
Thesis for the degree of Doctor of Philosophy

Sparse Voxel DAGs

Viktor Kämpe

Division of Computer Engineering
Department of Computer Science and Engineering

Chalmers University of Technology
Göteborg, Sweden 2016



Sparse Voxel DAGs
Viktor Kämpe
ISBN 978-91-7597-447-7

c© Viktor Kämpe, 2016.

Doktorsavhandlingar vid Chalmers tekniska högskola
Ny serie nr 4128
ISSN 0346-718X

Technical Report 133D
Department of Computer Science and Engineering
Research Group: Computer Graphics

Division of Computer Engineering
Department of Computer Science and Engineering
Chalmers University of Technology
SE–412 96 Göteborg, Sweden
Telephone + 46 (0) 31 – 772 1000
http://www.chalmers.se

Printed by Chalmers Reproservice
Göteborg, Sweden 2016

http://www.chalmers.se


Sparse Voxel DAGs
Viktor Kämpe
Division of Computer Engineering
Department of Computer Science and Engineering
Chalmers University of Technology

Abstract
This thesis investigates a memory-efficient representation of highly detailed geometry
in 3D voxel grids. The memory consumption of a plain dense grid scales too fast
as the resolution increases to be feasible at very high resolutions. In computer
graphics, the geometry is often surface geometry, and representing the data in a
sparse voxel octree exploits the sparsity, making the memory consumption scale
much better than for a dense grid. The size of sparse voxel octrees is still significant
at high resolutions, and this thesis consists of four papers addressing the memory
consumption by also exploiting coherence in the data. The coherence is detected
automatically in voxel data sets and encoded losslessly in a directed acyclic graph as
nodes sharing descendants, as opposed to a tree where all descendants are unique.

The sparse voxel DAG is used to encode hard shadows and static and time-
varying opaque surface geometry, and offers just as fast access as trees, at a fraction
of the memory consumption. While 1 bit per leaf node implies a lowest memory
consumption of 1 bit per occupied voxel in a tree, the sparse voxel DAG repeatedly
achieves much lower memory consumptions, e.g., 0.08 bits per voxel. The sparse
voxel DAG is not just a single data layout for a single purpose, but a way of encoding
coherence in voxel grids. The thesis shows that the limits of tree representations are
not the fundamental, nor the practical, limits of how efficiently voxel grids can be
represented and used, and advances the limit of grid resolutions to be considered
practical in real-time rendering.

Keywords: Computer graphics, Geometry, Visibility, Shadows, Voxel, Grid,
Data structures, Tree, Directed acyclic graph,
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Part I

Introductory chapters





Chapter 1

Introduction

Choosing geometric primitives in computer graphics is often a trade-off between the
complexity of an individual primitive and the number of primitives needed. The
triangle is fairly simple, with a shape well defined by its three vertices, and has
been the basic geometric primitive of choice for decades for real-time rendering.
Using triangles allows tapping into decades of refinements to dedicated tools and
dedicated hardware. Even though triangle meshes are very common for rendering,
the triangles are often an approximation of other geometric primitives. For instance,
scenes authored in a 3D modeling software by artists and designers often consist of
high-order surfaces, e.g., subdivision surfaces, that may be tessellated into triangles,
either in the back end of the modeling pipeline or in the rendering pipeline. The high-
order surfaces are typically much more complex primitives than triangles, allowing
highly detailed content to be authored with much fewer primitives. The opposite
strategy is used for regular voxel grids, where each grid cell is a very simple primitive
but many grid cells are needed to represent the geometry. A grid cell is often referred
to as a volume element (abbreviated to voxel, similarly to picture element being
abbreviated to pixel). Its position is already fixed by the grid and the only freedom
is its content. Each voxel has few degrees of freedom, and to resolve highly detailed
scenes, a high voxel-grid resolution is needed.

Voxel grids are suitable for representing volumetric data, e.g., from fluid simu-
lations and measurements with CT-scans and MRI. The simplicity of voxel grids
make them compelling also for computations on surface geometry; other geometric
representations are then converted into voxel grids, a process often referred to as
voxelization1. Measured surface samples of real environments, e.g., from LIDAR,
range image data, and disparity maps, are often reconstructed to a surface in a voxel
grid, [Kazhdan et al. 2006; Newcombe et al. 2011]. Reconstructing scenes from mea-
surements can be done without the skills, time and effort required for modeling and
makes it feasible to reconstruct very detailed environments in short time. Generating
scenes this way is becoming more and more common, since devices that can perform
surface measurements, e.g., time-of-flight cameras, are becoming both cheaper and
easier to use. One challenge with voxel grids of very high resolution is the memory
consumption. The theme of this thesis is to improve the memory efficiency of voxel

1Both the process of converting, as well as the result, may be referred to as voxelization

1



2 1.1. Thesis Structure

grids, to enable higher resolutions and scenes with higher geometric fidelity. There is
a vast variety of data typically stored as voxel grids, and the focus of this thesis is
limited to two cases: opaque surface geometry, both static and time-varying, and to
direct encoding of visibility from point-light sources and directional lights, so called
hard shadows.

1.1 Thesis Structure
This collection thesis consists of two parts: introductory chapters and a collection of
appended papers. The second part, the collection of papers, is the part containing
the research in the format of published and peer-reviewed publications. The first
part is intended to provide the context of the appended papers within computer
graphics.



Chapter 2

Sparse Voxel Octree

The simplest representation of a voxel grid is a plain dense grid, where all voxels are
represented separately. A voxel grid of resolution N×N×N and binary content can
then be represented with N3 bits, which may be small enough at low resolutions, e.g.,
1 GiB at 20483, but the memory requirement scales cubically with the resolution
and each consecutive power-of-two resolution will require eight times more memory
than the previous. Fortunately, voxel data sets in computer graphics often exhibit
large amounts of sparsity, which can be exploited to encode the data much more
efficiently. The octree [Meagher 1982] is a popular sparse tree representation of
three-dimensional voxel data. The root of the octree corresponds to the volume of the
whole voxel grid, and the eight children correspond to the eight spatial subvolumes
formed by splitting each grid dimension in half. The splitting continues recursively,
adding nodes in the octree, until a desired resolution is achieved (see Figure 2.1).

Figure 2.1: Grid resolution of an octree of depth 0, 1, and 2.

With the tree structure on top of the grid, data can be stored hierarchically. For
instance, when the whole subtree of a child is homogeneous or empty, it can be
encoded at the parent node. A subtree describing empty space can then be replaced
by a single bit at the parent, and the octree becomes sparse with a varying 1-8
child nodes for all internal nodes, and 0 children for the leaf nodes. The structure
of the children can be encoded compactly with an 8-bit child mask (see Figure 2.2
for a visualization of a sparse quadtree in 2D). An octree that exploits sparsity is
sometimes referred to as a sparse voxel octree (SVO). Its final memory consumption

3



4 2.1. Lower Bound of Memory Consumption
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Figure 2.2: The content of a 2D voxel grid represented in a sparse quadtree. One
occupied voxel and the corresponding path in the quadtree is highlighted in green.

does not directly depend on the voxel-grid resolution, but rather the number of nodes
in the tree. The number of leaf nodes increases as the number of occupied voxels,
e.g., the number of voxels representing surface geometry, which typically increases
much slower than the increase in the total number of grid cells.

Locating the node of a voxel in an octree involves traversing the octree from the
root along a path determined by the mapping between subvolumes and children.
It is common to order the children according to a Morton order (z-curve) of the
subvolumes, which enables a convenient relation between the grid position and
the traversal path in the tree; interleaving the bits of the integer position of the
x,y,z components yields the path in the octree as consecutive 3-bit integers (2-bit
integers in a quadtree, see Table 2.1). Since it is very easy and cheap to compute
the position during traversal, there is no need to explicitly store the position of a
voxel in the octree. With a breadth-first ordering of the nodes, all children will be
stored consecutively. The octree can be encoded with very simple nodes containing
an 8-bit child mask, to indicate which child volumes that contain geometry, and a
pointer to the first child node. Together, they implicitly encode the location of all
children. The nodes can also contain other, optional, attributes but the child mask
and pointer define the topology of the tree.

Table 2.1: Translating between grid position and path is just a matter of inter-
leaving bits of the position components, here for the marked voxel in Figure 2.2.
Ordering the children of each node in a Morton order, here primarily according to
the vertical position (y) and secondarily according to the horizontal position (x).

Position y=4 1 0 0
x=1 0 0 1

Path child 2 0 1
level 0 1 2

2.1 Lower Bound of Memory Consumption
When we only have opaque geometry, the pointers can be a significant part of the
memory consumption of the octree. There are clever methods to decrease the size



Chapter 2. Sparse Voxel Octree 5

of the pointers, e.g., cheaper near pointers and fewer expensive far pointers [Laine
and Karras 2010a], and even eliminating all pointers when a single traversal order is
enough [Schnabel and Klein 2006], but the child masks are still essential. Without
pointers, the memory consumption has a lower limit, due to the child masks, of 1
bit per leaf voxel. When we also consider the child masks of the internal nodes, the
amortized memory cost per leaf voxel becomes 1 + 1

8 + 1
82 + ... bits for a full tree,

which asymptotically becomes 8
7 bits per leaf voxel, easily estimated with the limit

of the geometric series:

Bits per voxel =
L∑

k=0

1
xk
→ x

x− 1 , L→∞,

where x is branch factor and L is number of levels

Laine and Karras [2010b] measure the average branch factor of SVOs for increasing
grid resolutions and find that it asymptotically goes toward 4 when the voxel grids
contain surface geometry. With an average branch factor of 4 in an 8-way tree,
the child masks uses half the bits to encode empty space and the amortized cost
becomes 2 bits per geometry-containing child. With a branch factor of 4, the memory
consumption asymptotically becomes 2 · (1 + 1

4 + 1
42 + ...) = 22

3 bits per leaf voxel.
In the following chapters, we will consider the generalization of a tree, i.e., directed

acyclic graph (DAG), and show how it can represent the same geometry with fewer
nodes and achieve memory efficiencies below 1 bit per leaf voxel.





Chapter 3

Directed Acyclic Graph

This chapter explains how we convert an SVO into a DAG with fewer nodes while
preserving the information. Representing a voxel grid as an SVO results in a bijection
between paths and voxels; if, and only if, there is a path from the root to a leaf in the
SVO, there exists a non-empty voxel at the corresponding position. This implies that
we can encode the information differently, as long as we preserve the set of allowed
paths from the root to the termination in leaf nodes. As described in Chapter 2, the
positions of individual voxels are implicit from the traversal paths and not stored in
the sparse voxel octree, so two identical voxels with different spatial positions can,
potentially, be encoded with the same node. By determining sets of equivalent nodes,
we can reuse a single node for several paths and remove redundant nodes. When
nodes store additional attributes, these also have to match to allow replacement
with a single node. For voxel grids containing complex and varying attributes per
voxel, we are less likely to find coherence to remove nodes. When we encode only
geometry, or encode attributes in a separate structure, we only need to preserve the
set of paths, i.e., any graph will do as long as the child masks encountered during
traversal are identical to those encountered in a tree traversal (see Figure 3.1).

By encoding several voxels with the same node, we can represent voxel grids
with fewer nodes than an SVO and potentially reduce the memory consumption
and, therefore, potentially handle higher geometric resolutions. For comparisons
of memory consumption, both child masks and pointers have to be accounted for,

7
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Figure 3.1: Since the set of paths define the geometry, the quad tree representation
in Figure 2.2 is equivalent to a directed acyclic graph with fewer nodes.

7



8

and more pointers are needed per node in the DAG compared to the SVO. In the
SVO, a single pointer per node is enough, since the child nodes can be arranged
consecutively in memory. However, since a DAG node may have several parents, the
same reordering of nodes is not possible, and a pointer per child node is required in
the DAG.



Chapter 4

Surface Geometry

The geometry in computer graphics is often expressed as surfaces, and to mimic, or
capture, the geometric complexity of real-world environments, many surfaces with a
lot of surface details are needed. For voxelized geometry, the amount of geometric
details is ultimately bound by the voxel-grid resolution, and, therefore, we would
ideally have extremely high voxel-grid resolutions. To manage the memory consump-
tion of high voxel-grid resolutions, we need highly memory-efficient representations,
and in Paper I and Paper II, we show how a directed acyclic graph can be used
to improve the memory performance of static and time-varying voxelized surface
geometry, respectively.

Similar methods have been proposed for slighly different data or for slightly
different purposes. Webber and Dillencourt [1989] focus on quadtree representations
of binary cartography data and improve memory efficiency by merging common
subtrees of a quadtree representation. They state that straightforward extension
from binary data to non-binary data would potentially scale poorly. Parker and
Udeshi [2003] focus on solid modeling of MEMS devices and merge common subtrees
for 3D voxel data but do not separate geometry and material properties and require
both geometry and a color to match for merging. They achieve memory savings
for scenes with axis aligned modeled MEMS devices and present methods that
exploit the shared subtrees for improving the speed of meshing with marching cubes,
construction of splat trees, and connected component labeling.

4.1 Paper I
This paper introduces the sparse voxel DAG, a generalization of SVO which enables
significantly better memory efficiency.

4.1.1 Problem
Voxel grids need very high resolution to represent highly detailed environments. The
memory consumption of dense representations scales with the total number of grid
cells, i.e, cubically with the grid resolution, which quickly results in a prohibitive
memory consumption for higher resolutions. A sparse voxel octree represents surface

9



10 4.1. Paper I

geometry much more efficiently, since the memory consumption scales as the number
of non-empty voxels covering the surface area, i.e., close to quadratically with grid
resolution, but still requires a significant amount of memory at higher resolutions. In
this paper, we investigate how the memory consumption scales when static surface
geometry is represented with a directed acyclic graph.

Interactive applications, e.g., games, also require real-time rendering performance.
Ray tracing with an acceleration structure typically scales well with the number of
primitives, since primitives can be culled hierarchically during traversal. However,
in practice, the performance also depends very much on the implementation and
hardware used for rendering. A geometric representation is viable for ray tracing
only if it can be efficiently traversed, so we also investigate the traversal performance
of the sparse voxel DAG.

4.1.2 Algorithm Overview
We construct an SVO representation for the voxel grid and convert the tree structure
into a DAG bottom up, one level at a time, starting with the leaf level. The nodes at
the leaf level only contain an 8-bit child mask, and we identify identical child masks
by sorting them as if the child masks were 8-bit integers, which makes identical nodes
appear in consecutive sequences. Identical nodes are replaced by a single instance,
and the pointers in the level above are redirected to this unique instance. This
procedure is repeated, level by level, up to the root node. For the higher levels, we
identify identical nodes, i.e., identical subtrees, by comparing child pointers, so we
sort on the 256-bit integer formed by the nodes’ eight child pointers. When there are
no identical nodes in a level, or when we reach the root, we have efficiently merged
all similar subtrees.

4.1.3 Contributions
We show that encoding surface geometry as a sparse voxel DAG scales better than
SVOs to high voxel-grid resolutions, and we achieve memory consumptions down
to 0.08 bits per non-empty voxel, far below the lower limit of 1 bit per non-empty
voxel that is applicable to SVOs. We also show that the DAG can be traversed on
the GPU with performance comparable to state of the art in voxel ray tracers and
triangle ray tracers.

4.1.4 Methodology
We evaluate the scaling of the DAG representation from 2K3 to 128K3 resolutions in
terms of coherence, measured as the reduction in the number of nodes, and in terms
of final memory consumption. We also compare against the scaling of efficient sparse
voxel octrees [Laine and Karras 2010a] and plain sparse voxel octrees with idealized
memory consumption [Schnabel and Klein 2006] (see Figure 4.1 for a visualization of
the coherence in a voxel scene). The test geometry is from game-like assets, a laser
scanned model, and a highly irregular scene. The construction speed of the DAG is



Chapter 4. Surface Geometry 11

Figure 4.1: An 128K3 resolution voxelization of the EpicCitadel triangle mesh.
The voxel data is stored as a directed acyclic graph and, for visualization purposes,
each node has been assigned a unique color. Here, the color corresponds to the
node encoding identical 8×8×8 subvolumes, and the coherent coloring show that
a single node encodes several subvolumes.

measured on a desktop computer with an Intel Core i7 3930K CPU. The ray-tracing
performance is measured on an NVIDA GTX 480 GPU and an NVIDIA GTX 680
GPU and is compared against the voxel ray tracer implementation by Laine and
Karras [2010a] and the triangle ray tracer implementation by Aila et al. [2012] on
the same platforms.

4.2 Paper II
This paper extends the sparse voxel DAGs with the temporal dimension to exploit
both spatial and temporal coherence present in time-varying voxel data.

4.2.1 Problem
Representing very detailed static surfaces in a voxel grid requires a lot of memory.
Representing very detailed and time-varying surfaces in voxel grids increases the total
memory consumption dramatically, but when a single time step is rendered at a time,
all geometry is not used simultaneously and there is an opportunity for streaming
portions of geometry in a chronological frame-by-frame order. A static scene, or
single frame of time-varying voxel data, that is resident on the GPU along with an



12 4.2. Paper II

acceleration structure can be ray traced with approximately the same efficiency as
triangle meshes. Adding the temporal dimension does not change the performance
requirements of the rendering but increases the performance requirements of feeding
the GPU with new frames. Long time sequences of time-varying voxel data, e.g., free
viewpoint video with voxelized geometry, can consist of many thousands of frames
that need to be streamed from local storage, e.g., an SSD, or over a network. This
makes it crucial to have a representation that can be efficiently compressed, while
stored and streamed, and decompressed at the rate of playback or rendering.

4.2.2 Algorithm Overview

The first step to decrease the memory consumption is to reduce the number of nodes.
From sequences of SVOs, one per frame, we construct a DAG per frame, just as in
Paper I. Thereafter, we exploit temporal coherence between timesteps, redirecting
node pointers within a frame to identical nodes, when such exists, in previous frames.
This converts the separate DAGs to a single and intertwined temporal DAG with
a root node per frame. The resulting temporal DAG has the same data layout as
in Paper I and is traversable with the same method. The DAG nodes do no longer
belong uniquely to a single frame, as they may be referenced from several frames.
To facilitate frame-by-frame streaming, the nodes are arranged according to the first
frame they are referenced in.

The second step to decrease the memory consumption is to reduce the average
size of the nodes. The temporal DAG is compressed into a dense bit stream that is
only possible to traverse in a single pre-determined order, but this traversal order
can be used to recover the original temporal DAG, e.g., after streaming and before
rendering. In the dense bit stream, the pointers are encoded with fewer bits and,
inspired by pointerless octrees, two types of pointer values are encoded implicitly.
The first type of implicit pointer values is the very first reference to a node, which
can be encoded in the child mask and eliminate one reference per node. The second
type of implicit pointer value encodes a volume that is identical in the previous
frame, with the caveat that a pointer may extend several paths encoding different
volumes. We limit the case to the first volume that the pointer encodes using the
ordering of the nodes: breadth-first within frame-first.

4.2.3 Contributions

We show that there is significant temporal coherence in time-varying voxel data
that can be exploited by encoding the frames in a temporal DAG, and that the
compression to a dense bit stream reduces the memory consumption further. The
final memory consumption in the compressed format achieves bit-rate requirements
in the range of 2 to 55 Mbits per second – small enough to stream over a network or
from disc. We show decoding speeds, from the dense bit stream back to a traversable
state, with faster than playback performance on a single-core laptop CPU.
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4.2.4 Methodology
The amount of coherence was compared as the reduction in nodes, and the memory
consumption was compared as the size of the dense bit stream to be used during
streaming and storage. The temporal DAG was compared against simpler data
structures with less ability to exploit coherence, such as SVOs, difference trees and
non-temporal DAGs, on time-varying voxel grids with spatial resolutions between
5123 and 20483 and up to 480 frames.

The decompression performance, from dense bit stream to the traversable format,
was measured on an Intel Core i7 2630QM CPU.





Chapter 5

Shadows

Shadows are important for the perceived realism in computer-generated images and
to understand spatial relations in a scene. In principle, the visibility of the light
source from a sample can be determined by tracing shadow rays from the sample to
the light source. This is a general approach that can be applied to both area lights
and point lights and is often used in offline rendering but it is, due to performance
reasons, typically not used in real-time rendering applications like games, where
quality needs to be traded for speed. For a survey on real-time shadows, see the
book by Eisemann et al. [2011].

To obtain an estimate of the light-source visibility in real time, many games use
shadow maps [Williams 1978], a two pass method. The idea is to render one image,
i.e. a shadow map, from the light’s point of view and one image from the camera.
The shadow map is a representation of all lit surfaces, and a shadow query for a
surface sample is resolved by determining if the sample belongs to the lit surfaces in
the shadow map. The first pass utilizes hardware rasterization to render a depth map
of the closest surfaces from the light’s point of view, i.e., a range image with samples
of the lit surfaces. The second pass compares the depth of each rendered point with
the closest depth sample in the shadow map, sampled via texturing hardware, and
when the two depths are similar, the point is classified as belonging to the lit surface;
otherwise, it is in shadow.

Many problems with shadow maps arise due to the non-perfect match between
samples from the first and second pass. One issue is the ambiguity when the depths
are similar; they can be two samples from the same surfaces or from two nearby
surfaces where one is shadowing the other, and incorrect classification can lead to a
surface incorrectly shadowing itself or light bleeding through an opaque surface. The
matching can be improved, for instance, by increasing the shadow-map resolution.
Another issue is aliasing. The first source of aliasing, the initial sampling error, is
undersampling of the scene geometry in the shadow map. This can be alleviated by,
for instance, increasing the shadow-map resolution. The second source of aliasing,
the resampling error, is shadow-map lookups undersampling the shadow map. This
can be alleviated by filtering the visibility, but not the depths, to the frequency of
the lookups.

15



16 5.1. Paper III

5.1 Paper III
This paper presents a method to use sparse voxel DAGs to represent pre-computed
shadows compactly and pre-filtered for large scenes. The data structure can be
queried very efficiently in real time for shadow values even for very large filter kernels.

5.1.1 Problem
Many games contain large and geometrically rich outdoor scenes illuminated by a
directional light source, e.g., the sun. Using a single shadow map for this setting is
challenging, since a very high resolution is needed to sample the geometry with high
enough frequency, and may take a lot of time to render, more than can be afforded
per frame, and consume more memory than we have GPU RAM. Additionally, a lot
of filtering is required where the lookups are sparsely distributed in the shadow map,
e.g., far from the camera’s viewpoint.

For scenes where both shadow casters and light source are static, the visibility can
be precomputed to a texture, so called light maps. The light map can be computed
with a high resolution, and the lookup is reduced to a single texture lookup with
conventional texture filtering. One disadvantage is that visibility information only is
available at the static surfaces, and dynamic geometry cannot receive shadows.

Cascaded shadow maps [Engel 2006] is a method that decreases the resampling
error by rendering several smaller shadow maps along the view frustum, better
matching the shadow map sample rate to that of the primary view, but does not
solve the initial sampling error.

5.1.2 Algorithm Overview
We precompute the visibility for a directional light in a high-resolution 3D-grid
domain, allowing both dynamic and static geometry to receive the shadows of static
geometry. The grid is aligned with the directional light, and the use is similar to
what could, in principle, be achieved by a very large shadow map, but at a fraction
of the memory consumption and with much better filtering opportunities.

The grid is constructed from a shadow map, a tile at the time, into an octree
and later converted into a directed acyclic graph. In each node, each child is either
described by a DAG or directly encoded as fully lit or in shadow. Since the voxel
grid has very high resolution, the geometry can be captured at high resolution and
limit the initial sampling errors. The representation is also efficient to prefilter per
node, e.g., averaging visibility values, since it contains visibility and not depths,
which decreases the resampling error. A single lookup requires a traversal to the
corresponding node in the DAG, which is more expensive than a simple texture fetch,
but percentage closer filtering is very cheap for large, grid-aligned, filter kernels, since
an individual visibility value is a bit, and several can be fetched simultaneously in a
word.

Due to the hierarchical representation, the full octree subdivision will only happen
along the boundary between lit and shadowed, i.e, along the shadow-casting geometry
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and the shadow boundary in the air between shadow caster and receiver. By aligning
the grid with the directional light’s direction, the shadow boundary between shadow
caster and receiver results in mostly identical subvolumes and, therefore, very few
nodes in the DAG. The memory consumption of the DAG will then be dominated by
the nodes corresponding to the surface voxelization of the shadow-casting geometry,
and scale as the voxelization of the lit surfaces.

With the assumption that no lookups will be performed inside closed geometry,
we identify volumes that can be set to arbitrary visibility values. By setting the
arbitrary values to form larger uniform regions, we reduce the depth of the DAG
and reduce the memory consumption further. The DAG will only be constructed to
the finest resolution along the shadow boundary between shadow caster and receiver,
and the memory consumption will scale as the voxelization of the silhouettes of the
shadow-casting surfaces, i.e., scale like the voxelization of a curve.

5.1.3 Contributions
We present a very memory-efficient representation of visibility that is very fast to
filter. Even though visibility is encoded in a high-resolution 3D grid domain, the
memory consumption scales as the voxelization of the silhouettes of the shadow-
casting geometry for closed geometry and as the voxelization of the lit surfaces for
non-closed geometry.

5.1.4 Methodology
We construct the voxelized shadows for directional lights in large, game-like scenes.
We compare the resulting memory consumption of the voxelized shadows to half-float
precision (16-bit) shadow maps at resolutions equivalent to shadow-map resolutions
from 1k×1k to 256k×256k.

The voxelized shadows are constructed on the CPU, incrementally, from smaller
tiles of the full shadow map rasterized in OpenGL. The lookups in the voxelized
shadows was implemented in CUDA as a post-process pass in a deferred-shading
pipeline. The lookup involves traversing the DAG, and percentage-closer filtering is
made with bit-mask operations on visibility values in 64-bit words that correspond
to computing the visibility for an 8×8 texel tile in the shadow map at a specified
depth. The lookup performance is evaluated along one camera fly-through per scene
and compared to a cascaded shadow map implementation with 4 and 8 cascades,
respectively. All measurements were carried out on a desktop computer with an Intel
Core i7 3930K CPU and an Nvidia GTX Titan GPU.

5.2 Paper IV
In this paper, we optimize the construction of our voxelized shadows to scale closer
to the final memory consumption. The execution time for the construction is reduced
from hours to seconds while also reducing both the runtime memory consumption
and the final memory consumption significantly.
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5.2.1 Problem

In Paper III, Compact Precomputed Voxelized Shadows, the construction process
takes minutes to hours and can be considered an offline process, meaning that a game
needs to ship with the precomputed structure, and shadow-casting geometry cannot
be affected by game play. With higher construction performance, the computations
can be moved from the back of the production pipeline, to level-load time or to
checkpoints, which allows the shadow-casting geometry to be semi static and possibly
updated during the game play.

The directional light explored by Paper III is commonly used for sunlight in
games, but it is also common to have many point lights with a smaller light radius
and lower requirements of resolution. In this paper, we present modifications that
extend the method to point-light sources and demonstrate voxelized shadows, both
construction and rendering, with hundreds of point lights.

5.2.2 Algorithm Overview

Instead of constructing full subtrees and then detecting identical ones, we detect when
certain subvolumes will become identical before constructing all the corresponding
subtrees. The key is to detect volumes without lit surfaces, i.e., shadow boundaries
in mid air, which have identical shadow slices along the z-direction (light direction).
We construct subvolumes of the DAG in Z-order, such that, for the node that is
about to be constructed, all nodes for the volume between the current node and
the light are finished. When the node does not contain shadow-casting geometry,
and the already existing node for the subvolume closer to the light is homogeneous
in z-direction, we can directly point to the already existing node, because they are
identical (see Figure 5.1).

In Paper III, we set the arbitrary visibility values inside closed geometry to form
as large uniform regions as possible, and when a uniform region cannot be formed
we just set the value to shadow. In the DAG, identical nodes are almost as memory
efficient as uniform regions, and, in this paper, we improve the resolving of the closed
regions to produce more identical leaf masks.

5.2.3 Contributions

The construction method we present scales, in terms of execution time and work-
ing memory, very close to the final memory consumption of the structure and is
significantly faster than that presented in Paper III. The construction times are
improved by up to a factor of 200, reducing the construction times from about an
hour to seconds. We also present a faster way of deciding the arbitrary visibility
values within closed objects. The new method also results in a significantly lower
memory consumption of the final structure, up to 3 times more memory efficient.
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?

Figure 5.1: For each node to be constructed (blue) we determine if the node closer
to the light can be used directly. When a subvolume does not contain lit surfaces,
we know that the shadow slice orthogonal to the Z-direction will be identical
throughout the subvolume and identical to the slice in the end of the subvolume
closer to the light. If the adjacent node is homogeneous in z-direction, we reuse
that node directly.

5.2.4 Methodology
The construction is partially done on the GPU, with a CUDA implementation, and
partially on the CPU. The full structure is made incrementally from smaller shadow
maps of resolution 8192×8192 that were rasterized in OpenGL, similarly to Paper III.
All measurements were carried out on a desktop computer with an Intel Core i5
2500K CPU and an Nvidia GTX Titan GPU.





Chapter 6

Discussion And Future Work

The theme of this thesis is efficient representation of geometry for large worlds with
high geometric fidelity. The scope of this thesis has by no means exhausted the
possible solutions to increase the memory efficiency; rather it shows that limits
applicable to tree structures, e.g., 1 bit per leaf voxel, are not the fundamental limits
for voxel representations. Since Paper I, Villanueva et al. [2016] have extended
the DAG to also exploit reflection symmetry of surface geometry. There are likely
many more types of coherences and techniques to increase the amount of coherence
possible to exploit. For instance, in Paper III, we choose to align the grid with the
light direction, which significantly increases the amount of coherence compared to
an alignment to the world-space axes. An interesting line of future work would be
to explore other types of coherence, such as coherence at different scales. Fractal
patterns can easily be authored by introducing cycles in the graph representation,
and, in principle, fractals could be used to represent microscopic geometry. In
practice, a simple fractal with few nodes may look very repetitive, and it would be
interesting to explore ways to train or fit a fractal by a material example. Apart from
microgeometry, material properties are needed in a general rendering context. Dado
et al. [2016] show how to efficiently accompany a sparse voxel DAG with material
attributes. It would be interesting to also investigate how a DAG can be used to
exploit coherence in the material attributes.
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