations among human physicians as illustrated in figure 2.2, one may conclude
that at least deviations by one score on the UPDRS are not compromising the overall
model quality. Additionally, the standard errors of the cross-validated MSEs for most
modeling methods were much smaller than those of the physicians’ ratings.

Linear and local regression applied to two predictors misclassified only 2.6% of all test
observations by more than one step on the UPDRS. However, better prediction rates for
extreme UPDRS scores would be desirable. These should be attainable by training the
models on a more evenly distributed data set containing more training measurements with
UPDRS scores 0 and 4.

For the motion considered in this work, the choice of predictors utilized for model
development proved more significant than the selection of a modeling method. The best
results were obtained when considering only the relative standard deviation of the signal
energy σrEt,c and the greatest angular velocity xmax around the y-axis. Furthermore,
close to linear models performed slightly better than models obtained for other structural
assumptions. The simplest of those linear models was linear regression and since it received
some of the best results, linear regression appears to be the most recommendable modeling
method for quantification of bradykinesia for item 25 of the UPDRS protocol.

In the future, this work could be extended to include other motions, movements of
other limbs and the quantification of additional symptoms as e.g. dyskinesia, tremor and
freezing of gait. Furthermore, a movement recognition algorithm could be added in order
to avoid the requirement that patients must repeat pre-defined motions in certain time
intervals. Another approach could be the adaptation to individual patients in order to
avoid the large deviations observed in the present data.
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Chapter 8

Conclusion

Recent studies have shown the feasibility of quantification of several symptoms present in
Parkinson’s disease from various motions utilizing accelerometer and gyroscope measure-
ments. However, most studies employed non-parametric modeling methods as e.g. KNN
and decision trees, hereby avoiding the need to assume an underlying model structure.

In this work, the usefulness of a number of different statistical machine learning meth-
ods in conjunction with several predictor sets was evaluated for the example of a pre-
defined motion from the UPDRS protocol, namely repeated forearm rotation which is
used for the quantification of bradykinesia. It was found that, for the motion under con-
sideration, the choice of predictors has a greater impact on prediction performance than
the model structure. In fact, the results for most methods under consideration did not
differ significantly on the one standard error level when the same predictor set was used
for model development. However, prediction accuracy generally increased when principal
component analysis was employed as a pre-processing step before model development.

The best results were obtained when the relative standard deviation of the signal
energy and the greatest angular velocity around the forearm were used as predictors. Uti-
lizing these predictors, linear regression and local regression performed significantly better
than smoothing splines or decision trees applied to the same two predictors, while the
difference between the cross-validated MSEs for linear regression and KNN was not signif-
icant. Consequently, linear regression is not only a valid alternative to the much employed
non-parametric models, but it offers greater simplicity and interpretability without any
decrease in performance accuracy.

Obviously, the validity of these results is limited to the considered motion and to the
quantification of bradykinesia. Additionally, all obtained results are influenced by the
definition of patient folds for cross-validation and the assumption of integer responses as
well as the imbalance of the utilized data set. Therefore, testing of the obtained models
on a new and balanced data set would be desirable. Additionally, further investigation of
subsets of the considered predictors derived from accelerometer measurements may lead to
better results than those found using all predictors derived from accelerometer measure-
ments. Apart from the motion regarded in this work, similar considerations for different
movements including motions of other limbs may prove interesting as well. Furthermore,
the application of several statistical machine learning methods for quantification of other
symptoms, as e.g. dyskinesia, may lead to a better understanding of the underlying rela-
tionship between movement characteristics caused by those symptoms and UPDRS scores.

Once a greater understanding of the underlying characteristics and implications has
been gained, this knowledge may be combined with a movement recognition algorithm to
allow for unintrusive symptom quantification while patients follow their daily routines.
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Appendix A

Sampling and the Fourier
Transform

A similar representation of the original continuous signal x(t) as the sampled sequence x[n]
as defined in equation (4.1) is given by the impulse train xs(t) described by Oppenheim
and Schafer [19] as

xs(t) =

∞∑
n=−∞

x (t) δ (t− nTs)

=

∞∑
n=−∞

x (nTs) δ (t− nTs) . (A.1)

where the continuous signal xs(t) is zero at all times other than t = nTs.
The continuous time Fourier Transform (FT) as described by Haykin and van Veen [8]

where ω = 2πf is defined by

X(jω) =

∫ ∞
−∞

x(t)e−jωtdt. (A.2)

Therefore, one may determine the FT of the continuous signal xs(t) as follows:

X(jω) =

∫ ∞
−∞

∞∑
n=−∞

x (nTs) δ (t− nTs) e−jωtdt (A.3)

=

∫ ∞
−∞

∞∑
n=−∞

x (nTs) δ (t− nTs) e−jωnTsdt (A.4)

=
∞∑

n=−∞
x (nTs) e−jωnTs

∫ ∞
−∞

δ (t− nTs) dt (A.5)

=

∞∑
n=−∞

x (nTs) e−jωnTs (A.6)

=

∞∑
n=−∞

x[n]e−jωnTs . (A.7)

The obtained spectrum X(jω) is periodic with a period of 2π/Ts. When sampling the
frequency spectrum, the change of frequency between two samples X[k] and X[k + 1] is
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∆ω = 2π/(KTs) where K denotes the number of frequency samples, i.e. k = 0, ...,K/2.
Usually, one assumes N = K for notational convenience.

X(k∆ω) =
∞∑

n=−∞
x[n]e−j

2πknTs
KTs , (A.8)

⇒ X[k] =

∞∑
n=−∞

x[n]e−j
2πkn
K (A.9)

=
∞∑

n=−∞
x[n]e−j

2πkn
N . (A.10)

Consequently, through comparison of equations (4.2) and (A.10) one may observe that
sampling does not effect the definition of the DFT.
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Appendix B

Complementary Figures

Here, some figures complementing the results obtained using the first predictor set hy-
pothesis are provided.

Figure B.1: Average of inner loop MSEcv for ridge regression models with respect to the
value of the tuning parameter λ used
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Figure B.2: Average of inner loop MSEcv for lasso models with respect to the value of
the tuning parameter λ used

Figure B.3: Average of inner loop MSEcv for principal component regression models with
respect to the number of principal components used
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Figure B.4: Average of inner loop MSEcv for local regression models with respect to the
relative window size used

Figure B.5: Average of inner loop MSEcv for MARS models with respect to the number
of basis functions used
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Figure B.6: Average of inner loop MSEcv for KNN models with respect to the number of
neighbors used

Figure B.7: Average of inner loop MSEcv for decision tree models with respect to the
value of the tuning parameter λ used
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Figure B.8: Average of inner loop MSEcv for SVMs with linear kernel with respect to the
tuning parameter C used

Figure B.9: Average of inner loop MSEcv for SVMs with quadratic kernel with respect
to the tuning parameter C used
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Figure B.10: Average of inner loop MSEcv for SVMs with 3rd degree polynomial kernel
with respect to the tuning parameter C used

Figure B.11: Average of inner loop MSEcv for local regression applied to first two principal
components of first predictor set hypothesis with respect to the relative window size used
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Figure B.12: Average of inner loop MSEcv for smoothing splines applied to first two
principal components of first predictor set hypothesis with respect to the value of the
tuning parameter λ used

Figure B.13: Average of inner loop MSEcv for KNN applied to first two principal compo-
nents of first predictor set hypothesis with respect to the number of neighbors used
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Figure B.14: Average of inner loop MSEcv for decision trees applied to first two princi-
pal components of first predictor set hypothesis with respect to the value of the tuning
parameter λ used

Figure B.15: Average of inner loop MSEcv for local regression models applied to two
predictors of first predictor set hypothesis with respect to the relative window size used
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Figure B.16: Average of inner loop MSEcv for smoothing splines applied to two predictors
of first predictor set hypothesis with respect to the number of basis functions used

Figure B.17: Average of inner loop MSEcv for KNN models applied to two predictors of
first predictor set hypothesis with respect to the number of neighbors used
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Figure B.18: Average of inner loop MSEcv for decision tree models applied to two pre-
dictors of first predictor set hypothesis with respect to the value of the tuning parameter
λ used

Figure B.19: MSE corresponding to each outer loop test fold and MSEcv for local regres-
sion (red) and MARS (blue)
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Figure B.20: MSE corresponding to each outer loop test fold and MSEcv for KNN (red)
and decision trees (blue)

Figure B.21: MSE corresponding to each outer loop test fold and MSEcv for SVMs with
linear kernel (red), quadratic kernel (blue) and 3rd degree polynomial kernel (green)
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Figure B.22: Confusion matrix for smoothing splines with two predictors, where the UP-
DRS score for each measurement as predicted by the smoothing splines is related to the
median of the physicians’ UPDRS scores for the same measurement

Figure B.23: Confusion matrix for KNN with two predictors, where the UPDRS score
for each measurement as predicted by KNN is related to the median of the physicians’
UPDRS scores for the same measurement
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Figure B.24: Confusion matrix for decision trees with two predictors, where the UPDRS
score for each measurement as predicted by the decision trees is related to the median of
the physicians’ UPDRS scores for the same measurement

Figure B.25: Confusion matrix for local regression with all predictors of the second pre-
dictor set hypothesis, where the UPDRS score for each measurement as predicted by
local regression is related to the median of the physicians’ UPDRS scores for the same
measurement
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