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Abstract 34 

San Cristobal volcano is the highest and one of the most active volcanoes in Nicaragua. Its persistently high activity is 35 

characterized by strong degassing and relatively frequent explosive eruptions, and thus demands multi-parameter 36 

surveillance efforts of local institutions. After September 2012, a series of moderately explosive eruptions heralded the 37 

start of a new eruptive phase characterized by pulsating activity. The eruptions were accompanied by increasing gas 38 

emissions and seismicity.  39 

As a part of the Network for Observation of Volcanic and Atmospheric Change project, two permanent instruments 40 

using the UV-DOAS technique were installed aiming to make measurements of SO2 emissions. We present here the 41 

results of semi-continuous gas flux measurements mainly over a period of about two years, including the recent 42 

anomalies. Correspondingly we demonstrate how the joint analysis of continuous SO2 flux measurements and Real-time 43 

Seismic-Amplitude Measurements (RSAM) by using continuous wavelet transform (CWT) and cross-wavelet transform 44 

(XWT) can be useful for the interpretation and surveillance of possible eruptive events. This analysis shows that the 45 

XWT coefficients of SO2 flux and RSAM are in good agreement with the occurrence of major eruptive events and thus 46 

may be used to indicate magma ascent into the volcano edifice.     47 

 48 

 49 



Introduction 50 

Surveillance of volcanoes is fundamental for hazard assessment and mitigation prior to and during periods of volcanic 51 

crisis. During the last decades significant progress has been achieved on this issue by a diversity of multi-parametric 52 

surveillance approaches. Seismicity is still being considered one of the most reliable parameters for monitoring volcanic 53 

activity; hence it is probably the most popular monitoring tool used by volcanologists (e.g. Tilling 2008; D'Alessandro 54 

et al. 2013). Volcanic gas emissions play also an important role in volcanic surveillance (e.g. Casadevall et al. 1983; 55 

Burton et al. 2007; Symonds et al. 1994)  since eruptions are often heralded by increments of volcanic SO2 emissions, 56 

which originate from the ascent of fresh magma to shallower crustal levels.  57 

Measuring sulphur dioxide (SO2) emissions has been successfully achieved using ground-based remote sensing 58 

techniques like the correlation spectrometer (COSPEC)(Hoff and Millan 1981), mobile and scan DOAS (Galle et al. 59 

2002; Edmonds et al. 2003; Galle et al. 2010; Burton et al. 2009) and more recently, SO2 cameras (Mori and Burton 60 

2006). The NOVAC (Network for Observation of Volcanic and Atmospheric Changes) project is monitoring the SO2 61 

fluxes of about 20 volcanoes around the world using optical scan DOAS instruments (NOVAC instruments) (Galle et 62 

al. 2010). This instrumental setup has produced a wealth of semi-continuous SO2 flux measurements and thus permits to 63 

combine SO2 emissions data in near real time jointly e.g. with seismic signals. The potential of combining seismic and 64 

SO2 measurements as a surveillance tool has been demonstrated for different scenarios (e.g. Olmos et al. 2007; Conde et 65 

al. 2013; Nadeau et al. 2011). The recently enhanced activity occurring at San Cristobal makes it a suitable study case 66 

for conducting a joint analysis of seismic and gas measurements by using cross wavelet transform in order to assert the 67 

underlying processes leading to eruptive events. 68 

Background 69 

San Cristobal volcano is a basaltic-to-andesite stratovolcano located in north western Nicaragua approximately 15 km 70 

north-east of the city of Chinandenga (12.70N 87.0W; Fig. 1). Volcanic activity at San Cristóbal is characterized by a 71 

persistently strong open-vent and fumarolic degassing, as stated by previous studies summarized in Table 1 (Rivera et 72 

al. 2009; Fischer von Mollard 2013; Mather et al. 2006; Barrancos et al. 2008). San Cristobal exhibits cyclical 73 

transitions between periods of quiescent degassing and substantial increases of the gas emission rates during the onset 74 

of eruptive events that are mostly characterized by minor-to-moderate explosive eruptions causing ash fallouts. These 75 



transitions have occurred at a higher rate during the last 2 years with VEI 1- VEI 2 eruptive events occurring 76 

approximately twice a year (Smithsonian-Institution 2014).  77 

 78 

METHODOLOGY 79 

SO2 flux measurements 80 

SO2 flux measurements were made by two NOVAC instruments installed on the west flank of San Cristóbal volcano 81 

(Fig. 1). The instrument acquires UV-scattered sunlight spectra by scanning along a vertical plane spanning 180˚ from 82 

one horizon to the other in angular steps of 3.6˚. The principal component is a spectrometer (Ocean Optics®, S2000), 83 

which operates in the wavelength range 280 - 425 nm divided into 2048 channels yielding a spectral resolution of 84 

approximately 0.6 nm. The instrument runs during daylight hours, and the signal-to-noise ratio is improved by adding 85 

15 spectra and adjusting automatically the exposure time in order to avoid light saturation in the spectrometer detector. 86 

Under clear sky conditions it is possible to acquire approximately 60 measurements per day. 87 

The SO2 column amount was retrieved from the spectra for each angular step, applying DOAS in the wavelength region 88 

of 310–322 nm (Platt and Stutz 2008), where the SO2 absorption cross section still has a pronounced signature and low 89 

sensitivity to scattering and straylight (Johansson 2009; Galle et al. 2010). More advanced details about the NOVAC 90 

instruments and column retrievals are described in Galle et al. (2010) and Edmonds et al. (2003). 91 

In order to determine the SO2 flux, geometrical information of the plume is required in addition to the gas columns as 92 

shown on Eq.1 from Hoff and Millan (1981). 93 

𝐅𝐥𝐮𝐱 = 𝐖𝐬 ∗ |𝐜𝐨𝐬⁡(𝐖𝐝 − 𝐜𝐨𝐦𝐩𝐚𝐬𝐬)| ∗ 𝐏𝐇 ∗ ∑ |𝐭𝐚𝐧𝛂𝐢+𝟏 − 𝐭𝐚𝐧𝛂𝐢| ∗ 𝑽𝑪𝑫𝒊
𝐍−𝟏
𝐢=𝟎                                                   (1) 94 

Where VCDi is the SO2 vertical columns density estimated at the angular step αi, which corresponds to the angle 95 

between the column and the zenith. Ws and Wd are the wind speed and plume direction at the plume height (PH), 96 

compass is the direction perpendicular to the plane of scanning. The plume at San Cristobal volcano predominantly 97 

bends over after leaving the crater; thus PH was assumed to be the same as the crater height (1745 m.a.s.l.), while the 98 

plume direction was geometrically calculated by combining plume height and the scanning angles α which show the 99 

strongest absorption. The plume (wind) speed was obtained from the weather forecast model GFS, provided by the 100 

National Ocean and Atmospheric Administration (NOAA). 101 

The uncertainty of the flux measurements using DOAS is the result of a combination of error sources including 102 

spectroscopy, local weather conditions and inaccuracies in the estimation of the plume geometry. Previous studies have 103 



provided a statistical approach in order to quantify the measurement error (e.g. Mather et al. 2006; Rivera et al. 2009; 104 

Galle et al. 2010), and even more recently there have been constraints about the radiative transfer error (Kern et al. 105 

2010). 106 

Considering the proximity of the instruments to the emission source and the very well defined plume signatures in most 107 

of the scans, the estimated total measurement error is 35% assuming optimal weather conditions. The time series 108 

exhibits a trend akin to the different levels of volcanic activity; however, the differences between successive data 109 

samples lead to a relatively high level of variability during single days, which tends to be higher during periods of 110 

enhanced degassing. In view of the uneven sampling rate and the variability of the individual measurements, our SO2 111 

flux time series is restrained to the daily average of the gas emissions, in order to accentuate the long-term variations. 112 

 113 

SO2 flux pre-processing 114 

Although the daily average of the gas emissions can be a good approximation of the flux evolution through time, the 115 

random nature of the degassing processes, ambient perturbations and measurement errors produce an unsteady daily 116 

standard deviation which can makes difficult to identify the underlying long-term variations in the degassing rate.  One 117 

common mathematical approach to deal with this difficulty is to smooth the time series using the Kalman filter (Kalman 118 

1960), which has been successfully applied for data estimation of geophysical measurements (e.g. Anderson 2001; Yan 119 

et al. 2014; Evensen 2003; Nagarajan et al. 2012). In contrast with traditional filtering techniques, which are based on 120 

the removal of “undesired components”, the Kalman filter assumes a state-space (time) model estimator, and explicitly 121 

accounts for measurement -modelling errors.  122 

Due to the stochastic nature of the variation of SO2 fluxes through time, we have considered the random walk model 123 

(RWM) as a well-suited estimator; as it has been demonstrated in other scenarios of atmospheric measurements 124 

(Mulquiney et al. 1995), and is described in Eq. 2.  125 

 126 

𝑿𝒏 = 𝑿𝒏−𝟏 +𝑾𝒏              (2a) 127 

𝑾𝒏~𝑵(𝟎,𝑸)                                            (2b) 128 

𝒀𝒏 = 𝑿𝒏 + 𝑽𝒏            (2c) 129 

𝑽𝒏~𝑵(𝟎,𝑹)               (2d) 130 

 131 



The Kalman filter algorithm predicts the process Xn (daily flux) as described on the estate equation (Eq. 2a) with its 132 

corresponding expected variability Wn and corrects this prediction taking into account a simplified measurement model 133 

(Eq. 2c) with its corresponding measurement noise Vn .  A fair estimation of the expected variability is probably one of 134 

the most difficult aspects for applying the Kalman filter assuming a RWM.  Although many procedures have been 135 

suggested, we have considered a statistical approach, as illustrated in Myers and Tapley (1976), where  Q is the flux 136 

variance during a period of 1 day which can be considered as a suitable approximation of expected variability Wn. The 137 

measurement error variance R is assumed to be constant and estimated on the basis of the flux measurement error that 138 

was previously referred to account for 35% of daily average flux. A full description of the recursive predictor-corrector 139 

Kalman Filter algorithm applied on the RWM described can be found elsewhere (e.g. Welch and Bishop 1995; 140 

Mulquiney et al. 1995; Myers and Tapley 1976).  141 

A comparison of the Kalman estimated SO2 flux versus the individual daily SO2 flux measurement during a selected 142 

period of 4 months at San Cristobal volcano is displayed in figure 2. Although the daily average tends to follow a 143 

distinct trend, the scattering of the individual points may produce undesired jumping components that can interfere with 144 

further frequency domain analysis. The smoothing the time series by mean of a Kalman filter balances a trade-off 145 

between the signal trend and its natural variability. 146 

 147 

 Seismic data 148 

RSAM (Real Time Seismic Amplitude Measurements) (Endo and Murray 1991) were calculated from measurements of 149 

the station CRIM that belongs to the INETER seismic network and is located within the summit area of the volcano 150 

(Fig. 1). Each individual RSAM measurement corresponds to the average value of the seismic amplitude during 10 151 

minutes; however, the averaging time was increased up to 1 day in order to make it coherent with the daily sampling 152 

rate of the SO2 flux. The RSAM time series was pre-processed using a Kalman filter algorithm with the same approach 153 

as the one described in the previous section.  154 

 155 

WAVELET ANALYSIS 156 

Several methods can be applied in order to perform a joint analysis of volcanic SO2 fluxes and RSAM. Some classical 157 

approaches such as cross-correlations and Fourier transform may produce acceptable results when considering time 158 

series with short time windows and some degree of stationarity. However, through extended periods of analysis, the 159 



underlying volcanic processes exhibit unforeseen changes, which are associated to variations in the eruptive regime and 160 

are reflected in unforeseen changes of the spectral characteristics both of the SO2 fluxes and RSAM time series. 161 

Correspondingly, Continuous Wavelet Transform (CWT) is a mathematical tool that decomposes a time series into 162 

time-frequency components allowing time-localisation of spectral characteristics that are statistically significant during 163 

a particular period. Due to the non-stationary nature of many geophysical and atmospheric systems, several studies have 164 

applied this time series analysis technique, predominantly in climatology (e.g. Torrence and Webster 1999; Wang and 165 

Gao 2013; Mwale and Gan 2005; Kestin et al. 1998).  166 

The CWT  Wn(s) can be defined as the convolution of the time series Xn with a scaled and translated wavelet function 167 

ψ(n/s). 168 

𝑾𝒏(𝒔) = ∑ 𝑿𝒕
𝑵−𝟏
𝐧’=𝟎 𝛙[

𝐧’−𝐧

𝒔
𝜹𝒕]          (3) 169 

Where δt is the sampling period and s is the CWT scale (period). The spectral decomposition is achieved by discretely 170 

compressing and/or expanding the scale s prior to performing the convolution. The mathematical basis and details 171 

concerning the choice and design of wavelet functions is out of the scope of this article and can be found elsewhere; 172 

however, out of several possible wavelet functions, this article examines the performance of four popular wavelets: 173 

Paul, Morlet, DOG(m=2) and DOG(m=6). One of the most important criteria concerning the choice of a determined 174 

wavelet is the trade-off between time and frequency resolution; in this regard, the Morlet wavelet is highly popular in 175 

geophysical applications due to its well-balanced proportion between these two parameters(Torrence and Compo 1998).  176 

The outcome of Wn(s) is an array of coefficients distributed according to their corresponding time-scale, normally 177 

displayed as a contour or temperature map where the CWT wavelets coefficient amplitude (Wn) is plotted at their 178 

respective period (frequency) and time. The statistical significance of the coefficient amplitudes was calculated 179 

assuming that their spectral properties depict increased amplitude at lower frequencies. This spectral feature which is 180 

commonly observed in geophysical time series is normally referred as red noise and, can be modelled by a stochastic 181 

first order autoregressive (AR1) process (Allen and Smith 1996). A typical assumption is to consider that the statistical 182 

significance of  wavelets coefficients is 5% (95% confidence level) against red noise(Grinsted et al. 2004). 183 

The cross-wavelet transform (XWT) is just an extension of the CWT for performing a joint analysis of two time series 184 

by the conjugate product of their CWT, as shown in eq. 4. 185 

W
XY

=W
X
W

Y*
                               (4) 186 



Unlike traditional correlation methods, XWT allows to correlate common spectra-amplitude signatures of a pair of 187 

signals at localized periods. Further details of the implementation of the CWT, XWT and the 5% statistical significance 188 

can be found in Torrence and Compo (1998) and Grinsted et al. (2004) respectively.  189 

 190 

Results 191 

Chronology of SO2 degassing and seismicity 192 

Fig. 3 shows a comparison between SO2 fluxes and RSAM, outlining three periods of enhanced volcanic activity 193 

characterized by moderate explosions and ash emissions. During the eruptive period by the end of December 2012, SO2 194 

emissions featured an oscillating behaviour increasing from a background of approximately 1000 tday
-1

 culminating in a 195 

peak value of approximately 2500 t day
-1

. At the onset of this eruptive period (December 26), the coupling between 196 

RSAM and degassing trends started to increase, gaining  correlation towards the explosive events. Approximately 10 197 

days after the crisis started, there were no more reports of explosive activity and SO2 emissions gradually decreased, 198 

which was additionally reflected by a decrease in correlation between the two signals.  By the middle of February 2013 199 

the SO2 emissions remained relatively stable, reaching an average flux of ≈250 t day
-1

. Unfortunately the post eruptive 200 

seismicity is unknown since the seismic station stopped working during approximately 3 months, as a result of the ash 201 

depositions during the eruptions. However, in view of posterior observations, it is plausible to assume that the 202 

seismicity followed the decreasing trend as featured by the SO2 emissions. 203 

During May 2013, the eruptive activity resumed after a relatively abrupt exhalation event, which was clearly correlated 204 

with an increase in RSAM counts, and the SO2 flux raised from 250 to approximately 800 t day
-1

 through a period of 10 205 

days before returning to its initial value. Following this precursory event, during the period 5-11 June 2013 occurred a 206 

series of VEI 1 explosive events accompanied by ash emissions. However, despite the intensity of the explosions, SO2 207 

emissions increased only slightly; while in contrast, RSAM increased significantly. Afterwards, SO2 emissions and 208 

RSAM gradually returned to their pre-eruptive values.   209 

Following approximately 6 months of relative calm, eruptive activity resumed again during the period comprising 15 210 

January to 11 February 2014. A significant increment of the RSAM correlated well with a series of VEI 1-2 explosive 211 

events and a sustained increase of the SO2 emissions which reached a peak value of approximately 3000 t day
-1

 during 212 

the explosive eruptions. 213 



 214 

XWT joint analysis  215 

During time windows close to and including the main eruptive events, the CWT of both time series show clear patterns 216 

of statistically significant coefficients and frequency shifts from a background periodicity of 0.1 day
-1

 to 0.35 day
-1

 (10 217 

to 2.8 days) (Fig. 3c and d). Hence, the correlation between both times series was investigated in view of their common 218 

spectral-amplitude signatures by applying XWT, and the resultant coefficients are shown in Fig. 4a. In comparison with 219 

the individual CWT of both SO2 fluxes and RSAM, the patterns of the statistically significant coefficients of the XWT 220 

exclusively show the features, which both time series have in common and reveal a pronounced signature. These are 221 

explicitly restricted to periods with immediate temporal proximity to evident eruptive activity. A better representation 222 

of the temporal variation is obtained by averaging the statistically significant XWT coefficients amidst their 223 

predominant periodical range (0.03-0.4 day
-1

 or 33.3-2.5 days). Fig. 4b shows that the result of the averaged XWT 224 

coefficients, and the main eruptive events are in good agreement with the averaged coefficient peaks.       225 

 Discussion 226 

The SO2 time series indicate that persistent degassing of San Cristobal averaged approximately <1000 t day
-1

 during the 227 

period reported in this study, while in the  immediate temporal proximity of eruptive events, significant increments in 228 

the SO2 emissions and seismicity are asserted by observing their time series and their corresponding CWT coefficients. 229 

A closer look at the grey insets of Fig. 3d, indicates that the RSAM CWT coefficients are preceding the eruptive events 230 

for a longer period in comparison to the SO2 flux CWT coefficients. This feature can be interpreted as a precursory 231 

increment of seismic energy which may be attributed to intrusion of fresh magma batches at shallower crustal levels, 232 

resulting in an increasing permeability of degassing pathways and thus causing a subsequent increase in degassing 233 

activity. This assumption is consistent with the enhanced occurrence of tremor and long period seismicity as reported by 234 

INETER for the respective periods, and in turn reflected within the RSAM time series. Tremor and other low frequency 235 

seismic signatures have been typically associated with displacements of magma and fluids through the conduit (Chouet 236 

1996; Julian 1994; Langer et al. 2011; Matsumoto et al. 2013; Yamamoto et al. 2002). Accordingly, a possible scenario 237 

preceding the subsequent explosive events, may involve a progressive gas exolution accompanied by magma 238 

cooling/crystallization especially in the shallower part of the magma feeding system, thus inducing an overpressure in 239 

the conduit (Stix et al. 1997; Tait et al. 1989). Another possible scenario involves a thermal interaction between the 240 



shallow magma body and the hydrothermal system, thus, triggering a phreatic or phreatomagmatic eruption 241 

(Germanovich and Lowell 1995). In any case, either the overpressure in the conduit and/or the interaction with the 242 

hydrothermal system, may lead to the remarkable increase of the SO2 flux that was measured prior to the subsequent 243 

explosive events. Nonetheless, the activity period comprising the exhalation event in April 2013 and its following 244 

eruption in June was slightly distinct in comparison with the eruptive events of December 2013 and February 2014. 245 

During the exhalation event, a significant pulse of SO2 was released with little restraint as a result of the removal of 246 

material in the upper conduit due to the previous eruptions. In view of the increasing seismicity that accompanied the 247 

exhalation event, it is plausible to consider that this exhalation was the result of magma intrusion releasing gas under 248 

conditions of low pressure combined with physical obstruction. Hence, during the explosive events a relatively low SO2 249 

flux was measured probably because the intruding magma had exolved a substantial amount of gas. Thus in the 250 

following months before the next eruptive events, in view of the heavy rainy season, the conditions for a sealing of the 251 

upper part of the conduit and a subsequent overpressure are given. Further studies which include petrological evidence 252 

are required in order to better estimate the mechanisms behind the eruptive events described in this study. 253 

 254 

Implications for volcanic surveillance 255 

Despite the diversity of possible mechanisms triggering the eruptive activity at San Cristobal volcano, the CWT 256 

coefficient signals produced by each eruptive event more or less look the same: on the onset and during eruptive periods 257 

both time series show significant CWT coefficients with increased magnitudes shifted to higher frequencies. 258 

Correspondingly, from previous studies where continuous SO2 flux and RSAM measurements were made, it has been 259 

demonstrated that by analysing the spectral content of their time series it is possible to some extent to identify the 260 

separate contributions of geophysical parameters like deformation, tremor, long period seismicity and tidal cycles  261 

(Conde et al. 2013; Saballos et al. 2014; Bredemeyer and Hansteen 2014). Moreover, the spectral content of these time 262 

series typically is not stationary. Thus major variations of their spectral signatures can be associated to anomalies, 263 

which in the case of San Cristobal volcano are in good agreement with eruptive events. Thus, the ability of the XWT for 264 

detecting common spectral anomalies of SO2 and RSAM, makes this tool suitable for surveillance of volcanoes with a 265 

similar eruptive behaviour as San Cristobal. In addition, as described in equations 1 to 3, these algorithms are relatively 266 

easy to implement in a near-real time graphical data presentation of qualitative changes in eruptive activity.   267 



Despite the potential of this method as a volcanic activity forecasting tool, CWT and XWT have one main limitation, 268 

since the time series are finite and CWT assumes a cyclic time series, the resulting coefficients at the border of the 269 

times series have some degree of distortion. On a CWT or XWT contour map, the area where edge distortion is 270 

neglectable is typically termed as the cone of influence (COI), which for this particular case is indicated as the black x 271 

marks of the XWT contour map shown in Fig. 4a. This limitation can be of minor importance for studies intended to 272 

perform a post-analysis of eruptive records. However, when considering the XWT of SO2 emissions and RSAM as a 273 

potential tool for near-real time volcanic monitoring, it is necessary to notice that the most recent measurements are 274 

going to lie within the COI.  Many different approaches have been suggested in order to reduce the distortion caused by 275 

the border effects in the COI. The simplest solution involves the extension of the borders in a suitable way, and some of 276 

the most common methods include zero-padding, extended padding, periodical padding and antisymmetric padding 277 

(Pacola et al. 2013; Su et al. 2011). In addition, it’s important to underline that the area of the COI depends on the 278 

selected wavelet; hence, narrower wavelets have fewer distorted coefficients since the area of the COI is smaller 279 

(Torrence and Compo 1998).   280 

We examine the distortion of the COI by combining different padding methods and different wavelets. To do this, we 281 

simulated a time series of XWT averaged coefficients derived from the SO2-RSAM measurements, by sequentially 282 

calculating their XWT for every daily measurement within a time window containing the previous 100 measurements. 283 

The simulated time series comprises the scale averaged XWT coefficients at the end of the current time window which 284 

are distorted due to the border effect and represents a real situation when a new measurement of SO2 and RSAM is 285 

added to the time series.  Fig. 5 a, b, c and d shows the comparison, for different wavelets, of the scaled averaged XWT 286 

coefficients between the simulated time series and a standard case (Fig. 4b). After several evaluations it was found that 287 

the antisymmetric-padding produced lower errors except in the case of the wavelet DOG(m=6) where zero-padding was 288 

used instead. Although at first glance the distortion is obvious, it still resembles the qualitative variations of the 289 

averaged coefficients that are not affected by the COI. The qualitative comparisons for different wavelets are completed 290 

with the cross-correlation analysis shown in Fig. 5 (e, f, g and h).  By observing the Full Width at Half Maximum 291 

(FWHM) we can state that out of the considered wavelets, Paul(Fig. 5e) and DOG(2)(Fig. 5f) have a lower distortion 292 

due to the COI effect, which is not surprising considering that these two wavelets are narrower. However, the symmetry 293 

and smoothness of the correlogram shown in Fig. 5e suggests that the Paul wavelet at least in this case is the best option 294 



for applying averaged XWT coefficients as a qualitative forecasting tool for a joint analysis of SO2 emissions and 295 

RSAM.      296 

 297 

Conclusions 298 

The continuous activity at San Cristobal volcano, noticeable by its persistent degassing and seismicity have allowed us 299 

to propose an novel approach for a joint analysis of SO2 fluxes and RSAM described by different activity stages. 300 

Initially we have described a SO2 flux pre-processing approach implemented by using the Kalman filter which takes 301 

into account measurement errors and the estimated variability. Several studies with the aim of better constraining flux 302 

measurement errors are under progress, and this simplified statistical approach for SO2 flux time series can be easily 303 

adapted to further improve error analysis and thus provide more accurate statistics. Furthermore, it has been shown that 304 

analysing SO2 fluxes and RSAM by observing their CWT coefficients provides additional insights that are not so 305 

obvious at first glance. As a result, it was graphically easy to identify the increasing seismic energy preceding major 306 

eruptive events, which may be associated with magma emplacement to shallower crustal levels. 307 

 Although joint analysis of seismicity and emissions have been applied in several scenarios, the analysis presented here 308 

demonstrates the use of CWT and CWT for interpretation and surveillance of eruptive events. In the case of San 309 

Cristobal volcano, the contours of the XWT coefficients and the peaks of the averaged coefficients correlate well with 310 

the reported eruptive events. We have also demonstrated the possibility of implementing a routine for near-real time 311 

observations by analysing the errors and distortion due to the border effect. In this case, by using narrower wavelets, 312 

such as Paul, is possible to reduce this artefact. Although such techniques can be applied to other volcanos with 313 

continuous degassing, an extensive analysis of previous degassing and seismic reports is necessary in order to identify a 314 

suitable threshold that allows to define significant changes of the ongoing volcanic activity. 315 

In summary, this paper demonstrates another application of using permanent DOAS instruments for continuous 316 

measurements of SO2 in complement to the widely used seismic monitoring techniques.   317 
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Date SO2 (t day
-1

) Reference 

November-2003 800±190 a 

   
March-2006 317±274 b 

   November-2006 1406±805 c 

   
2007 515±517 d 

   
2008 244±203 d 

   
2009 1515±891 d 

   
2010 893±727 d 

   
2011 627±235 d 

   
2012 1489±671 d 
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Table 1. Compilation of previous measurements of SO2 emissions at San Cristobal volcano  (a) Mather et al. (2006), (b) 455 
Barrancos et al. (2008), (c) Rivera (2009), (d) Fischer von Mollard (2013) 456 
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 460 



Fig. 1 Map showing the location of the NOVAC instruments and seismic station on the Southwestern flank of San 461 
Cristobal volcano. Inset map of the volcanic arc in Nicaragua (black triangles).  462 

 463 

 464 

Fig. 2.  Comparison between daily average SO2 fluxes and the Kalman estimated fluxes from November 2012 to 465 
January 2013.  466 

 467 

 468 

Fig. 3. Estimated fluxes and RSAM with their respective wavelet transform at San Cristobal during the period: October 469 
2012 to April 2014.  (a) SO2 fluxes. (b) RSAM counts. (c) SO2 CWT power spectrum coefficients. (d) RSAM CWT 470 
power spectrum coefficients with precursory periods highlighted by the grey insets. The CWT power spectrum 471 



coefficients were obtained by using the Morlet wavelet. The map colour of the wavelet coefficients against the white 472 
background corresponds to the coefficients greater than 95% significant test for red noise; and the arrows mark periods 473 
of enhanced eruptive activity.   474 

 475 

Fig. 4. a) XWT power spectrum coefficients between the SO2 fluxes and RSAM (Fig. 3a and b). The map colour of the 476 
cross-wavelet coefficients against the white background corresponds to the coefficients greater than 95% significant test 477 
for red noise. b) XWT Scale-averaged coefficients. The arrows mark the onset of periods of enhanced eruptive activity 478 
which were shown on Fig. 3. The discontinuities correspond to measurement gaps. 479 

 480 



 481 

Fig. 5 Comparison of the XWT and border effects. In the right column, the blue line corresponds to the XWT scale-482 
averaged coefficients unperturbed by the COI. The red line corresponds to the averaged coefficients lying in the left 483 
boundary of the COI.  The pair of time series in (a), (b), (c) are padded using antisymmetric padding (ASYM) except in 484 
(d) whereas zero-padding is used instead. In the left column, the cross-correlations between each pair of time series on 485 
the right side. The Full Width at Half Maximum (FWHM) of the different wavelets is relative to the FWHM of the 486 
Morlet wavelet. The lower FWHMs suggest that the wavelets Paul (f) and DOG(m=2)(g) are less affected by the border 487 
effect. 488 
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