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Accuracy evaluation of Power System State Estimation - an evaluative study of the 

accuracy of state estimation with application to parameter estimation 

HANNES HAGMAR 

Department of Energy and Environment 

Division of Electric Power Engineering 

Chalmers University of Technology 

 

Abstract 

 

The following report examines the impact that parameter and model errors have on the 

result of the power system state estimation. Furthermore, the feasibility of increasing 

the accuracy of the state estimation is examined by introducing parameter estimation 

within the ordinary estimation model.  

Model errors due to unbalanced grid conditions are found to have a large impact on the 

phase values, but an almost negligible impact on the averaged values that are commonly 

used as input to the state estimation model. Parameter errors affect the accuracy of the 

state estimation in various extents, and errors in the line susceptance are found to 

generally cause the largest errors. The level of measurement redundancy is significant to 

the result, and reduced measurement redundancy will in general increase the estimation 

errors due to parameter errors. Furthermore, undesirable combinations of parameter 

errors within a larger network are also found to increase the estimation errors 

significantly.  In order to estimate the magnitude of estimation errors caused by 

parameter errors, each grid configuration and power flow state would have to be 

examined individually.  

Parameter estimation was found to be highly accurate in estimating the line susceptance 

for most levels of reasonable measurement errors. However, the line conductance and 

shunt susceptance were found to be significantly harder to estimate and even small 

measurement errors resulted in poor estimations. Using parameter estimation for the 

line susceptance under conditions of relatively low levels of measurement errors was 

found to significantly decrease the errors in the state estimation. Finally, an alternative 

method of estimating the line conductance was examined. This estimation was found to 

be more resilient to errors in the voltage measurement, but was still sensitive to errors in 

the power flow measurement devices.  

Keywords: State estimation, parameter estimation, sensitivity analysis, parameter 

errors, model errors, SP, Svenska kraftnät, accuracy evaluation, state estimation 

accuracy enhancement 
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1 Introduction 

The following report is conducted in cooperation with SP Technical Research Institute 

of Sweden (SP) on behalf of the Swedish transmission system operator Svenska kraftnät 

(Svk). The report is a part of a master thesis performed within the electrical power 

engineering program at Chalmers University of Technology in Gothenburg, Sweden.  

In March 2014, a research collaboration was initiated between SP and Svk with the 

main goal of examining the possibilities to continuously supervise the measurement 

infrastructure through mathematical analysis of real time data from the energy 

measurement systems in the transmission grid. The following thesis is a part of that 

research collaboration, and aims to determine the impact that parameter and model 

errors have on the result of the power system state estimation. Furthermore, the report 

strives to develop and evaluate methods of parameter estimation.  

1.1 Background 

The main objective of the power system operation is to maintain the system within the 

normal secure state while the operating condition varies during the regular operation. 

This is achieved by monitoring the present state of the system by acquiring 

measurements from the system and then processing them accordingly. In general, 

SCADA (Supervisory Control and Data Acquisition) systems are used in order to 

supervise and gather measurements from the grid, which then allows the system 

operators to monitor the continuous operation [1].  

The state estimation (SE) algorithm is thereafter used to provide the best estimation of 

the actual state within the power system. The method estimates the system states by 

using an over-determined system with imperfect measurements. By minimizing the sum 

of the squares of the differences between the estimated and the measured values of the 

system, a best estimate of the system is generated. An accurate SE is vital and the result 

is the backbone of the grid planning and the power system operation. Large errors in the 

estimation may cause severe flaws in areas such as economic dispatch of power, 

transient and voltage stability, and the protection system of the grid.  
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The accuracy of the SE with respect to grid operation is today in general well within the 

limits to ensure a safe and secure operation. However, an alternative application that the 

SE tool may be used for is for analysing and detecting errors within the measurement 

infrastructure. SP has at present the responsibility to inspect and ensure that the energy 

measurement systems within the transmission grid satisfy the regulated accuracy 

requirements. These energy measurements are primarily used to register transferred 

energy, but they may also provide highly accurate instantaneous values of voltages and 

power that may be used within the SE model. By using the result of the SE and 

inspecting branches with high residuals, it would be possible to develop methods to 

identify and correct the errors for these measurements. The same method of detecting 

measurement errors could then also be applied to the operational measurements that are 

used by Svk to supervise the grid operation. This method could thus significantly 

facilitate the fault detection and calibration of measurement devices in the grid.  

The general procedure of the SE is to assume that the line model and the line parameters 

are perfectly known and that it is the measurements that are contaminated with errors 

and noise. However, this is generally not an entirely correct assumption. The power 

system is a quasi-static system and thus changes slowly with time [2]. Not only do the 

system states change with time, but also the line parameters are to some extent time 

variant. Occurrences such as weather, temperature effects and aging of lines all affect 

the parameter values in some extent over time. Moreover, the initially calculated 

parameter values may in fact differ from the actual values, and studies have found that 

the values may vary from the actual ones in the order of 5 % [3].  

The model that the SE is based on could itself also be a source of reduced accuracy. The 

general model that is generally used is slightly simplified and assumes fully symmetric 

loads and a perfectly transposed grid. Furthermore, the simplification of using the so 

called π-model with lumped values of the capacitance may also reduce the accuracy, 

and especially for longer line sections. Thus, the assumption that the line model and line 

parameters are perfectly known is not true. Large measurement errors can be detected 

even if line parameters are not correct. However, in order to find small measurement 

errors and estimate the size of those errors, the estimation has to be very accurate. The 

need of an accurate SE is thus obvious and in order to increase the reliability of the 

results from the estimation, the impact of these discrepancies needs to be examined.  

A possible, yet somewhat unused, method of increasing the accuracy of the SE is to 

include the estimation of suspected erroneous line parameters within the actual state 

estimation. By this approach, the impact of erroneous line parameters could be 

decreased and the total accuracy of the estimation increased. This method of parameter 
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estimation (PE) is still generally not adopted by system operators and the possibilities 

and challenges of the method are to a large extent still not investigated. Previous studies 

have shown that PE based on augmentation of the state vector and using Kalman 

filtering is one of the most accurate parameter estimation algorithms that is present 

today [4].  

1.1.1 Measurement requirements in the Swedish power grid 

The accuracy requirements of the energy measurement systems in the Swedish power 

grid are regulated from the Swedish government authority called the Swedish Board for 

Accreditation and Conformity Assessment (SWEDAC) [5]. The requirements on the 

accuracy of the measurement devices are depending on the power system level. For 

example, in the case of the Swedish transmission grid, the accuracy of in principal all 

energy measurement devices have to be in in the range of ± 0.5 % [5].  

According to regulations from SWEDAC, a periodic inspection is required for all 

energy measuring systems used in operation within the Swedish grid [5]. The operation 

of the measuring system and the largest error has to continuously meet the stated 

requirements. This requirement is ensured by period inspections with a largest interval 

fixed to 6 years. In between these inspection intervals, a continuous monitoring of the 

system is also performed.  

By developing and using statistical analysis of these measurements, a continuous 

supervision of the requirements could be possible without even performing an actual 

inspection. If the reliability of these statistical analyses would be sufficiently high, it 

could potentially be developed into an accredited method of supervising measurement 

infrastructure. The application of using the results from a SE has been proposed as one 

of the methods that potentially could be used for the continuous supervision of the 

measurement infrastructure.  

1.2 Review of previous studies 

The previous studies covering PE is somewhat limited and actual field testing of the 

method is close to non-existent. One of the first studies dedicated to PE by using 

Kalman filtering is found in [6] where an experimental set of parameter errors in the 

range of 3-10 % is analysed. The estimation used generated noisy measurement data in 

a 24-bus large network and the results show that after a few filtering cycles, the 

estimated parameters are very close to the actual values. However, the parameters are 
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treated as constants, thus limiting the PE algorithm flexibility to parameter variations 

due to, for example, corona losses or temperature changes. Furthermore, there is no 

information provided on the noise and measurement levels associated with the 

measurement samples. If there are no added linear measurement errors introduced, the 

parameter estimation will always be perfect, and it is therefore hard to evaluate the 

results of this report.  

The PE algorithm with Kalman filtering is further tested in [7] where time varying 

parameters are dealt with for the first time. Once again, a large network is being tested 

with very accurate results obtained. However, all measurement data is once again 

generated with added noise, and there thus is no actual real-life data tested. Therefore, a 

simulation if it was feasible to follow the small time variations of the parameters due to 

external impacts, such as weather conditions, was not performed. Yet again, there is no 

information provided regarding the noise and/or error magnitudes on the generated data 

and it is thus hard to evaluate the results.  

Another report [8], which is not fully dedicated to the PE problem, examines a large 

network containing three separated branches with erroneous series impedance. While 

the parameter errors are significantly reduced by the implemented PE, several relative 

errors remain high in the estimation. Moreover, in this report, no information is 

presented on the applied measurement accuracy.  

Another report examines the possibilities of using the PE algorithm to estimate the 

transformer tap position [9] by using the so called residual sensitivity analysis method. 

Variable transformer tap positions may be modelled as dynamic parameters and 

significant errors may be experienced if these are not taken under consideration. The 

report examines the possibilities of this method and the results are found to be 

promising. Several other reports cover related topics such as parameter estimation using 

normal equations or residual sensitivity analysis.  

The effect that parameter errors have on the output of the SE is examined in [10]. The 

study examines a large network, with both parameter errors and errors in the 

transformer tap settings implemented in the system. The results show that erroneous 

parameters may affect the calculation of unmeasured line flow power levels 

significantly. The results are however only presented for the lines with no voltage or 

power flow measurements in either end of the line. Since these lines are unmeasured, 

the estimation is bound to be less accurate than for a measured line.  
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1.3 Aim of thesis 

The main goal of the following thesis may be divided into two separate, yet 

interconnected, parts.  

 Parameter and model errors sensitivity: The first objective is to determine the 

impact that parameter and model errors may have on the accuracy of the SE. The 

aim is thus to determine which errors that are related to parameter and model 

errors, and which errors that are related to measurement errors. Furthermore, in 

order to detect errors within the measurement infrastructure, the uncertainty due 

to parameter and model errors has to be estimated. The report will thus further 

strive to develop tools and methods for estimating the largest error that may be 

caused by errors in the model.  

 Feasibility of using parameter estimation to increase accuracy of state 

estimation: The second main objective is to determine the possibilities of 

increasing the accuracy of the SE by introducing parameter estimation within the 

ordinary estimation model. Thus, if parameter errors are present, the objective is 

to examine during what conditions it is feasible to estimate more accurate values 

for the parameters. The parameter estimation method is then verified by using 

actual measurement data from a part of the Swedish transmission grid.  

1.4 Scope 

The impact of parameter errors is examined both for the case of a single branch and for 

a larger 4-bus network. Simulations of different combinations of parameter errors and 

power flow states are time demanding, and a few selected simulations will instead be 

performed. The model errors are only examined for the case of poorly transposed 

transmission lines. Thus, estimation errors due to simplifications such as the π-model or 

the neglected conductance to earth will not be investigated.  

The report will use the so called augmented state estimation algorithm to estimate 

parameters. There are a number of other methods available, each with its specific 

advantages and disadvantages. However, the augmented state estimation with Kalman 

filtering is generally found to be one of the most accurate methods available for time 

series data [11]. Since a high accuracy is of high importance in the project, this model is 

found to be superior. Furthermore, simulations within the report will be constructed by 

using long line corrected parameter values and the so called π-model. This is the most 

common model that is being used for SE and no other models will thus be examined. 
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Moreover, the feasibility of using parameter estimation is only performed for the single-

branch and not in the case of a network.  

1.5 Thesis structure 

The report is principally divided into several separate, although interconnected, parts. 

The first theory section covers the power system modelling and the adopted 

assumptions for the three-phase model as well as for the transition to the single-phase 

model. Next is a section that briefly discusses the basics of state estimation and bad data 

identification, followed by a section that introduces the theory of parameter estimation. 

This background and theory is later used to aid the comprehension and put the results 

into a context.  

The method and simulations parts introduce the reader to the examined simulations and 

discuss why that specific approach has been chosen. The simulations and the models are 

constructed and the used data is presented. The result for each case is then presented and 

is briefly explained within each separate result section. Finally, the results are analysed 

and discussed and conclusions for the project are made. In the appendixes the measured 

grid data used in the simulations is presented along with the parameter values for the 

chosen grid configurations.  
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2 Power system modelling and assumptions 

The power system is generally assumed to be operating in steady state with perfectly 

balanced conditions. This indicates that branch power flows and bus loads are three 

phased and perfectly balanced, all transmission lines are perfectly transposed, and 

occurring shunt devices are symmetrical in all three phases [11]. In the case when all 

these conditions are fulfilled, the system can be modelled solely by the positive 

sequential components. Furthermore, the parameters of the system are assumed to be 

constant and fully known.  

In order to estimate the impact of non-balanced conditions on the accuracy of the SE, 

the equivalent single phase model has to be extended into the actual three-phase model. 

The following section examines the theory of the three phase model and the origins of 

parameter and model errors.  

2.1 Three-phase transmission model  

Transmission lines with a length of less than 250 km are generally represented by the so 

called π-model [12]. The π-model assumes that the total line charging susceptance can 

be modelled as lumped values in each end of the lines. The conductance to earth is 

commonly very small and is in general neglected.  

In Figure 1, the π-model for all three phases of a transmission line is shown as well as 

the ground plane. The figure illustrates the self-impedance (Z11, Z22, Z33), as well as the 

mutual line impedance between the phases (Z12, Z13, Z21, Z23,Z31, Z32). Furthermore, the 

line charging susceptance between the phases is illustrated (Y12, Y13, Y21, Y23,Y31, Y32) as 

well as the charging susceptance to ground (Y11, Y22, Y33). All charging susceptance 

values are modelled as lumped values in each end of the lines.  
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Figure 1. Illustration of a three-phase π-model with all the mutual- and self-impedances present 

The line impedance and line charging matrices may be stated as 

 
𝑍𝑀 = [

𝑍11 𝑍12 𝑍13

𝑍21 𝑍22 𝑍23

𝑍31 𝑍32 𝑍33

] (2.1) 

 
𝑌𝑀 = [

𝑌11 𝑌12 𝑌13

𝑌21 𝑌22 𝑌23

𝑌31 𝑌32 𝑌33

] 
(2.2) 

In order to analyse the behaviour of the three-phase model, an expression for how 

voltages and currents in the sending end affects the voltages and currents in the 

receiving end is required. The following theory section is developed by the author of the 

report, with aid of the conventional analysis of the single-phase model. For reference to 

this model, the reader is referred to [13].  

By studying Figure 1 and using the matrices (2.1) and (2.2) the following expression for 

the line current in the first phase, 𝐼𝐿1 may be found 

 𝐼𝐿1 = 𝐼𝑟1 + (
𝑌11

2
∙ 𝑉𝑟1 +

𝑌12

2
∙ 𝑉𝑟2 +

𝑌13

2
∙ 𝑉𝑟3) (2.3) 

The line currents of the other phases may be expressed in a similar way 

 𝐼𝐿2 = 𝐼𝑟2 + (
𝑌21

2
∙ 𝑉𝑟1 +

𝑌22

2
∙ 𝑉𝑟2 +

𝑌23

2
∙ 𝑉𝑟3) (2.4) 

 𝐼𝐿3 = 𝐼𝑟3 + (
𝑌31

2
∙ 𝑉𝑟1 +

𝑌32

2
∙ 𝑉𝑟2 +

𝑌33

2
∙ 𝑉𝑟3) (2.5) 
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By using vector-matrix form, these equations may be rewritten more compactly as 

 [
𝐼𝐿1

𝐼𝐿2

𝐼𝐿3

] = [
1 0 0
0 1 0
0 0 1

] [
𝐼𝑟1

𝐼𝑟2

𝐼𝑟3

] +
1

2
[
𝑌11 𝑌12 𝑌13

𝑌12 𝑌22 𝑌23

𝑌13 𝑌23 𝑌33

] [
𝑉𝑟1

𝑉𝑟2

𝑉𝑟3

] (2.6) 

Eq. (2.6) may be further simplified by using a more general notation as 

 [𝐼𝐿] = [𝐼𝑀𝐴𝑇][𝐼𝑟] +
1

2
[𝑌𝑀][𝑉𝑟] (2.7) 

where  [𝐼𝑀𝐴𝑇] :  3 × 3 large identity matrix  

By then using Kirchhoff’s laws, the voltage in the sending end may be expressed as 

 𝑉𝑠1 = 𝑉𝑟1 + (𝑍11 ∙ 𝐼𝐿1 + 𝑍12 ∙ 𝐼𝐿2 + 𝑍13 ∙ 𝐼𝐿3) (2.8) 

In the same way as in (2.7) all phase voltages may be rewritten in the more compact 

vector-matrix form as followed 

 [𝑉𝑠] = [𝐼𝑀𝐴𝑇][𝑉𝑟] + [𝑍𝑀][𝐼𝐿] (2.9) 

By then substituting the expression from (2.7) into (2.9), the following expression for 

the sending end voltages may be found 

 [𝑉𝑠] = [𝐼𝑀𝐴𝑇][𝑉𝑟] + [𝑍𝑀] [[𝐼𝑀𝐴𝑇][𝐼𝑟] +
1

2
[𝑌𝑀][𝑉𝑟]] (2.10) 

By using matrix multiplication and gathering the terms with respect to [𝑉𝑟] and [𝐼𝑟] the 

following expression may be found 

 [𝑉𝑠] = ([𝐼𝑀𝐴𝑇] +
[𝑍𝑀][𝑌𝑀]

2
) [𝑉𝑟] + [𝑍𝑀][𝐼𝑟] 

(2.11) 

The same method is then used to calculate the currents of the sending end 

 [𝐼𝑠] = [𝐼𝐿] + [
𝑌𝑀

2
] [𝑉𝑠] (2.12) 
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By then substituting the expressions of (2.7) and (2.11) into (2.12), the following 

expression may be found 

[𝐼𝑠] = [𝐼𝑀𝐴𝑇][𝐼𝑟] +
1

2
[𝑌𝑀][𝑉𝑟]  + [

𝑌𝑀

2
] (([𝐼𝑀𝐴𝑇] +

[𝑍𝑀][𝑌𝑀]

2
) [𝑉𝑟] + [𝑍𝑀][𝐼𝑟]) 

 (2.13) 

By once again gathering the terms with respect to [𝑉𝑟] and [𝐼𝑟] the following expression 

may be found 

 [𝐼𝑠] = [𝑌𝑀] ([𝐼𝑀𝐴𝑇] +
[𝑍𝑀][𝑌𝑀]

4
) [𝑉𝑟] + ([𝐼𝑀𝐴𝑇] +

[𝑍𝑀][𝑌𝑀]

2
) [𝐼𝑟] 

(2.14) 

The equivalent 𝐴𝐵𝐶𝐷-matrix for the three phase model that is commonly used for the 

single phase model may thus be stated as followed 

 𝐴 = [𝐼𝑀𝐴𝑇] +
[𝑍𝑀][𝑌𝑀]

2
 (2.15) 

 𝐵 = [𝑍𝑀] (2.16) 

 𝐶 = [𝑌𝑀] ([𝐼𝑀𝐴𝑇] +
[𝑍𝑀][𝑌𝑀]

4
) (2.17) 

 𝐷 = [𝐼𝑀𝐴𝑇] +
[𝑍𝑀][𝑌𝑀]

2
 (2.18) 

The above stated equations for the three phase model are thus similarly stated as for the 

equivalent single phase model. The relationship between the sending and receiving end 

voltages and currents may thus be formulated as followed 

 [
𝑉𝑠

𝐼𝑠
] = [

𝐴 𝐵
𝐶 𝐷

] [
𝑉𝑟

𝐼𝑟
] (2.19) 
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Note that (2.19) contains information of all three phases and that [
𝑉𝑠

𝐼𝑠
] is thus a 6 × 1 

matrix. In order to calculate the active and reactive power, voltage drop etc. the same 

method as in the classical single-phase model is used. The effect and simulation of an 

unbalanced grid is analysed in section 5.1 and the results are presented in section 6.1.  

2.2 Equivalent single-phase model 

The three-phase model developed in the previous section may in the event of complete 

symmetric conditions be reduced into an equivalent single-phase model [13]. This is 

achieved by initially transforming all phase voltages and phase currents, as well as the 

impedance and admittance matrices into so called symmetric components. Any 

unbalanced or balanced three-phase system may be expressed as the sum of the 

symmetrical sequence vectors; the positive, the negative, and the zero sequence vectors 

[13]. The transformation between phase values and symmetric components is performed 

by using the transformation matrix and its inverse, written as 

 
𝐴 = [

1 1 1
1 𝑎2 𝑎
1 𝑎 𝑎2

] 
(2.20) 

 
𝐴−1 =

1

3
[
1 1 1
1 𝑎 𝑎2

1 𝑎2 𝑎
] 

(2.21) 

where  𝑎 :  complex number with the value of 𝑒
+𝑗2𝜋

3 = (−0.5 + 𝑗0.866) 

If a fully symmetric three-phased voltage is assumed, the symmetric components may 

be calculated by multiplying the phase values of the voltage with (2.21) as follows [13]  

 [
𝑉0

𝑉1

𝑉2

] =
1

3
[
1 1 1
1 𝑎 𝑎2

1 𝑎2 𝑎
] [

𝑉𝑒𝑗(𝜔𝑡+𝜑)

𝑉𝑒𝑗(𝜔𝑡+𝜑−
2𝜋

3
)

𝑉𝑒𝑗(𝜔𝑡+𝜑+
2𝜋

3
)

] = [
0

𝑉𝑒𝑗(𝜔𝑡+𝜑)

0
] (2.22) 

where  𝑉0 :  zero sequence voltage 

  𝑉1 :  positive sequence voltage 

  𝑉2 :  negative sequence voltage 

  𝑉𝑒𝑗(𝜔𝑡+𝜑+𝑥) : corresponding phase voltage 
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From (2.22) it is possible to see that during perfectly symmetric conditions, the 

symmetric components consist solely of the positive-sequence component. The exact 

same method may then be used in order to derive the symmetric components for the 

current.  Following, the voltage drop over an impedance matrix as it is defined in (2.1) 

may in compact matrix form be expressed as 

 [𝑉𝑎−𝑐] = [𝑍𝑀] [𝐼𝑎−𝑐] (2.23) 

where  𝑉𝑎−𝑐 :  phase voltages in matrix form 

  𝐼𝑎−𝑐 :  phase currents in matrix form 

By transforming the phase voltages and the phase currents into symmetric components 

using (2.22) it is possible to rewrite (2.23) into symmetric components 

 [𝑉0−1−2] = [𝐴−1] [𝑍𝑀] [𝐴] [𝐼0−1−2] (2.24) 

where  𝑉0−1−2 :  symmetric component matrix of the voltage 

  𝐼0−1−2 : symmetric component matrix of the current 

Finally, the impedance matrix 𝑍𝑀 may be transformed into symmetric components by 

definying it as  

 𝑍0−1−2 = [𝐴−1] [𝑍𝑀] [𝐴] (2.25) 

In the case of an asymmetric line, 𝑍𝑀 will be a full matrix with different values in most 

fields [13]. However, in the case of a symmetric and fully transposed line, it is possible 

to show that the elements in 𝑍𝑀 are related as 

 𝑍11 = 𝑍22 = 𝑍33 = 𝑍𝑠 (2.26) 

 𝑍12 = 𝑍21 = 𝑍31 = 𝑍𝑑 (2.27) 

giving 𝑍𝑀 the following structure  

 
𝑍𝑀 = [

𝑍𝑠 𝑍𝑑 𝑍𝑑

𝑍𝑑 𝑍𝑠 𝑍𝑑

𝑍𝑑 𝑍𝑑 𝑍𝑠

] 
(2.28) 
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By then using (2.25), the impedance matrix in symmetrical components may be 

simplified into 

 
𝑍0−1−2 = [

𝑍𝑠 + 2𝑍𝑑 0 0
0 𝑍𝑠 − 𝑍𝑑 0
0 0 𝑍𝑠 − 𝑍𝑑

] 
(2.29) 

The positive sequence impedance has thus the value of 𝑍𝑠 − 𝑍𝑑. The exact same 

methodology may be used in order to transform the admittance matrix 𝑌𝑀 into 

symmetric components. From (2.22) it was found that both symmetric voltages and 

currents may be expressed solely by using the positive sequence component. Hence, if 

the power system is operating with symmetric conditions, calculations with the positive 

sequence components of the line voltages, currents, and impedances are found to be 

sufficient. The single-phase model may be derived similarly as for the three-phase 

model, but instead only using the positive sequence components. Thus, using the same 

methodology, an equivalent 𝐴𝐵𝐶𝐷-matrix may be formed for the single-phase model.  

2.3 Origin of model errors and parameter errors  

Model errors origins from the fact that the provided and used model is insufficient to 

explain the actual conditions of the transmission lines. The equivalent single phase 

model is only fully valid in the case of a fully balanced load and fully transposed 

transmission lines. If these conditions are not met, the three-phase model explained in 

section 2.1 could be preferred if a per-phase analysis is needed. Furthermore, the π-

model itself is a simplified model and the lumped capacitances is a simplification which 

is only valid with sufficiently high accuracy for line lengths shorter than about 250 km. 

In order to achieve a more accurate solution the exact effect of the distributed 

parameters must be considered [13]. The distributed parameters, namely the ABCD 

parameters of the equivalent π-model for a long line, are thus calculated and these 

corrected long line parameters are then used as an input for the SE. The long line 

corrected parameters will always have a small conductance to earth that models the no-

load losses of the line. However, this conductance is generally neglected within the SE 

model and albeit having a small value it could affect the results of the estimation.   

Parameter errors origins from the fact that the calculated parameter values differ from 

the actual ones for several different reasons. Previous studies have shown that parameter 

data provided by manufacturers may differ up to 5 % in many cases. The line length 

estimation may also in some cases be performed poorly, which would result in 
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erroneous parameter values [3]. Other reasons such as non-updated network changes or 

mutual inductance due to near lying power lines may also affect the parameter values 

used in the SE.  

As was previously mentioned, the power system is operating in a quasi-static state. 

However, not only does the system states change with time, but the line parameters are 

also in some magnitude time variant [3]. Temperature variations will primarily affect 

the line resistance, but since the sag of the line changes with temperature, the shunt 

capacitance and to some extent the inductance, will also be affected. Moreover, certain 

environmental conditions may cause phenomenon such as corona which will 

significantly affect aspects such as the line losses of the power system. Ageing of lines 

is a slower process but may also affect the parameter values to some extent.  
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3 State Estimation 

State estimation is the concept of obtaining the best estimation of the actual state within 

the grid by using an over-determined system with imperfect measurements. The state 

variables in a power system are the voltage magnitudes and the relative phase angles at 

the system nodes. The SE in combination with redundant measurements reduces the 

impact of large errors and finds the most optimal estimate of the system [11]. The most 

commonly used criterion of the optimal estimate is that of minimizing the sum of the 

squares of the differences between the estimated and the measured values [14].  

Power system operations such as system security control and economic dispatch 

requires that the system performance is estimated on a regular basis. However, due to 

the fact that measurements always will be related with both some magnitude of noise 

and systematic measurement errors, an accurate estimation is the key to well-

functioning power system operation. The magnitude of the measurement errors is not 

only dependent on the accuracy of the equipment, but also systematic errors such as 

nonlinearities of current and voltage transformers or time and environment 

dependencies.  

The following section briefly covers the theoretical background of SE. The literature 

covering SE is quite extensive and a there are several methods formulated such as 

optimization of the algorithm and observability analysis. However, this section is 

mainly focused on presenting the basic background of the algorithm as well as the 

system measurement functions. The theory of the following section is gathered mainly 

from [11] unless specifically stated otherwise. Hence, if more depth regarding the 

theory of power system state estimation is desired, the reader is referred to that 

reference.  

3.1 Weighted Least Squares Estimation  

The goal with the SE is to determine the most probable state of the system based on a 

redundant amount of measurements. One way to achieve the goal is to use the so called 

maximum likelihood estimation (MLE) [11]. If the measurement errors are expected to 

have a known probability distribution with unknown parameters, then the joint 

probability function for all measurements in the system can be stated as a function of 
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these unknown parameters. The joint probability function will attain the highest value 

when the unknown parameters are chosen to values closest to their actual values. The 

optimization of this function will then result in the maximum likelihood estimates of the 

measurements. The Gaussian, or the Normal, probability density function (PDF) for a 

random measurement 𝑧 can defined as [15] 

 𝑓(𝑧) =
1

𝜎√2𝜋
𝑒−

1

2
(
𝑧−𝜇

𝜎
)
2

 (3.1) 

where  𝜎 : standard deviation of 𝑧 

  𝜇 : expected or mean value of 𝑧 = 𝐸(𝑧) 

A plot of the PDF is illustrated in Figure 2. The figure shows the probability of a 

measurement attaining a certain value. Note that the standard deviation will provide a 

measure of the probability and seriousness of measurement errors [14]. If 𝜎 is small, the 

measurement is generally not affected as much by noise (i.e. higher quality 

measurement device), whereas a large value of 𝜎 is related with larger measurement 

noise levels (i.e. lower quality measurement device).  

 
Figure 2. Probability density function for a normal distributed measurement 

By assuming that the normal probability density function is equal for all measurements 

and that the measurement errors are non-dependent of each other, the joint probability 

function for 𝑚 independent measurements can be expressed as the product of each 

individual probability density function. The joint probability function can thus be stated 

as 

 𝑓𝑚(𝑧) = 𝑓(𝑧1)𝑓(𝑧2)…𝑓(𝑧𝑖) (3.2) 

where  𝑧𝑖 : number of measurements  
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  𝑓𝑚(𝑧) :  standard deviation of 𝑧 

The objective of the probability of the MLE is then to maximize the joint probability 

function by varying the parameters; in this case the mean and the variance of each 

density function. In order to determine these parameters, the function is generally 

replaced by the equivalent logarithm to simplify the optimization procedure. This 

adjusted function is generally denoted as the Log-Likelihood Function and may be 

stated as 

 
ℒ = log 𝑓𝑚(𝑧) =∑log 𝑓(𝑧𝑖)

𝑚

𝑖=1

= −
1

2
∑log (

𝑧𝑖 − 𝜇𝑖

𝜎𝑖
)

2

−
𝑚

2
log(2𝜋) − ∑log𝜎𝑖

𝑚

𝑖=1

𝑚

𝑖=1

 
(3.3) 

The MLE procedure will then maximize the function in (3.3) by solving the following 

problem 

 
𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒     ∑ log (

𝑧𝑖 − 𝜇𝑖

𝜎𝑖
)
2

𝑚

𝑖=1

 (3.4) 

This equation can be simplified and rewritten in the terms of the residual 𝑟𝑖 of the 𝑖-th 

measurement, as followed 

 𝑟𝑖 = 𝑧𝑖 − 𝜇𝑖 = 𝑧𝑖 − 𝐸(𝑧𝑖) (3.5) 

where the mean value or the expected value 𝐸(𝑧𝑖) may be expressed as the nonlinear 

function ℎ𝑖(𝑥) that relates the state vector 𝑥 to the 𝑖-th measurement. The measurement 

value for the 𝑖-th measurement may thus be stated as 

 ℎ𝑖(𝑥) = 𝜇𝑖 = 𝐸(𝑧𝑖) (3.6) 

The square of each residual is weighted by the matrix 𝑊𝑖 = 𝜎𝑖
−2 which is thus the 

inversely related to the assumed error variance for each measurement. Thus, the 
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minimization of (3.5) is achieved by minimizing the sum of the squares of the product 

of residuals and the weighting matrix as followed 

 
minimize     ∑𝑊𝑖 𝑟𝑖

2

𝑚

𝑖=1

 (3.7) 

 with respect to         𝑧𝑖 = ℎ𝑖(𝑥) + 𝑟𝑖,      𝑖 = 1,2, … ,𝑚. (3.8) 

The optimized solution to the above stated problem is called the weighted least squares 

(WLS) estimator for 𝑥 and is the key parts of the SE procedure.  

3.1.1 State estimation using WLS algorithm 

The SE procedure using the WLS algorithm is reviewed in this section and the theory is 

mainly gathered from [11]. A set of measurements given by the vector 𝑧, assumed to be 

expressed by the non-linear function of the state vectors and a vector of measurement 

errors, can be stated in compact matrix form as 

 

𝑧 = [

𝑧1

𝑧2

⋮
𝑧𝑚

] = [

ℎ1(𝑥1, 𝑥2, … , 𝑥𝑛)

ℎ2(𝑥1, 𝑥2, … , 𝑥𝑛)
⋮

ℎ𝑚(𝑥1, 𝑥2, … , 𝑥𝑛)

] + [

𝑒1

𝑒2

⋮
𝑒𝑚

] = ℎ(𝑥) + 𝑒 (3.9) 

where  𝑧𝑚 : number of measurements  

  𝑥𝑛 : number of states defining the measurement 

  𝑒𝑚 : number of related measurement errors 

As discussed previously, the measurements are assumed to be fully independent of each 

other, and the measurement errors are thus also independent. The covariance matrix 𝑅𝑖𝑖 

is thus fully diagonal, i.e. 𝑅𝑖𝑖 = 𝑑𝑖𝑎𝑔{𝜎1
2, 𝜎1

2, . . . , 𝜎𝑚
2 }.  

The weighted least squares estimator will then minimize the following function 

 
𝐽(𝑥) = ∑

(𝑧𝑖 − ℎ𝑖(𝑥))
2

𝑅𝑖𝑖

𝑚

𝑖=1

=  [𝑧 − ℎ(𝑥)]𝑇𝑅−1[𝑧 − ℎ(𝑥)] (3.10) 
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In order to minimize the above stated objective function, the first-order optimality 

conditions will have to be fulfilled. These may be stated as 

 𝑔(𝑥) =  
𝜕𝐽(𝑥)

𝜕𝑥
= −𝐻𝑇(𝑥) ∙ 𝑅𝑖𝑖

−1[𝑧 − ℎ(𝑥)] = 0 (3.11) 

where 𝐻(𝑥) is the Jacobian of state vector function, defined as 

 𝐻(𝑥) =  [
𝜕ℎ(𝑥)

𝜕𝑥
] (3.12) 

An expansion of 𝑔(𝑥) into the first order of the Taylor series yields the following 

expression 

 𝑔(𝑥) =  𝑔(𝑥𝑘) + 𝐺(𝑥𝑘)(𝑥 − 𝑥𝑘) (3.13) 

Using this first order term of the Taylor series leads to an iterative solution scheme 

commonly denoted as the Gauss-Newton method. This may then be stated as 

 𝑥𝑘+1 = 𝑥𝑘 − [𝐺(𝑥𝑘)]−1 ∙ 𝑔(𝑥𝑘) (3.14) 

where  𝑘 :  iteration index  

  𝑥𝑘  :  state vector at iteration 𝑘 

  𝑔(𝑥𝑘) :  first order optimality condition at iteration 𝑘 

  𝐺(𝑥𝑘) :  gain matrix 

The gain matrix is commonly positive definite, sparse, and symmetrical and is defined 

as 

 𝐺(𝑥𝑘) =
𝜕𝑔(𝑥𝑘)

𝜕𝑥
= 𝐻𝑇(𝑥𝑘)  ∙ 𝑅𝑖𝑖

−1 ∙ 𝐻(𝑥𝑘) (3.15) 

The solution is thus found by iteratively solving (3.14) until sufficient accuracy is 

reached.  
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3.2 System measurement functions 

The system measurements consist generally of conventional power flow and voltage 

measurements, but in some cases other measurements such as current magnitude or 

phasor measurements are present [11]. The output of the common SE is then generally 

the steady state bus voltage phasors, as these together with the network model is 

sufficient for determination of the operating conditions of the power system. These 

measurements may be expressed implicitly by the system states in either polar or 

rectangular form. Assuming that the simple two-port 𝜋-model is sufficient to model the 

network branches, the following expressions may be formulated for the most common 

measurements.  

 Active and reactive power flow from bus 𝑖 and 𝑗 

 𝑃𝑖𝑗 = 𝑉𝑖
2(𝑔𝑠𝑖 + 𝑔𝑖𝑗) − 𝑉𝑖𝑉𝑗(𝑔𝑖𝑗 cos 𝜃𝑖𝑗 + 𝑏𝑖𝑗 sin 𝜃𝑖𝑗) (3.16) 

 𝑄𝑖𝑗 = −𝑉𝑖
2(𝑏𝑠𝑖 + 𝑏𝑖𝑗) − 𝑉𝑖𝑉𝑗(𝑔𝑖𝑗 sin 𝜃𝑖𝑗 − 𝑏𝑖𝑗 cos 𝜃𝑖𝑗) (3.17) 

where  𝑉𝑖 and 𝑉𝑗 : voltage magnitude at buses 𝑖 and 𝑗 

  𝜃𝑖𝑗  : phase angle difference between buses 𝑖 and 𝑗 

  𝑔𝑖𝑗 and 𝑏𝑖𝑗 : admittance of the series branch connecting the buses 

  𝑔𝑠𝑖 and 𝑏𝑠𝑖 : admittance of the shunt branch connected at bus 𝑖 

 Total active and reactive power injection at bus 𝑖 

 
𝑃𝑖 = 𝑉𝑖 ∑𝑉𝑗

𝑁

𝑗=1

(𝐺𝑖𝑗 cos 𝜃𝑖𝑗 + 𝐵𝑖𝑗 sin 𝜃𝑖𝑗) (3.18) 

 
𝑄𝑖 = 𝑉𝑖 ∑𝑉𝑗

𝑁

𝑗=1

(𝐺𝑖𝑗 sin 𝜃𝑖𝑗 − 𝐵𝑖𝑗 cos 𝜃𝑖𝑗) 
(3.19) 

where  𝐺𝑖𝑗 and 𝐵𝑖𝑗 :  𝑖𝑗th element of the bus admittance matrix 

  𝑁 :  number of buses that are directly connected to bus 𝑖 
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Since voltage is defined as a system state, the bus voltage measurements are simply 

defined by the respective state value. The measurement Jacobian is based on the partial 

derivative of all the measurement functions and will have the following structure  

 

𝐻 =

[
 
 
 
 
 
 
 
 
 
 

𝜕𝑃𝑖𝑛𝑗

𝜕𝜃

𝜕𝑃𝑖𝑛𝑗

𝜕𝑉
𝜕𝑃𝑓𝑙𝑜𝑤

𝜕𝜃

𝜕𝑃𝑓𝑙𝑜𝑤

𝜕𝑉

𝜕𝑄𝑖𝑛𝑗

𝜕𝜃
𝜕𝑄𝑓𝑙𝑜𝑤

𝜕𝜃
0

𝜕𝑄𝑖𝑛𝑗

𝜕𝑉
𝜕𝑄𝑓𝑙𝑜𝑤

𝜕𝑉
𝜕𝑉𝑚𝑎𝑔

𝜕𝑉 ]
 
 
 
 
 
 
 
 
 
 

 (3.20) 

The expressions for each partial derivative may then be stated as followed [11]:  

 Partial derivatives corresponding to real power injection measurements 

 𝜕𝑃𝑖

𝜕𝜃𝑖
= 𝑉𝑖 ∑𝑉𝑗

𝑁

𝑗=1

(−𝐺𝑖𝑗 sin 𝜃𝑖𝑗 + 𝐵𝑖𝑗 cos 𝜃𝑖𝑗) − 𝑉𝑖
2𝐵𝑖𝑖 (3.21) 

 
𝜕𝑃𝑖

𝜕𝜃𝑗
= 𝑉𝑖𝑉𝑗(𝐺𝑖𝑗 sin 𝜃𝑖𝑗 − 𝐵𝑖𝑗 cos 𝜃𝑖𝑗) (3.22) 

 𝜕𝑃𝑖

𝜕𝑉𝑖
= ∑𝑉𝑗

𝑁

𝑗=1

(𝐺𝑖𝑗 cos 𝜃𝑖𝑗 + 𝐵𝑖𝑗 sin 𝜃𝑖𝑗) + 𝑉𝑖𝐺𝑖𝑖 (3.23) 

 
𝜕𝑃𝑖

𝜕𝑉𝑗
= 𝑉𝑖(𝐺𝑖𝑗 cos 𝜃𝑖𝑗 + 𝐵𝑖𝑗 sin 𝜃𝑖𝑗) (3.24) 

 Partial derivatives corresponding to real power flow measurements 

 𝜕𝑃𝑖𝑗

𝜕𝜃𝑖
= 𝑉𝑖𝑉𝑗(𝑔𝑖𝑗 sin 𝜃𝑖𝑗 − 𝑏𝑖𝑗 cos 𝜃𝑖𝑗) (3.25) 
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𝜕𝑃𝑖𝑗

𝜕𝜃𝑗
= −𝑉𝑖𝑉𝑗(𝑔𝑖𝑗 sin 𝜃𝑖𝑗 − 𝑏𝑖𝑗 cos 𝜃𝑖𝑗) (3.26) 

 𝜕𝑃𝑖𝑗

𝜕𝑉𝑖
= −𝑉𝑗(𝑔𝑖𝑗 cos 𝜃𝑖𝑗 + 𝑏𝑖𝑗 sin 𝜃𝑖𝑗) + 2𝑉𝑖(𝑔𝑖𝑗 + 𝑔𝑠𝑖) (3.27) 

 
𝜕𝑃𝑖𝑗

𝜕𝑉𝑗
= −𝑉𝑖(𝑔𝑖𝑗 cos 𝜃𝑖𝑗 + 𝑏𝑖𝑗 sin 𝜃𝑖𝑗) (3.28) 

 Partial derivatives corresponding to reactive power flow measurements 

 𝜕𝑄𝑖𝑗

𝜕𝜃𝑖
= −𝑉𝑖𝑉𝑗(𝑔𝑖𝑗 cos 𝜃𝑖𝑗 + 𝑏𝑖𝑗 sin 𝜃𝑖𝑗) (3.29) 

 
𝜕𝑄𝑖𝑗

𝜕𝜃𝑗
= 𝑉𝑖𝑉𝑗(𝑔𝑖𝑗 cos 𝜃𝑖𝑗 + 𝑏𝑖𝑗 sin 𝜃𝑖𝑗) (3.30) 

 𝜕𝑄𝑖𝑗

𝜕𝑉𝑖
= −𝑉𝑗(𝑔𝑖𝑗 sin 𝜃𝑖𝑗 − 𝑏𝑖𝑗 cos 𝜃𝑖𝑗) − 2𝑉𝑖(𝑏𝑖𝑗 + 𝑏𝑠𝑖) (3.31) 

 
𝜕𝑄𝑖𝑗

𝜕𝑉𝑗
= −𝑉𝑖(𝑔𝑖𝑗 sin 𝜃𝑖𝑗 − 𝑏𝑖𝑗 cos 𝜃𝑖𝑗) (3.32) 

 Partial derivatives corresponding to voltage magnitude measurements 

 
𝜕𝑉𝑖

𝜕𝜃𝑖
= 0,

𝜕𝑉𝑖

𝜕𝜃𝑗
= 0,

𝜕𝑉𝑖

𝜕𝑉𝑖
= 1,

𝜕𝑉𝑖

𝜕𝑉𝑗
= 0 (3.33) 

Since the voltage magnitude is defined as a state within the estimation model, the partial 

derivative of the voltage with respect to phase angles and other bus voltages will always 

be equal to zero. Both the measurement functions and the Jacobian will of course be 

extended in the case other measurements such as current magnitude or phasor 

measurements are available.  
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3.3 Bad data identification 

Although the SE algorithm is intended to filter out and reduce the impact of bad 

measurement data, this impact may still affect the results of the SE significantly [11]. 

One method of reducing this impact is to identify and eliminate these large 

measurement errors. Small random errors, or noise, are always to some extent present in 

the system due to the finite accuracy of meters and connected communication systems. 

Larger errors may instead occur when the metering systems have faults such as biases, 

drifts, or linear errors. The SE may also be misled by incorrect parameter values which 

will consequently be detected as bad measurements by the SE. This impact is further 

explained in section 4.3.  

The treatment of the erroneous measurements depends on the method of SE. Since the 

conventional WLS method for the SE algorithm is used within the report, the bad data 

detection algorithm that is associated with this method will also be examined. The 

detection and identification of bad data is in this case performed after the estimation 

process by assessing the measurement residuals.  

3.3.1 Properties of measurement residuals  

Considering a linearized measurement equation where the ∆ illustrates the change 

between two measurement points 

 ∆𝑧 = 𝐻∆𝑥 + 𝑒 (3.34) 

where the mean value of the error 𝑒 is equal to zero, and the covariance of the error is 

𝑐𝑜𝑣(𝑒) = 𝑅, which is the diagonal matrix based on the assumption that the errors of all 

measurements are not correlated. By using the theory developed in the previous 

sections, the WLS estimator of the linearized state vector may be stated as followed 

 ∆𝑥 = (𝐻𝑇𝑅−1𝐻)−1𝐻𝑇𝑅−1∆𝑧 = 𝐺−1𝐻𝑇𝑅−1∆𝑧 (3.35) 

The estimated value of ∆𝑧 is then found by using (3.34) and (3.35), as followed 

 ∆�̂� = 𝐻∆�̂� = 𝐾∆𝑧 (3.36) 

where  𝐾 : 𝐻𝐺−1𝐻𝑇𝑅−1  
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By using the computed 𝐾-matrix it is possible to obtain a crude estimate of the local 

measurement redundancy around a given meter by examining the corresponding row 

entries in the matrix. A relatively large diagonal entry compared to the off-diagonal 

elements implies that the estimated value corresponding to that measurement is mainly 

determined by the measured value, and hence, the redundancy of that measurement is 

low. The K-matrix has several specific properties allowing the measurement residuals to 

be expressed as followed 

 𝑟 = ∆𝑧 − ∆�̂� 

   = (𝐼 − 𝐾)∆𝑧 

   = (𝐼 − 𝐾)(𝐻∆𝑥 + 𝑒) 

   = (𝐼 − 𝐾)𝑒 

   = 𝑆𝑒 

(3.37) 

where  𝑆 : residual sensitivity matrix 

The derived residual sensitivity matrix, 𝑆, represents the sensitivity of the residuals to 

the measurement errors. By using the specific properties of 𝑆 and the linear relation 

found in (3.37), it is possible to state the mean and covariance of the measurement 

residuals as follows 

 𝐸(𝑟) = 𝐸(𝑆 ∙ 𝑒) = 𝑆 ∙ 𝐸(𝑒) = 0 (3.38) 

 𝐶𝑜𝑣(𝑟) = Ω = 𝑆𝑅 (3.39) 

where  𝐸(𝑟) : mean of measurement residual 

  𝐶𝑜𝑣(𝑟) : covariance of measurement residual 

The off-diagonal elements of the residual covariance matrix may then be used to 

identify significantly interacting measurements on the residuals. Furthermore, the 

covariance matrix is used significantly in the normalized residuals test which is a 

common test for bad data detection 
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3.3.2 Bad data detection by using normalized residuals 

There are several methods that can be used for detecting erroneous and bad 

measurements [11]. A conventional test for detecting bad data is the so called Chi-

squares test. However, this test is commonly found to be too inaccurate due to 

approximations of the residual errors. A more accurate test for finding and detecting bad 

data is obtained by analysing the normalized residuals. The normalized value of the 

residual for measurement 𝑖 can be found by dividing the absolute value of that 

measurement residual with the corresponding diagonal entry in the residual covariance 

matrix  

 𝑟𝑖
𝑁 =

𝑟𝑖

√Ω𝑖𝑖

 (3.40) 

The resulting normalized residual vector 𝑟𝑁 will then have a standard normal 

distribution and the largest element in 𝑟𝑁 is thus, with high probability, associated with 

the largest measurement error.  

3.3.3 Largest Normalized Residual Test 

The bad data detection test using the normalized residuals is generally denoted as the 

Largest Normalized Residual Test (LNRT) [11]. The LNRT is then commonly used for 

detecting and subsequently removing bad measurement data. The test is composed of 

the following steps:  

1) Perform the WLS estimation and obtain all elements of the measurement 

residual vector, according to 

 𝑟𝑖 = 𝑧𝑖 − ℎ𝑖(�̂�) (3.41) 

2) Calculate the normalized residuals according to (3.40) for all measurements. 

3) Find 𝑘 such that 𝑟𝑘
𝑁 is the largest of all normalized residuals 

4) If 𝑟𝑘
𝑁 > 𝐶𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 then the 𝑘-th measurement will be suspected as an erroneous 

data measurement. 𝐶𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 is an arbitrary threshold value chosen according to 

accuracy preferences.  

5) Eliminate the 𝑘-th measurement from the data set and re-iterate the WLS 

estimation once again.  
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This method is highly accurate in identifying a single bad data measurement. In the case 

of multiple bad data, alternative methods may be more efficient. The LNRT is also used 

for the detection and elimination of erroneous parameters and is further discussed in 

section 4.3.  
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4 Network parameter estimation 

In the case when parameter errors are present it is possible to enhance the SE by 

introducing parameter estimation [11]. The PE could improve the overall accuracy of 

the SE and provide better estimates, especially for suspected bad data base values. 

Inaccurate parameter values may have several undesirable consequences and primarily 

there will be degradation in the accuracy of the results provided by the SE [11]. It may 

also affect good measurement values as these might be detected as “bad data” due to a 

lack of consistency of the network parameters. On the whole, larger parameter errors 

may result in a reduced confidence in the state estimation results by the system operator 

and in general result in a higher security margins than necessary. Furthermore, 

erroneous parameter values will cause the detection and evaluation of erroneous 

measurement values to become more difficult.  

The following section will thus present the concept of parameter estimation. First, the 

currently used methods and algorithms are presented and discussed. The next section 

presents the parameter estimation algorithm that is to be applied in this report. Finally, a 

section discussing the reliability of parameter estimation is introduced. The theory of 

this section is yet again mainly gathered from [11] unless specifically stated otherwise. 

4.1 Influence of parameter errors 
 

The sensitivity of the SE results with respect to parameter errors is obviously of high 

importance. From a previous study the effect of parameter errors was simulated by 

examining an IEEE 14-node network at different load flow situations [4]. The 

simulations assessed how far a single parameter error, in this case the line susceptance, 

spread over the network. The distances from a branch where the erroneous parameter is 

found is then considered according to Figure 3. Thus, the measurement at distance 1 

refers to the power flow of that particular branch and voltages and power injections of 

the adjacent buses. The measurement at distance 2 is then compromised of those 

directly related to measurements at distance 1, and so on. 
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Figure 3. Measurement distance from erroneous branch, reprinted with permission from [4] 

In the simulation, the actual measurement values were known. The ratio between the 

averaged estimated measurement error when the line susceptance is erroneous and the 

same average when the parameter value is correct were then calculated for different 

magnitudes of parameter error. The results for different distances, as these are defined 

in Figure 3, is then presented in Figure 4.  

 

Figure 4. Influence of a single parameter error on estimated measurements at different distances (see 

Figure 3) from the erroneous line. Reprinted with permission from [4] 

Several results were obtained from this study. One of the more significant results was 

that despite a high redundancy of measurements and the fact that only a single 
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parameter is erroneous, a significant deterioration of the accuracy in the SE was found. 

For a parameter error of 10 % the effect of the error ratio was up to about 4.5 times at a 

distance of 1 according to Figure 4. The results showed furthermore that the errors 

decrease significantly with the distance from the erroneous branch, and at a distance 

equal or larger to 4 the error influence is almost negligible. Moreover, a result which is 

not found in the figure but may be found in the report is that the parameter error 

influence is most noticeable when the available measurements have a higher accuracy. 

A more detailed study of the impact of parameter errors for different grid configurations 

and measurement redundancies are further examined in detail in simulation 5.2.  

4.2 Parameter estimation algorithms 

The amount of publications examining the effect of parameter estimation is rather 

scarce and the estimation problem is therefore not fully examined. There are basically 

two main methods dedicated for parameter estimation and each has its specific 

advantages and drawbacks [11]. The methods can be classified as follows:  

Residual sensitivity analysis: This estimation methodology is performed after the SE 

has already been performed and uses the same information that is used to identify 

suspected erroneous parameters. The main advantage with this method is that the 

estimation is performed separately from the ordinary SE and there is thus no need to 

modify the SE code [11].  

State vector augmentation: In this method the suspected faulty parameters are 

included within the state vector [11]. The algorithm will thus estimate both the states 

and the parameters simultaneously. This method requires a modification of the ordinary 

SE algorithm to include the parameter estimation. The solution of the state vector 

augmentation can be achieved by using two different, however related, solving 

techniques. One solution is based on using normal equations and is basically an 

extension of the conventional SE model. In order to increase the redundancy and 

accuracy, several measurements can be used either simultaneously or in sequence.  

Another solution of the augmented state vector algorithm is based on Kalman filtering 

theory [11]. During this approach, arrays of measurement samples are processed 

sequentially in order to step-by-step improve the accuracy of the parameter estimation. 

Previous studies have shown that the results from state vector augmentation clearly 

surpass those based on the residual sensitivity analysis [4]. However, the residual 
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analysis is still required in the process of identifying suspected erroneous parameters. 

The Kalman filtering method is also found to be preferred to using normal equations if 

time-varying parameters are estimated [4].  

4.2.1 State vector augmentation 

Due to the higher level of accuracy, state vector augmentation method will be 

implemented in this project. In this method the suspected erroneous parameter 𝑝 is 

added as an additional state variable [11]. Therefore, the new extended objective 

function may be stated as 

 
𝐽(𝑥, 𝑝) =  ∑𝑊𝑖[𝑧𝑖 − ℎ𝑖(𝑥, 𝑝)]2

𝑚

𝑖=1

 (4.1) 

where  ℎ𝑖(𝑥, 𝑝) : new non-linear function that relates the system states and the 

parameter 𝑝 to the 𝑖th measurement 

  𝑊𝑖 : Weighting matrix which is equal to 𝑅𝑖𝑖
−1 

The parameter 𝑝 is naturally only affecting the adjacent measurements. Since the initial 

value of parameter is generally known, a new term can be added to the model in the 

form of a so called pseudo-measurement. This alters equation (4.1) into 

 
𝐽(𝑥, 𝑝) =  ∑𝑊𝑖[𝑧𝑖 − ℎ𝑖(𝑥, 𝑝)]2 + 𝑊𝑝(𝑝 − 𝑝𝑜)

2

𝑚

𝑖=1

 (4.2) 

where  𝑊𝑝 : arbitrary weighting factor assigned to the initial parameter 

value 

  𝑝𝑜 : initial parameter value 

Insufficient research has been conducted on how to choose a value for the weighting 

factor 𝑊𝑝 and it is questioned whether the initial pseudo-measurement should be 

included or not [11]. If it is not included, it will remove the observability of the 

parameter and the weighting factor will thus be of no use. This predicament of whether 

to use or not use an initial pseudo-measurement is however solved by using the Kalman 

filtering theory which is presented in the following section. 
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4.2.2 Kalman filtering solution 

Kalman filtering is based on an algorithm that uses a series of measurements over time, 

contaminated by inaccuracies and noise, and produces a more precise estimate of 

unknown variable [16]. The Kalman filter theory is used to solve the objective function 

in (4.2) by assuming that at every time sample 𝑘, the measurements will be directly 

related to the states according to 

 𝑧(𝑥) = ℎ(𝑥(𝑘), 𝑘, 𝑝) + 𝑒(𝑘) (4.3) 

where ℎ now is made dependent on the sample 𝑘 in order to reflect the quasi-static state 

of the network parameters from one time sample to the next. By using the initial 

available parameter vector, 𝑝0, the proposed method is to for each sample 𝑘 estimate a 

“better” value of 𝑝. This may be formulated as 

 𝑝𝑘−1 = 𝑝𝑘 + 𝑒𝑝(𝑘) (4.4) 

where the error vector 𝑒𝑝(𝑘) is assumed similarly as for the measurements to have a 

zero mean and a fully diagonal covariance matrix 𝑅𝑝(𝑥). The objective function is thus 

augmented with as many pseudo-measurements as there are suspected parameters and 

takes the following form 

 𝐽 = (𝑝𝑘−1 − 𝑝𝑘)
𝑇 ∙ 𝑅𝑝

−1 ∙ (𝑝𝑘−1 − 𝑝𝑘) + .  .  . (4.5) 

 

                  + ∑[𝑧𝑖(𝑘) − ℎ𝑖(𝑥(𝑘), 𝑘, 𝑝)]𝑇 ∙ 𝑊𝑖 ∙ (𝑧𝑖(𝑘) − ℎ𝑖(𝑥(𝑘), 𝑘, 𝑝))

𝑚

𝑖=1

  

This results in the following equation being solved at iteration 𝑖 of the 𝑘th sample, 

similarly as was the procedure for the ordinary state estimation 

 
𝐺𝑖(𝑘) [

𝛥𝑥𝑖(𝑘)

𝛥𝑝𝑘
𝑖 ] = [

𝐻𝑥
𝑖 𝐻𝑝

𝑖

0 𝐼
]
𝑇

[
𝑊 0
0 𝑅𝑝

−1(𝑘 − 1)] [
𝑧(𝑘) − ℎ(𝑥𝑖(𝑘), 𝑘, 𝑝𝑘

𝑖 )

𝑃𝑘−1 − 𝑝𝑘
𝑖

] (4.6) 

where the gain matrix 𝐺𝑖(𝑘) is 
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 𝐺𝑖(𝑘) = [
𝐻𝑥

𝑖 𝐻𝑝
𝑖

0 𝐼
]
𝑇

[
𝑊 0
0 𝑅𝑝

−1(𝑘 − 1)] [
𝐻𝑥

𝑖 𝐻𝑝
𝑖

0 𝐼
] (4.7) 

and 𝐻𝑥
𝑖  and 𝐻𝑝

𝑖  are the Jacobians of the ordinary state vector function and the state 

vector function with respect to the suspected parameters. At the end of each iterative 

process, the covariance matrix of the parameter is updated with the value of 

 𝑅𝑝(𝑘) = Λpp(𝑘) (4.8) 

where Λ𝑝𝑝(𝑘) is consisting of the following block of the inverse of the gain matrix 

 𝐺(𝑘)−1 = [
Λxx(𝑘) Λxp(𝑘)

Λpx(𝑘) Λpp(𝑘)
] (4.9) 

The steps for testing the accuracy of the PE algorithm is tested in section 0 and further 

analysed in the discussion.  

4.3 Identification of suspicious erroneous parameters 

In theory it would be possible to estimate all network parameters if a sufficiently long 

series of fully redundant measurements would be available. However, such estimation 

would have been computationally cumbersome and it is also found that the parameter 

error has to be sufficiently large in comparison to the measurement errors for the 

estimation to be accurate [11]. The identification of erroneous branches and parameters 

are thus imperative in the estimation process.   

The effect that a parameter error will have on an estimated state may be stated 

mathematically as followed 

 𝑧𝑠 = ℎ𝑠(𝑥, 𝑝) + 𝑒𝑠 = ℎ𝑠(𝑥, 𝑝0) + [ℎ𝑠(𝑥, 𝑝) − ℎ𝑠(𝑥, 𝑝0)] + 𝑒𝑠 (4.10) 

where 𝑝 and 𝑝0 again represents the true and erroneous parameters of the network, and 

where the subscript 𝑠 is referring to the set of adjacent measurements only. The term 

within the square brackets in (4.10) may be assumed to be equivalent to an additional 

measurement error. If this parameter error is then sufficiently large, the term may lead 
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to a bad data being detected and the adjacent measurements will thus have the largest 

residuals [11]. The corresponding measurement error may be linearized as 

 ℎ𝑠(𝑥, 𝑝) − ℎ𝑠(𝑥, 𝑝0) ≈ [
𝜕ℎ𝑠

𝜕𝑝
] 𝑒𝑝 (4.11) 

where  𝑒𝑝 : parameter error  = 𝑝 − 𝑝𝑜 

Thus, the branches that are found to have the largest normalized residuals should 

primarily be declared as suspicious.  

4.4 Alternative method of line conductance estimation 

The estimation of line conductance may prove to be difficult due to the fact that the 

magnitude of that parameter is so much smaller than the magnitude of the line 

susceptance. An alternative method of estimating the line conductance may be to 

examine the line losses of the single line. Since the line losses have a quadratic 

relationship to line current, while the measurement errors tend to be linear, it is possible 

to experimentally estimate the value of the line conductance by examining the relative 

line losses with respect to the transferred power.  

If a short line modelled with only resistance and inductance is considered, the sending 

and receiving end apparent power in per unit values may be stated as  

 𝑆�̇� = 𝑉�̇� ∙ 𝐼�̇�
∗
                         𝑆�̇� = 𝑉�̇� ∙ 𝐼�̇�

∗
 (4.12) 

where  𝑆�̇�, 𝑆�̇�  : apparent power from the sending and receiving end 

  𝑉�̇�, 𝑉�̇�  : voltage from the sending and receiving end 

  𝐼�̇�
∗
 : line current in conjugate 

The reference of the defined apparent power in (4.12) is positive for both the sending 

end and the receiving end if power is transferred from the sending end to the positive 

end. The total line losses are then computed by taking the product of the line resistance 

and the square of the line current 

 𝑃𝑓 = 𝑅 ∙ |𝐼𝐿|
2 (4.13) 



4. Network parameter estimation 

34 

  

 

where  𝑃𝑓  : line losses 

  𝑅 : line resistance 

The relative line losses with respect to the averaged transferred apparent power may 

then be formulated as 

 𝑃𝑓% =
𝑅 ∙ |𝐼𝐿|

2

|(𝑆�̇� + 𝑆�̇�)/2|
=

(𝑅 ∙ |𝐼𝐿|
2) ∙ 2

|𝑉�̇� ∙ 𝐼�̇�
∗
+ 𝑉�̇� ∙ 𝐼�̇�

∗
|
 (4.14) 

If the voltage drop over the line is small, the sending and receiving end voltage may be 

assumed to be equal 𝑉𝑠 ≈ 𝑉𝑟. Then, the magnitude of the relative line losses from (4.14) 

may be simplified into 

 |𝑃𝑓%| ≈ |
(𝑅 ∙ |𝐼𝐿|

2) ∙ 2

2𝑉𝑠𝐼𝐿
| ≈

𝑅

|𝑉𝑠|
|𝐼𝐿| (4.15) 

Now, the line current may be assumed to have a linear relationship with the apparent 

power as the voltage level is generally more or less constant within a few percent. Thus, 

by plotting the relative line losses from (4.15) for a large range of transferred apparent 

power, a linear relationship may be found with the approximate slope of 
𝑅

|𝑉𝑠|
. Thus, by 

multiplying (4.15) with the corresponding voltage for all values of transferred power, 

the slope of the plotted curve is now consisting solely of the line resistance 

 |𝑃𝑓%| ∙ |𝑉𝑠| ≈ 𝑅 ∙ |𝐼𝐿| (4.16) 

Naturally, the estimation of the resistance, that is the slope of the plotted curve, will be 

affected by errors in the measurement infrastructure. Moreover, the slope will also be 

somewhat affected by the simplification of the line model. The accuracy of this 

alternative method is examined in section 5.4 for several magnitudes of measurement 

errors.  
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5 Methodology and simulations 

In the following section, the methodology and the upcoming simulations are thoroughly 

described and argued for. Initially, the effect of unbalanced grids are analysed in order 

to see in what conditions the equivalent single-phase model is sufficient. Following is 

an analysis of the impact that parameter errors may have on the output of the SE model, 

which is tested for both a single branch and a larger network. Finally, methods of 

improving the accuracy of the SE are examined. The proposed PE algorithm is 

investigated and tested for several magnitudes of measurement errors. Moreover, an 

alternative method of estimating the line resistance is examined.  

The power flows and voltages for all simulations are presented in appendix A together 

with the used line parameters. All simulations and calculations are modelled and 

calculated by using MATLAB.  

5.1 Simulation I: Model error sensitivity analysis 

The simulation of model errors is performed by comparing the results of the 

conventional equivalent single-phase model and the proposed three-phase model for an 

asymmetric line section. Several magnitudes of line asymmetry are examined and the 

different combinations of the section lengths and associated transpositions of the line 

are presented in Table 1. The full impedance and admittance matrix for a typical 

transmission line configuration, as these are defined from (2.1) and (2.2) are presented 

below. The values are taken from the sub-application Transmission Line Characteristics 

Program (TMLC) which is a part of the Siemens based power transmission planning 

software PSS®E [17]. The actual values are of low importance in this case as the 

simulation only strives to illustrate the impact of unbalanced grids. 

𝑍𝑀 = [
0.0466 +  0.3029i 0.0308 +  0.1098i 0.0299 +  0.0885i
0.0308 +  0.1098i 0.0478 +  0.2921i 0.0308 +  0.1098i
0.0299 +  0.0885i 0.0308 +  0.1098i 0.0466 +  0.3029i

] 

𝑌𝑀 = [
5.0895i − 0.8786i −0.2747i

− 0.8786i 5.3242i − 0.8786i
−0.2747i − 0.8786i 5.0895i

] 
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In the simulation a fully symmetric active load of 0.7 per-unit is connected to the end of 

the line. The different levels of unbalance are achieved by using a simple, single 

transmission line with in total three sections. A fully symmetric line would have equal 

section lengths and this is thus the reference value. The line sections for the different 

levels of asymmetry are presented in Table 1. For more information regarding how the 

actual transposition of matrices is performed, the reader is referred to [18]. The voltage 

and current magnitudes for each phase and for the different levels of asymmetry for the 

three-phase model are then compared with the case when using the conventional single-

phase model. 

Table 1. Line sections for different levels of asymmetry 

 Section 1 

[km] 

Section 2 

[km] 

Section 3 

[km] 

High asymmetry 80 20 20 

Medium asymmetry 60 30 30 

Low asymmetry 50 35 35 

 

The active line losses are also examined for the three-phase model when a transmission 

line with high asymmetry is analysed. For this simulation, typical measurement data for 

a single transmission line from Svk is used in order to be able to plot the line losses per 

phase with respect to the transferred active power. This measurement data is presented 

in appendix A. The computation of all the three-phase models is performed by using the 

theory developed in section 2 and by using the ABCD-matrices found in (2.19). The 

single phased model is computed by using conventional power system calculations 

which may be found several power system analysis literatures [13]. The results from 

these simulations is presented in section 6.1 and further discussed in section 7.1.  

5.2 Simulation II: Parameter error sensitivity analysis 

The effect that parameter errors have on the output of the SE are analysed in the 

following section. Previous studies have been performed on the accuracy of SE when 

parameter errors are present, but most studies concentrate on the effect that erroneous 
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parameters has on fully unmeasured lines. In the following simulation, the effect on 

parameter errors are simulated for the case of full measurements redundancy (voltage 

and power flow measurements for all buses) and the case for reduced redundancy 

(voltage measurement for all buses and power flow measurements missing for one bus). 

The simulation is performed for both a single branch and a larger network consisting of 

four different busses. The theory developed in this section is then supposed to be used 

as a background when assessing the uncertainties of the SE that is caused by various 

parameter errors. 

5.2.1 Sensitivity analysis for a single branch 

In order to simplify the comparison of the results, a single branch will be examined for 

two levels of transferred active power. The measurement data along with the actual 

parameter values are presented in appendix A. The data is taken from a branch within 

the Swedish transmission grid and is thus exemplifying a probable scenario. A 10 % 

error for all the different line parameters is then introduced to the simulations. The 

following simulations are performed for both a high (0.5 p.u.) and a low (0.1 p.u.) level 

of transferred active power. The simulation will examine the following two events:  

 Full measurement redundancy with perfect measurements and a line 

parameter error:  A single parameter error is introduced to the system that is 

otherwise consisting of perfect measurement. The SE algorithm is performed on 

the system and the error between the true measurement values and the estimated 

measurement values are then calculated. This error represents thus the sensitivity 

of the model for different parameter errors.  

 Reduced measurement redundancy with perfect measurements and a line 

parameter error: The same simulation as previously is performed, however, in 

this case with power flow measurements only in the sending end. The SE 

algorithm is then again performed on the system and the error between the true 

measurement values and the estimated measurement values are then 

recalculated.  

5.2.2 Sensitivity analysis for a radial topology 

The effect that parameter errors have on a larger network is more complex than in the 

case of a single branch. Not only may the power flow and voltages vary in the system, 

but there may also be different combinations of parameter errors that increase the error 
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magnitude significantly. In general, the highest relative errors are found when the 

transferred power flow of one branch is small compared to the others branches. Since 

the errors caused by an erroneous parameter in general affect the absolute errors for all 

measurements in some extent, a small absolute error may result in a very large relative 

value. Since the relative errors will vary with each combination of different power flows 

and parameter errors, it would be mathematically unfeasible to test all combinations, 

and no fixed uncertainty value may be attributed to parameter errors. Instead, the 

following simulation strives to develop a method of evaluating and finding the largest 

uncertainty for each specific system.  

The design of the analysed network is presented is shown in Figure 5. Furthermore, the 

different parameter values along with the perfect measurements and the rated loads for 

all buses are presented in Table 13 in appendix A. The following procedure is then 

performed: 

 The true model of the system is defined and the true states of all buses are 

calculated by using a standard load flow program for the network. Two 

different load flow conditions are examined:  

1. Case 1: Low load on bus 6, high load on the remaining load buses 

2. Case 2: Low load on all load buses 

 Parameter errors are then introduced for the different line sections, with one 

parameter error each at a time. The relative difference between the estimated 

values and the true measurement for each parameter error and power flow case 

is then saved in the tables found in appendix B.  

 A worst-case error caused by parameter errors can then be found by using the 

theory of superposition and combining the errors found in step 2. In this 

manner, it is possible to find an approximate uncertainty value in the SE due to 

the worst combinations of parameter errors.  

In addition, a simulation of how errors in the measurement infrastructure affect the 

output of the SE for different levels of power flow is also performed. If the magnitude 

of the SE errors varies differently for errors in the measurement infrastructure than for 

errors in line parameter values, methods of differentiating these errors may be 

developed. 

 



5. Methodology and simulations 

39 

  

 

Figure 5. 4-bus network analysed used in the parameter sensitivity analysis for a radial topology 

5.3 Simulation III: Theoretical parameter estimation 

In order to evaluate and use the PE in a real-life environment, it is first required that a 

theoretical framework is established. Several previous studies have examined PE by 

generating data and adding noise to the “measurements” and then introducing a 

parameter error. However, if there is no linear error present, the parameter estimation 

will always converge very close to the actual parameter value, and the results are thus 

not specifically interesting.  

To prevent this, a linear error to one of the measurements should be included. At that 

point, if the PE algorithm is still able to estimate and reach the correct value of the 

erroneous parameter, the estimation can be assumed to be accurate. In order to simulate 

this event, the following properties of the simulation are applied:  

 Single branch with power and voltage measurements: Measurement data 

from one end of the branch is acquired from Svk during 96 hours and the data in 

the other end is calculated by using two-port equations. Perfect measurement 

data is thus generated.  
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 Addition of measurement noise: Measurement noise is added to the calculated 

“perfect “measurements. The noise magnitude is chosen to 0.5 % of the 

measured value.  

 Adding a linear measurement error and a parameter error: The challenge 

for the PE algorithm is if it is possible to both have a relatively large 

measurement error and still being able to detect and estimate a better parameter 

value. 

Analysing the effect of varying the initial parameter error is not of high importance in 

this case as the parameter estimation, if converging, should reach the same end value 

irrespectively of the initial value. However, the magnitude of the linear measurement 

error should be varied as this in a high extent will affect the PE. Furthermore, the type 

of measurement error should also be analysed. Thus, several error magnitudes and 

measurement error types will be examined.  

In this simulation, the variance of all measurements is set to an equal value, resulting in 

a fully symmetrical weighting matrix. The initial variance of the erroneous parameter is 

set to a value of 100 times higher than the value of the measurements. This is to ensure 

that the estimation of the parameter is fast enough to converge. As the Kalman filtering 

is continuously updating the parameter variance, this value is quickly tuned to a smaller 

value. The estimation is performed for each parameter in the normal SE algorithm; the 

line conductance, line susceptance, and the shunt susceptance. The shunt conductance is 

in this case ignored as it is generally considered to be negligible. The results are 

presented in section 6.3 and then further discussed in section 7.3. An example of the 

MATLAB code used for the estimation of line susceptance is presented in Appendix C.  

5.3.1 Accuracy improvement by using parameter estimation 

In order to evaluate the accuracy improvement by using PE, a similar simulation as in 

section 5.2 is performed. However, in this case, the error caused by the line susceptance 

is only examined since an error in this parameter probably has the highest impact on the 

SE. The following case will thus be examined:  

 Full redundancy with measurement and line susceptance error: A single 

voltage measurement error of 0.1% from the sending end is applied to the 

system that is otherwise consisting of perfect measurements with added noise. 

The SE algorithm is performed on the system, with and without the parameter 

estimation included. The average error between the “true” measurement values 
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and the estimated measurement values are then calculated for both the scenario 

with PE and the scenario without the inclusion of PE.  

In order for the PE to have time to converge and estimate a final value for the line 

susceptance, only the mean error for the last 24 hours of measurement data is chosen. 

Furthermore, the voltage measurement error is intentionally chosen to a somewhat small 

value. A too large measurement error would otherwise result that the effect of the 

parameter error in the accuracy of the SE would be negligible in comparison to the error 

from the measurement. The goal of this simulation is thus to examine how much the SE 

may be enhanced by implementing the PE algorithm. Furthermore, the overall 

uncertainties of the SE due to parameter errors may in this manner be examined.  

5.4 Simulation IV: Alternative method of line resistance 

estimation 

In this case, the alternative method for estimating line resistance that was presented in 

section 4.4 is analysed. The same branch parameter values and measurement values as 

in simulation 5.3 are used for this simulation. Following, perfect data is generated as a 

reference, and then noise and a linear error is implemented on one of the measurements. 

The relative line losses are then calculated from the measurements according to 

 |𝑃𝑓%| =
𝑃12𝑚 + 𝑃21𝑚

(𝑆12𝑚 − 𝑆21𝑚)/2
=

𝑃𝑓

𝑆𝑡𝑟𝑎𝑛𝑠_𝑚
 (5.1) 

where  𝑃12𝑚, 𝑃21𝑚 : measured active power from the sending and receiving end 

  𝑆12𝑚, 𝑆21𝑚 : measured apparent power from the sending and receiving end 

  𝑆𝑡𝑟𝑎𝑛𝑠_𝑚 : average transferred apparent power 

In (5.1) and for the upcoming simulations, the direction of the power flow is defined by 

the subscript of the symbol. Thus, 𝑆12𝑚 represents in this case the measured apparent 

power from the first node (1) to the second node (2). Equation (5.1) is then multiplied 

with the average voltage level as in (4.16) and the slope of the now plotted curve is then 

estimated and will be approximately equal to the line resistance. The slope of the plotted 

curve is found by using a Theil-Sen estimator (TSE). It is a more robust method for 

linear regression that uses the median slope among all lines through the pairs of the 

sample points. In this manner, the significance of outliers from the measurements is 
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reduced. For more information regarding the TSE, the reader is referred to [19]. By 

using this method, the calculated slope of the curve will represent the estimated 

resistance of the line.  

By examining (5.1), it is possible to deduct that a linear error in the active and reactive 

power measurements will affect the result by both shifting the plotted relative losses 

vertically and affecting the slope of the plotted line. Similarly, a linear error in the 

voltage measurement will instead mainly affect the slope of the curve. The accuracy of 

this approximation is then evaluated for several magnitudes of measurement errors in 

both the active and reactive power measurements as well as for errors in the voltage 

measurements. The results of the estimation are presented in section 6.4.  
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6 Results 

In the following section the results from the performed simulations in section 5.1-5.4 

are presented. The results are presented in the same order as the simulations and the 

results are then summarised and further discussed in the following section.  

6.1 Model sensitivity analysis 

The results of the analysis between the single-phased model, and the proposed three-

phase model are presented in this section. Table 2 presents the voltage and current 

difference for each phase for different levels of asymmetry. The summated average 

difference for all phases is also computed. From the table it is possible to deduce that 

already at low levels of asymmetry, the results between the single-phase and the three-

phase model differs relatively much if each phase is considered. The voltage varies up 

to 0.82 percent per phase at higher levels of asymmetry according to the table. The 

difference between the two models is, not surprisingly, decreasing significantly with the 

magnitude of the asymmetry, and at the lower value of asymmetry the difference is 

somewhat negligible.  

Table 2. Difference in percentage between the single-phase model and the proposed three-phase model 

 High asymmetry Medium asymmetry Low asymmetry 

 
Voltage 

[%] 

Current 

[%] 

Voltage 

[%] 

Current 

[%] 

Voltage 

[%] 

Current 

[%] 

Phase A 0.819 -0.465 0.409 -0.233 0.205 -0.117 

Phase B   -0.086 0.040 -0.044 0.020 -0.022 0.010 

Phase C -0.725 0.431 -0.363 0.215 -0.182 0.107 

Summated avg. 

difference for 

all phases 

0.0025 0.0019 0.0006 0.0005 0.0002 0.0001 
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However, by summating and calculating the average of the phase magnitudes, the 

difference for all levels of asymmetry is found to be very small. For the highest level of 

asymmetry, the average voltage magnitude differs only with a level of 0.0025 % 

between the equivalent single-phase model and the proposed three-phase model. Hence, 

it is possible to assume that from calculations of average power flow and average 

voltage magnitudes that the single phased model could be considered sufficient.   

In Figure 6, the simulated line losses for each phase is plotted with respect to the total 

transferred active power for the three-phase model in the case of a highly asymmetric 

line. As can be found in the figure, the active power losses vary significantly for each 

phase due to the unbalanced grid. The difference is especially high during very light 

loads and during high loads, as the mutual impact of the other adjacent lines differs 

significantly between these states. However, if the total line losses of the three-phase 

model are calculated, the total losses of this model conforms almost perfectly with the 

total line losses for the equivalent single-phase model. Thus, yet again, if the total 

average value is of interest, the single-phase model is found to be sufficiently accurate.  

 

Figure 6. Simulated line losses for each phase plotted with respect to total transferred active power for a 

single transmission line modelled with the developed three-phase model 
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6.2 Parameter error sensitivity analysis 

The results from the simulations in section 5.2 are presented here. The results are first 

presented for the sensitivity analysis for the single branch followed by the results for the 

larger network, and the results are then further discussed in section 7.2.  

6.2.1 Sensitivity analysis for a single branch 

In Table 3, the relative error between the true and the estimated values in the case of 

perfect measurements and a 10 % parameter error is presented. The impact on the 

estimated values caused by errors in the line susceptance (𝑏12), line conductance (𝑔12), 

and shunt susceptance is examined (𝑏𝑠1). According to the results, even a 10 % 

parameter error is generally affecting the output of the SE marginally for most of the 

measurements. The relative errors of the reactive power are found to be the largest, 

which may be explained by the fact that the transmitted reactive power is very small in 

comparison to the absolute error. Furthermore, the largest effect on the output of the SE 

is found to be originating from errors in line susceptance, where for example a 10 % 

error would result in 0.114 % error in the 𝑃21-measurement. 

Table 3. Relative error between the true and estimated values. For perfect measurements and full 

measurement redundancy and a line parameter error of 10 % 

 Relative estimation error for measurement 

 𝑷𝟏𝟐  𝑷𝟐𝟏  𝑸𝟏𝟐  𝑸𝟐𝟏  𝑽𝟏  𝑽𝟐  

 [%] [%] [%] [%] [%] [%] 

Estimation error for high amount of transferred power 

Error in 𝒃𝟏𝟐  0.024 -0.114 -3.388 4.663 0.039 0.014 

Error in 𝒈𝟏𝟐 -0.029 0.030 -0.063 -0.012 -0.029 0.030 

Error in 𝒃𝒔𝟏 -0.053 -0.053 -4.498 6.147 0.032 0.031 

Estimation error for low amount of transferred power 

Error in 𝒃𝟏𝟐  0.024 -0.021 -0.195 0.1860 -0.061 0.063 

Error in 𝒈𝟏𝟐 -0.009 0.010 -0.006 -0.009 -0.006 0.006 

Error in 𝒃𝒔𝟏 -0.054 -0.053 -2.879 6.157 0.020 0.018 
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The difference between a high and a low amount of transferred power is found to have 

the largest effect for errors in the line susceptance and the line conductance. For the 

lower amount of transferred power, the errors are reduced significantly for both of the 

measurements. However, the estimation error caused by errors in the shunt susceptance 

is found to be relatively the same for both power levels.  

In Table 4, the results when the power flow measurements of 𝑃21 and 𝑄21 are missing 

are presented. The error of estimating the unmeasured values are increasing 

significantly for errors in both the line susceptance and the line conductance. The very 

high erroneous value for the reactive power of 𝑄21 is yet again a result from the fact that 

the transferred reactive power is rather small in this case, resulting in large relative 

errors. Another result to notice is that the errors for the measured values are found to be 

more accurate than in the case of full redundancy. The difference between the high and 

the low amount of transferred power is yet again proved to have the same effect. The 

estimation errors are reduced with the power level for errors in line susceptance and line 

conductance, but may be considered almost constant in the case of errors in the shunt 

susceptance.  

Table 4. Relative error between true and estimated values for perfect measurements with reduced 

measurement redundancy and a line parameter error of 10 % 

 Relative estimation error for measurement 

 𝑷𝟏𝟐  𝑷𝟐𝟏  𝑸𝟏𝟐  𝑸𝟐𝟏  𝑽𝟏  𝑽𝟐  

 [%] [%] [%] [%] [%] [%] 

Estimation error for high amount of transferred power 

Error in 𝒃𝟏𝟐  ~ 0 -0.139 -0.029 9.530 -0.011 0.011 

Error in 𝒈𝟏𝟐 ~ 0 0.059 -0.072 0.025 -0.029 0.030 

Error in 𝒃𝒔𝟏 ~ 0  -0.001 -0.066 12.677 -0.027 0.027 

Estimation error for low amount of transferred power 

Error in 𝒃𝟏𝟐  ~ 0 -0.039 -0.110 0.380 -0.062 0.063 

Error in 𝒈𝟏𝟐 ~ 0 0.020 -0.010 -0.017 -0.006 0.006 

Error in 𝒃𝒔𝟏 ~ 0  -0.004 -0.042 12.618 -0.027 0.027 
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6.2.2 Sensitivity analysis for a radial topology 

In the following section the results from the sensitivity analysis for the 4-bus network is 

presented. The results concerning the sensitivity analysis for this simulation are 

naturally more complex than the sensitivity analysis for the single branch. The full 

tables of all the combinations of parameter errors for the two different power levels are 

presented in their entity in Table 15 and Table 16 in appendix B. In this section the 

main conclusions that may be drawn from these simulations are presented.   

Table 5 presents the effect that a 10 % parameter error in branch 1-2 from the grid 

configuration in Figure 5 has on the output of the SE for two different levels of power 

flow. The impact on the estimated values caused by errors in the line susceptance (𝑏12), 

line conductance (𝑔12), and shunt susceptance is examined (𝑏𝑠1). According to Table 5, 

the estimation errors are in general higher for the case with 20 % of rated power in bus 6 

and full rated power of the other buses, than for the case with 20 % rated power in all 

buses. The difference is especially significant for errors in the active and reactive power 

measurement, where for example the error in the estimation of 𝑃64 is reduced from an 

error value of -3.086 % to 1.202 for an error in the line susceptance. The error in the 

voltage estimation is however found to be relatively independent on the power flow 

levels.  

Another aspect to notice is that the highest relative errors in power flow occur for 

branches with relatively low levels of measured power. In the case with 20 % of rated 

power in bus 6 and full rated power of the other buses, the error for the active power 

estimations in bus 6 is significantly higher for the bus with the reduced load, compared 

to the buses with 100 % load. However, it is yet again found that the estimation errors in 

the voltages are more or less independent on the current load flow. Furthermore, the 

highest errors are in general found to be correlating with errors in the line susceptance; 

an outcome that is consistent with the results from the single branch analysis. An 

analysis of parameter errors on the other branches shows that the branches with high 

impedance values - in general longer or poorly dimensioned lines - are most sensitive to 

parameter errors. For example, branch 1-2 is the branch with the highest impedance and 

a relative parameter error for this branch results in larger estimation errors than for 

errors in branches with lower impedance.  
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Table 5. Relative estimation errors for different parameter errors and load flows for a 4-bus network 

 Parameter errors of 10 % 

 20 % of rated power in bus 6 

100 % of rated power in remaining 

buses 

 20 % of rated power in bus 6 

20 % of rated power in remaining 

buses 

Est. 

error 

in [%] 

𝒈𝟏𝟐 𝒃𝟏𝟐 𝒃𝒔𝟏  𝒈𝟏𝟐 𝒃𝟏𝟐 𝒃𝒔𝟏 

𝑽𝟏  0.094 -0.094 -0.021  0.026 -0.138 0.026 

𝑽𝟑  -0.042 0.016 -0.001  -0.011 0.057 -0.011 

𝑽𝟓  -0.031 0.039 0.011  -0.008 0.046 -0.008 

𝑽𝟔  -0.022 0.057 0.019  -0.006 0.036 -0.006 

𝑷𝟏𝟐  0.028 -0.220 -0.105  -0.037 0.252 -0.037 

𝑷𝟑𝟐  -0.018 0.060 0.029  0.022 -0.178 0.023 

𝑷𝟓𝟒  -0.117 0.264 0.121  0.046 -0.520 0.046 

𝑷𝟔𝟒  -1.436 -3.086 -1.474  -0.353 1.202 -0.353 

𝑸𝟏𝟐  -20.842 171.790 29.065  0.555 -2.925 0.555 

𝑸𝟑𝟐  3.053 22.812 8.819  0.953 -2.310 0.953 

𝑸𝟓𝟒  5.122 17.940 7.599  1.469 -4.985 1.469 

𝑸𝟔𝟒  5.916 10.954 5.272  1.642 -6.291 1.642 

 

The highest estimation error caused by parameter errors may be found by combining the 

different combinations of parameter errors that will contribute to the largest estimation 

error. In Table 6, the largest errors for the different combinations of parameter errors are 

presented for a small selection of measurements to exemplify the effect. The load flow 

conditions are chosen to the case with 20 % of rated power in bus 6 and full rated power 

of the other buses.  

According to the table, the SE error may increase significantly if the parameter errors 

are combined in an undesirable way. The power flow estimations are in general found to 

be more sensitive for combinations of parameter errors than the voltage estimations. 

Important to note for this simulation, is that it is highly unlikely that all parameter errors 

contribute to a worst-case scenario. Furthermore, the parameter error level of 10 % that 

is used in the simulation is in most cases greatly exaggerated and the total errors may in 

general be significantly less. However, the general effect that these combinations of 

parameter errors produce is still important.  
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Table 6. Largest state estimation error due to worst case scenario of parameter errors 

Measurement Largest estimation error 

[%] 

V1 0.2274 

V6 0.1409 

P1 0.4585 

P6 8.1125 

 

An analysis of how measurement errors affect the output of the SE was also performed. 

The full results from the simulation are not presented in this section due to the size and 

number of tables, but the main findings will be presented. The full tables for the two 

power flow levels are found in Table 17 and Table 18 in appendix B. A linear error in 

the voltage or the power flow measurements is found to result in relatively constant SE 

error, regardless of the power flow levels in the system. This can be compared with the 

case of parameter errors that was found to result in large differences in SE error 

magnitudes for different power flow levels. Thus, if the power levels are varying and 

the size of the residuals are varying as a consequence, this may be assumed to be a 

result mainly due to parameter errors.  

6.3 Theoretical parameter estimation 

The results from the simulations presented in section 5.3 are presented here. The 

theoretical PE simulation is performed by using the properties of a single branch as was 

previously explained. The initial value of the erroneous parameter is for all simulations 

set to a value of 0.9 times the actual parameter value. This parameter error represents 

thus an error that may be present in a regular transmission line.  

Single measurement errors are added to the system together with the parameter 

estimation in order to analyse what measurement error that has the highest effect on the 

accuracy of the PE. The percentage change between the final estimated parameter and 

the true parameter value is then entered as a result into Table 7 - Table 9. The results for 

each parameter error are presented separately as these results differ significantly.  
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6.3.1 Estimation of line susceptance 

In the following section, the accuracy of the PE in the case of a line susceptance error is 

presented. The full results with the different combinations of measurement errors and 

error magnitudes may be found in Table 7. According to the results, the estimation of 

line susceptance is highly accurate for measurement errors in both active and reactive 

power. Even for measurement errors in the range of 2 % in the power flow 

measurements 𝑃12 and 𝑄12 results only in estimation errors of up to around 3 %. 

However, the accuracy of the PE is found to be more sensitive for errors in the voltage 

measurement devices. Errors above 1 % in the voltage measurement results in a 

parameter error that is equal, or even higher, than the initial erroneous value. For errors 

in both the voltage and the apparent power measurements, the PE errors are found to be 

in about the same range or less than for errors solely in the voltage measurement.  

Table 7. Differences between estimated and true line susceptance value for varying magnitudes of 

different measurement errors 

 Linear measurement error in 

 
𝑷𝟏𝟐 𝑸𝟏𝟐 𝑽𝟏 𝑽𝟏 + 𝑺𝟏𝟐 

 

Measurement  

error  

[%] 

Est. 𝒃𝟏𝟐  

error 

[%] 

Est. 𝒃𝟏𝟐  

error 

[%] 

Est. 𝒃𝟏𝟐  

error 

[%] 

Est. 𝒃𝟏𝟐  

error 

[%] 

0.1 -0.17 -0.53 0.98 0.92 

0.5 0.10 -0.92 4.85 4.39 

1 0.58 -1.91 9.20 8.35 

2 2.04 -3.32 16.99 15.32 

5 5.29 -7.72 51.86 28.42 

In Figure 7, the estimation of the line susceptance, along with the true parameter value, 

is illustrated in the case of a 0.5 % linear error in the voltage measurement for 𝑉1. 

According to the figure, the estimation of the line susceptance quickly approaches the 

true parameter value but settles at a value differing 4.85 % from the true value. The 

reason for the irregular curve is that the added random noise of all measurements 

distorts the estimation. However, the Kalman filtering and the iterative process of the 

PE algorithm filters over time the added noise and converges to a final value.  
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Figure 7. Estimated line susceptance and true parameter value for a 0.5 % error in the voltage 

measurement in the sending end of the line 

In Figure 8 the estimated line susceptance is shown along with the true parameter value 

when there is a 0.5 % linear error in the active power measurement in the sending end of 

the line. In this case, the PE is highly accurate in estimating the line susceptance value 

and quickly settles at a value differing only 0.1 % from the actual parameter value. 

 

Figure 8. Estimated line susceptance and true parameter value for a 0.5 % error in the active power 

measurement in the sending end of the line 
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6.3.2 Estimation of line conductance 

The accuracy of the PE in the case of a line conductance error is examined in the 

following section. The full results with the different combinations of measurement 

errors and error magnitudes may be found in Table 8. According to the table, the 

estimation of the line conductance is significantly more sensitive to errors in the voltage 

and active power measurements than for the case of the estimation of the line 

conductance. Even a 0.1 % error in the voltage measurement results in significant errors 

in the PE of the line conductance. For errors in both the voltage and the apparent power 

measurements, the PE errors are found to be in about the same range as for errors solely 

in the voltage measurement. Moreover, errors in the active power measurement results 

in large PE errors already at measurement errors of the magnitude of 0.5 %. At higher 

levels of measurement errors the PE estimates the line conductance to physically 

infeasible negative values, denoted in the table as ‘Not-a-Number’ (NaN).  

The estimation is found to be more or less insensitive with respect to errors in the 

reactive power measurements. Reactive power measurement errors with a magnitude of 

up to 2 % still results in accurate line conductance estimations. For lower levels of 

measurement errors the PE is found to be almost fully accurate.  

Table 8. Differences between estimated and true line conductance value for varying magnitudes of 

different measurement errors 

 Linear measurement error in 

 
𝑷𝟏𝟐 𝑸𝟏𝟐 𝑽𝟏 𝑽𝟏 + 𝑺𝟏𝟐 

 

Measurement  

error 

[%] 

Est. 𝒈𝟏𝟐  

error 

[%] 

Est. 𝒈𝟏𝟐  

error 

[%] 

Est. 𝒈𝟏𝟐  

error 

[%] 

Est. 𝒈𝟏𝟐  

error 

[%] 

0.1 -2.46 0.39 -24.25 -26.34 

0.5 -13.58 -0.22 NaN NaN 

1 -26.74 -0.65 NaN NaN 

2 -53.25 -2.51 NaN NaN 

5 NaN -5.78 NaN NaN 
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In Figure 9 the estimated line conductance is instead illustrated along with the true 

parameter value when there is a 0.5 % linear error in the voltage measurement in the 

sending end of the line. As can be concluded by examining the figure, the PE algorithm 

is unfeasible to use for estimation of the line conductance when errors in the voltage 

measurement devices are present. The estimation of the parameter results in a negative 

value, which of course is physically unfeasible.  

 

Figure 9. Estimated line conductance and true parameter value for a 0.5 % error in the voltage 

measurement in the sending end of the line 

In Figure 10 the estimated line conductance is illustrated along with the true parameter 

value when there is a 0.5 % linear error in the active power measurement in the sending 

end of the line. The resulting end value of the estimation is differing -13.58 % from the 

actual parameter value, thus even worse than the initial value of 10 %. The irregular 

curve of the estimation is yet again a result due to the added measurement noise. As can 

be found in the figure, the estimation algorithm is however quickly tuned close to the 

final value after a few estimations.  
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Figure 10. Estimated line conductance and true parameter value for a 0.5 % error in the active power 

measurement in the sending end of the line 

6.3.3 Estimation of shunt susceptance 

The accuracy of the PE in the case of a shunt susceptance error is examined in the 

following section. The full results with the different combinations of measurement 

errors and error magnitudes may be found in Table 9. According to the table, the 

estimation of the shunt susceptance is highly sensitive to errors in the voltage 

measurements. An error of the magnitude of 0.1 % for the voltage measurement, results 

in significant errors in the PE. For voltage measurements errors with a magnitude of 1 

%, the estimation results in unfeasible negative values.  

The estimation of the shunt susceptance is on the other hand found to be somewhat 

insensitive to measurement errors in the power measurements. Errors in the active 

power measurement results in only very marginal errors on the PE and only higher 

levels of error in the reactive power measurement distorts the results of the PE.   
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Table 9. Differences between estimated and true shunt susceptance value for varying magnitudes of 

different measurement errors 

 Linear measurement error in 

 
𝑷𝟏𝟐 𝑸𝟏𝟐 𝑽𝟏 𝑽𝟏 + 𝑺𝟏𝟐 

 

Measurement  

error 

[%] 

Est. 𝒃𝒔𝟏  

error 

[%] 

Est. 𝒃𝒔𝟏  

error 

[%] 

Est. 𝒃𝒔𝟏   

error 

[%] 

Est. 𝒃𝒔𝟏   

error 

[%] 

0.1 0.12 0.12 -18.61 -18.07 

0.5 0.15 0.63 -72.34 -99.18 

1 0.14 0.81 NaN NaN 

2 0.16 -2.52 NaN NaN 

5 0.20 -6.62 NaN NaN 

In Figure 11 the estimated shunt susceptance is illustrated along with the true parameter 

value when there is a 0.5 % linear error in the voltage measurement in the sending end 

of the line. The estimation is found to be highly misleading with an error of 72.34 %. 

Due to the fact that the shunt susceptance is significantly smaller in magnitude than for 

example the line susceptance, the estimation of the parameter is somewhat noisy.  

 

Figure 11. Estimated shunt conductance and true parameter value for a 0.5 % error in the voltage 

measurement in the sending end of the line 
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In Figure 12 the estimated shunt susceptance is illustrated along with the true parameter 

value when there is a 0.5 % linear error in the active power measurement in the sending 

end of the line. In this case, the estimation is found to be very accurate and is quickly 

converging with the actual value. The noise of the parameter estimation is however still 

present.  

 

Figure 12. Estimated shunt conductance and true parameter value for a 0.5 % error in the active power 

measurement in the sending end of the line 

6.3.4 Accuracy improvement by using parameter estimation 

In Table 10, the results are presented for the simulation when a 0.1 % measurement 

error is introduced in the voltage measurement for 𝑉1, and a 10 % error in the line 

susceptance (𝑏12). The accuracy of the estimation of the line susceptance for this 

measurement error was presented in the previous section. According to the table, the 

mean SE error is significantly reduced for all measurements when the PE algorithm is 

introduced. The estimated voltage error for 𝑉1  is for example reduced from 0.0741 % to 

0.0481 % when PE is implemented. Similarly, the estimated active power flow error for 

𝑃12 is reduced from 0.0202 % to 0.0033 %. The most significant change is the one for 

the reactive power measurement in the receiving end of the branch. This large error is 

however mostly due to the fact that the sampled reactive power transmitted on the line 

is very small, thus resulting in very large relative errors.  



6. Results 

57 

  

 

Table 10. Mean error between the true and estimated values for a SE with and without PE implemented. 

Measurement error of 0.1 % in 𝑉1 and line susceptance (𝑏12) error of 10 % is introduced in the simulation 

Measurement type 𝑷𝟏𝟐 𝑷𝟐𝟏 𝑸𝟏𝟐 𝑸𝟐𝟏 𝑽𝟏 𝑽𝟐 

Avg. error with PE [%] 0.0033 0.0016 0.2240 2.3110 0.0481 0.04826 

Avg. error without PE [%] 0.0202 0.0489 2.6810 45.230 0.0741 0.0632 

6.4 Alternative method of line resistance estimation 

In the following section the results from the alternative method of line resistance 

estimation are presented. The full results with the different combinations of 

measurement errors and magnitudes may be found in Table 11. In this case, the 

measurement errors for the transferred power are lumped for both the active and 

reactive power. According to the table, the estimation is found to be significantly less 

sensitive to measurement errors in the voltage measurements. Even a voltage error of 5 

% results only in a resistance estimation error of 4.51 %. The estimation was however 

found to be more sensitive to measurement errors in the power flow measurements and 

errors above 0.5 % resulted in relatively bad estimations. For measurement errors in 

both the apparent power and the voltage, the accuracy was found to be significantly 

worse. In general however, the alternative method presented better estimations for all 

levels of measurement errors than the ordinary estimation method.  

Table 11. Differences between estimated and true line resistance value for varying magnitudes of 

different measurement errors for the alternative method of estimating line resistance 

 Measurement error in 

 𝑺𝟏𝟐 𝑽𝟏 𝑽𝟏 + 𝑺𝟏𝟐 

Measurement error 

[%] 

Est. 𝒈𝟏𝟐  error 

[%] 

Est. 𝒈𝟏𝟐  error 

[%] 

Est. 𝒈𝟏𝟐  error 

[%] 

0.1 -2.09 -1.98 -4.36 

0.5 -5.63 -1.98 -6.83 

1 -7.86 -1.98 -9.53 

2 -14.79 -2.63 -16.12 

5 -29.42 -4.51 -42.01 
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In Figure 13 the relative line losses, multiplied with the actual voltage level, are plotted 

with respect to transferred apparent power for the case of a 0.5 % error in the voltage 

measurement in the sending end. The green circles are illustrating the true points in the 

perfect system and the blue points are the measured data values, with noise and a linear 

error present. The teal line is the Theil-Sen regression line for the measured values, 

where the slope of the line is representing the estimated resistance. The red line is a 

regression line illustrating the slope for a 10 % error in the resistance. The figure clearly 

shows that the regression line, giving the estimated value of the resistance, correlates 

very closely to the slope of the actual true data points. The estimation is thus in this case 

highly accurate.  

 

Figure 13. Voltage compensated active line losses plotted with respect to transferred apparent power for 

measured data and true data. The estimated slope of the measured data, which is the estimated resistance, 

as well as a reference slope based on a resistance with a 10 % error is also presented 

In Figure 14 the same relative line losses, multiplied with the actual voltage level, are 

plotted with respect to transferred apparent power but in this case for an error of 0.5 % 

in the power flow measurement in the sending end. The green circles are yet again 

illustrating the true points in the perfect system and the blue points are the measured 

data values, with noise and the linear error present. In this simulation, there is a linear 

shift of the actual true values and the measured data due to the error in the power flow 

measurement in the sending end. However, even though the data is shifted, it is possible 
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to estimate the resistance since the slope of the measured data points should not be 

affected as much. According to figure, the estimated slope is fairly close to the slope of 

the true values, and the error is estimated to -5.63 %. This error thus represents the error 

in the resistance estimation. The accuracy of this estimation is, despite a fairly large 

error, still more accurate than the ordinary PE algorithm.  

 

 

Figure 14. Voltage compensated active line losses plotted with respect to transferred apparent power for 

both measured data and true data together with estimated resistance line 

The vertically shifted curve also provides information that there is a probable linear 

error in either one or both of the power flow measurements. Thus, by evaluating the 

slope of the relative line loss curve it is also possible to deduct if there are measurement 

errors are present in the system. An inspection and calibration of the measurement 

devices could thus be performed if such errors are found. It is in this case possible to 

estimate the size of the linear error by examining the value of the estimated resistance 

line at the zero level of the transferred apparent power. In Figure 14 the value at no 

transferred power is about -0.5 % which is consistent with the applied error in the power 

flow measurement. However, the problem remains in establishing in what end of the 

branch the linear error is located.  

The resistance estimation could however be improved by taking this information into 

account. If either one of the power flow measurements are compensated with the same 

level as the estimated linear error, the estimation of the line resistance will be 
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significantly enhanced. This is true even if it is the non-erroneous measurement that is 

being compensated. The feasibility of using this method is further discussed in section 

7.4.  
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7 Discussion 

An accurate and precise SE is essential for the grid planning and the operation of the 

power system. Other applications, such as detection of malfunctioning measurement 

devices, may be developed if the accuracy of the SE is sufficiently high. In the 

following section the results from 6.1-6.4 are discussed and analysed. Each simulation 

is analysed separately, followed by a comprehensive discussion of the general results. 

Moreover, the results are discussed with respect to if and how they may be used 

practically for increasing the accuracy of the SE model.  

7.1 Model sensitivity analysis 

The results found in section 6.1 demonstrate the impact of using the equivalent single-

phase model in the case of an asymmetric line. The phase values were found to be 

varying significantly for all levels of asymmetry when comparing the single-phase 

model with the more detailed three-phase model. In the case with the highest 

asymmetry, the phase voltages varied with magnitudes up to 0.8 %, a value that by itself 

exceeds the measurement requirements of ±0.5 % from SWEDAC. Furthermore, the 

line losses of the asymmetric line are also found to be significantly varying from the 

single-phase model as is illustrated in Figure 6. Lower levels of asymmetry results in, 

not surprisingly, lower levels of phase differences.   

However, the impact of an asymmetric line on the outcome of the SE is perhaps not as 

significant as first might be the impression. For the general SE model, the average 

values for the phase voltages, the active power, and reactive power are used as an input. 

By computing these averaged phase values for the three-phase model, it is found that 

the resulting average values are differing only marginally from the calculated equivalent 

single-phase values. The averaged line losses for the three phases are also found to be 

almost perfectly equal to the line losses for the single-phase model. Thus, when 

averaged phase values are used for the analysis in the SE model, it would be sufficient 

to use the equivalent single-phase model and still keep a high accuracy of the 

estimation, even in cases of high asymmetry. One of the main goals of the SE is to 

estimate the total power flows of the power system, and in this aspect the asymmetry 

affects only the outcome of the estimation negligibly.  
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7.2 Parameter error sensitivity analysis 

The results found in section 6.2 are discussed and analysed in this section. The results 

for the single branch and for the 4-bus network are discussed separately as the method 

differed significantly between the two simulations.  

7.2.1 Sensitivity analysis for a single branch 

In section 6.2.1, several simulations regarding the accuracy of the SE when parameter 

errors are present were performed for the single branch. In general it was found that 

parameter errors do not affect the output of the estimations in such a high degree as first 

may be predicted. In the case of full redundancy, with power flow and voltage 

measurements for both buses, the estimation errors were found to be relatively small for 

all measurements. The reason for the higher relative errors for the reactive power flow 

is the fact that the transferred reactive power is so small in this case, so that even a small 

absolute error results in a large relative error.  

The full redundancy is the key to explain the relatively small effect that parameter errors 

have on the result. Since the erroneous parameters only affects the calculations of the 

system measurement functions, the calculations of the power flow measurement 

functions will be affected initially. However, since the calculated values of the power 

flows will be erroneous due to the parameter errors, the estimator will try to alter the 

voltage values slightly to decrease these errors. When the sum of all the squared 

residuals is as small as possible the estimator has converged. Since all values are 

measured it will be impossible to alter one value without increasing the residual of 

another and the estimator will thus only adjust the estimated values slightly. The final 

result is that the error caused by the erroneous parameter is affecting all measurement 

functions by only a negligible degree.  

In the case of reduced redundancy the effect of parameter errors have increased, yet is 

still not very significant. The estimation errors increased for both of the missing power 

flow measurements, but were found to be reduced for the remaining measurements. The 

larger relative error for the reactive power may yet again be explained by the low 

transferred reactive power of the line.  
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7.2.2 Sensitivity analysis for a radial topology 

The sensitivity analysis for the 4-bus network resulted in several notable findings. 

Primarily, a non-desirable combination of parameter errors was found to significantly 

reduce the accuracy of the SE. The loss of accuracy was especially significant for the 

power flow measurements. However, it is necessary to remember that it is highly 

improbable that all parameter values in a network contribute to the highest error. Thus, 

the values found in Table 5 and Table 6 should be considered rather as example values 

in an illustrative sense. The magnitude of the parameter errors in the simulation are also 

chosen to a value of 10 %, which is in most cases also highly exaggerated. When 

assessing the errors in the SE caused by parameter errors, it is thus highly important to 

define both what magnitude of errors that may be expected, but also the probability that 

these errors contribute to a larger estimation error. The impact of parameter errors from 

computational errors should also be assessed. For example, if the distance between the 

transmission line conductors is poorly estimated, both the calculated inductance and the 

capacitance values will be affected. However, the impact by the computation error in 

the inductance may be countered by the error in the capacitance, and the total error in 

the SE may thus in fact be decreased.  

The estimation errors due to parameter errors were also found to be significantly larger 

for the case with 20 % of rated power in bus 6 and full rated power for the remaining 

buses, than for the case with 20 % rated power for all buses. Different load flow 

situations will thus result in significantly different uncertainties due to parameter errors. 

This conclusion may prove highly useful when assessing the result of the SE in order to 

detect errors in the measurement infrastructure. In order to perform accurate error 

detection, the impact from parameter errors has to be minimized. By then choosing a 

load flow state with more evenly distributed power flow levels, the impact of parameter 

errors would be reduced. Furthermore, the estimation error for the bus with the lowest 

power flow was found to be significantly higher than for buses with comparatively high 

power flows. Detecting errors in the measurement infrastructure for those buses may 

thus prove to be troublesome. Since each network configuration and power flow state 

results in different sensitivities to parameter errors, a sensitivity analysis has to be 

performed for each case. 

Errors in the line susceptance were yet again found to result in the highest levels of 

errors in the SE. Furthermore, relative errors in the branch with the highest impedance 

were found to have the highest impact on the outcome of the SE. The most important 
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parameter to have correct data values for is thus the line susceptance in the branch with 

the highest impedance. Fortunately, the report found that the line susceptance can be 

estimated with reasonable accuracy in most instances. Since this is the parameter with 

the highest impact on the SE, it might be enough to estimate only this parameter.  

7.3 Theoretical parameter estimation 

The results from section 6.3 examine the possibilities and limits of using and 

implementing PE within the ordinary SE. The feasibility of estimating the line 

conductance, line susceptance, and shunt susceptance were examined in several cases of 

varying magnitudes of measurement errors. In the case of estimating the line 

susceptance, the estimation was found to be relatively resilient with respect to most 

measurement errors. Even high errors, above 2 %, in the active and reactive power 

measurement resulted in accurate estimations of that parameter. For the voltage 

measurements, errors up 0.5 % gave accurate results for the estimation. At measurement 

errors higher than these values, the accuracy of the PE started to decrease significantly. 

Thus, the PE for line susceptance was accurate for all the measurement errors within the 

stated measurement requirements of ±0.5 % by SWEDAC.  

However, the estimation of the line conductance and the shunt susceptance was found to 

be highly inaccurate in the presence of measurement errors. Even marginally small 

voltage measurement errors resulted in heavily distorted PE of both the line 

conductance and the shunt susceptance. For example, errors in the active power 

measurements of a magnitude of 0.5 % and higher resulted in significant errors in the 

estimation of the line conductance. In contrast, the estimation of the shunt susceptance 

was found to be more or less independent on errors for these measurements. Instead, 

errors in the reactive power measurements were found to affect the estimation of the 

shunt susceptance in a higher degree, although first at higher levels of measurement 

errors.  

The question that remains is why the line susceptance was found to be so much more 

accurately estimated than the other two line parameters. In addition, the estimation of 

most parameters was found to be more sensitive to errors in the voltage measurement 

devices, whilst at the same time almost non-dependent to errors in some the power flow 

measurements. The answer to why the estimation of line susceptance is more accurate 

than for example the estimation of the line conductance is that the line impedance of the 
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examined line is consisting mainly of the line susceptance. The estimator attempts to 

tune the line parameter gradually to decrease the weighted residual between the 

measured and the estimated values as much as possible. Thus, if there is a single error in 

one of the active power flow measurements, the highest residual is found for this 

measurement. The estimator will then try to increase/decrease the estimated parameter 

to a value that reduces the total residuals for all measurements, as these are weighted by 

the weighting matrix. However, by tuning the parameter to reduce the residual of the 

erroneous measurement, the residuals of the other measurements will be affected. The 

converging value of the PE is thus for the value that reduces the sum of the weighted 

residuals for all of the measurements. This is the reason why the estimation of line 

susceptance is accurate, since a small change in the estimated value from the true value 

will affect the estimation of the other measurements in a high degree. In comparison, 

since the line conductance is so much smaller than the line susceptance, it may be 

changed significantly more without affecting the residuals of the remaining 

measurements. Thus, the estimation of both line conductance and shunt susceptance 

may prove to be highly inaccurate when even small errors in the measurement devices 

are present.  

Furthermore, the estimation of all parameters was found to be more sensitive to errors in 

the voltage measurements than for the power flow measurements. The explanation for 

this is that there is no direct system measurement function for the voltage that is 

depending on the parameters, as is the case for the power flow measurements (according 

to equations (3.16)-(3.19)). Instead, the estimated parameters affect the power flow 

measurement functions that in turn affect the estimation of the voltage. This results that 

the parameters may be tuned significantly before the residuals of the erroneous voltage 

measurement is decreased and the estimation may thus be inaccurate even for low 

measurement errors.  

To summarize, the PE algorithm is found to be most accurate in estimating the line 

susceptance, and is in general inaccurate for estimating the line conductance and the 

shunt susceptance. The measurement devices within the transmission grid are 

commonly rated for errors of ±0.5 %, but the accuracy is in general greater than this 

value and estimation of the line susceptance for suspected erroneous branches is thus 

accurate in most cases. A method of evaluating the magnitude of the measurement 

errors prior to the PE should be performed, in order to verify that the PE will be 

sufficiently accurate. The bad data detection method by using the LNRT that was 

presented in section 3.3.3 could be a good test to verify that the residuals are not too 
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large to perform a PE. In real life testing, the weighting matrices may be tuned 

specifically according to the accuracy of the measurements. For example, since the 

measurement of the reactive power has been found to be relatively sensitive to errors, 

the weight of this measurement may be chosen to a lower value. This will of course 

have a direct effect on the outcome and accuracy of the PE.  

7.4 Alternative method of line resistance estimation 

The accuracy of the alternative method for line resistance estimation was found to be 

more accurate than by using the ordinary method of PE. The accuracy was in this case 

found to be significantly less dependent on errors in the voltage measurement. Instead, 

errors in the power flow measurements were found to be of most significance to the 

accuracy. The simplifications in the theory in section 4.4 are causing some of the errors 

in the estimation. If the load flow situation will be altered and a heavy load applied, the 

assumption that 𝑉𝑠 ≈ 𝑉𝑟 will no longer be true. Hence, the estimation error in this case is 

both due to measurement error and to model simplification errors.  

This estimation method also requires a more experimental approach and one of the 

drawbacks is that the results are not directly included within the actual SE model. 

Instead, the estimation will have to take place after the actual SE has already been 

performed, and then a reiteration of the SE algorithm will have to be performed. In the 

same way as for the ordinary PE, the alternative method of estimating the resistance 

should be carried out after a prior estimation of the magnitude of the measurement 

errors.  

A vertically shifted curve also provides information that there is a probable linear error 

in either one or both of the power flow measurements. An inspection and calibration of 

the measurement devices could thus be performed if such errors are found. However, 

the problem remains in establishing in what end of the branch the linear error is located. 

The resistance estimation could also be improved by taking this information into 

account. If either one of the power flow measurements are compensated with the same 

level as the estimated linear error, the estimation of the line resistance could be 

significantly enhanced, even if the correct measurement value is compensated.  
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8 Conclusions and future work 

The following section summarises the results and the main conclusions of the report in 

relation to the aims of the thesis.  

Parameter and model errors sensitivity:  

 Model errors due to not fully transposed transmission lines are found to affect 

the phase values of transmission lines considerably. However, if the averaged 

phase values are used for the analysis, it is found that the resulting average 

values are differing only marginally from the equivalent single-phase model 

values. Thus, if averaged phase values are used in the analysis the model errors 

may be assumed to have a reduced impact on the output of the SE.  

 Parameter errors affect the output of the SE in various extents and errors in the 

line susceptance are found to have the largest effect. The level of measurement 

redundancy will affect the accuracy of the SE, and reduced measurement 

redundancy will in general increase the estimation errors.  

 For the analysis of a network, the current power flow level was found to 

significantly affect the impact that parameter errors have on the estimation. A 

low load on one bus and higher load on the remaining buses resulted in the 

largest relative estimation errors due to parameter errors. Furthermore, 

undesirable combinations of parameter errors were found to increase the 

estimation errors significantly. In order to estimate the magnitude of estimation 

errors caused by parameter errors, each grid configuration and power flow state 

would have to be examined individually. 

Feasibility of using parameter estimation to increase accuracy of state estimation: 

 Parameter estimation was found to be very accurate in estimating the line 

susceptance in most cases, except for higher levels of measurement errors. Line 

conductance and shunt susceptance were found to be significantly harder to 

estimate and even very small measurement errors resulted in misleading 

parameter estimations. By using parameter estimation under conditions of high 

accuracy, the estimation errors of the SE were found to decrease significantly.   
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 The alternative method of estimating the resistance/line conductance was found 

to be more resilient to errors in the measurement infrastructure. However, the 

estimation was still sensitive to errors in the power flow measurements and the 

accuracy may in general not be sufficiently accurate.  

8.1 Future work 

There are several aspects of the impact that parameter and model errors have on the 

output of the SE that could be further examined. To begin with, there is very limited 

literature regarding the actual uncertainty of line parameters, both due to varying effects 

such as weather and uncertainty due to computational errors of the parameter. More 

research within this area would be required in order to better evaluate both the 

magnitude and the probability of parameter errors. Furthermore, more research should 

be assigned into further developing tools for evaluating the effect that parameter errors 

have on the output of the SE.  

The concept of parameter estimation is still somewhat unexplored. More work should 

be assigned to examine the feasibility of PE in larger networks when linear 

measurement errors are present. Furthermore, this report has only examined the 

accuracy of the so called augmented SE algorithm to estimate line parameters. More 

effort should thus be assigned to examine the accuracy of other proposed PE algorithms.   

More research should also be put into examining exactly how the results of the thesis 

may be used to develop tools for determining errors in the measurement infrastructure.  

Such a method could potentially save significant amounts of resources due to fewer 

actual measurement inspections as well as provide better and more reliable parameter 

data base values. However, more accurate parameter values do not only result in 

possibilities to detect measurement errors, but may also enhance the overall continuous 

operation of the power system. The economic benefits of such an improvement may be 

vast, but in order to actually implement PE as an accepted method, the economic and 

monetary benefits of an increased accuracy of state estimation should first be evaluated.  

 



 

69 

  

 

9 Bibliography 

 

[1]  S. A. Boyer, SCADA: Supervisory Control and Data Acquisition, 3rd Edition, 

Research Triangle Park: ISA - The Instrumentation, Systems, and Automation 

Society, 2004.  

[2]  N. R. Shivakumar and J. Amit, “A Review of Power System Dynamic State 

Estimation Techniques,” in Power System Technology and IEEE Power India 

Conference, 2008. POWERCON 2008. Joint International Conference, pp. 1-6, 12-

15 October 2008. DOI: 10.1109/ICPST.2008.4745312 

[3]  A. S. Debs and G. Contaxis, “Estimation of Model Parameters for Power System 

Monitoring and Control,” NSF Grant GK-37474, Atlanta, 1976. 

[4]  P. Zarco and A. G. Expósito, “Power System Parameter Estimation: A Survey,” in 

Power Systems, IEEE Trans., vol. 15, no. 1, pp. 216-222, Feb. 2000. DOI: 

10.1109/59.852124 

[5]  SWEDAC, STAFS 2009:8 Swedacs föreskrifter och allmänna råd om mätsystem 

för mätning av överförd el, 15 February 2015. [Online]. Available: 

www.swedac.se/sv/Dokument/STAFS/Swedacs-foreskrifter-och-allmanna-rad-om-

matsystem-for-matning-av-overford-el/. [Accessed 23/02 2016] 

[6]  A. S. Debs, “Estimation of Steady-State Power System Model Parameters,” Power 

Apparatus and Systems, IEEE Trans. vol. PAS-93, no. 5, pp. 1260-1268, Sept. 

1974. DOI: 10.1109/TPAS.1974.293849 

[7]  I. W. Slutsker and K. A. Clements, “Real Time Recursive Parameter Estimation in 

Energy Management Systems,” in Power Systems, IEEE Trans. vol. 11, no. 3, pp. 

1393-1399, Aug. 1996. DOI: 10.1109/59.535680 

[8]  O. Alsac, B. S. Vempati and A. Monticelli, “Generalized State Estimation,” in 

Power Systems, IEEE Trans. vol. 13, no. 3, pp. 1069-1075, May 1998. DOI: 

10.1109/PICA.1997.599382 



 

70 

  

 

[9]  T. V. Cutsem and V. H. Quintana, “Network parameter estimation using online 

data with application to transformer tap position estimation,” in IEE Proceedings C 

- Generation, Transmission and Distribution , vol. 135, no. 1, pp. 31-40, Jan. 1998. 

DOI: 10.1049/ip-c.1988.0004 

[10]  T. A. Stuart and C. J. Herget, “A Sensitivity Analysis of Weighted Least Squares 

State Estimation for Power Systems,” in Power Apparatus and Systems, IEEE 

Trans, Vols. PAS-92, no. 5, pp. 1696 - 1701, Jan. 1973. DOI: 

10.1109/TPAS.1973.293718 

[11]  A. Abur and A. G. Expósito, Power System State Estimation, New York: Marcel 

Dekker, Inc, 2004.  

[12]  D. J. Glover, S. S. Mulukutla and T. J. Overbye, Power System Analysis and 

Design, Stamford: Global Engineering, 2012.  

[13]  H. Saadat, Power System Analysis, New York: McGraw-Hill Companies, 1999.  

[14]  A. J. Wood and B. F. Wollenberg, Power Generation Operation and Control, New 

York: John Wiley & Sons, Inc, 1996.  

[15]  Å. Björck, Numerical Methods for Least Squares Problems, Linköping: SIAM, 

1996.  

[16]  M. Grewal, Kalman Filtering:Theory and Practice with MATLAB, New Jersey: 

Wiley-IEEE Press, 2015.  

[17]  Power Transmission System Planning Software PSS®E, ver 33. Siemens, 

Germany, Munich.  

[18]  P. M. Anderson, Analysis of Faulted Power Systems, New York: Wiley-IEEE 

Press, 1995. 

[19]  J. Ofungwu, Statistics in Practice : Statistical Applications for Environmental 

Analysis and Risk Assessment, New Jersey: Wiley, 2014. 

 



 

Appendix A:1 

 

 

Appendix A 

The voltage and power flow measurement data that is being used in the simulations is 

presented here, along with the actual parameter data. The power flow data illustrated in 

Figure 15 - Figure 17 is measured on a single branch within the Swedish transmission 

grid during 96 hours. The parameter values for the examined single branch are 

presented in Table 12. All the data used in the simulation of the 4-bus network are 

presented in Table 13 and Table 14.  

The subscript for both the parameter and power flow values represents the impedance 

respectively the power flow between the nodes with the same numbers as for the 

subscript. Thus, the impedance 𝑍12 represents the impedance between node 1 and node 

2 and so on. For voltages the subscript represents the voltage values of that particular 

bus.  

 

 

Figure 15. Voltage measurement data from the sending and receiving end of the analysed branch 
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Figure 16. Active power flow measurement in the sending and receiving end 

 

 

 

Figure 17. Reactive power flow measurement in the sending and receiving end 
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Table 12. Parameter values for the examined transmission branch 

 Parameter value 

[p.u.] 

Total line conductance (𝒈𝟏𝟐) 0.0116 

Total line susceptance (𝒃𝟏𝟐)  0.1693 

Total shunt susceptance (𝒃𝒔𝟏 + 𝒃𝒔𝟐)  0.06347 

 

Table 13. Branch parameters for the 4-bus network 

 Parameter value 

[p.u.] 

𝒁𝟏𝟐  0.097 + j0.92072 

𝒀𝟏𝟐  j0.01569/ 2.0 

𝒁𝟐𝟑  0.0006 + j0.0041 

𝒀𝟐𝟑  j0.00006 / 2.0 

𝒁𝟐𝟒  0.0187 + j0.17722 

𝒀𝟐𝟒  j0.00302 / 2.0 

𝒁𝟒𝟓  0.0 j0.0001 

𝒀𝟒𝟓  j0.0 / 2.0 

𝒁𝟒𝟔  0.03961 + j0.299508 

𝒀𝟒𝟔  j0.005007 /  2.0 

 

Table 14. Perfectly “measured” power flows and voltages for the 4-bus network 

 
Measured values 

 Case 1 Case 2 

𝑽𝟏  [p.u.] 1 1 

𝑽𝟑 [p.u.] 0.988 1.021 

𝑽𝟓 [p.u.] 0.99 1.024 

𝑽𝟔 [p.u.] 0.992 1.025 

𝑷𝟏𝟐 + 𝒋𝑸𝟏𝟐 [MW+jMVAr] 209.36 + j2.842 57.429 − j35.461 

𝑷𝟑𝟐 + 𝒋𝑸𝟑𝟐 [MW+jMVAr] −150 + j5 −30 + j5 

𝑷𝟓𝟒 + 𝒋𝑸𝟓𝟒 [MW+jMVAr] −35 + j5 −7 + j5 

𝑷𝟔𝟒 + 𝒋𝑸𝟔𝟒 [MW+jMVAr] −20 + j5 −20 + j5 
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Appendix B 

The full result tables from simulation 5.2.2 are presented in this section. The error is introduced for either a line parameter or for a 

measurement and the SE algorithm is then performed. The error value is then computed by comparing the estimated values with the true, 

perfect measurement values.  

 

Table 15. Relative estimation errors for different parameter errors and load flows for a 4-bus network. 20 % of rated power in bus 6 and 100 % of rated power in remaining buses 

Error  

In [%] 
𝒈𝟏𝟐 𝒃𝟏𝟐 𝒃𝒔𝟏 𝒈𝟐𝟑 𝒃𝟐𝟑 𝒃𝒔𝟐𝟑 𝒈𝟐𝟒 𝒃𝟐𝟒 𝒃𝒔𝟐𝟒 𝒈𝟓𝟒 𝒃𝟓𝟒 𝒃𝒔𝟓𝟒 𝒈𝟔𝟒 𝒃𝟔𝟒 𝒃𝒔𝟔𝟒 

𝑽𝟏  0.094 -0.094 -0.021 0.00 0.000 0.000 0.003 -0.007 0.004 0 0 0 0.001 -0.002 0.009 

𝑽𝟑  -0.042 0.016 -0.001 -0.001 0.000 -0.000 0.006 -0.015 -0.002 0 0 0 0.002 -0.006 0.002 

𝑽𝟓  -0.033 0.039 0.011 0.000 -0.000 -0.000 -0.005 0.012 -0.002 0 0 0 0.002 -0.007 -0.003 

𝑽𝟔  -0.022 0.057 0.019 0.000 0.000 0.000 -0.004 0.011 0.001 0 0 0 -0.005 0.015 -0.005 

𝑷𝟏𝟐  0.028 -0.220 -0.105 0.000 -0.000 -0.000 0.000 -0.003 -0.022 0 0 0 0.001 -0.002 -0.036 

𝑷𝟑𝟐  -0.018 0.060 0.029 -0.000 0.000 0.000 0.002 -0.007 0.011 0 0 0 0.001 -0.003 0.020 

𝑷𝟓𝟒  -0.117 0.264 0.121 -0.001 0.001 0.001 0.005 -0.017 0.040 0 0 0 0.002 -0.008 0.074 

𝑷𝟔𝟒  -1.437 -3.086 -1.474 -0.002 -0.010 -0.007 -0.052 0.048 -0.367 0 0 0 -0.010 0.012 -0.634 

𝑸𝟏𝟐  -20.842 171.791 29.065 -0.027 0.072 0.045 -1.058 3.403 2.005 0 0 0 -0.452 1.343 2.331 

𝑸𝟑𝟐  3.053 22.812 8.820 0.020 0.047 0.035 -0.087 0.526 1.774 0 0 0 -0.093 0.315 2.822 

𝑸𝟓𝟒  5.123 17.941 7.600 0.002 0.049 0.034 0.214 -0.224 1.810 0 0 0 0.013 0.020 3.148 

𝑸𝟔𝟒  5.916 10.954 5.272 -0.012 0.043 0.028 0.416 -0.834 1.522 0 0 0 0.327 -0.770 3.104 
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Table 16. Relative estimation errors for different parameter errors and load flows for a 4-bus network. 20 % of rated power in bus 6 and 20 % of rated power in remaining buses 

Error  

in [%] 
𝒈𝟏𝟐 𝒃𝟏𝟐 𝒃𝒔𝟏 𝒈𝟐𝟑 𝒃𝟐𝟑 𝒃𝒔𝟐𝟑 𝒈𝟐𝟒 𝒃𝟐𝟒 𝒃𝒔𝟐𝟒 𝒈𝟓𝟒 𝒃𝟓𝟒 𝒃𝒔𝟓𝟒 𝒈𝟔𝟒 𝒃𝟔𝟒 𝒃𝒔𝟔𝟒 

𝑽𝟏  0.026 -0.138 -0.022 0.000 0.000 0.000 0.001 -0.008 0.004 0 0 0 0.001 -0.002 0.009 

𝑽𝟑  -0.011 0.057 -0.002 0.000 0.000 0.000 0.003 -0.015 -0.002 0 0 0 0.002 -0.006 0.001 

𝑽𝟓  -0.008 0.046 0.010 0.000 0.000 0.000 -0.002 0.012 -0.002 0 0 0 0.002 -0.006 -0.003 

𝑽𝟔  -0.006 0.036 0.019 0.000 0.000 0.000 -0.002 0.010 0.001 0 0 0 -0.005 0.014 -0.006 

𝑷𝟏𝟐  -0.037 0.252 -0.207 0.000 0.000 -0.001 -0.003 0.020 -0.059 0 0 0 -0.001 0.003 -0.103 

𝑷𝟑𝟐  0.022 -0.178 0.283 0.000 0.000 0.001 0.004 -0.030 0.074 0 0 0 0.002 -0.007 0.132 

𝑷𝟓𝟒  0.046 -0.520 1.243 0.000 0.000 0.006 0.009 -0.064 0.299 0 0 0 0.000 -0.012 0.521 

𝑷𝟔𝟒  -0.353 1.202 -1.425 0.000 0.000 -0.007 -0.028 0.125 -0.378 0 0 0 -0.014 0.026 -0.662 

𝑸𝟏𝟐  0.555 -2.925 -1.873 0.000 -0.001 -0.004 0.040 -0.237 -0.184 0 0 0 0.035 -0.103 -0.225 

𝑸𝟑𝟐  0.953 -2.310 9.549 0.004 -0.003 0.039 -0.029 0.225 1.957 0 0 0 -0.081 0.281 3.157 

𝑸𝟓𝟒  1.470 -4.985 8.391 0.001 0.001 0.038 0.109 -0.505 2.002 0 0 0 0.019 -0.002 3.500 

𝑸𝟔𝟒  1.642 -6.291 5.985 -0.002 0.004 0.031 0.201 -1.054 1.694 0 0 0 0.313 -0.757 3.419 
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Table 17. Estimation errors for different measurement errors with a magnitude of 0.5 %. 20 % of rated power in bus 

6 and 20 % of rated power in remaining buses 

Err. 

in [%] 
𝑽𝟏 𝑽𝟑 𝑽𝟓 𝑽𝟔 𝑷𝟏𝟐 𝑷𝟑𝟐 𝑷𝟓𝟒 𝑷𝟔𝟒 𝑸𝟏𝟐 𝑸𝟑𝟐 𝑸𝟓𝟒 𝑸𝟔𝟒 

𝑽𝟏  -0.229 0.105 0.080 0.055 0.001 0.000 0.000 0.000 -0.006 -0.000 0.000 0.000 

𝑽𝟑  0.100 -0.363 0.135 0.126 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000 

𝑽𝟓  0.075 0.133 -0.357 0.144 0.000 0.000 0.000 0.000 0.002 0.000 0.000 0.000 

𝑽𝟔  0.052 0.125 0.144 -0.327 0.000 0.000 0.000 0.000 0.003 -0.000 0.000 0.000 

𝑷𝟏𝟐  0.529 -0.120 -0.286 -0.105 -0.129 0.064 0.015 0.042 -0.012 0.004 0.004 0.005 

𝑷𝟑𝟐  -0.481 -0.141 0.389 0.213 0.245 0.125 -0.029 -0.083 0.021 -0.005 -0.006 -0.006 

𝑷𝟓𝟒  -1.636 0.076 1.046 0.428 1.055 -0.533 -0.125 -0.354 0.097 -0.021 -0.022 -0.023 

𝑷𝟔𝟒  2.940 -0.161 -1.737 -0.784 0.324 -0.191 -0.045 -0.132 -0.102 0.026 0.028 0.029 

𝑸𝟏𝟐  -4.609 1.198 1.863 2.364 0.000 -0.002 0.000 0.001 -0.279 0.015 0.011 0.008 

𝑸𝟑𝟐  -8.272 12.745 2.153 -5.249 0.153 0.021 0.006 0.020 0.754 -0.139 -0.135 -0.127 

𝑸𝟓𝟒  -11.877 1.840 10.901 1.073 0.171 0.016 0.006 0.027 0.576 -0.135 -0.145 -0.145 

𝑸𝟔𝟒  -12.927 -5.580 -0.059 25.775 0.166 0.004 0.005 0.037 0.335 -0.110 -0.127 -0.157 

 

 

Table 18. Estimation errors for different measurement errors with a magnitude of 0.5 %. 20 % of rated power in bus 

6 and 100 % of rated power in remaining buses 

Err. 

in [%] 
𝑽𝟏 𝑽𝟑 𝑽𝟓 𝑽𝟔 𝑷𝟏𝟐 𝑷𝟑𝟐 𝑷𝟓𝟒 𝑷𝟔𝟒 𝑸𝟏𝟐 𝑸𝟑𝟐 𝑸𝟓𝟒 𝑸𝟔𝟒 

𝑽𝟏  -0.229 0.103 0.077 0.051 0.000 -0.000 0.000 0.0001 0.000 -0.000 -0.000 -0.000 

𝑽𝟑  0.104 -0.361 0.136 0.125 -0.001 -0.001 -0.000 0.0001 -0.000 0.000 0.000 -0.000 

𝑽𝟓  0.077 0.135 -0.357 0.144 0.000 0.000 -0.000 0.0001 -0.000 0.000 0.000 0.000 

𝑽𝟔  0.052 0.124 0.144 -0.326 0.002 0.001 0.000 -0.0001 -0.000 -0.000 0.000 0.000 

𝑷𝟏𝟐  0.081 -0.033 -0.043 0.032 -0.138 0.084 0.019 0.0109 0.001 0.002 0.002 0.002 

𝑷𝟑𝟐  -0.131 -0.033 0.090 0.066 0.179 -0.1267 -0.029 -0.0167 -0.000 -0.001 -0.001 -0.001 

𝑷𝟓𝟒  -0.461 -0.009 0.254 0.192 0.769 -0.539 -0.126 -0.0717 -0.000 -0.003 -0.003 -0.004 

𝑷𝟔𝟒  2.782 -0.019 -1.482 -0.485 0.963 -1.003 -0.242 -0.1414 0.009 0.027 0.028 0.029 

𝑸𝟏𝟐  152.563 -13.280 -18.863 -22.104 3.024 0.793 0.181 0.0916 -0.257 -0.159 -0.112 -0.068 

𝑸𝟑𝟐  -8.467 11.805 1.364 -5.666 1.656 0.332 0.095 0.0574 -0.053 -0.132 -0.126 -0.117 

𝑸𝟓𝟒  -12.120 1.062 9.993 0.587 1.590 0.268 0.089 0.0600 -0.039 -0.128 -0.137 -0.136 

𝑸𝟔𝟒  -13.144 -6.127 -0.657 25.055 1.293 0.147 0.064 0.061 -0.021 -0.103 -0.120 -0.151 
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Appendix C 

In the following section the main parts of the MATLAB code used to perform the 

parameter estimation of line susceptance is presented. The estimation of line 

conductance and shunt susceptance is performed in a similar manner, but with the state 

defined for these parameters instead.  

 

Initiate a flat start and define states 

% Flat start: Voltages = 1 p.u. and angles = 0 degrees: 

x1 = 0;   % delta2 

x2 = 1;   % V1 

x3 = 1;   % V2 

x4 = b12m; % Our estimated parameter is defined as a state 

x = [x1 x2 x3 x4]';  % State matrix 

 

Load all measured values and define the parameter as a measurement 

% Create a for loop with the length of: length(t) = number of measurements 

for k=1:length(t) 

z = [FPs(k) FQs(k) abs(FUs(k)) -FPr(k) -FQr(k) FUr(k) b12m]'; 

% z is the measurment vector 

 

    i=0; 

    deltaX=[1 1 1 1]'; 

 

    % When the difference between two iterations is lower than this value 

    % -> algorithm has converged 

    while abs(max(deltaX)) > 0.0000000005 

    i=i+1; 

 

Define angles and all the system measurement functions 

% Defining angles 

th12 = 0 - x1; %Theta12 

th21 = x1;     %Theta21 

% Defining system measurement functions for estimated values, f(x): 

 

f1 = x2^2*g12 - x2*x3*(g12*cos(th12)+x4*sin(th12));            % P12 
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f2 = -x2^2*(bsh12+x4) - x2*x3*(g12*sin(th12)-x4*cos(th12));    % Q12 

f3 = x2;                                                       % V1 

f4 = x3^2*g12 - x2*x3*(g12*cos(th21)+x4*sin(th21));            % P21 

f5 = -x3^2*(bsh12+x4) - x2*x3*(g12*sin(th21)-x4*cos(th21));    % Q21 

f6 = x3;                                                       % V2 

f7 = x4; 

F = [f1 f2 f3 f4 f5 f6 f7]'; 

 

Defining the Jacobian of the system measurement functions 

% Defining the Jacobian of f(X): 

h11 = -x2*x3*(g12*sin(th12)-x4*cos(th12));                 %dP12/dTh2 

h12 = -x3*(g12*cos(th12)+x4*sin(th12))+2*x2*g12;           %dP12/dV1 

h13 = -x3*(g12*cos(th12)+x4*sin(th12));                    %dP12/dV2 

h14 = -x2*x3*sin(th12);                                    %dP12/db12 

 

h21 = x2*x3*(g12*cos(th12)+x4*sin(th12));                  %dQ12/dTh2 

h22 = -x3*(g12*sin(th12)-x4*cos(th12))-2*x2*(x4+bsh12);    %dQ12/dV1 

h23 = -x2*(g12*sin(th12)-x4*cos(th12));                    %dQ12/dV2 

h24 = -x2^2 + x2*x3*cos(th12);                             %dQ12/db12 

 

h31 = 0;                                                   %dV1/dTh2 

h32 = 1;                                                   %dV1/dV1 

h33 = 0;                                                   %dV1/dV2 

h34 = 0;                                                   %dV1/db12 

 

h41 = x3*x2*(g12*sin(th21)-x4*cos(th21));                  %dP21/dTh2 

h42 = -x3*(g12*cos(th21)+x4*sin(th21));                    %dP21/dV1 

h43 = -x3*(g12*cos(th21)+x4*sin(th21))+2*x3*g12;           %dP21/dV2 

h44 = -x2*x3*sin(th21);                                    %dP21/db12 

 

h51 = -x2*x3*(g12*cos(th21)+x4*sin(th21));                 %dQ21/dTh2 

h52 = -x3*(g12*sin(th21)-x4*cos(th21));                    %dQ21/dV1 

h53 = -x2*(g12*sin(th21)-x4*cos(th21))-2*x3*(x4+bsh21);    %dQ21/dV2 

h54 = -x3^2+x2*x3*cos(th21);                               %dQ21/db12 

 

h61 = 0;                                                   %dV2/dTh2 

h62 = 0;                                                   %dV2/dV1 

h63 = 1;                                                   %dV2/dV2 

h64 = 0;                                                   %dV2/db12 

 

h71 = 0;                                                   %db12/dTh2 

h72 = 0;                                                   %db12/dV1 

h73 = 0;                                                   %db12/dV2 

h74 = 1;                                                   %db12/db12 

 

Hx = [h11 h12 h13 h14;... 
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      h21 h22 h23 h24;... 

      h31 h32 h33 h34;... 

      h41 h42 h43 h44;... 

      h51 h52 h53 h54;... 

      h61 h62 h63 h64;... 

      h71 h72 h73 h74]; 

 

Performing SE algorithm to minimize weighted residuals 

% Performing minimization of estimations and measurements 

HxT = Hx'; 

Gm = HxT*inv(W)*Hx; 

deltaX = inv(Gm)*Hx'*inv(W)*(z-F); 

x = deltaX + [x1; x2; x3; x4]; 

x1 = x(1); x2 = x(2); x3 = x(3); x4 =x(4); 

 

Calculating new weighting factor for the estimated parameter and updating the initial, 

“measured” value of the parameter. This algorithm is then performed for each of the 

measured values and the final value of b12m is the estimated value of the inductance 

InvG = inv(Gm); 

W(end)=InvG(end); 

West(k) = W(end); 

b12m=b12m-(z(7)-F(7)); 


