
 
 

   

Isolating key features in urban traffic dynamics and noise emission: 
a study on a signalized intersection and a roundabout  

Laura ESTÉVEZ-MAURIZ1; Jens FORSSÉN1; Wolfgang KROPP1; Georgios ZACHOS1 
1 Division of Applied Acoustics. Department of Civil and Environmental Engineering. Chalmers University of 

Technology, Gothenburg, Sweden. 

ABSTRACT 
Urban planning and transport network are considered as major urban systems with great impact on the 
sound environment. Most of the work done in transport management and traffic design to improve the 
quality of both outdoor and indoor sound environment relies on conventional noise mapping software 
outcomes. This type of tool is based on macroscopic traffic modelling, considering traffic flow as a steady 
noise source. A commonly implemented practice intended to reduce noise in urban areas is the 
transformation of a signalised crossing into a roundabout. However, the individual vehicle behaviour 
becomes relevant in these decisions, where high time-pattern fluctuations are responsible for changes in the 
quality of the urban sound environment and of human activity. The present paper studies a set of indicators 
from isolated key features in these two road traffic configurations and their possible variations (acceleration, 
heavy vehicles, etc.). A VISSIM microscopic traffic simulation model combined with the 
CNOSSOS-EU noise emission model is used to test cases based on real situations, now in development 
stage. The approach presented aims to provide stronger basis in the reasoning behind why different road 
traffic configurations adopted in the urban planning practice give certain effects in relation to the urban 
sound environment. 
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1. INTRODUCTION 
Transport management has been acknowledged as one of the main systems in city development. 

However, the road traffic network is a fundamental part of the urban form, carrying sometimes with 
it a “locking” effect, having enormous consequences not only shaping the physical urban layout but 
moreover, stating a model of city. This practice is particularly important to guarantee the livability of 
spaces and hence, its environmental quality. In these situations, retrofitting is not only complex, but 
also expensive (1), limiting its capacity to adapt to current and future demands.  

This paper is a continuation of the study attempting to look for answers about what is considered 
a good built environment (2), developing dynamic tools that may improve the urban planning process, 
assessing and understanding the transport system and its consequences in the acoustic environment. 

1.1 Transport planning: an opportunity to control the acoustic environment 
The importance of transport management and road traffic design is directly linked to noise 

exposure causing annoyance, sleep disturbance and other health effects. The European Environment 
Agency (3) pointed out that around 42 million of EU citizens are exposed to road traffic noise levels 
above the World Health Organization targets (Lden<55dB). The high exposure is, to a large extent, a 
consequence of the urban planning and building design, where traffic management plays a significant 
role in the characteristics of the sound environment. Controlling the acoustic environment by 
creating high quality urban spaces that support health and wellbeing is a priority in the unavoidable 
densification process of cities. However, the acoustic environment also includes the idea of the 
functionality of space, being an important part of the experience of a place and an indicator of the 
quality of life, including the concept of appropriateness of the urban sound environment. 
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As a first attempt, the Environmental Noise Directive (END) requires to adopt action plans based 
upon noise-mapping results, preventing and reducing environmental noise in situations where 
exposure noise levels may affect human health. However, mainstream methods to assess noise 
impact are through noise mapping, based on simplified calculation methods where traffic flow is 
even and results mainly constructed on time-averaged A-weighted sound pressure levels and 
derivations (e.g. Lden, Ln). At high traffic variations, as the ones present in dense urban environments, 
this type of analysis leads to noise assessment underestimations, where noise annoyance has been 
suggested to be partly determined by the noise events resulting from traffic flow (4,5). With this 
methodology, the study of the city from a micro-scale level capable to attend to features from 
transport dynamics is neglected. These features have a large impact in the resulting sound 
environment, where one of the most important designs in cities' traffic network is the intersection.  

A common practice in the latest decades has been the replacement of crossings with roundabouts 
as a safer alternative for pedestrians and vehicles (6), expanding the study of the consequences of 
such transformations. One of the main differences in these two intersection designs is that the 
roundabouts are based on the drivers accepting or denying of gaps, while the signalized crossing 
corresponds to a stop-controlled situation, making the workload on the driver generally less than in 
the roundabout case (7). 

The inclusion of vehicle kinematics has been pointed out as a feature with strong influence on the 
vehicle noise emission (8-11). The focus in the present paper is to recognise some of those features 
that could explain traffic dynamics and noise emission of two equivalent road intersection designs in 
terms of traffic demand. For this, the analysis is made from using a microscopic traffic modelling 
capable to describe those dynamics, such as acceleration and other driving behaviour. The outcomes 
are combined with the CNOSSOS-EU model for noise emission (12) and analysed using in-house 
developed Matlab scripts. The scenarios are based on a real situation of an urban development 
process as plausible urban configurations with the same traffic demand and several vehicles types. 

The aim is to improve the knowledge of the characteristics of the urban sound environment that 
these two intersections are describing, including for example, the acoustic performance, the time 
pattern behaviour and the difference maps assessing several urban sound environment indicators as 
percentiles and number of events. 

2. METHODOLOGY 

2.1 Case study on traffic strategies: signalized intersection and roundabout 
The traffic situation is designed in accordance with the peak hour traffic forecast for an 

intersection in the Frihamnen (13) future urban development, located in Gothenburg, Sweden. The 
project will allocate around 15,000 inhabitants and the same number of working places. Its location 
and success is considered as a key project among the city government and the citizens, being a 
test-bed in the process of urban planning. 

The traffic forecast follows the recommendations found in (14), where the situation corresponds 
to the peak hour in the afternoon and the peak month in an OD matrix simulating the worst possible 
scenario (see Fig. 1). The aim was to set the same parameters for the origin-destination (OD) matrix 
for both intersection types, holding the same number of vehicles and adapting their layout to the 
traffic capacity needs, e.g. adding a second lane if needed. In order to study the influence of vehicle 
types, the two scenarios where modelled with three different vehicle types, including light (LV), 
medium-heavy (MHV) and heavy vehicles (HV).  

Figure 1 – Two scenarios and its traffic network demand. Roundabout (left) and signalized crossing (right). 



 

 

 Transport management, traffic design and microscopic simulation 2.1.1
To develop the microscopic traffic model, the software VISSIM was used. VISSIM is a 

microscopic, time and behaviour-based simulation where driver-vehicle-units are modelled as single 
objects. This type of modelling allows the study of the key features that characterize these two road 
traffic configurations and its variations due to the influence of e.g. acceleration and heavy vehicles.  

The microscopic model includes the individual traffic behaviour, giving as output the position of 
each vehicle versus time, the vehicle category, its speed and acceleration. These parameters 
acknowledge a better understanding of the vehicle kinematics, being able to model all vehicles' noise 
emission during the simulated time. To capture the vehicle positions often enough, 1/15 s simulation 
resolution is performed, with simulation runs of 3600 s, and 300 s to allow traffic to stabilize at the 
beginning and 300 s at the end to complete the trips.  

In order to model the two intersections, the design of number of lanes, its flow rate, the cycle 
length and phases (in the case of the crossing), the storage lanes' length, the number of through and 
turning lanes, as well as other transport network requirements were modelled according to (15). 
Since the future Frihamnen road traffic layout is under constant development, the length of lanes 
approaching and leaving the intersection was set to 200m as a representative distance between main 
intersections in urban situations (16), letting the vehicles flow towards the intersection with the 
possibility to reach the desired speed. 

The traffic software used accounts for vehicles to maintain the desired speed until the traffic 
conditions or the geometric characteristics forces them to change it. For that reason, reduced speed 
areas were also included, as for example in the approaching lanes of the roundabout or in the 
crossing intersection. For all this, both a roundabout and a crossing with a similar behaviour from the 
city of Gothenburg (17) were used as a calibration to build the speed profile in both cases through a 
probability distribution, assuming that 85 % will drive at the signed speed, which was 50 km/h. The 
parameters set in the microscopic traffic modelling were based on (6,7,15,18,19) including the 
banning of lane change for heavy vehicles, the maximum entry and circulatory speed in the 
roundabout stop lines as well as conflict markers An example of its simulation is shown in Fig. 2. 

  

Figure 2 – Example of the signalized crossing and roundabout microscopic simulation in VISSIM 

The modelling amounted to six situations, varying the vehicle types in the two intersection types 
according to Table 1. The vehicle type distribution corresponds to the categories presented in the 
CNOSSOS-EU noise emission modelling (12): light vehicles (LV), medium heavy vehicles (MHV) 
and heavy vehicles (HV). Those categories were equated to the vehicles types included in the 
microscopic traffic modelling. 

Table 1 – Scenarios for signalized crossing and roundabout: vehicle distribution  

Case  
% Vehicles 

Light (LV) Medium-heavy (MHV) Heavy vehicles (HV) 

1) LV-MHV-HV 92 4 4 

2) LV-MHV 96 4 - 

3) LV 100 - - 
 



 

 

2.2 Noise emission model 
To compute the source strength of the vehicles, the common approach to assess the environmental 

noise exposure proposed by the Environmental Noise Directive is implemented. This method, known 
as the CNOSSOS-EU method (12), has the intention to develop a common noise assessment 
framework. The assessment includes the road traffic noise source emission, which is computed 
including three different vehicle types (light, medium-heavy and heavy vehicles). The frequency 
range to define the noise source is in the octave bands from 65 Hz to 8 kHz. The noise model is 
divided in two main noise generators, the propulsion and rolling noise, displayed at a unique point 
source at height 0.05m.  

In this method, the vehicle noise responds to the vehicle type, speed, environmental effect 
corrections and acceleration/deceleration. The latter operating condition was replaced by the 
engineering model Harmonoise (20), where acceleration/deceleration effect is included, correcting 
the propulsion noise. This was done since the CNOSSOS-EU is intended to model static traffic, 
adding a correction factor due to the proximity to the intersection. For comparison reasons of these 
traffic designs, the model includes geometric attenuation and energy doubling due to the ground. 

3. RESULTS 
In order to study the characteristics of previous traffic strategies and its acoustic performance, a 

series of results are shown as an attempt to get answers about the behaviour and suitability of these 
traffic intersections in city planning. 

3.1 Sound pressure level at selected study points 
To analyse the possible variations in the equivalent sound pressure level (LAeq), a series of study 

points were selected at equivalent distances in both intersections. The selection corresponds to 
possible locations for pedestrians, where four of them are located closer to the intersections (1-4), 
four more in the vicinity of the E-W lanes (9-12) and the last four (5-8) located further away, at 
about 100 m distance from the lanes.  

In Fig. 3, a map of LAeq for 900 s is plotted for Case 1, i.e. all vehicle types included. Differences 
in the sound pressure level between the two intersection types can be identified. The lanes entering 
from the East give a higher sound pressure level in the roundabout than in the crossing, and the 
opposite is seen for the lanes coming from the south. 

 

 
Figure 3 – LAeq,900s for the signalized crossing (left) and the roundabout (right), 1st case study 

To understand the effect of heavy vehicles, Fig. 4 shows all study points at both intersections. 
Removing heavy vehicles from the intersections gives a reduction of 1.5-2.5 dBA in the case of the 
roundabout, and 2-3 dBA for the signalized crossing, varying with study point location. If the 
decision includes as well the banning of medium-heavy vehicles, the reduction for the equivalent 
sound power level gives 1.5-2 dBA extra for both cases. 



 

 

Figure 4 – LAeq at study points for crossing (left) and roundabout (right) 

The next analysis compares both intersections for the three vehicle compositions by plotting the 
difference in LAeq as function of study point (Fig. 5). The points located at the intersection resulted in 
a higher sound pressure level for the crossing (stop-and-go driving behaviour) especially at the study 
point number 4. In the points positioned at the possible sidewalks at the E-W lanes (9-12), the results 
fluctuate depending on the traffic network, where the study points located at the East side of the 
intersection (10 and 11) have a higher sound pressure level for the roundabout. This is happening for 
example at the study point 11, where the vehicles are queuing because of the large amount of them 
coming from the south entry lanes. This situation is stopping the cars coming from the East to enter 
the roundabout, generating queues as instantaneous demand exceeds the instantaneous capacity of 
the road intersection, in this case the roundabout. Compared to these two points are the ones located 
at the west side of the intersection (9 and 12), holding a different behaviour. Here, the sound pressure 
level is practically the same in both intersections, probably due to the low traffic flow close to study 
point 9 (<150 veh/h) leading to a very similar flow for both types of intersections. For point 12, the 
amount of vehicles passing by is higher (~800 veh/h). This situation, along with the large number of 
vehicles traveling from south towards other directions, demanded two lanes in the case of the 
roundabout and one for the crossing intersection, resulting in a similar sound pressure level in both 
cases.  

Figure 5 – LAeq(dB) difference at selected study points 

3.2 Time patterns at equivalent sound pressure level at selected study points  
Noise distributions over time are depicted in Figs. 6 and 7 for study points 4 (close to the 

intersection), 8 (far away from intersection) and 11 (at the sidewalk). In order to better visualize the 
traffic noise fluctuations, both figures represent the second simulation quarter as a representative 
one. 

The are interesting effects observable related to the time patterns and their corresponding 
statistical distributions. In the case of study point number 4, the noise distribution tends to normal for 
the roundabout. The signalized crossing has a pulsed flow with higher sound pressure levels, where 
its time pattern reflects a high dynamic behaviour, typical for this kind of intersection. For study 
point 8, located in the same quadrant as study point number 4 but 100m away from the noise sources, 



 

 

the roundabout intersection is the one giving the higher noise levels. However, longer distances make 
the time patterns more even, with narrow noise distributions in both scenarios. In study point number 
11, the roundabout ends up to have a larger spread in noise levels (σ2

round=13.2; σ2
cross=11.4), also on 

average being higher than for the signalised intersection (µround=64.6; µcross=63.1), fluctuating in a 
different way. 
From the equivalent sound power perspective, the crossing type is the one with the highest level 
among all study points. However, those differences are always less than 3.5 dBA between the two 
intersections (σ=1.6). However, annoyance has been seen to be more related to the noise time pattern 
of vehicles passing-by, being higher at signalized intersections (an overview can be found at 4). In 
order to study this effect, the number of noise events above a certain level is used as a descriptor to 
undertand the features of these intersection types (see 3.4 Noise descriptors and difference maps). 
 

 Figure 6 – LAeq (dB) distribution at the different scenarios 
 

 
Figure 7 – Time patterns at selected study points for the first case 

3.3 Sound power level  
The following analysis is centred on the sound power level (LWA) as an attempt to further 

understand the source strength as determinant in the noise that reaches the receiver (21). 
 Sound power level at collection points 3.3.1

Several collection points were included in the road traffic networks. Collection point 1 is located 
just before the intersection at the South entry lanes (the inner lane for the roundabout and the middle 
lane for the crossing). Collection point number 4 is situated just after the intersection in the north 
exit lanes, as a continuation of traffic traveling in the S-N direction.  

These cases are shown as an example in Fig. 8, in which a different behaviour is observed for 
both scenarios. In the case of Collection point 1 in the signalized intersection, the vehicles are 
accelerating once the traffic light is open, giving in general a higher LWA (dB) than for the 
roundabout. However, in the presence of heavy vehicles, the lower percentage within the 90-95 dBA 



 

 

range is counteracted by an increase within the 95-100 dBA range for the roundabout, indicating that 
those vehicles are probably accelerating while trying to join the roundabout. In the collection point 
number 4, vehicles are driving faster in the signalized crossing, since they already have passed the 
traffic light, resulting in higher noise levels. Meanwhile in the roundabout scenario, the vehicles just 
left the intersection and their speed is lower, where around 80 % of them are in the 85-90dBA sound 
power level range. However, this needs to be further studied since the road traffic sound power level 
distribution model is simplified in the CNOSSOS-EU noise emission method. Comparing the three 
traffic cases, in general, the sound power level is decreasing while the heavy vehicles are removed. 

 

 
Figure 8 – LWA (dB) at collection points 1 and 4 for the signalized crossing and the roundabout in all cases. 

Average LWA is displayed in the plot for each case. 

 Sound power level at roads 3.3.2
The following assessments are integrating in one unique lane all the present lanes at each exiting 

or entry road, assuming a virtual composition. This way it is possible to study the differences in 
terms of the total sound power level.  

In general, the vehicles in the roundabout are driving inside the intersection at a low speed, 
however, the moment they are leaving the intersection, they try to achieve the desired speed (see Fig. 
9 right), leading to a higher sound power level just after the intersection. In the signalized crossing 
the behaviour is different, where vehicles are braking before entering the crossing and accelerating 
once the traffic light is open, having a more constant speed through the whole lane length. The sound 
power level along the entry roads is very different between the crossing types in the case of the north 
vehicle input (see Fig. 9 left), where the integrated road at the roundabout situation has an even 
sound power level, while the crossing has higher fluctuations along the whole lane length as a result 
of the stop and go behaviour. This is increasing the sound power level as they approach the traffic 
light. Fig. 9 can also be related to Fig. 14 at section 3.4, where the study point number four is located 
in the intersection between the entry and exit roads.  

 

 
Figure 9 – Sound power level from entry (left) and exit (right) roads for crossing and roundabout in the first 

case. Intersection is located at (0,0) leading traffic flow in both cases to be read from right to left 



 

 

 Effect of acceleration and deceleration at the network 3.3.3

In congested urban streets, as traffic flow increases, the vehicle interactions increase as well, 
while speed tends to decrease. Nevertheless, those interactions are coupled with the periodicity of 
vehicle accelerations and decelerations, leading to an effect in the noise emission. Below, the first 
case is presented as an example of the influence of acceleration (Fig. 10), neglecting its impact in the 
sound power level calculations for the two modelled scenarios. 

Comparing crossing and roundabout intersections, the sound power level distribution from the 
whole road traffic network is very similar in both situations, increasing its percentage in the lower 
ranges in the case of the roundabout. If acceleration and deceleration are removed, the range spread 
is reduced and condensed mainly in the range of 85 dBA (around 70% for signalized crossing and 
73% for roundabout), where both higher and lower ranges are reduced. However, in this analysis the 
effect of tire noise due to the braking is not taken into account, due to the Harmonoise model 
implementation. 
 

 
Figure 10 – Sound power level (dBA) at crossing and roundabout network and removing the acceleration 

effect in both intersections  

3.4 Noise descriptors and difference maps 
As a final analysis, noise descriptors are represented mainly through difference maps between 

both scenarios, giving a visual input of their behaviour. The equivalent sound pressure level 
differences (Fig. 11) between the two intersection types reflect the dominance of the crossing for all 
vehicle compositions.  

 Figure 11 – Difference maps for LAeq (dB) in the three cases 
The temporal distribution is represented by the maps of percentiles LA10 (peak) and LA90 

(background), as the level for roundabout minus that of crossing, as a measure of the noise level 
variation (Fig. 12). In terms of the background noise, LA90, the crossing intersection has overall 
higher background noise levels, especially in the presence of heavy vehicles. The higher background 
levels are observed at the congested lanes (south and east), with larger queues. These queues are 
reduced in the case heavier vehicles are removed, where background noise levels are still higher for 
the signalized crossing, however, these are only found in positions close to the intersection. The 
nodes do not differ much between the two types. In the peak noise levels, represented by LA10, 
again the signalized crossing intersection has overall higher values than the roundabout, meaning it 
has higher peak levels. The presence of heavy vehicles is resulting in a clustering of noise peaks 
among the congested lanes, smeared out in case heavy vehicles are removed. In this case, Case 3, 
differences between the two intersection types in the case of peak noise levels are smaller, however 
the signalized crossing still keeps the highest number.  

The crossing scenario fosters a driving behaviour regulated by the signals where vehicles are 
clustered in flow groups, allowing them to travel longer distances in a short period of time, achieving 



 

 

a greater speed while contributing to higher accelerations and decelerations, and therefore, higher 
levels of sound power, as well as higher values of LA10 and LA90. 

 

 Figure 12 –Maps for LA10 and LA90 (dB) in the three cases, plotted as roundabout relative to crossing. 

As previously mentioned, annoyance has been related to the noise events caused by road traffic 
noise. In the present study, an event is defined to occur when a chosen noise level threshold is 
exceeded, lasting for at least 3 seconds, and then is finished when the level has decreased 3 dBA 
from the threshold. This is based on studies presented in (4). The difference maps in terms of number 
of events above 60 dBA reflect the influence of heavy vehicles, resulting in a larger number of 
events. As soon as the heavy vehicles are removed, the differences start to smear out, being the 
largest ones in the entrance of the East lanes, where the roundabout has a higher number of events, 
probably due to the large queue as a consequence of the great amount of vehicles traveling S-N.  

 

 Figure 13 – Difference maps for the number of events above 60dBA in the three cases 

Finally, Fig. 14 includes the study of Case 1 for both intersection types, highlighting several 
study points (see Fig. 3) and their number of noise events above 60 dBA. This number is specially 
large for all cases in study point 12, where different behaviours may lead to these higher values, e.g. 
vehicles coming from the signalized crossing are grouped, while in the roundabout their appearance 
is more random, leading to higher number of events. Contrary, in study point number two, located 
close to the intersections, the number of events is higher for the signalized crossing due to the 
existence of a traffic light in the surroundings. In this case, the indicators related to the number of 
events might also be sensitive to how large in time the peak of the event gets. 



 

 

 Figure 14 –Number of events above 60 dBA at crossing (left) and roundabout (right) for selected study 

points 

4. CONCLUSIONS 
The aim of the present paper is to study the transport management and traffic design and its 

consequential sound environment through a micro-scale perspective, combining microscopic traffic 
simulation with noise calculations (both emission end exposure) as function of time. The model 
incorporates vehicle kinematics, obtaining single-vehicle output in terms of position, vehicle type, 
speed and acceleration over time. This output is used as input to estimate the noise emission of each 
vehicle through a series of in-house developed Matlab scripts. With these data, dynamic noise maps 
are generated and time pattern analysis is made for all scenarios. 

The focus is placed on the intersections as one of the most relevant designs in cities' traffic 
network, attempting to improve the knowledge about the key features in urban traffic dynamics and 
noise emission. To do this, the tool under development can be seen as a dynamic one, which may 
bring further knowledge in the urban and traffic planning decision-making process. Selected 
outcomes are presented in this section.  

From the analysis performed in the selected study points, in case of banning heavy vehicles that 
are mainly seem as the loudest ones, the equivalent sound pressure level is reduced by 1.5-3 dBA. 
This reduction is slightly higher for the signalized crossing. Smaller differences are shown in the 
case of removing medium-heavy vehicles (1.5-2 dBA).  

However, for the number of events above 60dBA, its reduction due to the banning of heavy 
vehicles is larger in the case of the roundabout, at least for the selected study points. The smaller 
effect for the signalized crossing makes it more relevant to suppress heavy vehicles in the case of the 
roundabout. This is probably due to the larger number of vehicle stops realized in the roundabout 
scenario (large queues at certain lanes as a consequence of high flow rate traffic on previous input 
lanes). These statistics have been studied, however they are not shown in the paper. The crossing is 
normally characterized as a stop-controlled situation, while the roundabout depends largely on the 
ability of drivers to admit or deny gaps (7).  

Moreover, this example demonstrates that in the presence of heavy vehicles, the implicit rule to 
yield to vehicles in the roundabout results in a higher congestion of certain parts of the network, as 
these vehicles need a larger gap to enter the roundabout, turning it into a complex situation in the 
case of a higher traffic flow from the previous entry lanes. However, if the heavy vehicles are 
removed, the number of loud events in the roundabout (>60 dBA) is dramatically reduced. This 
means that for Cases 2 and 3 the number of loud events (>60 dBA) for the studied points is, in 
general, smaller for the roundabout. This may attempt to answer to the findings in (5), since the 
presence of heavy vehicles led to higher unpleasantness scores in the roundabout cases. These types 
of results are interesting in the study beyond the energy equivalent measures, accounting for noise 
events caused by traffic, which has been suggested to have an impact in noise annoyance (22). With 
this, we want to go further in the understanding of traffic scenarios and its relation to traffic density 
and traffic flow, where for example, a continuous flow has been rated as less unpleasant. 

The temporal distribution is represented by the variances between the two scenarios through LA10 
(peak) and LA90 (background) noise levels. For both, the noise levels are higher in the signalized 
crossing intersection cases. In this type of intersection, vehicles are clustered in groups and higher 



 

 

speeds are reached in a short period of time. This, together with greater variations in acceleration, 
gives higher dynamics in the temporal distribution along the roads. However, larger effects are 
noticeable in the presence of heavy vehicles. The highest background levels are mainly seen at the 
congested lanes. These levels are reduced as heavy vehicles are removed and the difference between 
intersection types becomes smaller. For the peak noise level difference maps (LA10), the presence of 
heavy vehicles is resulting in a clustering of noisy peaks among the congested lanes, smeared out if 
the heavy vehicles are removed. 

In the case of acoustically clustering the lanes for both the roundabout and the signalized crossing, 
the resulting sound power level distribution from the case including the three vehicle categories is 
very similar for both intersection types, however, the percentage of levels in the lower ranks has 
increased in the case of the roundabout, reducing overall sound power levels. 

A good solution to improve the sound environment resulting from the roundabout scenario will be 
to have a traffic light in the south entry. This way, the vehicles coming from the east will be able to 
incorporate to the roundabout with a certain flow, since now, the large amount of cars traveling form 
the south is precluding them to enter the intersection and reach their destination within a reasonable 
time, increasing the sound power level along the whole road.  

The tool presented is under development and further development is needed. Future work will 
look towards the improvement of the road traffic sound power level distribution model (23), bringing 
the results closer to real urban environments. Also, measurement data to calibrate average 
deceleration and acceleration emission will also improve the traffic model. Finally, the inclusion of 
pedestrian crossings is of interest since it will affect the driving behaviour and hence, the sound 
environment, especially in the case of the roundabout scenario. Furthermore, a more advanced 
propagation model including the effect of buildings will enhance the realism of the model and its 
outcomes. 

With this type of study, we attempt to answer to different demands in urban sound qualities by 
studying and controlling the road traffic and its dynamics, as it is the major noise source in cities. 
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