
International RILEM Conference on Materials, Systems and Structures in Civil Engineering 

Conference segment on Frost action in concrete 

22-24 August 2016, Technical University of Denmark, Lyngby, Denmark 

 

91 

THE INFLUENCE OF CARBONATION AND AGE ON SALT FROST 

SCALING OF CONCRETE WITH MINERAL ADDITIONS 
 

Ingemar Löfgren (1 & 2), Oskar Esping (1) & Anders Lindvall (1) 

 

(1) Thomas Concrete Group, Gothenburg, Sweden 

(2) Chalmers University of Technology, Gothenburg, Sweden 

 

 

 

 

 

 

Abstract 

Resistance to salt frost scaling is tested by accelerated methods such as CEN/TS 12390-9 which 

originally were developed for Portland cement concrete. However, it has been shown that 

ageing and coupled deterioration mechanisms, like carbonation or leaching, alter the frost 

resistance. An example is concrete with high amount of slag where the frost resistance is 

reduced when the concrete is carbonated. Hence, modifications to the test methods have been 

proposed to take these effects into account and often an accelerated carbonation at an early age 

have been used. Though, it has been found that the accelerated tests show a much more negative 

effect than what is experienced in field conditions. This paper presents results from a laboratory 

study of concrete with mineral additions at different dosages and water/binder ratios which have 

been exposed to accelerated carbonation at 1% CO2-concentration at different ages. The results 

show that exposing the specimens to accelerated carbonation at a young age will result in an 

increased scaling but that the carbonation depths corresponds to 10 year natural exposure. By 

increasing the age before the accelerated carbonation exposure the scaling is significantly 

reduced and the salt frost scaling resistance seems to correlate better with field observations. 

 

1. Introduction 

The resistance of concrete to salt frost scaling is tested by accelerated methods such as CEN/TS 

12390-9 [1] and SS 137244 [2], which originally were developed based on the experience of 

Portland cement concrete [3] [4]. The testing regime is being under review, partly due to that it 

does not consider ageing effects, such as changes to pore structure, micro cracking, leaching 

and the effect of carbonation [3] [4] [5]. With increasing use of mineral additions, such as slag 

(GGBS) and fly ash (FA), for reducing the environmental footprint and improve resistance to 

reinforcement corrosion this type of test methods need to be modified so that it can safely and 

adequately be used for concrete with mineral additions. Moreover, the test results also need to 

be correlated with the performance in field conditions [6] [7]. 
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2. Experimental procedure 

 

2.1 Materials and mix designs 

The concrete mixture proportions are listed in Table 1; where the aggregate was a granitic type, 

the superplasticizer (SP) was polycarboxylate-based (PCE) with a dry content of 18%, and the 

air entraining agent was a synthetic surfactant with a dry content of 1.1%. For the experiments, 

two different Portland cements (CEM I, C2 & C3), one Portland-fly ash cement (CEM II/A-V, 

C5), one Portland-slag cement (CEM II/B-S, C6), one blast furnace cement (CEM III/A, C4), 

and two different GGBS (S1 & S2) were used. See Table 2 for properties of the cement and 

GGBS used. For the mixes with GGBS an efficiency factor (k-value) of 1.0 was used, i.e. 

comparison is made at equal water/binder (w/b) ratios. 

 

Table 1: Concrete mix proportions, kg/m3 (if not otherwise stated). 

Binder (see Table 2) w/b Cement GGBS Aggregates SP AEA Air content 

C2 0.45 400  1 705 2.00 0.040 5.2 % 

C3 0.45 400  1 703 2.00 0.040 5.6 % 

C2+20%S1 0.45 320 80 1 699 2.00 0.040 4.9 % 

C2+30%S1 0.45 280 120 1 696 2.00 0.040 5.1 % 

C2+40%S1 0.45 240 160 1 693 2.00 0.052 5.0 % 

C2+60%S1 0.45 160 240 1 687 2.00 0.040 5.8 % 

C2+20%S2 0.45 320 80 1 687 2.00 0.040 5.8 % 

C2+40%S2 0.45 240 160 1 703 2.00 0.040 5.5 % 

C6 0.45 400  1 679 2.00 0.040 5.0 % 

C4 0.45 400  1 688 2.00 0.040 5.1 % 

C5 0.45 400  1 704 2.00 0.040 5.8 % 

C5 0.40 425  1 708 2.55 0.053 5.7 % 

C2 0.40 425  1 709 2.55 0.053 5.5 % 

C2+20%S1 0.40 340 85 1 703 2.55 0.043 6.0 % 

C2+30%S1 0.40 298 128 1 700 2.55 0.043 6.2 % 

C1+40%S1 0.40 255 170 1 697 2.55 0.043 6.2 % 

C4 0.40 425  1 690 2.98 0.036 6.3 % 

C6 0.40 425  1 700 2.98 0.036 6.2 % 
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Table 2: Materials. 

ID Type 

Acc. to EN 197-1 
Density 

kg/m3 
Blaine 

m2/kg 
CaO 

M.-% 
SiO2 

M.-% 
Al2O3 

M.-% 
Fe2O3 

M.-% 
Na2Oeqv 

M.-% 

C1 CEM I 42,5 N SR3 MH/LA 3 200 330 64 22 3.7 4.5 0.51 

C2 CEM I 42,5 N SR3 MH/LA 3 160 330 64 22 3.3 4.6  0.45 

C3 CEM I 52,5 N 3 140 420 63 19 4.3 3.1 0.90 

C4 CEM III/A 42,5 N/NA 3 000 450 52 28 8.9 1.2 0.70 

C5 CEM II/A-V 42,5 N MH/LA 3 040 370     0.85 

C6 CEM II/B-S 52,5 N 3 060 460 56 25 6.3 2.1 0.80 

S1 GGBS 2 900 420 40 35 12  1.20 

S2 GGBS 2 920 500 31 34 13  0.90 

C4: Contains about 49% GGBS. C5: Is a Portland-fly ash cement with app. 14% and with the 

clinker of C1. C6: Contains about 33% GGBS 

 

2.2 Freeze-thaw test procedure 

The standard slab test procedure for freeze-thaw testing as described in CEN TS 12390-9 [1] 

and SS 137244 [2] were used to assess the salt-frost scaling resistance on a cut surface. Four 

different preconditioning regimes have been studied: 

 Standard procedure - 31d Std: From demoulding (24±2 h) the cube is stored in water 

until the age of 7 days, and then stored in climate chamber (20±2°C and RH 65±5%) 

until a 50 mm thick specimen is cut at an age of 21 days. The slab is placed in a climate 

chamber (20±2°C and RH 65±5%) until it is 28 d old. At 28 d, 3 mm de-ionized water 

is poured on the top surface and the specimen is saturated for 72±2 h. At the age 31 d 

the freeze thaw cycles are started. This procedure is referred to as 31d Std. 

 Modified standard procedure – 31d C: As standard procedure, but from the age 21 d 

until 28 d the cut specimen is placed in a climate chamber with 1.0 % CO2-concentration 

(20±2°C and RH 65±5%). At 28 d, 3 mm de-ionized water is poured on the top surface 

and the specimen is saturated for 72±2 h. At the age 31 d the freeze thaw cycles are 

started. This procedure is referred to as 31d C. 

 45 d curing regime – 45d C: From demoulding (24±2 h) the cube is stored in water 

until the age of 21 days. Then the cube is stored in a climate chamber (20±2°C and RH 

65±5%) until specimen is cut at an age of 35 days. At the age 35 d the cut specimen is 

placed in a climate chamber with 1.0 % CO2-concentration (20±2°C and RH 65±5%) 

until it is 42 d old. At 42 d, 3 mm de-ionized water is poured on the top surface and the 

specimen is saturated for 72±2 h. At the age 45 d the freeze thaw cycles are started. This 

procedure is referred to as 45d C. 

 87 d curing regime – 87d C: From demoulding (24±2 h) the cube is stored in water 

until the age of 63 days. Then the cube is stored in a climate chamber (20±2°C and RH 

65±5%) until specimen is cut at an age of 77 days. From the age 77 d until 84 d the cut 

specimen is placed in a climate chamber with 1.0 % CO2-concentration (20±2°C and 

RH 65±5%). At 84 d, 3 mm de-ionized water is poured on the top surface and the 
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specimen is saturated for 72±2 h. At the age 87 d the freeze thaw cycles are started. This 

procedure is referred to as 87d C and was only used for the mixes with GGBS. 

 

For all specimens, the weights were recorded immediately before and after the saturation with 

de-ionized water to determine the water uptake. Moreover, on accompanying specimens, cured 

in the same manner as the specimens for freeze-thaw testing, the carbonation depth was 

determined after 7, 14 and 28 d exposure to 1.0% CO2 by spraying a phenolphthalein solution 

on a freshly split concrete surface. In addition, the compressive strength of the concretes were 

determined at 28, 56, and 180 days. 

 

3. Results 

3.1 Compressive strength 

The compressive cube strength (at age 28, 56, and 180 days for water cured specimens) for the 

concrete mixes are presented in Figure 1 (average of two specimens). For the mixes with higher 

amounts of GGBS the compressive strength at 28 and 56 days are lower. However, at 180 days 

the differences becomes smaller. 

 
Figure 1: Compressive strength (water cured cubes) at 28, 56, and 180 days. 

 

3.2 Carbonation, water uptake & pre-conditioning 

In Figure 2 the carbonation depth for the different concrete mixes and curing conditions are 

presented. The carbonation depths are, as expected, influenced by the curing conditions and age 

at exposure and are lower for more mature specimens. Moreover, with increasing GGBS 

content the carbonation depth increase and with decreased w/b ratio it decreases and is 

considerably lower, especially for the more mature specimens (curing condition 87d C). In 

Figure 3 the water uptake (after 72±2 h saturation) for the different concrete mixes and curing 

conditions is presented. Compared with the standard curing condition (31d Std), almost all 

concrete mixes show an increased water uptake for the early carbonated specimens (31d C, start 

of carbonation at 21 d). For the curing condition 45d C (age 35 d when start of carbonation) the 

water uptake is reduced or almost unaffected for most of the mixes. The only deviation is for 

cement C5 (CEM II/A-V) which show an increased water uptake. Finally, for the curing 
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condition 87d C (age 77 d when start of carbonation) the water uptake is reduced for all mixes. 

From these results it can be seen that the influence of hydration (age) is much more apparent 

for high GGBS contents. 

 
Figure 2: Comparison of carbonation depth after 1 week in 1% CO2 for the different curing 

conditions. 

 
Figure 3: Comparison of the measured water uptake after 72±2 h surface saturation for the 

different curing conditions. 

 

3.2 Surface scaling & pre-conditioning 

The surface scaling after 56 and 112 cycles are presented in Figure 4 and Figure 5. The 

acceptance criteria for “good” frost resistance according to SS 137244 [2] is shown in the 
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exception of mix C2+20%S1 0.40 for 45d C and 87d C curing. The increase in scaling is 

generally highest for 31d C, i.e. when carbonation starts on specimens at an age of 21 d. 

 
Figure 4: Comparison of the surface scaling (log scale) after 56 cycles for the different curing 

conditions. The ratio of the mass of scaled material after 56 cycles to 28 cycles (m56/m28) were 

for all tested concretes <2.0 except for C4 0.40 and C6 0.40 with curing condition 87d C. 

 
Figure 5: Comparison of the surface scaling (log scale) after 112 cycles for the different curing 

conditions. For some of the tested concretes the scaling for curing condition 31d C after 112 

cycles could not be recorded due to large scaling and leakage problems. 
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4. Discussion 

As can be seen in Figure 4 and 5, the carbonation and age of the specimens has a big influence 

on the surface scaling. It has been known for a long time that with high amounts of GGBS the 

salt-frost scaling resistance is low and is negatively affected by carbonation [8] [3]. At what 

amount this negative effect starts to have influence have been said to be at about 30 to 40% 

GGBS of total binder content based on field data [9] [10]. Based on the results from this study, 

for the tested concrete mixes and materials, at approximately 30 to 40% GGBS of the total 

binder the negative effect starts to have influence; but it is dependent on w/b ratio and the 

properties of the GGBS. In Figure 6 the difference in behaviour between 20 and 40% GGBS 

for w/b ratio 0.45 is shown. In both cases there is a big difference for the early carbonated 

specimens (31d C). At the higher GGBS addition also the 45d C specimens show a large scaling. 

What is interesting is that the major part of the scaling, for 40% GGBS, occurs during the first 

7 days. Moreover, for the more mature specimen, 87d C (carbonation started at 77 days) there 

is only a moderate increase in the scaling. For the mixes with 20% GGBS, all meet the 

requirement for “good” frost resistance according to [2]. With 40% GGBS it is only the standard 

procedure (31d Std) and the 87d C that meets the requirement for “good” frost resistance 

according to [2] with GGBS S1. For GGBS S2 the criteria is met at 30% GGBS but not at 40%. 

However, there is a difference between GGBS S1 and S2, where S2 have a larger carbonation 

depth at dosage 40% compared to S1. This could be due to the different chemistry of the GGBS 

with a lower Ca/Si ration for S2 which could promote more rapid carbonation. 

  
(a) (b) 

Figure 6: Example of surface scaling and the effect on curing conditions at different amounts 

of GGBS (note the different scales on the y-axis). (a) For mix C2+20%S1 w/b = 0.45 and (b) 

for mix C2+40%S1 w/b = 0.45. 

 

In Figure 7 a comparison is made for a GGBS addition of 30% at w/b ratio of 0.45 and 0.40. 

Also here it can be seen that at w/b 0.45 that the scaling is much higher for 31d C and 45d C. 

But at w/b 0.40 difference are smaller and all meet the requirement for “good” frost resistance, 

while at w/b 0.45 it is only the standard procedure (31d Std) and the 87d C that meets the 

requirement. Figure 8 shows the results for two mixes with CEM II cements (C6 and C5) where 

an accelerated scaling occurs after a number of cycles for the more mature specimens. The 

reason for this type of behaviour is not clear but it could either be due to the prolonged water 

curing, giving rise to an increased water saturation, or due to that the concrete becomes more 

dense with prolonged curing and age, which could lead to increased hydraulic pressure.  
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(a) (b) 

Figure 7: Example of surface scaling and the effect on curing conditions and w/b ratio (note the 

different scales on the y-axis). (a) For mix C2+30%S1 w/b = 0.45 and (b) for mix C2+30%S1 

w/b = 0.40.  

  
(a) (b) 

Figure 8: Example of surface scaling and the effect on curing conditions on late accelerated 

scaling for mature specimens. (a) For mix C6 w/b = 0.40 and (b) for mix C5 w/b = 0.45. 

 

It has been suggested that the amount of scaling after carbonation correlates to the carbonation 

depth [8] and also that the carbonation will cause a coarsening of the pore structure leading to 

a higher water absorption for concrete with GGBS [3]. In Figure 9(a) the scaling at 56 cycles 

have been plotted against the carbonation depth for all mixes with GGBS and in Figure 9(b) the 

water uptake has been plotted against carbonation depth. The general trend is that scaling 

increase with increasing carbonation depth, but the correlation is only high (R2 0.7 to 0.9) for 

the scaling and carbonation depth for 31d C (R2 = 0.83) and 45d C (R2 = 0.75). For 87d C the 

correlation is much lower. For the water uptake, there is trend indicating a higher water uptake 

with increased carbonation depth, but the correlation is moderate (R2 0.5 to 0.7) or low (R2 0.3 

to 0.5). With respect to the measured carbonation depths for the accelerated carbonation (7 days 

in 1% CO2) the measured depths (see Figure 2 and 9) should be compared to what is expected 

in field conditions (exposure conditions corresponding to XF4). Data from specimens exposed 

to atmospheric CO2 during 11 year exposure at a field stations [10] showed a carbonation depth 

of about 1.1 mm with 30% GGBS at w/b 0.50 and 3.8 mm for a CEM III/B at w/b 0.50. At w/b 

0.40 the carbonation depths were approximately 0.7 mm respectively 2.1 mm.  
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(a) (b) 

Figure 9: Correlation between scaling after 56 cycles and carbonation (a) and between water 

uptake and carbonation (b) for all mixes containing GGBS. 

 

In general, the coupled effect of carbonation and frost and ageing is complex. In this study all 

the tested concretes hade a larger scaling for specimens exposed to carbonation, this was also 

the case for the pure Portland cement and the fly ash cement, but the increase was rather small. 

For the concrete mixes with GGBS the increased scaling for carbonated specimens was 

dependent on the amount of GGBS and at low dosages (20%) and at low w/b the increase was 

small. In the literature there are different opinions and results reported with respect to ageing, 

[3] [5] [11], both positive and negative effects of ageing have been reported for concrete with 

Portland cement as well as for concrete with fly ash and GGBS. In light of the results from this 

study and what has been reported in the literature it seems plausible that the main mechanism(s) 

causing a change in the salt-frost scaling resistance is related to the coarsening of the pore 

system caused by carbonation at high GGBS amounts [3]. Prolonged curing or lowering the 

w/b ratio reduces the thickness of the carbonated layer and the scaling. However, it cannot be 

ruled out that there also could be a chemical effect. It has been reported that decomposition of 

monsulfate to ettrengite, due to carbonation or due to partly transformation into monochloride, 

can occur during the freeze-thaw cycles [12]. 

 

5. Conclusions 

The effect of accelerated carbonation, 1 week in an atmosphere with 1% CO2-concentration, on 

salt-frost scaling and the influence of different curing conditions has been studied. With the 

materials used and w/b ratios investigated it is clear that at 20% GGBS of total binder there is 

very little effect of carbonation on the frost resistance. Even with early accelerated carbonation 

at age of 21 days (31d C) all the tested concretes meet “good” scaling resistance or better after 

112 cycles. For higher amounts of GGBS the early accelerated carbonation lead to increased 

scaling and especially at high amounts of GGBS (>40%). With prolonged curing the scaling 

generally decreased, but at higher GGBS content there was not that big difference between 31d 

C and 45d C (21 or 35 days when starting carbonation). For the longest curing time 87d C (77 

days when starting carbonation) the scaling was lower and GGBS contents of 30% achieved 

good frost resistance and this was also the case for some of the mixes with 40% GGBS, but the 

scaling was higher. But it should also be pointed out that for the mixes with a higher slag content 

the compressive strength was much lower as an efficiency factor (k-value) of 1.0 was used. The 

following conclusions can be made: 
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 The correlation between carbonation depth and scaling was high for specimens exposed 

early at the age of 21 and 35 days but lower for the specimens exposed at 77 days. 

 With 20% GGBS of the total binder it was found that carbonation did not have a significant 

effect on the salt-frost scaling, even at early age carbonation. 

 A GGBS content of about 30 to 40% is reasonable with respect to the salt-frost scaling 

resistance, but the testing and carbonation should not be done to early as this will produce 

a carbonation depth corresponding to more than 10 years natural carbonation. 

 A prolonged curing regime before commencement of carbonation is needed if the test 

results should be realistic. In this study an age of 77 days when starting carbonation and 87 

for start of frost cycles seems to have given reasonable results. 
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