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Abstract—In this paper, strong AC-grid connected VSC-
HVDC systems are studied. Under specific conditions, such
systems can suffer from both stability and poor damping
related issues, which warrants a stability study. Analytial
eigenvalue expressions can directly demonstrate the impiaof
physical or control parameters on the system stability. Howver,
especially in case of high-order systems, such expressioage
challenging to obtain. This paper suggests a method to sym-

Relevant research is to be found mostly in traction systems
as in [7], where a rectifier and an inverter are connected
via DC lines. However, the analytical description of the
system poles only considers the resonance of the DC cable,
disregarding the effect of the converter controllers. The
analytical eigenvalues of the DC-link in a two-terminal \\SC
HVDC connection is provided in [8], but is only applicable

bolically represent approximative eigenvalues of two-teaminal
VSC-HVDC systems, which could also be used to analyze the
system dynamics. In addition, by applying symbolic-isolabn
method, the order of a multi-terminal VSC-HVDC system can
be reduced to an equivalent two-terminal VSC-HVDC system,
which enables the proposed method to provide symbolic pole
expressions. Numerical studies based on Matlab simulatian
are presented, showing the accuracy of the analytical eigealue
expressions and providing useful hints on the impact of phyisal

for zero power transfer. Approximate symbolic eigenvalues
in multi-terminal VSC-HVDC (MTDC) are also provided in
[9] but significant simplifications are required, influengin
the validity of the final solutions.

The aim of this paper is to propose a method to efficiently
characterize poorly-damped conditions that may appear on
the DC-side of a two-terminal VSC-HVDC link, while the
or control parameters. interaction with the AC-side is neglected considering the

presence of strong AC grids. The focus is to analytically
l. INTRODUCTION describe the poles of the system, in terms of characteristic

Voltage source converter based high voltage direct curreftequency and damping. Consequently, the interaction be-
transmission (VSC-HVDC) systems have now been in opefween the controller parameters of the terminals and the
ation since 1997 as they have offered a breakthrough in tigysical properties of the DC-link can be better understood
controllability and stabilization of electric power trans-  and evaluated.
sion systems [1]. However, dynamic interaction between the For MTDC system, it is assumed that one converter is
system components increases the risk of potential poorlypntrolling the DC-voltage and the rest of the convertees ar
damped conditions or even instability. Such occurrence®ntrolling the transmitted active power between the AG} an
have been described as e.g. oscillations caused by HVO$¢-sides. The DC-voltage controlled VSC keeps symbolic
terminals [2], [3] or instabilities in DC power systems [4],physical and controller parameters, while the remaining
[3]. converters and DC-grid parameters are numerically known.

Poorly-damped resonances between converter stations afh symbolic-isolation method [10] is applied to reduce
DC cables can appear both in two-terminal and multithe system order into four and thus enables the proposed

terminal VSC-HVDC. Such problems are typically ap-method to derive the approximate eigenvalues of the system
proached by using numerical analysis to determine thg symbolic expressions.

actual values of the systems poles [6]. However, acquiring
analytical expressions for these poles has the benefit of
better understanding in which selected parameters of the
system can affect the frequency and damping characteristic The two-terminal VSC-HVDC system is described by
of its eigenvalues. Hence, it is valuable if such symboli€ig.1. It consists of two VSC stations, where each of them is
descriptions can be obtained for a poorly-damped VSGissumed to be connected to a strong AC grid. At the AC-side
HVDC link, highlighting the relationship between the syste of the VSCs, the series inductances,(L,) and resistances
parameters and its poorly-damped poles. (R1, Rp) represent the AC reactor and the power losses in the
converter. The shunt capacitors at the DC-side are denoted
by C.1, Co respectively. In this paper, the DC cable would
be interpreted as a singl@-section, which is proved to be
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Fig. 1: Two-terminal point-to-point VSC-HVDC system embled in a strong AC-environmert is the point of common
coupling (PCC) voltagei is the converter input current; is the converter voltageyy. is the DC voltage at the terminal,
ige is the DC current which flows into the DC grid from convertigise is the DC current passing through the DC cable
inductance and resistance.

The local controller of the VSC is separated into twdB. DC-voltage controlled VSC
cascaded parts: inner current controller and outer cdetrol  aAg claimed above. the local controller of a VSC is

The iinner current controller provides the converter v@tagseparated into two cascaded parts: inner current controlle
reference \(4) and () to the pulse width modulator ang outer controller. The inner current controller is a PI-
(PWM). The d-axis outer controller is used to track thecontroller with PCC voltage feed-forward and cancelation
reference of either DC voltage or active power and generatgg ihe dq cross coupling [15]. The Pl-controller parameters

. .ref ;
the d-axis current referencedf ) to the inner current loop. gre designed by pole cancelation, which speeds up the inner

The g-axis outer controller is used to limit the voltage dropgrrent dynamics to be ten times faster than the outer loop.
of the PCC voltage, generating tigeaxis current reference consequently, the linearized inner current closed loofén t

(iF") to the inner current loop as well [13]. Laplace domain is [16]:
A Statemems and Assumptions | Aiy(s) = A Afgef (8) = 6e(S) Afgef (s 1)
The main statements and assumptions of the proposed S+ac
model are the following: qu(s) - im&ef (s) 2)
« The reference signal ofis x®" and the steady state of Stac
X is Xg. Since the connected AC grid is assumed to be strong, there

« The differential operator is expressed lpyand the is no need to limit the voltage drop of the PCC voltage, i.e.
Laplace transform of a time domain variablét) is  Aif' =0.
denoted byx(s). The DC voltage outer controller is a Pl-controller with
« The connected AC grids are well balanced and strondpC load power feed-forward. The linearized DC voltage
i.e. the nominal AC grid voltage is as most subjectlynamics and the controllers are [16]:

to small variation (i.e.AEq ~ 0, AEq ~ 0) and the dAVge
dynamics of Phase Locked Loop (PLL) and low pass G (AP—OPoaq)/Ce/Vaco 3)
filter for feed_ forwgrd PC_:C voltage are ignored. AP = EoDig + iqoAEq + iqAEq ~ Eolig (4)
o The model is derived in the so-calledly reference . .
frame, which is chosen to be aligned with the AC AHO&d:VdCOA'd°+1'dCOAVdC )
voltage direction by robust PLL, i.&qo =0, k=1,2. AP — K (14 AVE" — Avge) + F(p)AR
Ego is the steady state of ttegaxis PCC voltage [14]. ol Ti- D)( de ) (P)ARo
« Since theg-axis current i) has no impact on the :EOAi&ef (6)
dynamics at the DC-side (afted- and g-dynamics F(s) = as 7
decoupling)if’ is thus assumed to be zero. (8)= s+ar @

« The inner current loop is designed to be at least ten .
times faster than the outer loop, which enables the innerAfter chopsmgKD = 8aVae1oCe, the closed-loop DC volt-
current loop to be interpreted as infinitely fast. age dynamics is:

e The atct(ljve |chllowert C(:jntrolletd \gstﬁ |s_assijr:neg to b%gd B aggc(1+ %S) ref F(s)ge(s) — 1
operated under steady state. erwise, the dynami¥dc = - 1. 2Vqc 1
caused by the AC-side of the active power controlled S+89Ge(1+ 1) Covacr0[S+ aGe(1+ 1))
VSC is considered as an disturbance input to the DC- From a control point of view, the DC-load power rep-
side dynamics. resents a disturbance which can be compensated by the

« The VSCs are assumed to be symmetric, in this sectioppwer feed-forward. Therefore, the zero steady-stater erro
the variables and parameters would not be subscribed bgn be reached by a P-controller. However, if losses on the
the number 1 and 2 which are used to denote differentilves of the VSC are considered, integral-action should be
VSCs. added. In the present analysis, the losses are neglected and
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the simplified DC-voltage dynamics after assumifig- oo, It is easy to prove that the state space model is minimum

ac — « is; order, implying that the system poles are the eigenvalues of
ag . F(s)— 3 the state matrixAs. The suggested method to analytically
DVye = —A\?E,i + AR oad (8) describe the poles of the system will thus operate on the
S+ad CeVdero(S+aa) symbolic state matrixs, in an effort to extract the desired
C. Active power controlled VSC analytical approximate expressions.
For the outer controller of transmitted active power, again [1l. SYMBOLIC EIGENVALUES

a Pl-controller is used. The controller parameters are de-The characteristic polynomial of thexd44 matrix As can
signed by inner current loop pole cancelation. The line&itiz be seen as a product of two second order polynonpigla)

active power and DC voltage expressions are [16]: and pa(A). We are in fact most interested jm (A), which
AP — ap APTef ©) is poorly damped and its roots are strongly dependent of
s+ap the DC-cable lengthpz(A), whose roots are well damped
dAVyc and may even be real, is to a low extent dependent of the
G~ (AP —ARoad)/Ce/Vaco (10) DC-cable length.

) ) Letting the DC-cable length approaches zero, the fourth
Under steady state, i.&P =0, the active power controlled orqer system will exactly reduce to a second order system.
VSC is equivalent to a shunt RC-circuit where the resistancge characteristic polynomial of the newx2 state matrix
is Vaco/igeo and the capacitance 6. It is worth to be A, can be assumed to approximate the well damped polyno-
mentioned that the resistance would be negative as theeactjy;q) p2(A), i.e. po(A) ~ fa(A ). Therefore, we can uges(A)
power is transmitted from the DC- to the AC-side. Thgqg calculate the poorly damped polynomial(2)

simplified DC-voltage dynamics is: To reduce the visual complexitfs is re-written as:
dA i 1 . —
Vac _ __ldeo AVge — =Aige (11) la b al 0
dt CCVdCO CC A . m —d —% O
D. DC cable ° 0 L_ilj-c Lo _Lidc
0 0 & e

Since the singld1-section DC cable model is proved to Crot

be sufficient for VSC-HVDC system stability evaluation [11] Ceide10 — 8dCdcCeVdc10

wherea= afc%, b= a;

the DC cable dynamics can be expressed as: ot Cot Vdc1o
. adCcVdc10 + idc10 P
dAi; 1 1 Ryc . d=————"— e=— 17
Tme = L—dCAVdcl - L—dCAVdcz - L_dZAllme 12) CiotVdc10 Ctothczo a7
dAvger 1 A 1 Ai 13 A. Well damped polynomial p2(A)
d  Cue de1 — Cac lline (13) If the DC-cable length is zero, the@ = x4, X» = X4 andxs
dAvgeo 1 . 1 . is removed. The new second order autonomous state space
at = aAIdCZ—i_ _A|Iine (14) model is:
c Cdc !
v _a _ ot
E. State space representation {Xl} — [ 2 b 22(24-6)} [Xl} — Ao {Xl} (18)
X2 o — X2 X2

Combining the dynamics of DC-voltage controlled VSC
(8), active power controlled VSC (11) and DC cable (12)-
(14), the two-terminal VSC-HVDC system can be interpreted  f(A) = detAl — Ag)
as a fourth order state space model, wh&g = C¢ + Cqyc :/\2+O.5(a+d—e))\ +05(ad—b/Co)  (19)
(due to that the converters are assumed to be symmetric) )
andai’_ is the filtered load power normalized by, i.e. B Poorly damped polynomial py(2)

The characteristic function s is:

Ailfoad — F(P)ARoad/Vee1o | Th_e chara(_:teristic polynomial of the fourth o_rder state
matrix As is given below, wherd&; andk, are the first and
%x: As-X+ Bs-AV&ecfl (15) second order coefficient respectig:ly:
y=Csx=1[0 1 0 0-x=AVuy (16) det()\l—As):)\4+(a+d—e+L—dz)/\3+k2/\2+k1/\+
T _ [a:f .
X = _Alload AVger  Aljine AVch} + (ad— QL)(L tt —e?) (20)
4. Cc Celde10—adCacCeVdc1o Cc o Ldc“ot dc
aflctot af adccqvi\llg?ﬁj o af Ciot 0 Let A1 be the roots of polynomigb;(A) andAz 4 be the
A= Cat _7%5\/"”0 _% 01 roots of polynomialpz(A). They satisfy:
0 1 — Rde 1
0 Lgc jc %3 AM+A+ A3+ =—(a+d—e+ ?) (21)
L Crot Crot Vicz0 b fc Ry
T _[a.0.CaCc o Cc M-Az-Az-As=(ad— — —e <= 22
By = |araa & auy O 0} 1-A2-A3- A4 = ( Cr ) [2Cuo de) (22)




TABLE I: Parameters of VSC-HVDC system TABLE II: Numerical difference between eigenvalues/Axf

0
Cable distance length 100 km and the roots 0ps(A), pz(A) [%]
Cable inductance density | 0.316 mH/km
Cable capacitance density c 0.138 uF/km Scenarios Real Imaginary Magnitude
Cable resistance density r 0.03Q/km Max | Average | Max | Average | Max | Average
DC shunt capacitortt = 4.1 ms) =G 20 uF Scn. 1 0.86 0.59 1.55 0.76 1.51 0.72
Rated DC voltage Vdco 640 kV Scn. 2 0.86 0.59 1.55 0.74 1.51 0.72
Rated transmission power R 1000 MW Scn. 3 | 2.64 1 2.43 0.84 2.26 0.8
Bandwidth of DC-voltage controllef a4 300 rad/s (0.95 p.u. Scn. 4 | 805 ] 4.02 4.04 1.25 4.27 1.34
Bandwidth of DC-load power filter af 300 rad/s (0.95 p.u. Scn.5 | 0.75 0.74 0.84 0.81 0.82 0.8
a) The pole pairty » that has larger ratio of IfA } /Re{A}
L. . . . S ’ Real Imaginary Magnitude
Combining (21)-(22) with the approximated polynomial| =CeNaN0S —g=s—Average | Max | Average | Max | Average
P2(A) (19), it is known that: Sen. 1 | 1.16 085 | 315 1.8 148 0.73
1 1 b Scn. 2 1.16 0.85 3.15 1.8 1.48 0.73
. - Scn. 3 5.33 1.58 5.12 2.03 221 0.79
M+As~—s@td-e); As-Agx5(ad— @) Scn. 4 | 2063 849 | 2.06 | 121 | 446 | 137
1 Ry Scn. 5 1.09 1.07 1.53 0.96 0.61 0.24
=A+A= —é(a+ d—e+ 2L—C) (23) b) The pole pairiz4 that has smaller ratio of IfA}/Re{A}
dc
1 Rac
Ao =2( —e—) (24)
LacCrot Lac
The approximate poorly damped polynomial is: from 20.63% to 7.42% if the studied maximum cable length
decreases from 600 km to 300 km. Except of scn. 4, the
P1(A) = (A = A1) (A = Ap) (25) p

errors of the approximated result are bounded by 5.33% and

z)\2+}(a+d_e+ 2&))\ +2( 1 —e% in average are lower than 2.03%. In general, the method
2 . .de LacCrot Ldc provide compact expressions that closely fit the numeyicall
C. Accuracy of the approximations calculated eigenvalues of the system, with relatively $mal

In this section, the eigenvalués,, of the VSC-HVDC érror.
system, found be numeri_cal .extracting them freéw) are D. Property of the two-terminal VSC-HVDC system
compared to the symbolic eigenvalugdgm expressed by . . . .
(25), (19). Different scenarios are investigated where the Aftér achieving the approximate symbolic expressions
values of all the system’s parameters and steady-staieent©f the system poles, the impact of physical and control
are set to be constantly equal to the values of Tab, parameters can be evaluated in this section.
with the exception of one parameter that is allowed to 1) Trends of the real parts of the eigenvalues: From
vary. The motive for doing so is to observe the accurach) and (19), it is known that if the roots are complex
of the analytical expressions compared to the numericdl®" the real part of the system eigenvalues are given as

eigenvalues, for different values of the selected parametef©!lows, where the approximation is based on the fact that
Five scenarios are considered. the difference between terminal voltages are so small that

1 Variation ofa; between 10-600 rad/s. they can be neglected compared with the other terms.

2 Variation ofay between 10-600 rad/s. M +2A2=2xRe{A12} = —0.5(a+d— e+ 2Ryc/Lgc)
3 Variation ofag = a; between 10-600 rad/s. 1. Ce Po, 1 1 Rac
4 Variation of the cable length between 10-600 km. = —E[Q—(adJraf) - C[—(vz— RV
5 Variation of the active power transmitted at station 2 ° @ Ydc1o Yde20 o
between -1000-0 MW. ~ —%(ad +ag)— R (29)
The nominal algebraic error is shown in Tab. Il. The first Clo Ldc
four columns show the nominal algebraic error of the real)‘3+’\4 =2xRe{As4} = -05(a+d-e)
and imaginary part respectively: — _}[&(ad +af)— @(Zi _ zi)]
grcat = | (RelAnum] — RelAgm])/RelAnum]|- 100%  (26) o o Ve Yoo
Eimag = | (IM[Anum] — IM[Agym]) /IM[Anum]| - 100%  (27) N oy (Batarn) (30)

The last two columns show the nominal algebraic error of |t shows that:
the pole magnitude, which is the same as the difference of; By increasingag or a¢, all the system eigenvalues will
the system natural frequency for complex poles: move (to the left) away from the imaginary axis with the

Emag = || Anum| — [Asym| /| Anum| | - 100% _ relevant rate of chang@conv/Ciot /4. _
— _ )/ - 100% (28) ii By increasing the cable length, the ratio Gfon/Ciat
Ch,num = Gh,sym) / Gh,num will decrease and thus the real part of all the system
The comparison result shows that the maximum error eigenvalues will decrease i.e. system eigenvalues move
appears in the real part of scn. 4, which can be decreased towards the imaginary axis.



o . . . . Eigenval for diff
i By increasing the ratio between cable resistance dgnsi igenvalue movements for different 3, and &,

and inductance density, the real part of the poorly
damped system eigenvalues will move (to the left) awa 300t .
from the imaginary axis. However, the real part of the
well-damped system eigenvalues pair will not chang
dramatically. 1000
iv Since the difference between terminal voltage are to
small, the operating point of transmitted active powe
P>o will not play an important role with respect to the
real part of system eigenvalues. ——— Ay With 01 [10 600]

2) Trends of the natural frequencies of the eigenvalues: -200¢ Roym I 872, [10 6001
From (25) and (19), it is known that if the roots are comple; I - ;:unlw”h "",d;a'D (106001
then the natural frequencies of the system eigenvalues ¢ o Pt

O  Ending point
given as follows, where the approximation is based on tr  -409_ 00 1o 100 "o o

400

200 N

T —

— A___with a0 [10 600]
sym f

Imaginary
o

fact that the transmission lossd%;{) is much lower than the Real
load {gc20/idc20): Fig. 2: Well damped eigenvalue movements for differant
AM-Ap= |/\1’2|2:aﬁ1 and as
_ - 2 1- Racldco ~ - 2 31)
dCQZO‘ ) Vdc20 dcCrot It is known thatag/as +as/ag > 2 where the equality
A3 Ag=[Ag4|” = wpp holds whenagq = as. Therefore,l, > 1/v/2, and with
_ }&ada 32) larger difference betweesy andas, the damping ratio of
2 Gt f the well damped pole pair increases, which is illustrated

It shows that: in Fig.2,

i The natural frequency of the poorly damped pole pair V. MULTI-TERMINAL VSC-HVDC SYSTEM

(wn1) is dominated by the shunt capacitor and cable In this section, the proposed method will be applied to
inductanceawn, is decreased by increasing the total shurén MTDC system. Assuming that, within an MTDC system,

capacitorGq or increasing the cable inductance. there is only one converter controlling the DC-voltage and
i For the well damped pole pair, i€4c < Cc and thus the other converters control their transmitted active powe
Ce ~ Ciat, its natural frequencyp, ~ agas /2. between the AC- and DC-grid nodes.
3) Trends of the damping ratios of the eigenvalues: For a The MTDC system can be described as: one DC-voltage

second order polynomiai2+ki - A +ky = 0 with two com- controlled VSC with its shunt capacitor (2nd order system
plex roots, the characteristic frequencycis = |/kp — k2/4 Guec(8)); one RLCRy DC-grid (Gug(s)), whereRy describes

. o oV the active power controlled VSC and, at converters steady
and the damping ratio i§ = ki/2/v/kz. It implies that by ., 2 dk imolies thekth VSC. The block
increasingk; and decreasingc,, the system characteristic states R = Vijoo/ Ao andk implies the - 'he blac

. " iagram of an autonomous MTDC system is depicted in
frequency decreases and the damping ratio increases asd t l@ 3
has better dynamic performance. e

i For the poorly damped pole pak 2, we have: Aiger Gusc(S) AVier
Ce 2
klw—(ad+af)+%; ko~ ———
2Cot Ldc deCtot Gue (S)
CC I:edc dectot
R|o~—(@taf)+— 33
@ [zctot (Ba+a) de] 8 (33) Fig. 3: Block diagram of the MTDC system with zero input

We can increase the poorly damped system damping rafi#na!s
by increasing the VSC shunt capacity or the system

bandwidthsag, as. For fixed cable resistancByc, (1 In addition, the parameters of the DC-grid are assumed
decreases whehy. increases. to be fully known and the paramete_rs at the DC-controlled

ii For the well damped pole pais 4, we have (assuming VSC have free value_s. The purpose is then to understand the
Cae < Co): ’ influence of the design bandwidthay( as), and the chosen

shunt capacitorG;) on the dynamics of\vy, within an
MTDC system.

A. Symbolic-Isolation method

5 =5 > (34) If only the DC-voltage controlled VSC contains symbolic
V/ ©adaf ar & design parameters, we can treat it as a port and reduce the

1 1
ki~ = ky ~ =
1 2(61d+61f) 2~ 5848

a4 + af 1 1 ay as
L~ =S4 [1+5(=+—)




DC-grid by a standard model-reduction approach such as the TABLE lII: DC-grids dynamic parameters
Arnoldi Algorithm [17]. Since this model order reduction — -

; ; - roperty ue
algorithm in the state space do not change the mpu_t/output Rafed DC-voltage of Siafion 1.2.3 570 (V]
port structure and only one port is needed, the isolated Operating point of active power of station 2 -600 [MW
symbolic method [10] is simple and straight forward to apply Operating point of active power of station 3-400 [MW

here Shunt capacitor of station 2,3 20 [uF]
' . . . . . Distance of Line 1,2 100 [km
For the DC-grid dynamic system, the input signal is the Bistance of Line 3 500 Tkm

voltage of the DC-voltage controlled VS@\y,) and the
output is the DC-current flow into the DC-grid\igc1). In
order to apply the symbolic solution, obtained in the Séc.lI Bode Diagram of DC grid dynamics
the DC-grid system order is reduced to the second order: ¢

b4l ax1 axo| (& b
= Av,
. o VAl

Niger = [ca  Cz] [ZJ

In order to make the 4th order state matrix of the reduced
order MTDC system to have the same structureAgsa
similarity transformation is required to the above 2nd orde

6th order DC~grid model
Reduced 2nd order DC-grid model

Magnitude (dB)

Phase (deg)

-90

system. The similarity matrix is T, whee=Tz 10 10 Frequem;o("mwsec) 10° 10'
T-| % C2 Fig. 5: Study case 1: Bode plot comparison
k-bp —k-bp
ke 8,12C% — 821C% + CACx (32 — 8211) (35)
n (baCa + bpcrp)? capacitance (one in each side of the cable) ofkitk line

B. Sudy case: three-terminal VSC-HVDC system andCy is the shunt capacitor of tHeth VSC.

The simulated system is presented in Fig. 4, where station
1 controls the DC-voltage and the remaining converters xg: liger Vdc lde2 Vdez ide3 Vees];
control the transmitted active power. Each of the DC-lines

) . . . . . Ug = Vdc1;  Yg = idcls
is modeled as a singlB-section with parameters given in 9 9

Station 3 Fg:[l 0 00O q

The poles of the above DC-grid system are located strictly
___________ ! in the left half plane. Therefore, the system in this studseca
Fig. 4: Study case 1: ‘Y’-shape three-terminal VSC-HvDCS stable but not passive. (Note that the DC-grid involves
system active elements in contrast to the transmission line only.)
The Arnoldi Algorithm [17] is applied here to reduce the
DC-grid dynamic system order into a 2nd order system. After
similarity transformation with matrixd (35), the numerical

Tab. I. Cy =diag{Lgc1, Cdc1 +Cac2 +Cdes, Ldc2, Cacz +Ce2,
e | Ldc3, Cdcz+Cea}
! |
— :11,1(31 DC-grid i Rf(il ]c-) _01 8 _01 8 g_)
’\’ | 0 1 Re -1 0 0 0
Station 1 : Gg = 0 0 1 Ri O 0 Bg = O
20
Ude Line3  Vde3 |\, : 0 1 0 0 Ryz -1 0
P N[ o 0 0o o0 1 & 0
| 30
|
|
|
|
|

For fixed set points 0f4c10, P, k= 2,3 and cable length
(which are shown in Tab. IIl), the equivalent resistanBgs

are countable, i.eR — —667 [Q] andRso — —1003[Q)] second order state space model is:
The linear circuit model can always be described by the 7 _[-948 -228] [ 22.8 A
following equations: | 11315 283 | |% T o [P
d . Z
CQEXQ + GgXg = Bglyg Bigez = [1 0] {2;] (36)
Yo = FoXg The bode plot comparison is given in Fig. 5. It shows

In our study case, the state space model matrices are givhiat the reduced 2nd order model characterizes the original
below, where 4, Ry, Cyck @re the inductance, resistance system well forw < 800 [rad/s].



C. Extended method for multi-terminal VSC-HVDC system
After the model order reduction of DC-grid dynamics, thdMmPact of different physical and control parameters.

state space model of the MTDC system is:

it has been possible to provide pole movements with the

In addition, by applying the symbolic-isolation method,
the order of a multi-terminal VSC-HVDC system can be
reduced to an equivalent two-terminal VSC-HVDC system,
which enables the proposed method to provide symbolic
pole expressions. It shows that within some MTDC systems,
the damping performance of the poorly damped pole pair

d, -~ . =4 f
G %= A R+ Bs: By 37
R = [Ai|foad AVge1 AiAline A\A/dc}
—ay C([;c_m as Qldclogtmigffcvdclo as % 0
A 1 _ adCeVderotde1o 1 0
As= Ciot CiotVdc10 Cot [1]
0 228 —-948 228
0 0 11315 282 2
él — afad% adc% 00

With the proposed method, the characteristic polynomiab]
of As can be approximated as follows, whese b, d, e
are defined in (17)¢; is the shut capacitor at station 1 i.e.
¢1 = Gt and in this study case, = 884-10°°% R/L =948,
e=28.32:

detAl —Ag) = p1(A)P2(A)

(4]

(5]

R 2 c(a+d)—cie R ci+c, 1 R
pl(/\)_A +( Ci1+Co +L At C1 (LCZ eL) [6]
f)(/\)z)\2+c1(a+d)_cze (adc; —b)

2 Ci1+0C Ci1+0C

-

Compared with the two-terminal VSC-HVDC system with 7
parameter given in Tab. |, both the shunt capacitor at statio
2 and the ratio ofLyc/Ryc increase, implying that the 8
damping ratio of the poorly damped pole pair will increase.
In addition, the poorly damped poles move further away from
the imaginary axis and the well damped poles move toward
the imaginary axis. The numerical result for the systemgpole
is given in Tab. 1V, which as well supports our conclusion.
Consequently, the MTDC has better damping performancffb]
compared with the the two terminal VSC-HVDC system for
the poorly damped pole pair but worse damping performan?ﬁ]
for the well damped pole pair.

TABLE IV: DC-grids dynamic parameters (12]

Study case Eigenvalues [13]
Two-terminal | -158+15111| -158-15111 | -110+147i| -110-147i
MTDC 66+7811 | -66-781 | -77-19721 | -77+1972i
-178+1061i | -178-1061i | -48+112i | -48-112i

4th order MTDC | -254+10371 | -254-10371 | -48+112i | -48-1121 | [14]

[15]

V. CONCLUSIONS [16]

This paper provides an analytical method to describe
a simplified two-terminal VSC-HVDC system in terms of 17]
purely symbolic eigenvalue expressions. For a wide vaiati
of the physical and control parameters of the investigated
VSC-HVDC system, the method achieves to provide com-
pact expressions that fit the numerically calculated eigkenv
ues of the system, with relatively small errors. Accordyngl

improves.
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