
Analytical investigation of poorly damped conditions in VSC-HVDC
systems

Yujiao Song, Claes Breitholtz, Georgios Stamatiou, and Massimo Bongiorno

Abstract— In this paper, strong AC-grid connected VSC-
HVDC systems are studied. Under specific conditions, such
systems can suffer from both stability and poor damping
related issues, which warrants a stability study. Analytical
eigenvalue expressions can directly demonstrate the impact of
physical or control parameters on the system stability. However,
especially in case of high-order systems, such expressionsare
challenging to obtain. This paper suggests a method to sym-
bolically represent approximative eigenvalues of two-terminal
VSC-HVDC systems, which could also be used to analyze the
system dynamics. In addition, by applying symbolic-isolation
method, the order of a multi-terminal VSC-HVDC system can
be reduced to an equivalent two-terminal VSC-HVDC system,
which enables the proposed method to provide symbolic pole
expressions. Numerical studies based on Matlab simulations
are presented, showing the accuracy of the analytical eigenvalue
expressions and providing useful hints on the impact of physical
or control parameters.

I. INTRODUCTION

Voltage source converter based high voltage direct current
transmission (VSC-HVDC) systems have now been in oper-
ation since 1997 as they have offered a breakthrough in the
controllability and stabilization of electric power transmis-
sion systems [1]. However, dynamic interaction between the
system components increases the risk of potential poorly-
damped conditions or even instability. Such occurrences
have been described as e.g. oscillations caused by HVDC
terminals [2], [3] or instabilities in DC power systems [4],
[5].

Poorly-damped resonances between converter stations and
DC cables can appear both in two-terminal and multi-
terminal VSC-HVDC. Such problems are typically ap-
proached by using numerical analysis to determine the
actual values of the systems poles [6]. However, acquiring
analytical expressions for these poles has the benefit of
better understanding in which selected parameters of the
system can affect the frequency and damping characteristics
of its eigenvalues. Hence, it is valuable if such symbolic
descriptions can be obtained for a poorly-damped VSC-
HVDC link, highlighting the relationship between the system
parameters and its poorly-damped poles.
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Relevant research is to be found mostly in traction systems
as in [7], where a rectifier and an inverter are connected
via DC lines. However, the analytical description of the
system poles only considers the resonance of the DC cable,
disregarding the effect of the converter controllers. The
analytical eigenvalues of the DC-link in a two-terminal VSC-
HVDC connection is provided in [8], but is only applicable
for zero power transfer. Approximate symbolic eigenvalues
in multi-terminal VSC-HVDC (MTDC) are also provided in
[9] but significant simplifications are required, influencing
the validity of the final solutions.

The aim of this paper is to propose a method to efficiently
characterize poorly-damped conditions that may appear on
the DC-side of a two-terminal VSC-HVDC link, while the
interaction with the AC-side is neglected considering the
presence of strong AC grids. The focus is to analytically
describe the poles of the system, in terms of characteristic
frequency and damping. Consequently, the interaction be-
tween the controller parameters of the terminals and the
physical properties of the DC-link can be better understood
and evaluated.

For MTDC system, it is assumed that one converter is
controlling the DC-voltage and the rest of the converters are
controlling the transmitted active power between the AC- and
DC-sides. The DC-voltage controlled VSC keeps symbolic
physical and controller parameters, while the remaining
converters and DC-grid parameters are numerically known.
The symbolic-isolation method [10] is applied to reduce
the system order into four and thus enables the proposed
method to derive the approximate eigenvalues of the system
in symbolic expressions.

II. TWO-TERMINAL VSC-HVDC SYSTEM

The two-terminal VSC-HVDC system is described by
Fig.1. It consists of two VSC stations, where each of them is
assumed to be connected to a strong AC grid. At the AC-side
of the VSCs, the series inductances (L1, L2) and resistances
(R1, R2) represent the AC reactor and the power losses in the
converter. The shunt capacitors at the DC-side are denoted
by Cc1, Cc2 respectively. In this paper, the DC cable would
be interpreted as a singleΠ-section, which is proved to be
sufficient for system stability evaluation [11].

In standard VSC-HVDC systems, one converter (station 1)
is assigned the duty of DC-voltage controller to secure the
stability of the DC-bus voltage; the other converter (station
2) serves as the active power controller to guarantee and
balance the power exchanges [12].
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Fig. 1: Two-terminal point-to-point VSC-HVDC system embedded in a strong AC-environment.E is the point of common
coupling (PCC) voltage;i is the converter input current;vc is the converter voltage;vdc is the DC voltage at the terminal;
idc is the DC current which flows into the DC grid from converter;iline is the DC current passing through the DC cable
inductance and resistance.

The local controller of the VSC is separated into two
cascaded parts: inner current controller and outer controller.
The inner current controller provides the converter voltage
reference (vre f

cd ) and (vre f
cq ) to the pulse width modulator

(PWM). The d-axis outer controller is used to track the
reference of either DC voltage or active power and generates
the d-axis current reference (ire f

d ) to the inner current loop.
The q-axis outer controller is used to limit the voltage drop
of the PCC voltage, generating theq-axis current reference
(ire f

q ) to the inner current loop as well [13].

A. Statements and Assumptions

The main statements and assumptions of the proposed
model are the following:

• The reference signal ofx is xre f and the steady state of
x is x0.

• The differential operator is expressed byp and the
Laplace transform of a time domain variablex(t) is
denoted by ˜x(s).

• The connected AC grids are well balanced and strong,
i.e. the nominal AC grid voltage is as most subject
to small variation (i.e.∆Ed ≈ 0, ∆Eq ≈ 0) and the
dynamics of Phase Locked Loop (PLL) and low pass
filter for feed forward PCC voltage are ignored.

• The model is derived in the so-calleddq reference
frame, which is chosen to be aligned with the AC
voltage direction by robust PLL, i.e.Eqk0 = 0, k = 1,2.
Eqk0 is the steady state of theq-axis PCC voltage [14].

• Since the q-axis current (iq) has no impact on the
dynamics at the DC-side (afterd- and q-dynamics
decoupling),ire f

q is thus assumed to be zero.
• The inner current loop is designed to be at least ten

times faster than the outer loop, which enables the inner
current loop to be interpreted as infinitely fast.

• The active power controlled VSC is assumed to be
operated under steady state. Otherwise, the dynamics
caused by the AC-side of the active power controlled
VSC is considered as an disturbance input to the DC-
side dynamics.

• The VSCs are assumed to be symmetric, in this section,
the variables and parameters would not be subscribed by
the number 1 and 2 which are used to denote different
VSCs.

B. DC-voltage controlled VSC

As claimed above, the local controller of a VSC is
separated into two cascaded parts: inner current controller
and outer controller. The inner current controller is a PI-
controller with PCC voltage feed-forward and cancelation
of the dq cross coupling [15]. The PI-controller parameters
are designed by pole cancelation, which speeds up the inner
current dynamics to be ten times faster than the outer loop.
Consequently, the linearized inner current closed loop in the
Laplace domain is [16]:

∆ĩd(s) =
ac

s+ ac
∆ĩre f

d (s) = gc(s)∆ĩre f
d (s) (1)

∆ĩq(s) =
ac

s+ ac
∆ĩre f

q (s) (2)

Since the connected AC grid is assumed to be strong, there
is no need to limit the voltage drop of the PCC voltage, i.e.
∆ire f

q = 0.
The DC voltage outer controller is a PI-controller with

DC load power feed-forward. The linearized DC voltage
dynamics and the controllers are [16]:

d∆vdc

dt
= (∆P−∆Pload)/Cc/vdc0 (3)

∆P = E0∆id + id0∆Ed + iq0∆Eq ≈ E0∆id (4)

∆Pload = vdc0∆idc + idc0∆vdc (5)

∆Pre f = Kp(1+
1

Ti · p
)(∆vre f

dc −∆vdc)+F(p)∆Pload

= E0∆ire f
d (6)

F(s) =
a f

s+ a f
(7)

After choosingKp = advdc10Cc, the closed-loop DC volt-
age dynamics is:

∆ṽdc =
adgc(1+ 1

Tis
)

s+ adgc(1+ 1
Tis
)

∆ṽre f
dc +

F(s)gc(s)−1

Ccvdc10[s+ adgc(1+ 1
Tis
)]

∆P̃load

From a control point of view, the DC-load power rep-
resents a disturbance which can be compensated by the
power feed-forward. Therefore, the zero steady-state error
can be reached by a P-controller. However, if losses on the
valves of the VSC are considered, integral-action should be
added. In the present analysis, the losses are neglected and



the simplified DC-voltage dynamics after assumingTi → ∞,
ac → ∞ is:

∆ṽdc =
ad

s+ ad
∆ṽre f

dc +
F(s)−1

Ccvdc10(s+ ad)
∆P̃load (8)

C. Active power controlled VSC

For the outer controller of transmitted active power, again
a PI-controller is used. The controller parameters are de-
signed by inner current loop pole cancelation. The linearized
active power and DC voltage expressions are [16]:

∆P̃ =
ap

s+ ap
∆P̃re f (9)

d∆vdc

dt
= (∆P−∆Pload)/Cc/vdc0 (10)

Under steady state, i.e.∆P= 0, the active power controlled
VSC is equivalent to a shunt RC-circuit where the resistance
is vdc0/idc0 and the capacitance isCc. It is worth to be
mentioned that the resistance would be negative as the active
power is transmitted from the DC- to the AC-side. The
simplified DC-voltage dynamics is:

d∆vdc

dt
=− idc0

Ccvdc0
∆vdc −

1
Cc

∆idc (11)

D. DC cable

Since the singleΠ-section DC cable model is proved to
be sufficient for VSC-HVDC system stability evaluation [11],
the DC cable dynamics can be expressed as:

d∆iline

dt
=

1
Ldc

∆vdc1−
1

Ldc
∆vdc2−

Rdc

Ldc
∆iline (12)

d∆vdc1

dt
=

1
Cdc

∆idc1−
1

Cdc
∆iline (13)

d∆vdc2

dt
=

1
Cdc

∆idc2+
1

Cdc
∆iline (14)

E. State space representation

Combining the dynamics of DC-voltage controlled VSC
(8), active power controlled VSC (11) and DC cable (12)-
(14), the two-terminal VSC-HVDC system can be interpreted
as a fourth order state space model, whereCtot = Cc +Cdc

(due to that the converters are assumed to be symmetric)
and∆i f

load is the filtered load power normalized byvdc10, i.e.
∆i f

load = F(p)∆Pload/vdc10 :

d
dt

x = As · x+Bs ·∆vre f
dc1 (15)

y =Cs · x =
[

0 1 0 0
]

· x = ∆vdc1 (16)

xT =
[

∆i f
load ∆vdc1 ∆iline ∆vdc2

]

As =













−a f
Cc

Ctot
a f

Ccidc10−adCdcCcvdc10
Ctot vdc10

a f
Cc

Ctot
0

1
Ctot

− adCcvdc10+idc10
Ctot vdc10

− 1
Ctot

0

0 1
Ldc

−Rdc
Ldc

− 1
Ldc

0 0 1
Ctot

− P20
Ctot v2

dc20













BT
s =

[

a f ad
CdcCc
Ctot

ad
Cc

Ctot
0 0

]

It is easy to prove that the state space model is minimum
order, implying that the system poles are the eigenvalues of
the state matrixAs. The suggested method to analytically
describe the poles of the system will thus operate on the
symbolic state matrixAs, in an effort to extract the desired
analytical approximate expressions.

III. SYMBOLIC EIGENVALUES

The characteristic polynomial of the 4×4 matrix As can
be seen as a product of two second order polynomialsp1(λ )
and p2(λ ). We are in fact most interested inp1(λ ), which
is poorly damped and its roots are strongly dependent of
the DC-cable length.p2(λ ), whose roots are well damped
and may even be real, is to a low extent dependent of the
DC-cable length.

Letting the DC-cable length approaches zero, the fourth
order system will exactly reduce to a second order system.
The characteristic polynomial of the new 2×2 state matrix
As2 can be assumed to approximate the well damped polyno-
mial p2(λ ), i.e. p2(λ )≈ p̃2(λ ). Therefore, we can use ˜p2(λ )
to calculate the poorly damped polynomialp1(λ ).

To reduce the visual complexity,As is re-written as:

As =











−a b a 0
1

Ctot
−d − 1

Ctot
0

0 1
Ldc

−Rdc
Ldc

− 1
Ldc

0 0 1
Ctot

e











wherea = a f
Cc

Ctot
, b = a f

Ccidc10− adCdcCcvdc10

Ctot vdc10
,

d =
adCcvdc10+ idc10

Ctot vdc10
, e =− P20

Ctotv2
dc20

(17)

A. Well damped polynomial p2(λ )
If the DC-cable length is zero, thenx2 = x4, ẋ2 = ẋ4 andẋ3

is removed. The new second order autonomous state space
model is:

[

ẋ1

ẋ2

]

=

[

− a
2 b− aCtot

2 (d + e)
1

2Ctot
− d−e

2

][

x1

x2

]

= As2

[

x1

x2

]

(18)

The characteristic function ofAs2 is:

p̃2(λ ) = det(λ I−As2)

= λ 2+0.5(a+ d− e)λ +0.5(ad− b/Ctot) (19)

B. Poorly damped polynomial p1(λ )
The characteristic polynomial of the fourth order state

matrix As is given below, wherek1 and k2 are the first and
second order coefficient respectively:

det(λ I−As) = λ 4+(a+ d− e+
Rdc

Ldc
)λ 3+ k2λ 2+ k1λ+

+(ad− b
Ctot

)(
1

LdcCtot
− e

Rdc

Ldc
) (20)

Let λ1,2 be the roots of polynomialp1(λ ) andλ3,4 be the
roots of polynomialp2(λ ). They satisfy:

λ1+λ2+λ3+λ4 =−(a+ d− e+
Rdc

Ldc
) (21)

λ1 ·λ2 ·λ3 ·λ4 = (ad− b
Ctot

)(
1

LdcCtot
− e

Rdc

Ldc
) (22)



TABLE I: Parameters of VSC-HVDC system

Cable distance length 100 km
Cable inductance density l 0.316 mH/km
Cable capacitance density c 0.138 µF/km
Cable resistance density r 0.03 Ω/km
DC shunt capacitor (τs = 4.1 ms) C1 =C2 20 µF
Rated DC voltage vdc0 640 kV
Rated transmission power Pb 1000 MW
Bandwidth of DC-voltage controller ad 300 rad/s (0.95 p.u.)
Bandwidth of DC-load power filter a f 300 rad/s (0.95 p.u.)

Combining (21)-(22) with the approximated polynomial
p̃2(λ ) (19), it is known that:

λ3+λ4 ≈−1
2
(a+ d− e); λ3 ·λ4 ≈

1
2
(ad− b

Ctot
)

⇒ λ1+λ2 =−1
2
(a+ d− e+2

Rdc

Ldc
) (23)

λ1 ·λ2 = 2(
1

LdcCtot
− e

Rdc

Ldc
) (24)

The approximate poorly damped polynomial is:

p1(λ )≈ (λ −λ1)(λ −λ2) (25)

≈ λ 2+
1
2
(a+ d− e+2

Rdc

Ldc
)λ +2(

1
LdcCtot

− e
Rdc

Ldc
)

C. Accuracy of the approximations

In this section, the eigenvaluesλnum of the VSC-HVDC
system, found be numerical extracting them fromAs, are
compared to the symbolic eigenvaluesλsym expressed by
(25), (19). Different scenarios are investigated where the
values of all the system’s parameters and steady-state entries
are set to be constantly equal to the values of Tab. I,
with the exception of one parameter that is allowed to
vary. The motive for doing so is to observe the accuracy
of the analytical expressions compared to the numerical
eigenvalues, for different values of the selected parameters.
Five scenarios are considered.
1 Variation ofa f between 10-600 rad/s.
2 Variation ofad between 10-600 rad/s.
3 Variation ofad = a f between 10-600 rad/s.
4 Variation of the cable length between 10-600 km.
5 Variation of the active power transmitted at station 2

between -1000-0 MW.
The nominal algebraic error is shown in Tab. II. The first

four columns show the nominal algebraic error of the real
and imaginary part respectively:

εreal = |(Re[λnum]−Re[λsym])/Re[λnum]| ·100% (26)

εimag = |(Im[λnum]− Im[λsym])/Im[λnum]| ·100% (27)

The last two columns show the nominal algebraic error of
the pole magnitude, which is the same as the difference of
the system natural frequency for complex poles:

εmag = ||λnum|− |λsym|/|λnum|| ·100%

= |(ωn,num −ωn,sym)/ωn,num| ·100% (28)

The comparison result shows that the maximum error
appears in the real part of scn. 4, which can be decreased

TABLE II: Numerical difference between eigenvalues ofAs

and the roots ofp1(λ ), p2(λ ) [%]

Scenarios Real Imaginary Magnitude
Max Average Max Average Max Average

Scn. 1 0.86 0.59 1.55 0.76 1.51 0.72
Scn. 2 0.86 0.59 1.55 0.74 1.51 0.72
Scn. 3 2.64 1 2.43 0.84 2.26 0.8
Scn. 4 8.05 4.02 4.04 1.25 4.27 1.34
Scn. 5 0.75 0.74 0.84 0.81 0.82 0.8

a) The pole pairλ1,2 that has larger ratio of Im{λ}/Re{λ}

Scenarios Real Imaginary Magnitude
Max Average Max Average Max Average

Scn. 1 1.16 0.85 3.15 1.8 1.48 0.73
Scn. 2 1.16 0.85 3.15 1.8 1.48 0.73
Scn. 3 5.33 1.58 5.12 2.03 2.21 0.79
Scn. 4 20.63 8.49 2.06 1.21 4.46 1.37
Scn. 5 1.09 1.07 1.53 0.96 0.61 0.24

b) The pole pairλ3,4 that has smaller ratio of Im{λ}/Re{λ}

from 20.63% to 7.42% if the studied maximum cable length
decreases from 600 km to 300 km. Except of scn. 4, the
errors of the approximated result are bounded by 5.33% and
in average are lower than 2.03%. In general, the method
provide compact expressions that closely fit the numerically
calculated eigenvalues of the system, with relatively small
error.

D. Property of the two-terminal VSC-HVDC system

After achieving the approximate symbolic expressions
of the system poles, the impact of physical and control
parameters can be evaluated in this section.

1) Trends of the real parts of the eigenvalues: From
(25) and (19), it is known that if the roots are complex
then the real part of the system eigenvalues are given as
follows, where the approximation is based on the fact that
the difference between terminal voltages are so small that
they can be neglected compared with the other terms.

λ1+λ2 = 2∗Re{λ1,2}=−0.5(a+ d− e+2Rdc/Ldc)

=−1
2
[

Cc

Ctot
(ad + a f )−

P20

Ctot
(

1

v2
dc10

− 1

v2
dc20

)]− Rdc

Ldc

≈− Cc

2Ctot
(ad + a f )−

Rdc

Ldc
(29)

λ3+λ4 = 2∗Re{λ3,4}=−0.5(a+ d− e)

=−1
2
[

Cc

Ctot
(ad + a f )−

P20

Ctot
(

1

v2
dc10

− 1

v2
dc20

)]

≈− Cc

2Ctot
(ad + a f ) (30)

It shows that:

i By increasingad or a f , all the system eigenvalues will
move (to the left) away from the imaginary axis with the
relevant rate of changeCconv/Ctot/4.

ii By increasing the cable length, the ratio ofCconv/Ctot

will decrease and thus the real part of all the system
eigenvalues will decrease i.e. system eigenvalues move
towards the imaginary axis.



iii By increasing the ratio between cable resistance density
and inductance density, the real part of the poorly-
damped system eigenvalues will move (to the left) away
from the imaginary axis. However, the real part of the
well-damped system eigenvalues pair will not change
dramatically.

iv Since the difference between terminal voltage are too
small, the operating point of transmitted active power
P20 will not play an important role with respect to the
real part of system eigenvalues.

2) Trends of the natural frequencies of the eigenvalues:
From (25) and (19), it is known that if the roots are complex
then the natural frequencies of the system eigenvalues are
given as follows, where the approximation is based on the
fact that the transmission losses (Rdc) is much lower than the
load (vdc20/idc20):

λ1 ·λ2 = |λ1,2|2 = ω2
n1

=
2

LdcCtot
(1− Rdcidc0

vdc20
)≈ 2

LdcCtot
(31)

λ3 ·λ4 = |λ3,4|2 = ω2
n2

=
1
2

Cc

Ctot
ada f (32)

It shows that:

i The natural frequency of the poorly damped pole pair
(ωn1) is dominated by the shunt capacitor and cable
inductance.ωn1 is decreased by increasing the total shunt
capacitorCtot or increasing the cable inductance.

ii For the well damped pole pair, ifCdc ≪ Cc and thus
Cc ≈Ctot , its natural frequencyω2

n2 ≈ ada f /2.

3) Trends of the damping ratios of the eigenvalues: For a
second order polynomialλ 2+ k1 ·λ + k2 = 0 with two com-

plex roots, the characteristic frequency isω0 =
√

k2− k2
1/4

and the damping ratio isζ = k1/2/
√

k2. It implies that by
increasingk1 and decreasingk2, the system characteristic
frequency decreases and the damping ratio increases and thus
has better dynamic performance.

i For the poorly damped pole pairλ1,2, we have:

k1 ≈
Cc

2Ctot
(ad + a f )+

Rdc

Ldc
; k2 ≈

2
LdcCtot

ζ1 ≈ [
Cc

2Ctot
(ad + a f )+

Rdc

Ldc
]

√

LdcCtot

8
(33)

We can increase the poorly damped system damping ratio
by increasing the VSC shunt capacitorCc or the system
bandwidthsad , a f . For fixed cable resistanceRdc, ζ1

decreases whenLdc increases.
ii For the well damped pole pairλ3,4, we have (assuming

Cdc ≪Cc):

k1 ≈
1
2
(ad + a f ) k2 ≈

1
2

ada f

ζ2 ≈
ad + a f
√

8ada f
=

1
2

√

1+
1
2
(

ad

a f
+

a f

ad
) (34)

−250 −200 −150 −100 −50 0
−400

−300

−200

−100

0

100

200

300

400

Real

Im
ag

in
ar

y

Eigenvalue movements for different a
d
 and a

f

 

 

λ
sym

 with a
f
∈ [10 600]

λ
num

 with a
f
∈ [10 600]

λ
sym

 with a
d
=a

f
∈ [10 600]

λ
num

 with a
d
=a

f
∈ [10 600]

Starting point
Ending point

Fig. 2: Well damped eigenvalue movements for differentad

anda f

It is known thatad/a f + a f/ad ≥ 2 where the equality
holds whenad = a f . Therefore,ζ2 ≥ 1/

√
2, and with

larger difference betweenad anda f , the damping ratio of
the well damped pole pair increases, which is illustrated
in Fig.2,

IV. MULTI-TERMINAL VSC-HVDC SYSTEM

In this section, the proposed method will be applied to
an MTDC system. Assuming that, within an MTDC system,
there is only one converter controlling the DC-voltage and
the other converters control their transmitted active power
between the AC- and DC-grid nodes.

The MTDC system can be described as: one DC-voltage
controlled VSC with its shunt capacitor (2nd order system
Gvsc(s)); one RLCR0 DC-grid (Gdc(s)), whereR0 describes
the active power controlled VSC and, at converters steady
states,Rk0 = v2

dck0/Pk0 andk implies thekth VSC. The block
diagram of an autonomous MTDC system is depicted in
Fig.3.

∆vdc1
Gvsc(s)

Gdc(s)

∆idc1

Fig. 3: Block diagram of the MTDC system with zero input
signals

In addition, the parameters of the DC-grid are assumed
to be fully known and the parameters at the DC-controlled
VSC have free values. The purpose is then to understand the
influence of the design bandwidths (ad, a f ), and the chosen
shunt capacitor (Cc1) on the dynamics of∆vdc1 within an
MTDC system.

A. Symbolic-Isolation method

If only the DC-voltage controlled VSC contains symbolic
design parameters, we can treat it as a port and reduce the



DC-grid by a standard model-reduction approach such as the
Arnoldi Algorithm [17]. Since this model order reduction
algorithm in the state space do not change the input/output
port structure and only one port is needed, the isolated
symbolic method [10] is simple and straight forward to apply
here.

For the DC-grid dynamic system, the input signal is the
voltage of the DC-voltage controlled VSC (∆vdc1) and the
output is the DC-current flow into the DC-grid (∆idc1). In
order to apply the symbolic solution, obtained in the Sec.III,
the DC-grid system order is reduced to the second order:

[

ż1

ż2

]

=

[

az11 az12

az21 az22

][

z1

z2

]

+

[

bz1

bz2

]

∆vdc1

∆idc1 =
[

cz1 cz2
]

[

z1

z2

]

In order to make the 4th order state matrix of the reduced
order MTDC system to have the same structure asAs, a
similarity transformation is required to the above 2nd order
system. The similarity matrix is T, where ˜z = T z:

T =

[

cz1 cz2

k ·bz2 −k ·bz1

]

k =−az12c2
z1− a21c2

z2+ cz1cz2(az22− az11)

(bz1cz1+ bz2cz2)2 (35)

B. Study case: three-terminal VSC-HVDC system

The simulated system is presented in Fig. 4, where station
1 controls the DC-voltage and the remaining converters
control the transmitted active power. Each of the DC-lines
is modeled as a singleΠ-section with parameters given in
Tab. I.

Line 2

Line 1
Station 1

Line 3

DC-grid

Station 2 Station 3

Fig. 4: Study case 1: ‘Y’-shape three-terminal VSC-HVDC
system

For fixed set points ofvdc10, Pk0, k = 2,3 and cable length
(which are shown in Tab. III), the equivalent resistancesRk0

are countable, i.e.R20=−667 [Ω] andR30 =−1003 [Ω]
The linear circuit model can always be described by the

following equations:

Cg
dxg

dt
+Ggxg = Bgug

yg = Fgxg

In our study case, the state space model matrices are given
below, whereLdck, Rdck, Cdck are the inductance, resistance,

TABLE III: DC-grids dynamic parameters

Property Value
Rated DC-voltage of station 1,2,3 640 [kV]

Operating point of active power of station 2 -600 [MW]
Operating point of active power of station 3 -400 [MW]

Shunt capacitor of station 2,3 20 [µF]
Distance of Line 1,2 100 [km]
Distance of Line 3 200 [km]
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capacitance (one in each side of the cable) of thek-th line
andCck is the shunt capacitor of thek-th VSC.

xT
g =

[

idc1 vdc idc2 vdc2 idc3 vdc3
]

;

ug = vdc1; yg = idc1;

Cg = diag{Ldc1, Cdc1+Cdc2+Cdc3, Ldc2, Cdc2+Cc2,

Ldc3, Cdc3+Cc3}

Gg =

















Rdc1 1 0 0 0 0
−1 0 −1 0 −1 0
0 1 Rdc2 −1 0 0
0 0 1 1

R20
0 0

0 1 0 0 Rdc3 −1
0 0 0 0 1 1

R30

















Bg =

















1
0
0
0
0
0

















Fg =
[

1 0 0 0 0 0
]

The poles of the above DC-grid system are located strictly
in the left half plane. Therefore, the system in this study case
is stable but not passive. (Note that the DC-grid involves
active elements in contrast to the transmission line only.)

The Arnoldi Algorithm [17] is applied here to reduce the
DC-grid dynamic system order into a 2nd order system. After
similarity transformation with matrixT (35), the numerical
second order state space model is:

[

˙̃z1
˙̃z2

]

=

[

−94.8 −22.8
11315 28.3

][

z̃1

z̃2

]

+

[

22.8
0

]

∆vdc1

∆idc1 =
[

1 0
]

[

z̃1

z̃2

]

(36)

The bode plot comparison is given in Fig. 5. It shows
that the reduced 2nd order model characterizes the original
system well forω < 800 [rad/s].



C. Extended method for multi-terminal VSC-HVDC system

After the model order reduction of DC-grid dynamics, the
state space model of the MTDC system is:

d
dt

x̂ = Âs · x̂+ B̂s ·∆vre f
dc1 (37)

ŷ = Ĉs · x̂ =
[

0 1 0 0
]

· x̂ = ∆vdc1 (38)

x̂T =
[

∆i f
load ∆vdc1 ∆îline ∆v̂dc

]

Âs =











−a f
Cc

Ctot
a f

Ccidc10−adCdcCcvdc10
Ctot vdc10

a f
Cc

Ctot
0

1
Ctot

− adCcvdc10+idc10
Ctot vdc10

− 1
Ctot

0
0 22.8 −94.8 −22.8
0 0 11315 28.32











B̂T
s =

[

a f ad
CdcCc
Ctot

ad
Cc

Ctot
0 0

]

With the proposed method, the characteristic polynomial
of Âs can be approximated as follows, wherea, b, d, e
are defined in (17),c1 is the shut capacitor at station 1 i.e.
c1 =Ctot and in this study case,c2 = 88.4·10−6, R/L= 94.8,
e = 28.32:

det(λ I− Âs) = p̂1(λ )p̂2(λ )

p̂1(λ ) = λ 2+

(

c2(a+ d)− c1e
c1+ c2

+
R
L

)

λ +
c1+ c2

c1
(

1
Lc2

− e
R
L
)

p̂2(λ ) = λ 2+
c1(a+ d)− c2e

c1+ c2
λ +

(adc1− b)
c1+ c2

Compared with the two-terminal VSC-HVDC system with
parameter given in Tab. I, both the shunt capacitor at station
2 and the ratio ofLdc/Rdc increase, implying that the
damping ratio of the poorly damped pole pair will increase.
In addition, the poorly damped poles move further away from
the imaginary axis and the well damped poles move towards
the imaginary axis. The numerical result for the system poles
is given in Tab. IV, which as well supports our conclusion.
Consequently, the MTDC has better damping performance
compared with the the two terminal VSC-HVDC system for
the poorly damped pole pair but worse damping performance
for the well damped pole pair.

TABLE IV: DC-grids dynamic parameters

Study case Eigenvalues
Two-terminal -158+1511i -158-1511i -110+147i -110-147i

MTDC -66+781i -66-781i -77-1972i -77+1972i
-178+1061i -178-1061i -48+112i -48-112i

4th order MTDC -254+1037i -254-1037i -48+112i -48-112i

V. CONCLUSIONS

This paper provides an analytical method to describe
a simplified two-terminal VSC-HVDC system in terms of
purely symbolic eigenvalue expressions. For a wide variation
of the physical and control parameters of the investigated
VSC-HVDC system, the method achieves to provide com-
pact expressions that fit the numerically calculated eigenval-
ues of the system, with relatively small errors. Accordingly,

it has been possible to provide pole movements with the
impact of different physical and control parameters.

In addition, by applying the symbolic-isolation method,
the order of a multi-terminal VSC-HVDC system can be
reduced to an equivalent two-terminal VSC-HVDC system,
which enables the proposed method to provide symbolic
pole expressions. It shows that within some MTDC systems,
the damping performance of the poorly damped pole pair
improves.
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