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Abstract

Simulation of flexible components is becoming an integral part of virtual product design. However, for a simulation model to predict physically

correct deformations, it is crucial that the material parameters are authentic. Conventional methods to acquire these parameters involve extensive

force-displacement measurements, which may be unpractical or too expensive to perform. We propose an alternative method to identify the

material parameters of a flexible one-dimensional component, such as a cable or a hose, from a scanned set of deformed reference shapes. The

method finds the model parameters that give the best geometric fit between the model and the reference shapes.
c© 2016 The Authors. Published by Elsevier B.V.
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1. Introduction

Simulation of flexible components is becoming an integral

part of the virtual product design process. Early knowledge

about the elastic behaviour of a component can help modify

the design in order to prevent wear and interference with other

disciplines. Modelling of cables are of particular importance,

since they are complex one-dimensional structures that usually

exhibit large deformations and are often attributed to product

failure [1,2].

For a simulation model to predict physically correct defor-

mations it is crucial that model parameters such as stiffness in

different material directions and density are authentic. Unfor-

tunately, this information cannot always be acquired from the

supplier of the cable. The conventional procedure to estimate

stiffness parameters is to perform isolated force-displacement

measurement tests that oftentimes involve heavy, and expen-

sive, machinery. In many applications, it is not even feasible

to set up these kinds of measurements. A tell-tale example is

a dress pack mounted on an industrial robot; isolated flexural

tests are hard to accomplish since the cable is restricted to the

kinematics of the robot and might even break.

As an alternative, we propose a novel method, dubbed

Scan2Flex, for calibrating a quasi-static cable simulation

model by scanning a set of reference shapes assumed by the

cable. The method finds the model parameters that give the

best geometric fit between the model and the reference shapes.

1.1. Outline

The paper is structured as follows. Section 2 introduces a

cable simulation model and how its material parameters can

be identified by measurements. An overview of Scan2Flex

is given in Section 3. Section 4 covers the process of generat-

ing a set of reference shapes by scanning the cable in distinctive

poses. Section 5 describes the how to estimate model parame-

ters by geometric fitting w.r.t. the reference shapes. The method

is applied to an industrial scenario and results are presented in

Section 6. We conclude our findings in Section 7 together with

a future outlook.

2. Cable simulation and measurements

A cable is characterized as a slender elastic object in R
3

where one dimension (the length) is significantly larger than

the other two (the cross section). Under the assumption that the

cross section always remains planar and rigid, a cable can be

modelled as a Cosserat rod.
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Fig. 1: A rod representation of a cable.

2.1. Cosserat rod theory

Cosserat rod theory [3] accounts for large elastic deforma-

tions in the form of both shearing, stretching, bending and tor-

sion. The kinematics of a Cosserat rod of length L are cap-

tured in an arc length parameterized framed curve in SE(3) =

R
3 × SO(3);

q : [0, L] � s �→ (ϕ(s),R(s)) ∈ SE(3). (1)

Here, R = (d1, d2, d3) ∈ SO(3) describes the evolution of the

cross section orientation along the center curve ϕ. The shear-

ing/stretching strain vector Γ and curvature/torsion strain vector

Ω are defined in material coordinates as

Γ(s) = R(s)T (∂sϕ(s) − d3(s))

Ω̂(s) = R(s)T∂sR(s).
(2)

Γ1/2 are the shearing strain components w.r.t d1/2 and Γ3 is the

tensile strain w.r.t d3. Ω1/2 are the bending curvature strain com-

ponents w.r.t to d1/2 and Ω3 is the torsion strain w.r.t d3.

With a hyper-elastic constitutive law, the force and moment

vectors f and m are related to the strains as follows:

f (s) = R(s)KΓ(Γ(s) − Γ0(s))

m(s) = R(s)KΩ(Ω(s) −Ω0(s)),
(3)

where the effective stiffness matrices

KΓ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
kGA1 0 0

0 kGA2 0

0 0 kEA

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ , KΩ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
kEI1 0 0

0 kEI2 0

0 0 kGJ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ . (4)

kGA1/2 are the shearing stiffness components w.r.t d1/2 and kEA

is the tensile stiffness w.r.t d3, whereas kEI1/2 are the bending

stiffness components w.r.t d1/2 and kGJ is the torsional stiffness

w.r.t d3. Γ0 and Ω0 are nominal strain vectors representing pre-

deformation in the model.

In static mechanical equilibrium, together with boundary

conditions, the force and moment balance equations hold,

∂s f (s) + kρAg = 0

∂sm(s) + ∂sϕ(s) × f (s) = 0,
(5)

where kρA is the length density and where we have assumed that

the only external load is due to the gravity field g.

If the cable material is homogeneous or has a perfect wire

rope-like structure without internal friction, the effective stiff-

ness parameters can sometimes be derived analytically [4–6].

For most cables in industry such assumptions cannot be made

and the material parameters need to be estimated in measure-

ment tests.

2.2. Measurement tests

In order to estimate the material parameters of a cable, var-

ious measurement tests can be derived from Eq. 5 as special

cases that isolate the estimation of each material parameter.

Each stiffness parameter is typically estimated by varying an

applied force or moment, measuring the corresponding strain

and fitting a straight line to the obtained force-displacement or

moment-twist curve [7]. Typical measurement tests (for differ-

ent stiffness parameters) found in engineering handbooks are

the tensile test (kEA), the torsional test (kGJ) and the three point
bending test (kEI1/2). These tests neglect the influence of grav-

ity altogether and require that the applied force or moment is

measured. When force and moment boundary conditions are

not known and the deformation can only be measured from a

limited set of feasible poses, the tests cannot be realized in prac-

tice.

2.3. Geometric fitting

One way to identify material parameters from deformation

is to seek the parameters that provide the best geometric fit be-

tween the simulation model and a set of reference shapes as-

sumed by the cable. If the model is accurate and the geomet-

ric boundary conditions (e.g. q(0) = q0 and q(L) = qL) are

given and the different strain types are encoded in the reference

shapes, this process can produce material parameters that pre-

dict correct deformations.

There is however one caveat: By inspection of the balance

equations (Eqs. 5) and the constitutive relations (Eq. 3), we

observe that solutions to the systems in terms of strains are in-

variant to scaling of the material parameters.1 Thus, if we want

material parameters that produce correct forces and moments,

one material parameter must be explicitly known. Most often,

the length density kρA is either known from the supplier or is

easily measured.

As a simple example, consider a cantilever cable, i.e. a free-

hanging horizontal cable attached in one end, subject to its own

weight. If kρA is known, kEI1/2 uniquely determine the shape

of the cable in equilibrium and can be computed directly from

geometric fitting of the free end position. In some sense, the

known gravitational force kρAg here plays the role of the known

external force in e.g. a three point bending test. In practice,

it is not always feasible to perform this particular test and the

obtainable reference shapes usually encode a combination of

bending and torsion.

2.4. Errors and uncertainties

Discrepancy between the simulation model and the cable is

ever present due to mainly approximations in the model and

measurement errors, This prevents us from achieving a perfect

geometric fit between the model and the reference shapes.

1This means that if e.g. a hyper-elastic cable is placed in outer space, we

will not be able to visually detect whether it is stiff or soft from its deformed

shape alone. In a gravity field, the scale of the stiffness parameters is uniquely

determined by e.g. knowing the mass of the cable.
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Model approximations. A one-dimensional rod structure does

not capture higher-order deformations, such as warping of the

cross section. Furthermore, non-linear elasticity and plasticity

usually occur in complex cables due to friction, and breakdown

of the cross section is not accounted for in the model. Also,

as with all simulation models, errors are introduced when dis-

cretizing the model.

Measurement errors. Noise in scan data causes errors in the

reference shapes and the geometric boundary conditions which

can lead to significant estimation errors in the material param-

eters. In fact, for the cantilever test it can be shown that for a

normal distributed error Δu in measured vertical displacement

u, the relative error ΔkEI/kEI in the estimation of kEI is pro-

portional to kEI/|gkρA|. Hence, for stiff cables where the bend-

ing stiffness is much larger, in some sense, than the weight per

meter cable, small measurement errors can propagate to large

estimation errors.

2.5. Model implementation

For an efficient implementation of the Cosserat rod model to

couple with an iterative data fitting algorithm, we first write the

total potential energy of the rod as

W =
∫ L

s=0

{
(Γ − Γ0)T KΓ(Γ − Γ0)

+ (Ω −Ω0)T KΩ(Ω −Ω0) − kρAgTϕ
}
ds. (6)

By the Hamiltonian principle, solving Eqs. 5 is equivalent to

finding a stationary point to the potential energy of the system,

δW = 0, (7)

which is computationally more efficient. In order to do so, Eq. 6

is discretized by expressing the discrete strains as non-linear ge-

ometric finite differences and analytical expressions are derived

for the gradient of the discrete energy functional (see e.g. [8,9]

for details concerning efficient implementations of Cosserat rod

models). A Quasi-Newton minimization method (e.g. [10]) can

then be employed in order to efficiently find a static equilibrium

satisfying Eq. 7.

3. Method overview

The first step in Scan2Flex is to generate a set of reference

shapes by scanning the cable in a series of distinctive poses.

The reference shapes are compactly stored as center curves ex-

tracted from the scan data with some help from user input. The

simulation model of the cable is then initialized with known pa-

rameter values supplied by the user. The parameter estimation

procedure finds the unknown parameters that give the best ge-

ometric fit between the model and the reference shapes. The

estimated parameters are finally examined in a validation test.

If deemed inaccurate, it is necessary to either tweak the estima-

tion procedure or restart the method by generating new refer-

ence shapes. Fig. 2 shows a schematic view of the process.

Pose selection

3D scanning

User input

Center curve

extraction

User inputs

known

parameters

Parameter

estimation

Validation

Fig. 2: A schematic view of the Scan2Flex method.

4. Reference shape generation

Let S ⊂ R
3 denote the deformed shape of a cable and let q0

and qL ∈ SE(3) denote the cable end positions when held fixed

in space (i.e. the imposed geometric boundary conditions). To-

gether they form a cable pose.

4.1. Pose selection

Since it is desired that the reference shapes encode the mate-

rial characteristics of the cable, a crucial step is to choose which

poses to use. This decision of course depends on which poses

are feasible for the cable, however some general guidelines can

still be given.

As noted in Section 2.3, if the length density kρA is known,

gravity acts as a key that allows for the stiffness parameters to

be found. At least one of the chosen poses should display a

significant influence of gravity, i.e. such that gravity causes the

cable to sag considerably under its own weight.

To capture the interaction between bending stiffness kEI1/2

and torsional stiffness kGJ , it may be a good idea to choose the

poses in pairs. In the first pose, the cable shape should be as

relieved from torsion as possible and the second pose should be

identical to the first but with induced torsion by twisting one of

the ends a significant angle (e.g. 90◦).

4.2. 3D scanning

When scanning the shape S of a cable in a certain pose it

is important that the whole shape is captured. At the same

time, it is also important that surrounding unrelated objects can

be easily culled from the scan data. Amongst all the differ-

ent commercial scanners available on the market, two scan-

ners were evaluated: the budget sensor Microsoft Kinect V2

[11] and a more sophisticated handheld device from FARO [12]
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called Scanner Freestyle 3D. Both are depth sensors capable of

generating 3D point clouds. With a superior scan accuracy of

(< 1mm at a 1m distance), the FARO device was the most suit-

able for our experiments.

4.3. Center curve extraction

Let P = {pi}Ni=1
⊂ R

3 denote the point cloud representation

of a successfully scanned cable shape S . For an efficient evalu-

ation of the geometric fit between P and the rod model (Section

5.2), we wish to store the reference shape on the same compact

form.

The task of extracting a center curve ϕ̄ from P is a chal-

lenging step. So called active contour models or snakes [13]

is a well-known class of algorithms to find and represent spline

curves in 2D or 3D data. An initial solution is required however,

hence we first look for a coarse approximation of the center

curve. Automatic methods to accomplish this were evaluated,

but they were not robust enough w.r.t. the quality of the scanned

point cloud. Instead, the user is asked to manually mark a se-

quence of K guiding points on the cable’s surface. A spline

curve ϕ̄ : [0,K] �→ R
3 was then interpolated from the guiding

points, providing a start solution for the snakes algorithm.

4.3.1. Smoothing
The idea behind active contour models (snakes) is to find a

curve that minimizes some energy functional that encodes some

problem dependent criteria. The energy functional E can be de-

composed into an external and internal part, E = Eext+Eint. The

external energy Eext encodes the main objective of the problem

at hand and aims to push the curve inside the point cloud bound-

ary. The internal energy Eint tries to enforce the curve to behave

smoothly, typically by penalizing curvature. For our purpose,

we used the following normalized energy terms

Eint(ϕ̄) =
1

Nr2

N∑
i=1

‖d(ϕ̄, pi) − ri)‖2 + E1(ϕ̄)

Eext(ϕ̄) =
1

K − 2

K−1∑
k=2

vT
k−1

vk

‖vk−1‖‖vk‖ + E2(ϕ̄).

(8)

Here, r is the nominal radius supplied by the user, ri is a

radius associated to a each cloud point from the coarse approx-

imation step. d(ϕ̄, p) is the closest distance between the spline

and a cloud point p and vk = ϕ̄
′(k − 1/2) is the spline tangent.

E1 and E2 are penalty terms included to ensure that the curve

does not extend outside the point cloud and does not deviate

from uniform arc length respectively.

The minimization problem is solved using the conjugate gra-

dient method with restarts and numerical gradient evaluations.

Convergence was pretty slow indicating that this is a quite

tricky optimization problem.

5. Parameter estimation

The Cosserat rod model described in Section 2.1 takes as

input a set of model parameters x and geometric boundary con-

ditions q0 and qL and computes the deformed rod configuration

q∗ = (ϕ∗,R∗) in static equilibrium; (x, q0, qL) �→ q∗.

5.1. Model parameters

The model parameters x are the different material parameters

kρA, kGA1/2, kEA, kEI1/2 and kGJ , the nominal cable length L and

the nominal strain vectors Ω0 and Γ0.

We rearrange x = (xC , xE) into known model parameters xC

supplied by the user and unknown model parameters xE to be

estimated. In the typical case, kρA, L, Ω0 and Γ0 are known,

however this cannot be assumed in general. Also, if the cable is

observed to be nearly inextensible, kGA1/2 and kEA can be fixed

to a large value (∼100 000 N).

5.2. The geometric fitting problem

Let {ϕ̄i}Mi=1 be a set of M reference center curves generated

from the previous steps and {q(i)
0
}Mi=1 and {q(i)

L }Mi=1 the correspond-

ing geometric boundary conditions. Furthermore, let Π be a

given shape distance metric that measures a generalized dis-

tance between two center curves (see Section 5.2.1).

The geometric fitting problem is then to find the model pa-

rameters xE that give the best fit between the model and the

reference center curves {ϕ̄i}Mi=1 w.r.t. Π:

minimize
xE

M∑
i=1

Π(ϕ∗(x, q(i)
0
, q(i)

L ), ϕ̄i)

x = (xE , xC)

xE ∈ X,

(9)

where X is a user supplied range for the minimization variables

xE .

5.2.1. Shape distance metric
To measure the distance between two center curves ϕ and

ϕ̄, we use a point-wise integrated squared distance metric Π,

calculated like so:

Π(ϕ, ϕ̄) =
1

L

∫ L

s=0

‖ϕ(s) − ϕ̄(s)‖2 ds. (10)

If the tensile strain is uniform, this simple formula provides a

reasonable average squared distance between two center curves.

Other more sophisticated metrics could also be considered; e.g.

the Hausdorff distance is invariant to the parameterization of

the center curves but at the same time more expensive to evalu-

ate.

5.2.2. Solving the problem
The Nelder-Mead algorithm [14] is used to solve the geo-

metric fitting problem (Eq. 9). It is a gradient-free iterative

solver for non-linear optimization problems and thus suitable

for coupling with the simulation model. For an initial solution

to start the algorithm, the user is asked to provide guesstimates

for the unknown material parameters xE . It should be noted,

that the Nelder-Mead algorithm may not have fast convergence

and may only find a local minimum.

5.3. Validation

To validate the estimated model parameters, a comparison

between the calibrated model and other scanned poses of the
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(a)
(b)

Fig. 3: The calibrated simulation model and scanned reference shapes for (a)

the robot dress pack and (b) the PTFE single core cable.

cable can be conducted. Also, engineering hand books can give

a hint on which order of magnitude of the parameters to expect.

If the estimated model parameters seem invalid, different ac-

tions can be taken. Since solutions to the geometric fitting prob-

lem (Eq. 9) are sensitive to the initial solution, other guessti-

mates of xE could be tested. If the different strain types are not

properly encoded in the reference shapes or if the shapes are of

bad quality they may then have to be regenerated.

There are also possible sources of error in the known pa-

rameters xC to consider. For example, measuring the nominal

length L or the inherent nominal strains Γ0 and Ω0 from a de-

formed reference shape will produce an error. If possible, these

quantities should be measured by scanning the cable in a stress-

free pose. Also, solutions to Eq. 9 are sensitive to the geomet-

ric boundary conditions q(i)
0

and q(i)
L . It is therefore important to

measure the precise position of the cable ends. An alternative

solution could be to let these quantities enter xE as unknown

model parameters also to be estimated.

6. Results

6.1. Physical verification

Scan2Flex was verified on two real-life cases: scanning a

robot dress pack and estimating its flexural stiffness and scan-

ning a PTFE single core cable and estimating its bending stiff-

ness. The scans were performed with Microsoft Kinect and

Scanner Freestyle 3D from FARO, respectively.

To determine the flexural stiffness parameters kEI and kGJ

of the robot dress pack, three distinctive poses were selected

according to the guidelines in Section 4.1; one pose without

twist and two poses with −90◦ and 90◦ twist (see Fig. 3a). This

resulted in three extracted reference center curves ϕ̄1, ϕ̄2 and

ϕ̄3. Also, a center curve ϕ̄4 extracted from a pose with 45◦ twist

was used for validation. The dress pack was assumed to be

inextensible and the nominal length (L = 1.4 m), radius (r =
43 mm) and length density (kρA = 3 kg/m) were known. The

estimated stiffness parameters were kEI = 6.47 Nm2 and kGJ =

33.38 Nm2. Fig. 4 shows the point-wise errors between the

model and the center curves. The error was reasonably small

compared to the dress pack dimensions and remained consistent

for the validation center curve as well.
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Fig. 4: The point-wise distance between center curves from a robot dress pack

scanned in different poses and the best fit of a simulation model.

For the PTFE single core cable, a torsion-free pose was

chosen so that it displayed a clear interplay between gravity

and bending. The cable was considered inextensible and the

length density (kρA = 0.336 kg/m )and the nominal length

(L = 0.90 m) of the cable were known. The estimated bend-

ing stiffness was kEI = 0.0419 Nm2. The predicted shape of the

calibrated simulation model is visualized in Fig. 3b together

with the scanned point cloud.

6.2. Verification by simulation

The robustness of the parameter estimation procedure was

analyzed with input from a cable modelled in the simulation

software IPS [15]. A simulated cable with bending stiffness

kEI = 0.1 Nm2 and torsional stiffness kGJ = 0.25 Nm2 was set

in distinctive poses and a reference center curve was obtained

for each pose (bypassing the 3D scanning and center curve ex-

traction steps).

In order to analyze the sensitivity w.r.t. supplied initial

values, kEI and kGJ were treated as unknown model parame-

ters. Initial values were systematically varied in the range of

0.01 to 100 Nm2, covering most of the spectrum of physically

meaningful values for flexible components. The correct values

kEI = 0.1 Nm2 and kGJ = 0.25 Nm2 were recovered in most

cases (19 out of 25), indicating that our method is robust for

finding the material parameters when the simulation model is

exactly accurate. In the unsuccessful cases, the algorithm con-

verged to other (non-physical) local minima. An experienced

user would be able to identify and circumvent these solutions

by visual inspection and adjusting the initial values by hand.

As noted in Section 5.3, it is crucial that the geometric

boundary conditions are accurate. In order to verify this, the

cable end orientations were perturbed while the unknown stiff-

ness parameters kEI and kGJ were initialized to the correct val-

ues (See Fig. 5). We observe that the parameters were under-

estimated for all perturbations, indicating that the procedure is

sensitive to the geometric boundary conditions. A possible rea-

son for this particular behaviour could be that lower stiffness

parameters are favourable in order to geometrically fit the ref-

erence shapes near the cable ends (where the deviation is most
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prominent).
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Fig. 5: The estimated values of kEI and kGJ (•) when the cable end orienta-

tions were randomly perturbed with an angle between −3◦ and 3◦. The original

values in the simulation model were kEI = 0.1 Nm2 and kGJ = 0.25 Nm2 (�).

Finally, as also noted in Section 5.3, estimation errors oc-

cur when pre-deformation (i.e. inherent nominal strain) is not

accurately captured in the model2. When the nominal bending

strain in the model was constant around a fixed material direc-

tion (Ω0(s) = κ0e1/2 for some scalar κ0), the correct value of

Ω0 was recovered in most cases. This suggests that, as long

as the nominal strain is known to be constant and can be sepa-

rated from the actual strain in the reference shapes, the method

will have a good chance of estimating nominal strain parame-

ters correctly.

7. Conclusions and outlook

We have presented a novel method, Scan2Flex, for cali-

brating a cable simulation model by scanning a set of refer-

ence shapes assumed by the cable. The method is tailored for

the cases when conventional measurements are not applicable

and finds the model parameters that give the best geometric fit

between the model and the reference shapes. In the hands of

an experienced user, who can provide accurate values for the

known model parameters and good guesstimates for the un-

known ones, the method is a powerful tool for estimating the

material parameters of a complex cable from scan data.

Results indicate that the method can successfully produce

reasonable estimates of model parameters for typical cables en-

countered in industry. Validation with input from a simulation

model shows that the method is robust w.r.t. guesstimates of

the unknown model parameters but is clearly sensitive to the

accuracy of the geometric boundary conditions. Also, pre-

deformation in the cable can be accounted for, either by scan-

ning the stress-free shape or by estimation.

To extend upon this work in the future there are several pos-

sibilities:

2Most cables in industry have pre-deformation; e.g. when cables are trans-

ported it is common to package them into coiled structures, leading to a pre-

deformed circular shape

• Perform more rigorous testing and verification with other

types of cables,

• Adapt the pose selection guidelines for more specific

cases, e.g. exploiting knowledge about the feasible poses

of an industrial robot when estimating the material param-

eters of its dress pack,

• The validation of the estimated material parameters relies

on user experience. This process could be made automatic,

• In the current method, the center curve extraction allows

for a compact representation of the reference shape and

hence an efficient evaluation of the shape distance met-

ric. However, for lower quality point clouds this step is

sometimes not robust. Hence, there is a potential benefit

in skipping this step and considering the entire point cloud

in each shape distance metric evaluation.
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