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Labelling uncertainty in multi-target tracking
Edson Hiroshi Aoki, Pranab K. Mandal, Lennart Svensson, Yvo Boers, and Arunabha Bagchi

Abstract—In multi-target tracking, the problem of track la-
belling (assigning labels to tracks) is an on-going research topic.
The existing literature, however, lacks an appropriate measure
of uncertainty related to the assigned labels which has a sound
mathematical basis as well as clear practical meaning to the user.
This is especially important in a situation where well separated
targets move in close proximity with each other and thereafter
separate again; in such a situation it is well-known that there will
be confusion on target identities, also known as “mixed labelling”.

In this paper, we specify comprehensively the necessary
assumptions for a Bayesian formulation of the Multi-Target
Tracking and Labelling (MTTL) problem to be meaningful.
We provide a mathematical characterization of the labelling
uncertainties with clear physical interpretation. We also propose
a novel labelling procedure that can be used in combination with
any existing (unlabelled) MTT algorithm to obtain a Bayesian
solution to the MTTL problem. One advantage of the resulting
solution is that it readily provides the labelling uncertainty
measures. Using the mixed labelling phenomenon in the presence
of two targets as our test bed we show with simulation results
that an unlabelled Multi-target Sequential Monte Carlo (M-SMC)
algorithm which employs Sequential Importance Resampling
(SIR) augmented with our labelling procedure performs much
better than its “naive” extension, the labelled SIR M-SMC filter.

Index Terms—Multi-target tracking, Track labelling, Labelling
error, Random finite set, Sequential Monte Carlo methods.

I. INTRODUCTION

The track labelling problem is perhaps just as old as the
multi-target tracking (MTT) problem itself. In the display of
a radar operator, it is often necessary not only to display the
estimated locations (what we refer to as the tracks) of the
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multiple objects, but also to attribute a unique label to each
track. Ideally, a label should consistently be associated with
the same real-world object (target), enhancing the situational
awareness of, e.g., the radar operator.

In practice, the feasibility of maintaining this label-to-
target consistency depends on the observability conditions.
One situation where this consistency is frequently lost is when
the well separated targets move in close proximity to each
other. In this case, even after the separation, the measurements
and initial information may not allow us to precisely determine
which target is which (as illustrated in Fig. 1 with two targets).
Therefore, if required to make a hard decision to assign labels
to the estimated locations, the tracking system will frequently
make wrong choices.

This situation, where the available information allow for
more than one labelling possibility, is referred to as “mixed
labelling” by Boers, Sviestins and Driessen [1]. Being well
informed about the labelling uncertainty is of utmost relevance
to an end-user when, for instance, a decision involving a target
with a particular label is only acceptable if we have high
confidence in the label. It is therefore interesting and of great
importance to characterize and report these uncertainties.

The idea of obtaining target identities using a probabilistic
approach has been known for some time and has received
its due attention in the literature (e.g. [2]–[7]). These works
consider situations ranging from fixed number of targets to
time varying number of targets due to target birth and death.
While these works typically suggest methods for extracting
labelled tracks from a multi-target density, they do not attempt
to quantify the amount of uncertainty in the assigned labels.

Other recent works [8]–[12] have proposed quantities to be
associated with the labelling uncertainty in a MTTL problem.
However, the definition of these quantities rely on abstract
concepts, such as decomposition of densities into weighted
sums and permutations of the state vector, that tend to make
them hard to interpret. They are also based on restrictive
assumptions such as linear-Gaussian target dynamics or being
defined for only two targets, or assuming the number of targets
to be known and time-invariant.

Furthermore, even if one defines a suitable labelling uncer-
tainty measure, the uncertainty might be lost/underestimated
when it is calculated based on particle filters or multiple
hypotheses, due to the degeneracy phenomenon present in
these algorithms. This weakness has been noticed by [1],
[8]–[12] and is further explained in Section II-C. Practical
implementations of the labelling uncertainties should therefore
take this into consideration.

Throughout the article we will use as illustrative example
the situation of mixed labelling as depicted in Fig. 1. A natural
measure to characterize the labelling uncertainties in Fig. 1
could be the probability that the assignment of labels to the
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tracks is incorrect, in other words, that a track swap has
occurred. It is, however, not completely clear what the exact
meaning of “probability of incorrect labelling” is. After all, the
tracks are only (point) estimates of the true target states, and
they almost never coincide. If the tracks themselves are not
“correct”, what shall we understand by “correct labelling”?

In finding the answers we consider the Bayesian formulation
of the MTTL problem, based on the concept of labelled Ran-
dom Finite Sets (RFS) presented in [6]. We propose labelling-
related statistics with clear meaning in terms of quantities
similar to conditional probability. Our starting point is that
the end-user, for example, the radar operator, will prefer point
estimates of the target locations rather than the whole posterior
probability distribution of the locations. The user would like
to assign labels to these point estimates of the locations.
Furthermore, based on an intuition that resembles [8]–[12],
we explicitly make the proposed labeling uncertainties part of
our density approximation (for the labelled tracks) so that they
are not lost during the filter recursions.

We should note here that in the target tracking literature,
labels are mostly used as means to extract trajectories of the
targets. Recently, the authors in [13] moved away from this
approach of artificial label and considered the problem of
estimating the trajectories directly. In our work, though we
consider the problem of labelled state estimation, it is not our
primary goal to estimate trajectories of the targets. Our main
goal is to estimate, at each time, the labelled states so that we
can associate a current target to its “location at birth”. In the
context of Fig. 1, for example, if a current target is assigned
the label “T1” then we can infer that it originated in the left-
upper corner. One can also think of situations with Air Traffic
Control (ATC) callsigns, which are assigned to aircraft by the
ATC in order to uniquely identify them. Usually, cooperative
aircrafts observed by a secondary radar periodically inform
their own assigned callsign to the ATC. However, if, for
example, an aircraft’s transponder suddenly stops functioning,
so does the information about its callsign. In this case, the
ATC attempts to associate the previously assigned callsigns to
targets observed using the primary radar. This way the operator
can relate a current target to the previously existing targets in
terms of their last known position.

The contributions of this paper are:
• We complement the formulation of the MTTL problem

in [6], by stating additional necessary assumptions for the
problem we consider to be meaningful;

• We provide a mathematical description of the labelling
error with clear physical interpretation, based on the
labelled multi-target posterior density;

• We present a labelling procedure using the proposed la-
belling uncertainty measures, that can be used to augment
existing MTT algorithms to obtain a complete solution to
the joint MTTL problem. This procedure avoids the de-
generacy in labels that typically arises in MTTL filtering
algorithms based on particles or hypotheses.

The organization of this paper is as follows. In Section II,
we review the Bayesian formulation of the MTTL problem
given in [6] and complement it to formulate the problem we
consider. The other contributions of this article are presented

in Section III and Section IV describing the proposed measure
of labelling uncertainty and a new method to solve the MTTL
problem, respectively. Section V contains the simulation re-
sults for labelled tracking of two closely spaced targets. Some
conclusions and recommendations are given in Section VI.

NOTATION CONVENTIONS

An upper-case letter (like X) denotes a vector-valued ran-
dom variable, and its lower-case counterpart (x) denotes a
particular realization. An upper-case bold-faced letter (like X)
denotes a finite set-valued random variable, and its lower-case
counterpart (x) denotes the corresponding realization.

Vector entries and set elements have superscripts containing
their indexes, and vectors are always row vectors (written
horizontally), such as, x =

[
x(1), x(2)

]
, x =

{
x(1), x(2)

}
.

II. THE BAYESIAN MULTI-TARGET TRACKING AND
LABELLING (MTTL) PROBLEM

In this section, we present the mathematical formulation of
the Bayesian MTTL problem that we consider. The formu-
lation (Section II-A) follows the one given in [6] but with a
couple of extra assumptions. These assumptions are elaborated
further in Section II-B. In our opinion, these assumptions,
though quite intuitive, have not been discussed in detail in
the existing literature. We also present an important property
of the considered Bayesian MTTL problem, namely, the one-
sided decoupling property, which will play a central role in the
derivation of our proposed algorithm in Section IV. Finally in
Section II-C we discuss why mixed labelling such as in Fig. 1
creates extra problem.

In what follows, we assume that the reader has basic
familiarity with the concepts of Finite Set Statistics (FISST)
such as random finite sets and the corresponding density
functions (see, e.g., [14]).

A. Mathematical formulation

Let us assume that the single-target state vector (composed
of entries such as position, velocity, etc., which we will
henceforth refer to simply as location) assumes values in Rn,
and that a label to be assigned to a location may assume values
in a discrete set Π. We then define the labelled multi-target
state at time k as the random finite set

Xk =
{
X

(1)
k , . . . , X

(Tk)
k

}
where X(i)

k =
[
S

(i)
k , L

(i)
k

]
with locations S(i)

k ∈ Rn and labels

L
(i)
k ∈ Π. Clearly, no two single-target states can have the

same label if the labels are to be useful as target identifiers. As
a result, a RFS density function associated with Xk (referred
to as a labelled RFS density), must satisfy

f
({[

s
(1)
k , l

(1)
k

]
, . . . ,

[
s

(tk)
k , l

(tk)
k

]})
= 0,

if ∃ i, j ∈ {1, . . . , tk} s.t. i 6= j, l
(i)
k = l

(j)
k . (1)

Examples of closed-form RFS densities that satisfy (1) are
the labelled Poisson RFS density, the labelled multi-Bernoulli
RFS density and the generalized labelled multi-Bernoulli RFS
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density, all described in [6]. Let us denote the corresponding
observation as Zk (also a RFS), and the sequence of all
observations available until and including time k by Zk.

As typical in the literature, in this paper we assume the
labelled state and observation processes (Xk,Zk) to be a first
order partially observed Markov process with

f
(
xk

∣∣xk−1, Z
k−1

)
= f(xk|xk−1), (2)

and f
(
zk
∣∣xk, Zk−1

)
= f(zk|xk). (3)

The exact formulas for the multi-target state transition func-
tion f(xk|xk−1) and the multi-target likelihood densities
f(zk|xk) and the initial multi-target prior f(x0) depend on
the assumptions of the scenario (see, e.g., [6]).

The multi-target posterior f
(
xk
∣∣Zk

)
can be calculated

recursively as (see, e.g., [6])

f
(
xk
∣∣Zk

)
=
f(zk|xk)f

(
xk
∣∣Zk−1

)
f (zk |Zk−1 )

(4)

where

f
(
xk
∣∣Zk−1

)
=

∫
f(xk|xk−1)f

(
xk−1

∣∣Zk−1
)
δxk−1, (5)

and f(zk|Zk−1) =

∫
f(zk|xk)f

(
xk

∣∣Zk−1
)
δxk, (6)

with the integrals being set integrals (see, e.g., [14, Sec-
tion 9.3.2]).

We assume further that the new targets are assigned unam-
biguous labels at the time of their appearances (as explained
further in Section II-B1) and
Assumption (L): The labels affect neither the kinematic states
of the target nor the generated observation corresponding to
those kinematic states. In particular, we assume that

f (sk|xk−1) = f (sk|sk−1) , (7)
and f

(
zk
∣∣ xk) = f

(
zk
∣∣ sk) . (8)

Note that the conditions (7) and (8) are not explicitly assumed
in [6]. Neither are they automatically satisfied by all the
models considered there. For example, (8) will be violated if in
the observation model the detection probability pD([s, l]) (see
[6, Section IV-C]) depends on the label l. Also, in the multi-
Bernoulli RFS model, if the survival probability pS([s, l]) (see
[6, Section IV-D]) depends on the label l, then (7) will not be
satisfied. Conditions (7) and (8) are, however, consistent with
the definition of label used in this paper (see Section II-B2).

Note further that condition (8) allows us to use in a
MTTL problem any relevant multi-target RFS measurement
model that can be used in an (unlabelled) MTT problem.
Examples of such multi-target RFS measurement models are
the point measurement model described in [14, Chapter 12],
and the track-before-detect measurement model described in
[15]. Closed-form expressions for the multi-target prior and
state transition densities (for the unlabelled MTT problem)
can be found in [14, Chapters 13, 14].

B. Assumptions and properties of the MTTL problem

1) Non-ambiguity of initial labels: The complete mathe-
matical description of the assumption is given later in Re-
mark 3.2, once other necessary quantities are introduced. Here
we provide an intuitive explanation.

As in [6], we too consider a label to be a placeholder for
a target’s identity, which cannot be observed and which is to
be estimated along with the target locations in a multi-target
tracking scenario.

In the introduction we have equated “labels” to “ATC call-
signs”, but when they cannot be observed (e.g., when transpon-
ders stopped working). Clearly, estimating ATC callsigns for
aircraft with non-functioning transponders only makes sense
if the aircraft transponders were functioning until some point,
i.e., the aircrafts were attributed unique labels in the past.
In some sense, the moment of transponder failure can be
considered as the birth of the target, because from that point
on the callsign became unobservable.

We view the labelling problem to be similar to this situation,
where one associates, to a current (estimated) target, one of the
previously assigned labels (generally assigned when a target
is detected for the first time) or a new one to indicate the birth
of a new target. Furthermore, keeping similarity with the non-
functioning transponder we assume that the model assigns a
non-ambiguous label to the target, at its birth. This is possible
if we assume that the support for the probability distribution
of location for a new-born target does not overlap with that for
other (existing or other new born) targets. With the aircrafts
and ATC it is true because of the strict regulations.

On the other hand, suppose two targets appear at the same
time and no matter where they appear the model assigns
to each target, say, label A with probability 0.5 and label
B with probability 0.5 (i.e., enter into so-called total mixed
labelling). Then this mixed labelling will persist at all later
times ( [16, Section IV-C]), rendering the attempt to assign
labels to location estimates futile.

Unfortunately, the labelled RFS model described in [6] will
always produce total mixed labelling if two (or more) new
targets appear at the same time instant. When one needs
to deal with more than one target appearing simultaneously,
other labelling scheme can be envisaged to circumvent this
problem. For example, by partitioning the surveillance space
into small grids and attributing labels according to the time
and grid the target appears in. However, we do not go into
this aspect in here. We assume henceforth that there is no
ambiguity regarding the labels of appearing targets, which
means that total mixed labelling is at least avoided at the time
of appearance.

2) Interpretation of labels: When labels are used only to
estimate trajectories, their values at one particular time instant
do not carry any useful information. They exist solely to con-
nect target states at different time points. This, however, does
not hold in our case. In conformity with the nonambiguous
initial labels (see Section II-B1), and as mentioned in the
introduction, we note that a label carries some information
about the location, at birth, of the target it is attached to. In
the context of Fig. 1 the label “T1” refers to the target which
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appeared in the upper-left corner and in the context of ATC
callsigns, a label refers to its last known position.

Despite this we consider the label to be an artificial addition
to the physical/kinematic model of the targets, in the sense
that labels do not carry any information about the target that
may influence the measurements it generate or the transition
mechanism of the locations.

Looking at it from the reverse side, the measurements do not
provide any direct information about the labels. Information
about labels are obtained only via the estimated location of
the targets (on the basis of the measurements), and combining
this with the knowledge of transition mechanism to infer about
the location at birth.

Note that if labels are indeed artificial introduction to the
physical model of the unlabelled states, i.e., the unlabelled
RFS model, one would expect that given the measurements,
the results obtained using labelled and unlabelled RFS models
will be consistent with each other. In particular, one should
expect that the filtered distribution of the unlabelled states ob-
tained using the unlabelled RFS model (and the observations)
should coincide with the distribution of the unlabelled states,
calculated by marginalizing the filtered distribution obtained
using the labelled RFS model. See Fig. 2.

As shown in the appendix, Assumption (L) of Section II-A
and in particular, conditions (7) and (8) indeed imply this
consistency, corroborating the viewpoint that the labels are
artificial introduction to the physical model.

3) One-sided decoupling between the tracking and labelling
sub-problems: In view of the discussion in Section II-B2 and
in particular, from Fig. 2, it is clear that for the considered
Bayesian MTTL problem one can solve the (sub)problem of
tracking, i.e., estimating the corresponding set of unlabelled
target states Sk =

{
S

(1)
k , . . . , S

(t)
k

}
from a sequence of

observations Zk = (z1, . . . , zk), completely disregarding the
labelling (sub)problem. The tracking problem will involve
the following recursions, similar to (4) – (6) but with the
unlabelled states.

f
(
sk
∣∣Zk

)
=
f(zk|sk)f

(
sk
∣∣Zk−1

)
f (zk |Zk−1 )

(9)

where

f
(
sk
∣∣Zk−1

)
=

∫
f(sk|sk−1)f

(
sk−1

∣∣Zk−1
)
δsk−1 (10)

f(zk|Zk−1) =

∫
f(zk|sk)f

(
sk
∣∣Zk−1

)
δsk. (11)

See, e.g., [14, Chapter 14].
Though the Bayesian tracking recursion (9) does not in-

volve any probability distribution of labels or labelled multi-
target states, i.e., does not depend on Bayesian labelling, the
(sub)problem of Bayesian labelling will depend on the solution
of Bayesian tracking, due to the interpretation provided in
Section II-B2. We refer to this property as one-sided decou-
pling between the two subproblems of (unlabelled) tracking
and labelling.

C. Why mixed labelling makes Bayesian MTTL more chal-
lenging

It is tempting to believe that approximating recursion (4),
by itself, gives a practical solution to the complete MTTL
problem. However, the way the recursion is implemented
plays a major role in providing the correct statistics about the
labelling uncertainties. In most of the cases a computationally
feasible approximation of the f

(
xk
∣∣Zk

)
is used (see [14,

Chapter 15]). This being an approximation may, in turn,
deter us from obtaining accurate estimates of the statistics
of interest. Consider again the situation depicted in Fig. 1.
If one implements the Bayes recursion using a particle filter
(PF), then the mixed labelling manifests itself by particle
clouds corresponding to each target getting mixed, as shown in
Fig. 3. In this case, due to the inherent resampling mechanism
in the PF method, the actual labelling error tends to get
underestimated. We explain this further below.

Suppose the Multi-target Sequential Monte Carlo (M-SMC)
filter, presented in [17] and [14, Chapter 15] is used to
obtain the posterior. These are multi-target versions of the
well-known Sequential Importance Resampling Particle Filter
(SIR PF) proposed by Gordon, Salmond and Smith [18] and
Kitagawa [19].

As a SIR PF, the M-SMC filter suffers from the well-known
degeneracy phenomenon described in [20]–[22]. For any given
time j, the resampling mechanism will cause the hypotheses
on the multi-target trajectory (X0, . . . ,Xj) to eventually (i.e.,
at some time step k > j) collapse into a single hypothesis(
x∗0, . . . , x∗j

)
, leading the particle approximation of the pos-

terior f(xk|Zk) to be biased toward f
(
xk
∣∣x∗0, . . . , x∗j , Zk

)
.

This degeneracy will definitely have an impact on the filter
estimates unless we have the “forgetting condition”

f(xk|Zk) ≈ f
(
xk

∣∣x∗0, . . . , x∗j , Zk
)
. (12)

Condition (12) is likely going to fail in a situation such
as “total mixed labeling”, i.e., where, according to the true
posterior distribution, for any given location, all possible
labeling assignments are equally probable. It is argued in [16,
Section IV-C] that if a total mixed labelling arose at some
point, it will persist at all later times. Consequently, if total
mixed labelling already arises at j′ < j then it will persist
at all later times, including time k. In this case, the true
posterior f

(
xk

∣∣Zk
)

will contain mixed labelling. However,
given x∗j , i.e., assuming unique labels for all targets at time
j, f

(
xk
∣∣x∗j , Zk

)
may not have any mixed labelling, thus

significantly violating (12).
The M-SMC filter has therefore a tendency of “forgetting”

the mixed labelling that exists in the true posterior density,
leading to the underestimation of the labelling errors. This
is what the authors in [1] observed empirically through the
analysis of the SIR PF mechanism.

It is easy to see that multi-target tracking techniques based
on representing the multi-target posterior as some sort of
set of hypotheses, and periodically pruning low-probability
hypotheses, will generally suffer from a similar degeneracy
phenomenon. This will happen, in particular, if each hypoth-
esis on the multi-target state at time k implicitly assumes
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hypotheses on the multi-target state at past times 0, . . . , k−1,
like the approach presented in [6]. Since low probability
hypotheses are periodically pruned, information about past
trajectories will eventually collapse into a single hypothesis.

III. MEASURE OF LABELING UNCERTAINTY IN BAYESIAN
MTTL

In the introduction “probability of (in)correct labelling”
is mentioned loosely as a possible measure of the labelling
uncertainty. Proper way of formalizing this will be to define
the event “correct labeling” and consider the probability of the
(complementary) event. However, as mentioned in the same
discussion, it is not obvious, how to define correct labelling
of tracks, if the tracks themselves, being estimated values, are
not correct.

At this point, many different alternative interpretations can
be envisaged, such as e.g. [23]. We adopt a conditional
approach. From the point of view of an end-user, say the
radar operator, there already exist satisfactory solutions to the
MTT problem at hand, based on which point estimate of the
target locations are on the display. He is interested in having
labels assigned to these point estimates. With this viewpoint,
we define the labelling probability associated with a point
estimate of the labelled state to be the conditional probability
that the assignment of labels is correct if the targets were
(truly) located at the estimated positions. The precise definition
is as follows.

1) The labelling (un)certainty:
Definition 3.1: Consider a RFS X, a finite set of la-

belled target states, as described in Section II-A. Let the
RFS S be the corresponding unlabelled target states. The
labelling probability associated with a realization x ={[
s(1), l(1)

]
, . . . ,

[
s(t), l(t)

]}
of X is defined to be the (condi-

tional) probability that label l(i) is associated with the (unla-
belled) state s(i), i = 1, . . . , t, given that (there are t targets
present and) S = s :=

{
s(1), . . . , s(t)

}
, It is subsequently

denoted as L(x|s).
It can be shown (see, e.g., [16, Lemma 3.5]) that the

labelling probability is given by

L(x|s) =
f
({[

s(1), l(1)
]
, . . . ,

[
s(t), l(t)

]})∑
l̃
(i)
k
∈Π

1≤i≤t

f
({

[s
(1)
k , l̃

(1)
k ], . . . , [s

(t)
k , l̃

(t)
k ]
}) =

f(x)

f(s)
.

Remark 3.2: The assumption of nonambiguity of initial
labels can now be fully described in terms of the labelling
probability. In particular, we assume that for any initial un-
labelled state s0, there exists one labelled state x0 such that
L(x0|s0) = 1.

2) Posterior labelling probability: For Bayesian labelling
purposes, we are interested in the posterior version of the
labelling probability, i.e., conditioned on all observations up
to and including time k, given by

L
(
xk
∣∣sk, Zk

)
=
f
(
xk
∣∣Zk

)
f (sk |Zk )

=
f
(
xk

∣∣Zk
)∑

xk∈Πk(sk)

f (xk |Zk )
(13)

where

Πk

({
s

(1)
k , . . . , s

(tk)
k

})
,
{

xk

∣∣∣xk =
{

[s
(1)
k , l

(1)
k ], . . . , [s

(tk)
k , l

(tk)
k ]

}
, f(xk|Zk) > 0

}
.

(14)

Note that (13) defines a discrete probability distribution on
Πk (sk), i.e., over the possible values of xk formed by assign-
ing labels to sk, because∑

xk∈Πk(sk)

L
(
xk
∣∣sk, Zk

)
= 1. (15)

The following lemma will be useful in our later analysis.
Lemma 3.3: Under condition (8)

L
(
xk
∣∣sk, Zk

)
=
f
(
xk
∣∣Zk−1

)
f (sk |Zk−1 )

[
= L

(
xk
∣∣sk, Zk−1

)]
. (16)

Proof From (13) we have

L
(
xk
∣∣sk, Zk

)
=
f
(
xk
∣∣Zk

)
f (sk |Zk )

=

f(zk|xk)f(xk|Zk−1 )
f(zk|Zk−1 )

f (sk |Zk )
[from (4)]

=
f(zk|sk)f

(
xk
∣∣Zk−1

)
f (zk |Zk−1 ) f (sk |Zk )

[using (8)]

=
f
(
xk

∣∣Zk−1
)

f(zk|Zk−1 )f(sk|Zk )
f(zk|sk)

=
f
(
xk

∣∣Zk−1
)

f (sk |Zk−1 )

where the last equality follows from (9).

Lemma 3.3 complies with the interpretation that observation
provides information about label only via the location estimate
(see Section II-B2). Hence, given “locations” sk, the corre-
sponding observation zk does not carry any extra information
about the labels at time k.

In other words, measurements cannot reduce the labelling
uncertainties for some given locations sk. However, they may
still reduce our overall (i.e., when locations are not given)
uncertainties in the labels if they happen to tell us that sk is
more likely to belong to a region with less labelling uncertain-
ties. On the other hand, once we have reached a stage of total
mixed labelling [16], where the labeling uncertainties are large
everywhere, this is no longer possible and the uncertainties
will never be reduced again.

3) Labelling error: We can now use (13) to measure the
labelling error in a labelled track estimate.

Definition 3.4: Let ŝk be the unlabelled tracks corresponding
to a set of labelled tracks x̂k. Then the labelling error
associated with x̂k is defined to be 1− L(x̂k |̂sk, Zk).

IV. A LABELLING ALGORITHM FOR MTTL PROBLEMS

In this section we propose a labelling procedure that can
be combined with existing (unlabelled) MTT algorithms to
provide a complete MTTL solution. The resulting solution
has the advantage that it makes the statistics proposed in
Section III readily available and it does not suffer from the
degeneracy phenomenon described in Section II-C.
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Recall from Section II-C that when labels are part of the
state, the degeneracy phenomenon of the SIR PF and similar
algorithms creates an extra problem for MTTL in, for instance,
the situation depicted in Fig. 1. In the literature, the Rao-
Blackwellized Marginal Particle Filter (RBMPF) (see [24],
[25]) has been successfully applied to counter PF degeneracy
for the joint state and parameter estimation problem. The al-
gorithm is essentially a combination of the Rao-Blackwellized
particle filter (RBPF) [20] and the marginal particle filter
(MPF) [26].

The idea of the RBMPF is to split the state vector into
two parts and only handle the part that is less likely to
violate the ”forgetting condition” in (12) using particles, while
attempting to express the conditional distribution of the other
states exactly.

We apply the same idea to the MTTL problem, by decou-
pling the labels and the unlabelled states. We estimate the
unlabelled states by a suitable MTT algorithm and calculate
the probabilities of the labels, conditiond on the unlabelled
states, in a deterministic manner. By doing so, we prevent
degeneracy in the MTTL solution that may arise due to the
labels (e.g., when the solution involves pruning of hypothesis
on labels).

The proposed method is described in detail in Section IV-A.
The corresponding algorithm is presented in Section IV-B.
Finally, we discuss the computational aspects in Section IV-C.

A. Derivation of the labelling procedure

Note that due to the one-sided decoupling property, as de-
scribed in Section II-B3, we can iteratively obtain a representa-
tion of the unlabelled multi-target posterior f

(
sk
∣∣Zk

)
without

any need to concern ourselves about labelling. Labeling can
be done at a complementary step.

We will henceforth assume that f(sk|Zk) can be effec-
tively approximated using state-of-the-art MTT techniques.
We further assume that the chosen MTT technique for unla-
belled tracking represents the unlabelled multi-target posterior
f
(
sk
∣∣Zk

)
by a set of weighted particles as follows:

f
(
sk
∣∣Zk

)
≈

NP∑
i=1

wk(i)δsk(i)(sk). (17)

Otherwise, we should be able to obtain such representation by
numerically approximating (e.g. by sampling) the output of
the algorithm. Choices of such unlabelled tracking algorithms
include the M-SMC filters in [17] and [14, Chapter 15],
the hypotheses-based algorithm proposed in [6] (though we
should discard the labels generated by the algorithm, as we
are using another labelling scheme), and for the track-before-
detect measurement model, the Markov Chain Monte Carlo
(MCMC) MTT algorithm proposed in [15].

By combining (13) with (17) we can express the labelled
posterior as

f
(
xk

∣∣Zk
)
≈

NP∑
i=1

wk(i)L
(
xk

∣∣sk(i), Zk
)
δsk(i)(sk). (18)

A general expected value E[g(Xk)
∣∣Zk ] can thus be approxi-

mated as

E[g(Xk)
∣∣Zk ] ≈

NP∑
i=1

wk(i)
∑

xk∈Πk(sk(i))

g(xk)L
(
xk

∣∣sk(i), Zk
)
,

where Πk(·) is as given in (14).
From (18), it is clear that the additional quantity that our

labelling algorithm should compute is the labelling probability
L
(
xk
∣∣sk(i), Zk

)
. We develop a recursive algorithm to com-

pute these probabilities by making use of (16). Noting that
the denominator f

(
sk
∣∣Zk−1

)
in (16) does not depend on the

labels, we can approximate the labelling probabilities as

L
(
xk
∣∣sk, Zk

)
∝ f

(
xk
∣∣Zk−1

)
=: L

(
xk
∣∣sk, Zk

)
=

∫
f(xk|xk−1)f

(
xk−1

∣∣Zk−1
)
δxk−1 (19)

≈
NP∑
j=1

wk−1(j)
∑

xk−1∈Πk−1(sk−1(j))

f(xk|xk−1)

× L
(
xk−1

∣∣sk−1(j), Zk−1
)
, (20)

assuming that we have already computed the labelling prob-
abilities L

(
xk−1

∣∣sk−1(i), Zk
)

at time (k − 1), for j =
1, . . . , Np and xk−1 ∈ Πk−1(sk−1(j)).

It should be noted that the summations in (20) need to be
computed for every particle sk(i) and its labelled version xk ∈
Πk(sk(i)), at time k. Depending on the number of targets
present and the number of used particles, this may become
computationally intractable. One possible way to reduce the
burden is to set the terms inside the second sum in (20) with
negligible contribution to zero.

This is equivalent to approximating the sets Πk(sk) in a
specific way. First, note from (14), (18) and (20) that Πk(sk)
may be approximated as

Πk

({
s

(1)
k , . . . , s

(tk)
k

})
≈
{

xk

∣∣∣xk =
{

[s
(1)
k , l

(1)
k ], . . . , [s

(tk)
k , l

(tk)
k ]

}
and

∃ j, xk−1 ∈ Πk−1(sk−1(j))

s.t. f(xk|xk−1)L
(
xk−1

∣∣sk−1(j), Zk−1
)
> 0

}
. (21)

In the approximation above one can use a higher threshold τk
instead of 0 and use the condition:

f(xk|xk−1)L
(
xk−1

∣∣sk−1(j), Zk−1
)
> τk.

Then the number of terms in the sums over Πk(sk) will
be reduced. One has to be very careful though in selecting a
threshold. A large threshold can cause labelling hypotheses to
disappear prematurely. This would, in turn, lead to a sort of
degeneracy, which we are trying to prevent at the first place.

To initialize the recursion for L
(
xk
∣∣sk, Zk

)
the quantities

Π0(s0) and L(x0|s0) are obtained as follows.

Π0

({
s

(1)
0 , . . . , s

(t0)
0

})
≈
{

x0

∣∣∣x0 =
{

[s
(1)
0 , l

(1)
0 ], . . . , [s

(t0)
0 , l

(t0)
0 ]

}
, f(x0) > 0

}
(22)
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and L(x0|s0) = f(x0)/f(s0). (23)

Note that according to the assumption of non-ambiguity of
initial labels (see Section II-B1 and Remark 3.2), given s0,
Π0(s0) will be a singleton set and L(x0|s0) = 1 for x0 ∈
Π0(s0).

B. The algorithm

We now describe the (sub)algorithm for the labelling pro-
cedure to be used as a “plug-in” for an (unlabelled) MTT
algorithm. The latter is assumed to generate, at every time
step k, a particle representation {sk(i), wk(i)}NP

i=1 of the
unlabelled posterior. For each particle sk(i), the labelling
algorithm computes the corresponding labelling probabilities
L
(
xk

∣∣sk(i), Zk
)

using the (unlabelled) particles and labelling
probabilities of previous time (k − 1).

Initialization: (for each s0(i), i = 1, . . . , NP )
• Set Π0(s0(i)) according to (22), by taking s0 = s0(i)
• For each x0 ∈ Π0(s0(i)), set L(x0|s0(i)) = f(x0)/f(s0(i)).

At every time step k: (for each sk(i), i = 1, . . . , NP )
(L.1) Obtain Πk(sk(i)) by taking sk = sk(i) in (21)
(L.2) For each xk ∈ Πk(sk(i)), calculate the unnormalized labeling

probabilities L
(
xk

∣∣sk(i), Zk
)

according to (20).
(L.3) For xk ∈ Πk(sk(i)), normalize the labelling probabilities as

L
(

xk

∣∣∣sk(i), Zk
)

=
L
(
xk

∣∣sk(i), Zk
)∑

x̃k∈Πk(sk(i)) L (x̃k |sk(i), Zk )
.

C. Computational cost of the labelling procedure

If we consider a constant number of targets t, there are
t possible labels. Hence given a location sk−1(i), the corre-
sponding |Πk−1(sk−1(i))| can be as high as t!. Then from (20)
it follows that the worst-case complexity of calculating a single
labelling probability for a single particle-label combination xk
is O(NP t!) and O(N2

P (t!)2) to compute all labelling proba-
bilities for all particles. Needless to say, this computational
cost can be prohibitive if we have large number of targets.

The computational problem is aggravated when we consider
target births and deaths, where in fact Πk(sk) may grow with
time. For instance, when a target may have disappeared a
long time ago, but its corresponding label still maintain a
nonzero probability of existence. This may happen if other
targets whose identities have been confused with the “dead”
target still exist.

Therefore, without additional approximations, the labelling
procedure presented here would be unsuitable for large-scale
MTTL problems. However, for problems of tracking a small
group of targets in a situation like Fig. 1 and individually
identifying the targets after separation the labelling procedure
is suitable. The algorithm has also good parallelization prop-
erties: steps (L.1) – (L.3) can be fully parallelized, by letting
each (parallel) computing node process a single labelling
hypothesis xk(i) with a computational complexity of O(NP t!).

V. NUMERICAL RESULTS

In this section we present the simulation results for the
proposed labelling procedure, by analysing the effect of adding
it as a “plug-in” to a unlabelled M-SMC filter. We compare the
results to those from labelled M-SMC filter which estimates
labels as part of the single-state state.

We start by explaining the metrics we use to evaluate
the algorithms Subsequently, in Section V-B, the considered
scenarios are described. The comparison results are presented
in Section V-C and Section V-D.

A. Metrics for performance evaluation

We recall that though the overall goal of MTTL is to obtain
labelled tracks, the focus of this article is on the labelling
part. Subsequently, we compare different algorithms on the
basis of the labels the algorithms will assign to a set of
given unlabelled states. In the simulation examples the natural
choice of the unlabelled states is the synthetic location values
used in simulation.

Suppose in a simulation run s̃k is the true unlabelled
multi-target states (locations) at time k and x̃k is the true
labelled multi-target states. For any given algorithm producing
a particle representation of the posterior f

(
xk
∣∣Zk

)
at each

time k, we calculate the labelling probabilities L
(
xk

∣∣̃sk, Zk
)

for xk ∈ Πk(s̃k), by calculating first the unnormalized versions
from (19) where the set integral is evaluated using the particle
representation of f

(
xk−1

∣∣Zk−1
)
.

Subsequently, we compare the point estimate x̂k, given by

x̂k = arg max
xk∈Πk (̃sk)

L
(
xk
∣∣̃sk, Zk

)
(24)

to the true labelled state x̃k using the hit-or-miss metric:

ε(x̂k, x̃k) ≡ ε
({

[ŝ
(1)
k , l̂

(1)
k ], . . . , [ŝ

(tk)
k , l̂

(tk)
k ]

}
,{

[s̃
(1)
k , l̃

(1)
k ], . . . , [s̃

(tk)
k , l̃

(tk)
k ]

})
,

{
1, ∃ i, j s.t. ŝ(i)

k = s̃
(j)
k , l̂

(i)
k 6= l̃

(j)
k

0, otherwise
x (25)

i.e., the value of the metric is 1 if there is at least one
incorrectly assigned label, and 0 otherwise. Naturally, the
metric is only statistically relevant if averaged over a sufficient
number of Monte Carlo runs. Thus, we define for an MTTL
algorithm the observed average labelling error at time k as

εtrue
k =

1

NR

NR∑
i=1

ε(i) (26)

where NR is the number of Monte Carlo runs and ε(i) is
calculated according to (25) for the i-th Monte Carlo run.

Recall further that the labelling error in x̂k, given by,
1−L

(
x̂k
∣∣̃sk, Zk

)
represents the (conditional) probability that

the true labels (L
(1)
k , . . . , L

(tk)
k ) associated with the locations

(s̃
(1)
k , . . . , s̃

(tk)
k ) are different from (l̂

(1)
k , . . . , l̂

(tk)
k ). In other

words, ε(x̂k, x̃k) of (25) can be considered as a realiza-
tion/observation from the Bernoulli distribution with success
probability 1 − L

(
x̂k

∣∣̃sk, Zk
)
. Thus, when averaged over a
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series of Monte Carlo runs these two quantities should be close
to each other.

We thus also calculate the algorithm-suggested average
labelling error as

εcalc
k =

1

NR

NR∑
i=1

(
1− L

(
x̂k(i)

∣∣̃sk(i), Zk(i)
))
, (27)

where i stands for the Monte Carlo run number. As argued
above, the quantities εcalc

k and εtrue
k should not have large

difference. Otherwise, it will indicate inconsistency between
the observation and the expectation, both derived using the
same algorithm.

Another related measure of importance is the variance of the
labelling error,

(
1− L

(
x̂k

∣∣̃sk, Zk
))
. Note that this variance

has two contributors: (1) the variability due to the varying
sequence of (unlabelled) state sk and observations Zk, and (2)
the variability in the estimation of posterior distribution of the
labelled locations. It is however the latter type which is more
relevant for us because a high variance would indicate that
the calculated

(
1− L

(
x̂k
∣∣̃sk, Zk

))
, is unreliable. In order to

observe this latter variance, we perform a second analysis, this
time running the algorithm many times on a fixed sequence
of measurements Zk (and necessarily, for fixed sequence of
locations sk). Then the variance in these estimated errors will
be entirely due to the algorithm of obtaining the labelled
states. In this analysis, we look at the standard deviation of
the calculated labelling error given by

σε
k =

√√√√ 1

NR

NR∑
i=1

(
(1− L (x̂k(i) |̃sk, Zk ))− εcalc

k

)2
. (28)

B. Simulation Scenarios

In our analysis we consider the following four scenarios:
1) Two targets approach each other, move closely-spaced

for a while and separate;
2) Two targets approach each other, move closely-spaced

for a while and separate crossing their paths;
3) Two targets approach each other, move coalesced for a

while and separate;
4) Two targets approach each other, move closely-spaced

for a while and separate. However, one of the targets
appears later but well before they come close and the
other disappears soon after the separation.

The trajectory of the targets and the simulated measure-
ments in one Monte Carlo run is shown in Fig. 4. The targets
(as well as the time) move from left to right. The multi-target
measurement model f(zk|sk) is taken to be the detection-type
measurement model described in [14, Section 12.3]. Missed
detections and false alarms are only considered in the last
scenario (with target birth and death), with probability of
detection 0.95 and uniform clutter density of 2 · 10−7 per
unit of area. The single-measurement, single-target likelihood
function is given by

p
(
z

(i)
k

∣∣∣s(j)
k

)
= N

(
z

(i)
k ;
[
p(j)

x , p(j)
y

]
,

[
676 0

0 676

])
. (29)

The location has the form S
(i)
k =

[
P

(i)
x , P

(i)
y , V

(i)
x , V

(i)
y

]
,

where
(
P

(i)
x , P

(i)
y

)
is the position in Cartesian coordinates

x and y and
(
V

(i)
x , V

(i)
y

)
corresponds to the velocities. The

single-target state transition model corresponds to the popular
discretized White Noise acceleration model described in [27],
with T = 2 as the interval between observations and σ2 = 676
as the power spectral density of the process noise.

In all scenarios, we assume perfect knowledge of the targets’
initial positions, as well as their time of appearance (for the
appearing target in scenario 4). The possibility of target death
is only considered in scenario 4, with the probability of target
survival at each time step assumed to be constant and equal to
0.95. With the given assumptions, the multi-target predictive
density f

(
xk
∣∣Zk−1

)
and the posterior density f

(
xk

∣∣Zk
)

are generalized multi-Bernoulli RFS densities, with analytical
formulas presented in [6, Section IV].

For all scenarios, we evaluate two MTTL algorithms:
1) A “naive” M-SMC filter which attempts to estimate la-

bels as part of the single-target state, without preventing
the degeneracy phenomenon described in Section II-C;

2) A decoupled tracking/labelling approach which uses a
M-SMC filter only for unlabelled tracking, and the
labelled “plug-in” described in Section IV-B to calculate
the labelling probabilities.

For both the naive and decoupled algorithms, we use 2,000
particles for the scenarios 1, 2 and 3, and 4,000 particles for
scenario 4. For both filters, we use blind importance sampling,
i.e., we use f(xk|xk−1) as proposal density for the naive M-
SMC filter, and f(sk|sk−1) for the decoupled algorithm. For
the calculation of the average errors we have used NR = 100
Monte Carlo runs.

C. Results for Monte Carlo runs with varying sequence of
measurements

The results from the Monte Carlo simulation with sk and
Zk being regenerated at each Monte Carlo run are shown
in Fig. 5. The observed and algorithm-suggested average
labelling errors, εtrue

k and εcalc
k , respectively, are plotted for both

the naive M-SMC filter and the decoupled MTTL algorithms.
In terms of the observed errors, εtrue

k , we see that the decoupled
approach provides a lower average labelling errors for all
scenarios. The improvement of using our proposed labelling
procedure is much more significant in Scenarios 1 and 2,
where the separation between the targets was larger (and hence
ambiguity in label-to-location association was lower).

In terms of the algorithm-suggested errors, εcalc
k , we see

that for the naive M-SMC filter, after the targets separate, it
decreases with time. This indicates that the algorithm becomes
increasingly confident in the correctness of the assigned labels,
while the observed errors εtrue

k are much higher. This clearly
shows that the algorithm underestimates the true labelling
uncertainty. This can be attributed to the degeneracy inherent
in the naive M-SMC filter.

The decoupled algorithm, on the other hand, exhibits far
more consistency between the observed and calculated errors
as εcalc

k remains constant over time after the targets separate.
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This is consistent with the theoretical behavior of f(xk|Zk)
for this type of scenario, namely, the persistence of mixed
labelling, as described in [16, Section IV-C].

D. Results for Monte Carlo runs with fixed sequence of
measurements

In this section we analyze the standard deviation, σε
k,

of the labelling errors from a labelled MTTL solution. For
this analysis, as mentioned in Section V-A, we perform
the simulations for fixed sequence of sk and Zk. Since, in
Section V-C we have established that the estimated labelling
errors with the naive (labelled) M-SMC filter are erroneous
(it underestimates severely), there is no point analyzing the
variance of these underestimated quantities. So we exclude
the naive (unlabelled) M-SMC filter and consider only the
decoupled algorithm in our analysis. Furthermore, we consider
only scenarios 1 and 3 to see how the estimation of labelling
error is affected by the degree of target separation (while they
move closely-spaced).

The results on the standard deviation, σε
k, of the algorithm-

suggested labelling errors are shown in Fig. 6. Recall that
with fixed observation series, the variation in εcalc

k is caused
solely by the estimation of posterior distribution of the labelled
locations. In our case, this means by the (unlabelled) M-
SMC filter and subsequently when that is used to calculate
the labelling probabilities. Hence a large σε

k indicates low
reliability of the augmented algorithm. It is interesting to
notice in Fig. 6 that the variance is higher when targets
came close but not very close than when the targets actually
coalesce. At first sight, this may seem counter intuitive because
labelling should be easier when the targets are more separated
and so variability in error probabilities should be less.

However, this is not so if we realize that when the targets
coalesce, and move at this state for some time, then “total
mixed labelling” will appear. In other words, according to
the true posterior distribution, given any possible location of
the targets, all possible label assignments will become equally
probable and it will continue to be like that at all later times
(see, e.g., [16, Section IV-C]). A good algorithm will reflect
this by having/estimating the labelling errors to be almost
constant (in our case 0.5), which will lead to smaller variance.

VI. CONCLUSIONS AND RECOMMENDATIONS

In this paper we have complemented the introduction to
Bayesian MTTL problem, presented in [6], with a discussion
on the additional assumptions needed to keep the target la-
belling problem meaningful. A mathematical characterization
of the labelling uncertainties present in an MTTL solution is
provided by defining properly the quantities such as labelling
probability and labelling error. These quantities have clear
practical interpretations (i.e., meaningful to the user of the sys-
tem), rather than being only abstract mathematical quantities.
The existing literature either lacks these sort of uncertainty
measures or does not have clear interpretation.

We have also devised a new labelling procedure that can
be combined with existing (unlabelled) MTT algorithms to
provide a complete solution to the Bayesian MTTL problem.

The resulting solution avoids the degeneracy that may appear
due to the labels (e.g., when the solution involves pruning of
hypothesis on labels).

Numerical examples show that when the (unlabelled) M-
SMC filter is augmented with the proposed labelling proce-
dure, it performs much better than the naive labelled M-SMC
filter which estimates labels as part of the single-target state.

In terms of theoretical research, an interesting topic of future
work would be to devise different ways of generating labels
that have better capabilities of assigning unambiguous labels
to appearing targets than in [6] and therefore could be applied
to more general scenarios. In terms of practical research, it is
worth investigating possible improvement of the computational
performance of our proposed labelling procedure, by finding
more computationally efficient ways to calculate the labelling
probabilities. Naturally, it would also be interesting to try the
labelling procedure with more complex observation models,
such as the track-before-detect observation model.
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APPENDIX

To see that the conditions (7) and (8) indeed lead to
the consistency criteria mentioned in Section II-B2 (Fig. 2),
consider sk = {s(1)

k , . . . , s
(t)
k }. From marginalization and (5)

we have,

f(sk|Zk−1) = f
(
{s(1)

k−1, . . . , s
(m)
k−1}

∣∣Zk−1
)

=
∑

l
(i)
k
∈Π

1≤i≤t

f

({
[s

(1)
k , l

(1)
k ], . . . , [s

(t)
k , l

(t)
k ]
} ∣∣∣∣Zk−1

)

=
∑

l
(i)
k
∈Π

1≤i≤t

∫
f

({
[s

(1)
k , l

(1)
k ], . . . , [s

(t)
k , l

(t)
k ]
} ∣∣∣∣ xk−1

)
f
(
xk−1

∣∣Zk−1
)
δxk−1. (30)

From (30) and the definition of set integral (see, e.g., [6,
Proposition 2]) we then have (31) (see bottom of this page).
Taking the sum over l(i)k inside the integral (which is permitted
because all the terms are nonnegative) and subsequently, using
marginalization and (7), we obtain (32). Interchanging the sum
over l(j)

k−1 and the integral, it follows, from marginalization and
the definition of set integral, that

f(sk|Zk−1) =

∞∑
m=0

1

m!

∫
(Rn)m

f
(

sk
∣∣∣ {s(1)

k−1, . . . , s
(m)
k−1}

)
f
(
{s(1)

k−1, . . . , s
(m)
k−1}

∣∣∣Zk−1
)
d(s

(1)
k−1, . . . , s

(m)
k−1)

=

∫
f(sk|sk−1)f(sk−1|Zk−1) δsk−1

which is the Chapman-Kolmogorov equation corresponding to
the unlabelled RFS model.



10

Furthermore, from (4) and (8), we have

f(sk|Zk) =

t∑
i=1

l
(i)
k
∈Π

f

({
[s

(1)
k , l

(1)
k ], . . . , [s

(t)
k , l

(t)
k ]
} ∣∣∣∣Zk

)

=

t∑
i=1

l
(i)
k
∈Π

f
(

zk
∣∣∣ {[s

(1)
k , l

(1)
k ], . . . , [s

(t)
k , l

(t)
k ]
})

f (zk |Zk−1 )

f

({
[s

(1)
k , l

(1)
k ], . . . , [s

(t)
k , l

(t)
k ]
} ∣∣∣∣Zk−1

)
=

t∑
i=1

l
(i)
k
∈Π

f(zk|sk)

f (zk |Zk−1 )
f
({

[s
(1)
k , l

(1)
k ], . . . , [s

(t)
k , l

(t)
k ]
} ∣∣∣Zk−1

)

=
f(zk|sk)

f (zk |Zk−1 )
f(sk|Zk−1)

which is the measurement update equation for the unlabelled
RFS model.

REFERENCES

[1] Boers, Y., Sviestins, E., and Driessen, J. N., “Mixed labelling in multi-
target particle filtering,” IEEE Trans. Aerosp. Electron. Syst., vol. 46, no.
2, pp. 792-802, 2010.

[2] Salmond, D. J., Fisher, D., and Gordon, N. J., “Tracking and identification
for closely spaced objects in clutter,” in Proc. European Control Conf.,
1997, pp. 2973-2978.

[3] Ma, W.-K., Vo, B.-N., Singh, S. and Baddeley, A., “Tracking an unknown
time-varying number of speakers using TDOA measurements: A random
finite set approach,” IEEE Trans. Signal Process., vol. 54, no. 9, pp.
3291-3304, 2006.

[4] Morelande, M., Kreucher, C., and Kastella, K., “A Bayesian approach
to multiple target detection and tracking,” IEEE Trans. Aerosp. Electron.
Syst., vol. 55, no. 5, pp. 1589-1604, 2007.

[5] Garcı́a-Fernández, A. and Grajal, J., “Multitarget tracking using the Joint
Multitrack Probability Density,” in Proc. 12th International Conference
on Information Fusion, Seattle, WA, 2009, pp. 595-602.

[6] Vo, B.-T. and Vo, B.-N., “Labeled random finite sets and multi-object
conjugate priors,”, IEEE Trans. Signal Process., vol. 61, no. 13, pp. 3460-
3475, 2013.

[7] Garcı́a-Fernández, A., Grajal, J., and Morelande, M., “Two-layer particle
filter for multiple target detection and tracking,” IEEE Trans. Aerosp.
Electron. Syst., vol. 49, no. 3, pp. 1569-1588, 2013.

[8] Blom, H. and Bloem, E., “Permutation invariance in Bayesian estimation
of two targets that maneuver in and out formation flight,” in Proc. 12th
International Conference on Information Fusion, Seattle, WA, 2009, pp.
1296-1303.

[9] Garcı́a-Fernández, Morelande, M., and A., Grajal, J., “Particle filter for
extracting target label information when targets move in close proximity,”
in Proc. 14th International Conference on Information Fusion, Chicago,
IL, 2011.

[10] Crouse, D., Willett, P., Svensson, L., Svensson, D. and Guerriero, M.,
“The set MHT,” in Proc. 14th International Conference on Information
Fusion, Chicago, IL, 2011.

[11] Blom, H. A. P. and Bloem, E. A., “Decomposed particle filtering and
track swap estimation in tracking two closely spaced targets,” in Proc.
14th International Conference on Information Fusion, Chicago, IL, 2011.

[12] Georgescu, R., Willett, P., Svensson, L. and Morelande, M., “Two linear
complexity particle filters capable of maintaining target label probabilities
for targets in close proximity,” in Proc. 15th International Conference on
Information Fusion, Singapore, 2012, pp. 2370-2377.

[13] Svensson, L. and Morelande, M., “Target tracking based on estimation
of sets of trajectories,” in Proc. 17th International Conference on Infor-
mation Fusion, Salamanca, Spain, 2014.

[14] Mahler, R., Statistical Multisource-Multitarget Information Fusion.
Noorwood, MA: Artech House, 2007.

[15] Bocquel, M., “Random finite sets in multi-target tracking - efficient
sequential MCMC implementation,” Ph.D. dissertation, University of
Twente, Enschede, The Netherlands, Oct. 2013.

[16] Aoki, E. H., Boers, Y., Svensson, L., Mandal, P. K. and A. Bagchi, “A
Bayesian solution to multi-target tracking problems with mixed labelling,”
Department of Applied Mathematics, University of Twente, Enschede,
The Netherlands, Memorandum 2036, July 2014. [Online]. Available:
http://eprints.eemcs.utwente.nl/24915/

[17] Vo, B.-N., Singh, S. and Doucet, A., “Sequential Monte Carlo methods
for multitarget filtering with random finite sets,” IEEE Trans. Aerosp.
Electron. Syst., vol. 41, no. 4, pp. 1224-1245, 2005.

[18] Gordon, N. J., Salmond, D. J. and Smith, A. F. M., “Novel approach
to non-linear/non-Gaussian Bayesian state estimation,” Radar and Signal
Processing, IEE Proceedings F, vol. 140, no. 2, pp. 107-113, 1993.

[19] Kitagawa, G., “A Monte Carlo filtering and smoothing method for non-
Gaussian nonlinear state space models,” in Proc. 2nd US-Japan Joint
Seminar on Statistical Time Series Analysis, Honolulu, HI, 1993, pp. 110-
131.

[20] Andrieu C. and Doucet, A., “Particle filtering for partially observed
Gaussian state space models,” J. Royal Stat. Soc. B, vol. 64, pp. 827-836,
2002.

[21] Kantas, N., Doucet, A., Singh, S. S., and Maciejowski, J. M., “An
overview of Sequential Monte Carlo methods for parameter estimation
on general state space models,” in Proc. 15th IFAC Symp. System
Identification (SYSID), Saint-Malo, France, 2009.

[22] Doucet, A. and Johansen, A. M., “Tutorial on particle filtering and
smoothing: Fifteen years later,” in The Oxford Handbook of Nonlinear
Filtering, D. Crisan and B. Rozovskii, Eds. Oxford University Press,
2011.

[23] Garcı́a-Fernández, Morelande, M., and Grajal, J., “Bayesian sequential
track formation,” IEEE Trans. Signal Process., vol. 62, no. 24, pp. 6366-
6379, 2014.

[24] Lindsten, F., Schön, T. B. and Svensson, L., “A non-degenerate Rao-
Blackwellised particle filter for estimating static parameters in dynamical
models,” in Proc. 16th IFAC Symposium on System Identification (SYSID),
Brussels, Belgium, 2012.

[25] Aoki, E. H., Boers, Y., Svensson, L., Mandal, P. K. and Bagchi, A.,
“SMC methods to avoid self-resolving for online Bayesian parameter es-
timation,” in Proc. 15th International Conference of Information Fusion,
Singapore, 2012, pp. 98-105.

[26] Klaas, M., de Freitas, N., and Doucet, A., “Toward practical N2 Monte
Carlo: the marginal particle filter,” in Proc. 21th Conference Annual

f(sk|Zk−1) =
∑

l
(i)
k
∈Π

1≤i≤t

∞∑
m=0

1

m!

∑
l
(j)
k−1
∈Π

1≤j≤m

∫
(Rn)m

f

({
[s

(1)
k , l

(1)
k ], . . . , [s

(t)
k , l

(t)
k ]
} ∣∣∣∣ {[s

(1)
k−1, l

(1)
k−1], . . . , [s

(m)
k−1, l

(m)
k−1]

})

f

({
[s

(1)
k−1, l

(1)
k−1], . . . , [s

(m)
k−1, l

(m)
k−1]

} ∣∣∣∣Zk−1

)
d(s

(1)
k−1, . . . , s

(m)
k−1) (31)

=

∞∑
m=0

1

m!

∑
l
(j)
k−1
∈Π

1≤j≤m

∫
(Rn)m

f
(

sk
∣∣ {s(1)

k−1, . . . , s
(m)
k−1}

)
f

({
[s

(1)
k−1, l

(1)
k−1], . . . , [s

(m)
k−1, l

(m)
k−1]

} ∣∣∣∣Zk−1

)
d(s

(1)
k−1, . . . , s

(m)
k−1) (32)



11

Conference on Uncertainty in Artificial Intelligence (UAI-05). Arlington,
Virginia: AUAI Press, 2005, pp. 308-315.

[27] Bar-Shalom, Y., Li, X. R. and Kirubarajan, T., Estimation with appli-
cations to tracking and navigation. New York, NY: John Wiley & Sons,
2001, ch. 6.

Edson Hiroshi Aoki received his M.Sc. degree in
Mechanical-Aeronautical Engineering from Instituto
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Fig. 1. Situation where assignment of labels to tracks is ambiguous
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Fig. 4. Multi-target simulation scenarios. Plots show the trajectory of the targets, moving from left to right, and the measurements in a MC run. The x-axis
can also be considered as time axis (naturally, with a different scale).
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Using unlabelled RFS model
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Fig. 2. Different ways of obtaining posterior fk|k(s) from prior fk−1|k−1(x)

Fig. 3. Particle representation of the multi-target distribution in a situation
where mixed labelling occurs (source: [10]). The squares and circles mark the
possible locations of each target in terms of particles. “+” and “X” denotes
the MMSE estimates.
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Fig. 5. Comparison of naive labelled M-SMC filter and decoupled M-SMC filter (varying Zk)
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Fig. 6. MC variation in estimated labelling error probabilities for the
decoupled MTTL algorithm


