
Verifying the Logical Correctness of a
Train Station
Master’s thesis in Systems, Control and Mechatronics

BERIT-JANICE HÄRLE and DANIEL LOVÉN ÖBERG

Department of Signals and Systems
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2016

Fabian
Typewritten Text
EX046/2016

Master’s thesis EX046/2016

Verifying the Logical Correctness of a Train
Station

BERIT-JANICE HÄRLE and DANIEL LOVÉN ÖBERG

Department of Signals and Systems
Division of Automation Control

Chalmers University of Technology
Gothenburg, Sweden 2016

Verifying the Logical Correctness of a Train Station
BERIT-JANICE HÄRLE and DANIEL LOVÉN ÖBERG

© BERIT-JANICE HÄRLE and DANIEL LOVÉN ÖBERG, 2016.

Supervisor: Martin Fabian, Department of Signals and Systems
Examiner: Martin Fabian, Department of Signals and Systems

Master’s Thesis 2016:EXO46/2016
Department of Signals and Systems
Division of Automation Control
Chalmers University of Technology
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Cover: Satellite picture of Gothenburg train station [1]

Typeset in LATEX
Gothenburg, Sweden 2016

iv

Logical Verification of a Train Station
Berit-Janice Härle
Daniel Lovén-Öberg
Department of Signals and Systems
Chalmers University of Technology

Abstract
Trains offer low emissions and energy efficient transportation of passengers and
goods, and are therefore essential to the infrastructure of the country. For the
safety of the passengers, amongst others, it is necessary to control the trains to
avoid crashes. By using a signaling system (European Rail Traffic Management
System), it is possible to keep track of the train locations and react to anomalies.
The railway switches and the behaviors of the trains can be modelled and then
formally verified for safety. The goal of this work is to use extended finite automata
to verify the logical correctness of the Gothenburg Central train station. A model
is created in Supremica and UPPAAL, both tools that can verify discrete event
systems. The model is then verified to ensure absence of collisions while guaranteeing
that the trains can always reach their designated platforms. Initially, a simplified
model is created to test the two tools, and to define properties to achieve successful
verification. For larger models, the state space becomes too large for UPPAAL
that suffers from memory limitations due to its 32-bit implementation. Therefore,
Supremica, with its 64-bits hardware, is used to successfully verify the safety of the
train station. This report also includes extensive information for both tools.

Keywords: Verification, Automata, Logical Correctness, Railways, Train Station,
Safety

v

Sammanfattning
Tåg är ett miljövänligt och och energieffektivt transportsätt för passagerare och
varor. Det är därför en viktig del av infrastrukturen i ett land. För passagerarnas
säkerhet är det nödvändigt att reglera tågen för att undvika kollisioner. Genom
att använda ett signalsystem (European Rail Traffic Management System) är det
möjligt att hålla reda på tågens position och reagera på avvikelser. Järnvägsväxlar-
nas och tågens beteende kan modelleras och sedan verifieras. Målet med rapporten
är att använda sig av ändliga tillståndsmaskiner till att verifiera den logiska korrek-
theten av Göteborgs centralstation. En modell skapas i Supremica och UPPAAL,
båda verktyg för att verifiera diskreta händelsesystem. Modellen är sedan verifierad
för att undvika kollisioner och samtidigt garantera att ett tåg alltid når sin an-
givna plattform. Först skapas en mindre modell för att testa de båda verktygen
och olika idéer över hur man kan nå en lyckad verifiering. För större modeller blir
tillståndsrummet för stort för UPPAAL som får minnesproblem då det endast kan
utnyttja på 32-bitar. Därför används Supremica till att framgångsrikt verifiera säk-
erheten för tågstationen. Rapporten innehåller också omfattande information om
båda programmen.

Keywords: Verifiering, Tillståndsmaskin, Logisk Korrekthet, Järnvägar, Tågstation,
Säkerhet

vi

Acknowledgements
We would like to thank our supervisor and examiner Martin Fabian for his support,
motivation and always having an open ear. His fast responses to e-mails and his
availability even for emergencies on the weekend is impressive and something we are
extremely thankful for. Without Martin, the thesis would not have been nearly as
successful.

Also, thank you to all of our families and friends for their understanding and mental
support.

Berit-Janice Härle and Daniel Lovén Öberg, Gothenburg, June 2016

vii

Contents

List of Figures xi

List of Tables xv

1 INTRODUCTION 1
1.1 Scope . 1
1.2 Related Research . 2
1.3 Outline . 2

2 THEORETICAL BACKGROUND 3
2.1 Fundamentals of Railways . 3

2.1.1 European Train Control System 3
2.1.2 Railway Switches . 4
2.1.3 Train Station . 5

2.1.3.1 Gothenburg Train Station 5
2.2 Automata . 6

2.2.1 Extended Finite Automata (EFA) 7
2.2.2 Marked/Forbidden States . 7
2.2.3 (Co-)Reachability . 7
2.2.4 Plants and Specifications . 8
2.2.5 Synthesize and Synchronize 8
2.2.6 Deadlock and Livelock . 8
2.2.7 Uncontrollable Events . 9
2.2.8 Non-deterministic Automata 9

2.3 Formal Verification . 9
2.3.1 The State Space Explosion Problem 10
2.3.2 Verification Algorithms . 10

2.3.2.1 Monolithic . 10
2.3.2.2 Compositional . 10
2.3.2.3 Partial Order . 10

2.3.3 Temporal Logic . 11

3 TOOLS 13
3.1 Supremica . 13

3.1.1 Editor . 14
3.1.1.1 Definitions . 14
3.1.1.2 Components . 14

ix

Contents

3.1.1.3 Foreach Block . 15
3.1.1.4 Events as Arrays . 15

3.1.2 Verify Menu . 16
3.1.3 Simulator . 16
3.1.4 Analyser . 17

3.1.4.1 Verify . 17
3.1.4.2 Find States . 17

3.1.5 Opening Files in Other Programs 18
3.1.6 Common Problems . 18

3.1.6.1 Increasing the Memory 18
3.1.6.2 (Non-)Deterministic Variables 18
3.1.6.3 "Event removed due to Optimisation" 19
3.1.6.4 "State encoding requires x bits, 64 is the maximum!" 19

3.2 UPPAAL . 20
3.2.1 Editor . 20

3.2.1.1 Declarations . 21
3.2.1.2 Templates . 22
3.2.1.3 System Declarations 24

3.2.2 Simulator . 25
3.2.3 Verifier . 26
3.2.4 YGGdrasil . 28
3.2.5 Memory Issues . 28

3.3 Additional Software Tools . 28

4 MODELLING 31
4.1 Simplification . 31
4.2 UPPAAL . 32

4.2.1 Approach 1: Standard approach 32
4.2.1.1 Switches and Platforms 32
4.2.1.2 The Trainmaker . 33
4.2.1.3 Specification . 34
4.2.1.4 Model of the Train Station 35
4.2.1.5 Reducing the Model of the Train Station 38

4.2.2 Approach 2: Using UPPAALs Programming Features 39
4.2.2.1 Request and RequestOut 39
4.2.2.2 Model of the Train Station 43

4.3 Supremica . 47
4.3.1 Approach 1: Without Variables and with a Model of the Train

Station . 47
4.3.2 Approach 2: Without Variables and no Model of the Train

Station . 50
4.3.3 Approach 3: With Variables and no Model of the Train Station 53
4.3.4 Approach 4: With Variables and with a Model of the Train

Station . 54

5 VERIFICATION 59
5.1 UPPAAL . 59

x

Contents

5.1.1 Deadlock verification . 59
5.1.2 Avoid same state verification 59
5.1.3 Platform/Line chosen is reached 60

5.2 Supremica . 62
5.2.1 Deadlock verification . 62
5.2.2 Avoid same state verification 62

5.2.2.1 Alternative 1 . 62
5.2.2.2 Alternative 2 . 63

5.2.3 Platform/Line chosen is reached 64
5.3 Results . 66

5.3.1 UPPAAL . 66
5.3.2 Supremica . 67

6 GOTHENBURG TRAIN STATION 69
6.1 Modelling . 69
6.2 Verification . 69

6.2.1 Deadlock . 69
6.2.2 Only one train can claim a switch/platform 69
6.2.3 The trains will not diverge from its route 70

6.3 Results . 70

7 CONCLUSION 71

8 FUTURE WORK 73

Bibliography 75

A Old Map I

xi

Contents

xii

List of Figures

2.1 ETCS components [2]. 3
2.2 ETCS functionality [2]. 4
2.3 An overview of a railroad switch [3]. 4
2.4 Closeup of the stretcher bar [3]. 5
2.5 Pointblade [3]. 5
2.6 Stockrail [3]. 5
2.7 Gothenburg train station [1]. 6
2.8 An example of an automaton. 6
2.9 Non-reachable (red) and non-coreachable (green) states. 7
2.10 Automaton with an unwanted deadlock (red). 8
2.11 Automaton with a livelock (red). 8

3.1 Supremicas GUI. 13
3.2 Example: constant and alias in Supremica. 14
3.3 Example: Creating a foreach-loop in Supremica. 15
3.4 Example: finished foreach-loops in Supremica. 15
3.5 Example: Creating an event as an array in Supremica. 16
3.6 Example: Including array events in Supremica. 16
3.7 Example: Trace when Simulating. 16
3.8 Example: Events in the Simulator. 17
3.9 Example: Components shown in Simulator. 17
3.10 Example: Memory available. 18
3.11 UPPAAL’s GUI. 20
3.12 Example of a Location / State. 23
3.13 Example Edge Label in UPPAAL. 24
3.14 Example Urgent Transition in UPPAAL. 24
3.15 Example of the normal simulator in UPPAAL. 25
3.16 Example of choosing a transition in the concrete simulator in UPPAAL. 26
3.17 Example of the Verifier. 27
3.18 Query Language Illustrated [4]. 27

4.1 An overview of the train station. 31
4.2 An overview of the simplified train station. 32
4.3 A 2-state automaton describing a switch occupancy - Approach 1. . . 33
4.4 A trainmaker model with 2 lines and 2 platforms both for in and

outgoing trains - Approach 1. 33

xiii

List of Figures

4.5 Steps taken in two specifications when the trainmaker creates a train
coming from line one to platform one - Approach 1. 34

4.6 The specification of a train using 3 switches with switches and direc-
tions as automata - Approach 1. 35

4.7 Three switch specification using variables - Approach 1. 35
4.8 The model for incoming trains - Approach 1. 36
4.9 A description of how the model receives an incoming train - Approach

1. 36
4.10 When switches are ready both goPlat! and leavePlat! will happen

at the same time - Approach 1. 37
4.11 goPlat sets the inbound model of the train station in a temp-state

waiting for gone - Approach 1. 37
4.12 leavePlat starts the train in the oubound model of the train station

- Approach 1. 37
4.13 The outmodel of the train station is done and immediately fires gone

- Approach 1. 37
4.14 The complete trainmaker with two lines in and five platforms - Ap-

proach 1. 38
4.15 The in- and out-model of the train station combined with the trainDir

variable implemented - Approach 1. 38
4.16 Automaton Request Version 1 - Approach 2. 39
4.17 Automaton Request Version 2 - Approach 2. 40
4.18 Automaton RequestOut - Approach 2. 42
4.19 Transition between Switches in Model automaton - Approach 2. . . . 44
4.20 Transition in and from the Platforms in Model automaton - Approach

2. 45
4.21 Lines in Model - Approach 2. 46
4.22 Example of a switch - Approach 1. 48
4.23 A small example of a model - Approach 1. 48
4.24 An example of a platform. 48
4.25 An example of a switch - Approach 1. 49
4.26 The event arrived shown in the model of the train station - Approach

1. 49
4.27 The event done shown in the model of the train station - Approach 1. 50
4.28 Specification to handle the train direction in the model - Approach 1. 50
4.29 Automaton orderIn Version 1 - Approach 2. 50
4.30 Automaton orderOut Version 1 - Approach 2. 51
4.31 Simulation of Automaton orderIn Version 1 - Approach 2. 51
4.32 Simulation of Automaton switch5 - Approach 2. 51
4.33 Automaton orderIn Version 2 - Approach 2. 52
4.34 Automaton orderOut Version 2 - Approach 2. 52
4.35 Automaton blocked - Approach 2. 53
4.36 Part of automaton switch2 - Approach 2. 53
4.37 Simulation of automaton orderIn - Approach 2. 53
4.38 Connecting the Switches with Variables Switch1- Approach 3. 54
4.39 Connecting the Switches with Variables Switch2 - Approach 3. 54

xiv

List of Figures

4.40 Train Specification - Approach 3 . 54
4.41 The switches and platforms as variables - Approach 4. 55
4.42 Going in and out of a Switch - Approach 4. 55
4.43 Going in and out of a Platform - Approach 4. 56
4.44 Going in and out of Init - Approach 4. 56
4.45 Specification - Approach 4. 56
4.46 Inbound transition labels for the Specification - Approach 4. 57
4.47 Outgoing transition labels for the Specification - Approach 4. 57

5.1 The state go top right. 60
5.2 The invariants x<0 and updates x=0 added. 61
5.3 Plant of a switch. 63
5.4 Specification of the switch. 63
5.5 Example automaton one. 64
5.6 Example automaton two. 64
5.7 Aliases for the uncontrollable events. 64
5.8 Specification to reach Platforms. 65
5.9 Specification to reach Platforms - Transitions to forbidden state. . . . 65

A.1 Old Map of the Gothenburg Train Station [5]. I

xv

List of Figures

xvi

List of Tables

3.1 Colorcoding of the Transition Labels in UPPAAL. 23
3.2 Query language with Ψ and φ as state formula expressions in UP-

PAAL [6]. 27
3.3 Comparing Modelling and Verification Software Tools. 29

5.1 Results for UPPAAL for the simplified model of the train station. . . 66
5.2 Results for Supremica for the simplified model of the train station. . . 67

6.1 Results for Supremica for the Gothenburg train station. 70

xvii

List of Tables

xviii

1
INTRODUCTION

One important part of the infrastructure of a country is the railway system. Due
to the low emission rates and the energy efficiency in comparison to airplanes and
vehicles, trains become essential for the transportation of goods and people [7].
Therefore a large number of trains run between cities and countries and are con-
trolled by an automatic European signaling system. Before automatic signaling was
introduced, timetables and flag officers were used for railway signaling. However,
this could not be continued due to the increase of accidents by human error and
high costs [8].

In 2014 in Sweden, 53 significant accidents occurred from which four were due to the
collisions of trains. Over the last nine years, the amount of train collisions varied
between one and four per year [9]. Even though this number might seem small, a
lot of passengers or freight are affected and therefore it is necessary to reduce the
collision risk. This can be done by modelling the railways, controlling the behaviour
for the trains and verifying that no crashes occur.

There is a wide range of tools that are based on different methods to model and
verify systems. Two of these tools are called UPPAAL and Supremica and offer
modelling using automata and verification based on automata properties.

The task of the project is to test UPPAAL and Supremica to see if it is possible to
build and verify a safety critical model using the Gothenburg station as a template.
To do this, a model describing a train station is created and different techniques are
used to specify the control for the trains. Thereafter the model, with specifications,
is verified in different ways to ensure that no collisions can occur. Also, tutorials
are to be created for both programs.

1.1 Scope
Due to Trafikverket not supplying information, assumptions have to be made. These
include the functionality of the switches, the layout of the switches and platforms
and the system behaviour used. Therefore, a standard railroad switch (see Section
2.1.2), an old map (see Appendix A.1) and the Route Locking and Sectional Release
System (RLSRS, see Section 2.1.3) are chosen respectively.

The choice for the modelling and verification programs is predefined and based on

1

1. Introduction

interest and experience. Therefore, UPPAAL and Supremica are used to complete
the task.

1.2 Related Research
Verification of train systems is a current topic all around the world. However, the
approaches and proofs differ. The following examples are only a few of many ideas
available. It can be seen, that modelling and verification has not been done previ-
ously with UPPAAL or Supremica.

Similar work has been done using k-induction. The system is first described us-
ing a Kripke structure and then transformed into a transition function, on which a
bounded model checking and inductive reasoning can prove certain properties. This
has already been implemented and tested for the Danish Railway system from the
University of Denmark and the University of Bremen, Germany. The results in-
cluded the successful verification of safety properties for controlling large networks
of realistic size [10].

The safety critical research group from the School of Railway Engineering in Iran
has used the NuSMV, a symbolic model checker, to model and verify the interlocking
control tables. The contents of the table and the behaviour of the train was analysed
for conflicts. The tool set developed successfully minimizes the human interference
in design, development and verification of the control table [11].

The safety properties of the European Train Control System are verified using com-
positional verification rules based on the Weakly monotonic time extension of DC
by the Laboratory of Rail Traffic Control and Safety, Beijing Jiaotong University,
Beijing. The proof divides the problem up into smaller sections which simplifies the
system at hand. Resulting in a successful compositional verification of the system
for controllability, reactivity and safety [12].

1.3 Outline
Chapter 2 describes the functionality of the European Train Control System (ETCS),
automata and their properties. This is followed by Chapter 3 consisting of tutorials
for the programs Supremica and UPPAAL which are used for the modeling and
verification of the system. Next the modelling of the system in both programs
is described in Chapter 4, followed by the verification of the models in Chapter
5. Thereafter the modelling and verification of the Gothenburg train station is
described Chapter 6. Lastly, the conclusions drawn are explained in Chapter 7 and
possible future work in Chapter 8.

2

2
THEORETICAL BACKGROUND

This chapter explains the required theory necessary to understand the thesis. First
the fundamentals of railways are described, followed by automata theory and ending
with formal verification.

2.1 Fundamentals of Railways
Understanding the fundamentals of railways and switches is essential before mod-
elling the system. Therefore, this section provides the basic knowledge needed to
understand the task and the models.

2.1.1 European Train Control System
The European Union (EU) started the European Rail Traffic Management System
(ERTMS) project, a Europe-wide standard for signalling, to increase the compet-
itiveness of cross-border operation and signalling of trains. The ERTMS consists
of three parts: the Global System for Mobiles - the Railway (GSM-R), the Euro-
pean Traffic Management Layer (ETML) and the European Train Control System
(ETCS) [2].

The ETCS is a system which uses signals to control the trains and prevent collisions.
It requires equipment on the track and a controller in the train itself, as seen in
Figure 2.1. The Eurobalise on the track reports the position and the signal state.
It gets its information from the interlocking which processes the track release and
sends a signal. The train has a GSM-R antenna, a ETCS computer and a receiver.
The receiver processes the information received from the Eurobalise and the ETCS
computer reacts accordingly [2].

Figure 2.1. ETCS components [2].
3

2. Theoretical Background

Figure 2.2 shows a lane divided into multiple blocks with two trains on it. When a
train enters a block, the light turns red and hinders the following train to enter this
block. This means, that the train has to have stopped by the time it reaches the red
block. To achieve this, a braking trajectory is calculated by the ETCS computer,
and is updated regularly [2].

Figure 2.2. ETCS functionality [2].

2.1.2 Railway Switches

A railway switch is made out of three major parts: the point blades, the diverging
route and the mainline route, see Figure 2.3. The point blades are the only movable
parts and can be switched manually or automatically. The non-movable parts of the
switch are called the stock rails. To make sure that the point blades can only touch
one side of the stock rails at a time, a stretch bar is holding the blades together at
a certain distance, see Figure 2.4.

Figure 2.3. An overview of a railroad switch [3].

4

2. Theoretical Background

Figure 2.4. Closeup of the stretcher bar [3].

The direction of the train is decided by the position of the point blades. When a
train approaches, only one side of the point blades are used (see Figure 2.5) along
with one side of the stock rails (see Figure 2.6). When the train passes the crossing
there is a small gap in the rail. To make sure that the train does not derail, there
are Wing rails and Check rails on each side to lead the train in the right direction
[3]. Unless a switch is locked, the direction of the point blades are irrelevant when
a train comes from either the mainline route or the diverging route. The train will
force the point blades in the desired direction [13].

Figure 2.5. Pointblade [3]. Figure 2.6. Stockrail [3].

2.1.3 Train Station

A common system for train stations is called the Route Locking and Sectional Re-
lease System (RLSRS). This means that a train sets an inbound route to the train
station by claiming all the switches necessary to reach the desired platform and the
platform itself. After the train has passed a switch it will release it for other trains
to claim [14].

When a train is near a station the speed is usually very low, because of this the ETCS
described in Section 2.1.1 will behave slightly different. The braking trajectory will
be disregarded because of the short braking distance.

2.1.3.1 Gothenburg Train Station

The Gothenburg train station is the second largest train station in Sweden, serving
27 million passengers per year. Figure 2.7 shows the railway lines leading into the
Gothenburg train station and to the 19 platforms.

5

2. Theoretical Background

Figure 2.7. Gothenburg train station [1].

2.2 Automata
Systems can be modelled and verified using automata (see Definition 1) which are,
simply put, machines that change from one state (often graphically represented by
circles) to another by the means of transitions (often depicted as arrows). A state
symbolises a certain configuration or situation of a system in which specific rules,
policies and physical laws hold. Each transition is associated with an event which
represents an incident that changes the state of the automaton. The initial state,
the state in which an automaton starts in, is indicated by a transition without an
origin [15].

S1 S2

initial state transition

a

state

event

Figure 2.8. An example of an automaton.
Definition 1 An automaton is a tuple A = 〈Q, Σ, δ, q0〉 with

• Q, a finite set of states
• Σ, a finite set of events (i.e. the alphabet)
• δ ⊆ Q × Σ × Q, the transition function which describes, for each state and

event, the next state after a certain event
• q0, the initial state of the automaton

6

2. Theoretical Background

2.2.1 Extended Finite Automata (EFA)
An extended finite automaton works exactly as an automaton, however, has some
more functions in the transitions. While a common automaton has transitions that
can only be associated to events, the EFA can use so called trigger conditions
(guards). When a transition is fired, the EFA can also perform data operations
(actions) [16]. This means that guards and actions can be associated with transi-
tions e.g. a transition can only happen if the guard x == 1 is fulfilled and the action
sets y = 1.

2.2.2 Marked/Forbidden States
A marked state is a state that is desired to be reached e.g. when a certain process
is completed. It can either be graphically represented by a filled-in or a double circle.
On the other hand, a forbidden state is a state which should not be reached and
is graphically represented by a cross going through a circle [15].

2.2.3 (Co-)Reachability
A state is defined as reachable when a path of events from the initial state exists
which leads to that state. If all states in an automaton are reachable, the automaton
is accessible. If there exists a path from a state to the marked state, the state is
coreachable and if all states in an automaton are coreachable, the automaton is
coaccessible. An automaton is said to be trim if it is both accessible and coac-
cessible [15].

In Figure 2.9 the unreachable state (red) is still coreachable because a path to the
marked state (grey) exists. On the other hand the green states are not coreachable
but reachable.

Figure 2.9. Non-reachable (red) and non-coreachable (green) states.

7

2. Theoretical Background

2.2.4 Plants and Specifications
Plants and specifications are two different kinds of automata. Physical systems are
always modelled as plants. The specification is, as the name suggests, one or
more automata, that specifies how the plants are supposed to behave. An example
is a keyboard modelled as a plant. When letter F is pressed the letter F will appear
on the screen. The specification can control in which order and what letter should
appear on the screen [15].

2.2.5 Synthesize and Synchronize
Automata can be synchronized which means, that common events must happen
simultaneously while other, uncommon events, can occur within the restrictions of
the corresponding automaton. Common events occur when the automata have the
same events in their alphabet, see Definition 1. This means that if a common event
press can happen in only one automaton, it cannot occur since it is blocked by the
other automata with the same event press. This feature is often used to control the
behaviour of the plant. A synchronized composition is a representation of all the
synchronized automata combined [15].

A supervisor, also called a controller, is generated by synthesising and it dis-
/enables specific events in the plant. It is devised such that it, together with the
plant, fulfills the specification, meaning, that at least one marked state can be
reached and no deadlock exists without directly restricting uncontrollable events
[15].

2.2.6 Deadlock and Livelock
A deadlock state is a state that has no outgoing transitions and therefore the
automaton cannot execute any other transition. This is not a problem if the dead-
locked state is also a marked state since this is the desired behaviour. On the other
hand, a problem exists if the deadlocked state is not marked since a desired state
cannot be reached. Similarly, a livelock occurs when an automaton is caught in
a loop of unmarked states that it cannot leave [17]. In figures 2.10 and 2.11 the
grey state is a marked state and represents a wanted deadlock while the red states
indicate an unwanted deadlock and a livelock respectively.

Figure 2.10. Automaton with an un-
wanted deadlock (red).

Figure 2.11. Automaton with a live-
lock (red).

8

2. Theoretical Background

Blocking states are states from which a deadlock and a livelock can no longer be
avoided [17]. This means that, if a state’s only transition is to an unwanted deadlock,
livelock or another blocking state, that state is a blocking state as well. Two (or
more) automata are conflicting if, and only if, their synchronous composition is
blocking [15]. An automaton with no blocking state is referred to as non-blocking.

2.2.7 Uncontrollable Events
Physical systems can have uncontrollable events which need to be included in the
plant. An uncontrollable event represents occurrences that the system cannot
avoid or forbid. An example of an uncontrollable event is an opponent’s move in a
tic tac toe game. An uncontrollable state is where an uncontrollable event can
occur in the plant even though the specification does not allow it. If a supervisor
can reach an uncontrollable state, the system is uncontrollable [17].

2.2.8 Non-deterministic Automata
When an automaton cannot determine the end state after a specific sequence of
events, it is referred to as non-deteministic. This normally occurs if there are
multiple initial states or multiple outgoing transitions from the same state to differ-
ent states, labeled by the same event [17].

2.3 Formal Verification
Formal verification is (dis-)proving the correctness of a system, based on a specified
property or formal specification [18]. The most common properties, according to
[19], to verify a state or a particular situation are the following:

• Reachability - can be reached

For example: "x < 1 is always true", "the state S1 can always be reached" or
"x == 1 always holds when in state S1".

• Safety - can never be reached (i.e. the negation of reachability)

For example: "x < 1 can never happen", "memory overflow can never happen"
or "both processes are never in the critical section".

• Liveness - will ultimately occur

For example: "the elevator will arrive eventually, if it is called", "x == 1 will
ultimately be satisfied" or "there will be sunshine after the rain".

• Fairness - will (or not) occur infinitely often

9

2. Theoretical Background

For example: "the door will open infinitely often" or "if something is requested
infinitely often, it will be granted infinitely often".

• Deadlock - no transition is possible (i.e. the system cannot run indefinitely)

2.3.1 The State Space Explosion Problem
The most common problem when trying to verify systems is called the state space
explosion problem. This means that the amount of states to verify will exponentially
grow when adding models. For example: if an automaton has two states, true or
false the total amount of states is 21 = 2. When two of these automata exist, the
states increase to 22 = 4 and for n automata there are 2n states. For n = 21 there
are over a million states and for n = 30 there are over a billion. Now also consider if
the amount of states per automata increases. Say the automaton has true, false
and maybe as states. Then the base changes to 3n and so on. Suddenly n is only
19 for the states to go over a billion. If a system becomes too large, the verification
time will increase to over a lifetime. Therefore, it is important to keep the models
as small as possible.

2.3.2 Verification Algorithms
There are many verification algorithms based on the automata theory, however, only
the ones used are introduced here.

2.3.2.1 Monolithic

The monolithic algorithm verifies the model as whole without reducing it. This
means that every state is checked for the specified property [17].

2.3.2.2 Compositional

One of the algorithms is called "Compositional" and can be used to verify nonblock-
ing. Therefore the controllability of the events is unimportant so that specifications
can be regarded as plants. One benefit of this algorithm is how it deals with state
space explosion by using the monolithic approach and abstracting at each step.
Before synchronizing, all components are abstracted and then composed [20].

2.3.2.3 Partial Order

In order to understand this algorithm, it is important to define both independence
and ample sets. The relation between events is known as independence and is used to
identify redundant states in order to eliminate them. Ample sets are obtained when
reducing automata and including the enabled transitions which are further used for
synchronous composition. The algorithms vary depending on if controllability or
conflict check are being conducted. Controllability is checked at every state before
determining the ample set. Nonblocking requires the whole synchronized automaton
to confirm that all reachable states reach the marked states [21].

10

2. Theoretical Background

2.3.3 Temporal Logic
Some tools, like UPPAAL, use temporal logic to specify properties for verification.
By using the logical operators,

AND ∧
OR ∨
NOT ¬
IMPLIES →
EQUIV ALENT TO ↔

combined with the new temporal logic operators,

ALWAY S �

EV ENTUALLY ♦

NEXT ©
UNTIL U

it is possible to specify different properties.

Consider a system describing an elevator, temporal logic can be used to specify
desired properties. When a person presses a button the elevator is supposed to
arrive at that floor at some point in time. This can be specified as:

BUTTON2→ ♦FLOOR2

If this expression is true, the elevator will eventually arrive at the second floor if
someone has pressed the button. This means that, from a state where the button
for the second floor has been pressed, a state where the elevator is at the second
floor will eventually be reached. This statement does not cover everything though.
It is important to know that it was not a coincidence that the elevator arrived at
the second floor. One has to make sure that every time the button is pressed, the
elevator will arrive. Therefore the specification is changed to:

�(BUTTON2→ ♦FLOOR2)

Next, if someone presses a button, the light should be lit until the elevator reaches
that floor.

�(BUTTON2→ LIGHT2 U FLOOR2)

or both statements can be combined to:

�(BUTTON2→ (♦FLOOR2 ∧ (LIGHT2 U FLOOR2)))

Lets say that the elevator has a priority floor five and when that button is pressed
it will immediately head to that floor. This can be expressed as:

�(BUTTON5→©TO5)

11

2. Theoretical Background

There are two more well known expressions in temporal logic which are the two
combinations between � and ♦. �♦ means that something always eventually will
happen, this can be translated to repeatedly. ♦� on the other hand means that
at some point in time something will stay the same forever. This can be translated
to persistently.

12

3
TOOLS

The following chapter describes the software tools used to model and verify the
train station: Supremica and UPPAAL. Lastly, these tools are compared to other
available tools.

3.1 Supremica
Supremica is a software tool for modeling and manipulating discrete event systems
in the form of Finite Automata and Extended Finite Automata. The tool is jointly
developed by Chalmers University of Technology in Gothenburg, Sweden, and the
University of Waikato, Hamilton, New Zeeland. Supremica is a merge between what
was originally a tool mainly focused at editing and simulating automata, called
Waters (Waikato Analysis Tool for Events in Reactive Systems), and the original
Supremica which had no real user interface. Though the two tools slowly merge into
the Waters/Supremica tool kit, the old heritage still shines through in the three
tabs, Editor, Simulator and Analyzer. Supremica implements state-of-the-art al-
gorithms for verifying properties, and synthesizing supervisors for systems of huge
state-spaces [20] [21] [22].

Figure 3.1 shows Supremica’s GUI after starting the program. The menu-bar can be
seen at the top with a shortcut menu underneath. The main tabs, Editor, Simulator
and Analyser, are located to the left with each have sub-tabs described later on.
At the bottom a console can be found which gives information to the program
itself, summarizes the results from the analyser, states bad traces and much more.
Currently, the Editor and the Components tab are active which allows editing of
automata in the "New Module" section when created.

Figure 3.1. Supremicas GUI.
13

3. Tools

3.1.1 Editor
The tabs "Definitions", "Components" and "Events" belong to the "Editor"-tab. Con-
stants and aliases are created in "Definitions" while plants, specifications and vari-
ables are defined in "Components" and events are created and edited in "Events".

3.1.1.1 Definitions

When using a value multiple times or to keep the model neat, it is important to use
constants. Constants are created by defining a name and an expression, see Figure
3.2. This expression can either be a number or an array, for example, a number
range (e.g. 0..3) or a set in hard brackets (e.g. [apple] or [apple, pear]).

Figure 3.2. Example: constant and alias in Supremica.
A possibility to reduce large amounts of events on a transition is to use aliases.
Aliases are a collection of events. One way to group multiple events is to have the
box "Use simple expression" unchecked and the events can be pulled into the alias
as seen in Figure 3.2. The alias then can be dragged onto the desired transition.
Note that all events in the alias do not happen simultaneously but rather one of the
events triggers the transition. Another possibility is to keep the box checked and
use foreach-loops, see Section 3.1.1.3.

3.1.1.2 Components

The components section is where the plants, specifications and variables are created.
Plants and specifications are created by using Supremica’s Graphical User Interface
(GUI) where states can be added and transitions can be created by dragging ar-
rows between the states. Events are created in the events tab and dragged onto
the transitions. By right clicking on the states it is possible to define the states as
initial, marked or forbidden. Guards and actions can be added to a transition by
right clicking it and selecting "Edge Properties...".

Variables are very useful because the value can be used as a guard and changed with
an action. When adding a variable, the name, type and initial value are defined.
The type can either be a number range (e.g. 0..3) or a set in hard brackets (e.g.
[busy, ready]). The initial value is defined by a logical expression, like var == 0 or
var == busy|var == ready for multiple initial values.

14

3. Tools

It is possible to add a Blocked Events List to an automaton by right-clicking on
the editor section of a component and choosing "Add Blocked Events List". Next,
drag in all appropriate events. If the list is added to a plant, the events are disabled
and cannot occur. If the list is added to the specification, the events are not allowed
to happen however could, if they are uncontrollable.

3.1.1.3 Foreach Block

Supremica offers the possibility to create several instances of a specification, plant,
constant, alias and variable by using a foreach-block. Such a block is initiated by
defining the counter variable (e.g. i), its range (e.g. 0..10) and optionally a guard
as a Boolean expression (e.g. i == 4). The guard only allows the transition to oc-
cur when i has the value four. When a plant/constant/specification/variable/alias
is defined, the same counter variable is added to the name in hard brackets (e.g.
test[i]) (see figures 3.3 and 3.4).

Figure 3.3. Example: Creating a
foreach-loop in Supremica.

Figure 3.4. Example: finished foreach-
loops in Supremica.

3.1.1.4 Events as Arrays

Events can be defined as an array by going to "more options" when adding a new
event and defining one or several array ranges. Figure 3.5 shows an event called test
which is an array of the size 3 × 5 × 6. When adding this event to a specification
or plant, the event appears in the local event column between the global events and
current plant/specification as seen in Figure 3.6. If no specific position in the array
is defined (e.g. test), it means that all events are on the transition. Therefore,
in order to define a specific event, one must add hard brackets defining the exact
position by renaming the local event (e.g. test[1][3][2]). When using foreach-blocks,
numbers can be replaced by appropriate counter variables.

15

3. Tools

Figure 3.5. Example: Creating an
event as an array in Supremica.

Figure 3.6. Example: Including array
events in Supremica.

3.1.2 Verify Menu

There already exists the possibility to verify in the editor by using the checks avail-
able under the "verify" menu. The checks are for conflict and controllability. The
conflict check makes sure that all states can reach a marked state and that no
forbidden states can be reached. The controllability check makes sure that
no uncontrollable state can be reached. Different algorithms/factories are available
when checking and can be chosen under Configure -> Options -> gui.analyser
-> Model verifier factory used by Editor’s Verify menu. Not every check
is available for every factory and therefore one might need to change factory depend-
ing on the check and on the size of the model. Some of the factories/algorithms in
the tool are explained in Section 2.3.2.

3.1.3 Simulator

The simulator is very useful to do basic debugging and verification. The event-tab
shows all events, if these are possible and why (see Figure 3.8) and by double clicking
on the event, the according transitions are fired. The trace is saved and shown in
the trace-tab (seen in Figure 3.7) where it is also possible to go back to a certain
situation. In the Automata-tab all the plants and specifications are listed (see Figure
3.9) which are opened by double clicking and show the current state they are in.

Figure 3.7. Example: Trace when Simulating.

16

3. Tools

Figure 3.8. Example: Events in the
Simulator.

Figure 3.9. Example: Components
shown in Simulator.

3.1.4 Analyser
In the analyzer, the plants and the specifications can be synchronized, synthesized
and verified. They can also be graphically layed out, automatically, if the Graphviz
[23] visualization package is installed. Note that Supremica currently only works
with the Graphviz 2.28 version. When clicking the analyzer or the simulator, the
plants and specifications are translated into objects by the compiler, if no errors
exist.

3.1.4.1 Verify

To verify a system one must choose the plant(s), specification(s) and/or supervisor(s)
which should be verified, right click and click "Verify". It is then possible to choose
which property to verify, e.g. blocking, controllable and which algorithm to verify
with. Also, if the property is not satisfied, a trace to a bad state can be generated
by checking the "Show trace to bad states"-box. It is shown in the console and is
the combination of events (string) that results in a state not satisfying the property.
An example is a trace to a deadlocked state when trying to verify for non-blocking.

3.1.4.2 Find States

It is possible to find states in either a plant, specification or supervisor. This is
useful for manual verification in order to check if a specific state does or does not
exist. Under Find States -> Free Form it is possible to determine the state or
a composition of states which should be checked using a specific syntax based on
regular expressions.

The expression should start and end with .* where the dot symbolises "any sign"
and the star "combination", thus together forming "any combination of signs". It is

17

3. Tools

possible to use an | (or-sign) and [1−3] (range 1−3). For example, .*S[1−3] | S5.*,
where states with the state-labels S1, S2, S3 or state S5 are searched for.

3.1.5 Opening Files in Other Programs
It is possible to open and change the content of the .wmod files using any XML-
aware editor, like MS Excel. This is extremely useful when wanting to use "Find &
Replace" and it opens up many possibilities for the user but is also advanced.

3.1.6 Common Problems
When modelling with Supremica there are some problems which arise frequently.
Therefore some solutions to these common problems are presented.

3.1.6.1 Increasing the Memory

When starting Supremica, the program shows the amount of memory as a second
INFO string as seen in Figure 3.10. To increase the memory in Supremica, the
memory of the Java machine has to be increased. This is done in Windows by
creating a text file named "Supremica.bat" in Supremica/dist with the following
content:

Java −Xms1024m −Xmx1024m −j a r Supremica . j a r

with −Xms being the initial memory, −Xmx the maximum amount of memory
and m the amount of megabyte. Note that all numbers have to be factors of 1024.
If it is not possible to save the *.bat file, include the full path of Supremica (right-
click Supremica.jar -> Properties -> Location:) and paste it before "Suprem-
ica.jar" in the file.

Figure 3.10. Example: Memory available.
If this does not work, it is possible to use the "Waters"-Supremica edition.

3.1.6.2 (Non-)Deterministic Variables

Supremica handles the variables non-deterministic by default. This means, that if
their value is not specified for a transition, all values are possible. In order to change
this, the following options need to be changed: In Configure -> Options, activate
Use normalizing EFSM compiler and deactivate Use per-event alphabet when
compiling EFSM. If this option is not available, a more recent Supremica version
has to be used.

18

3. Tools

3.1.6.3 "Event removed due to Optimisation"

Supremica has an optimisation algorithm to reduce the amount of time when com-
piling. Due to this, events might be removed and therefore cannot be triggered in
the simulation and appear in light gray. If this optimisation is not wanted, go to
Configure -> Options -> gui and remove the tick at "Remove redundant events,
transitions, and components when compiling".

If this does not solve the problem, consider if the events are unable to fire due to
the guard always being false. Consider the following example: a variable is defined
as platform=[ready, busy, train] and on a transition in a plant the platform is
set to train. This is not a problem, however the plant is in a foreach-loop with the
variable train being the counter variable ranging from 1 − 5. Therefore, when the
platform is set to train, it is actually set to a value instead. When platform on a
transition is then checked for being either ready, busy or train it will never be true
because platform is a value.

3.1.6.4 "State encoding requires x bits, 64 is the maximum!"

When using Verify -> Conflict/Controllability Check the amount of bits needed
can extend the maximum of 64 bits. In order to solve this, a different model veri-
fier factory/algorithm is used. This can be changed at Configure -> Options ->
gui.analyzer -> Model verifier factory used by Editor’s Verify menu. The
factories Native, PartialOrder, BDD, TRCompositional and Compositional have
no limitations as to the number of bits. Note that this only works on Windows be-
cause dynamic link libraries must be available. Also, not all algorithms support
other checks and therefore if another kind of check (e.g. controllability check) is
done the algorithm might need to be changed again.

19

3. Tools

3.2 UPPAAL

UPPAAL was developed by the Uppsala University in Sweden and the Aalborg Uni-
versity in Denmark and was first released in 1995. It is used to model, simulate and
verify real-time systems and has a friendly GUI. Drawbacks include that UPPAAL
uses binary synchronisation, which can be restrictive [19]. UPPAAL does not work
with plants or specifications however rather with parametrized templates, where in
each an automaton is created and local declarations are defined. It does not distin-
guish between controllable and uncontrollable events.

UPPAAL’s GUI when starting the program is shown in Figure 3.11. At the top, a
menu-bar, some shortcuts and the main tabs Editor, Simulator, ConcreteSimulator,
Verifier and Yggdrasil can be found. Currently, in the Editor tab, the current
project with the global declarations, a template and the system declarations is seen
on the left. To the right the name and parameters of the template are defined while
underneath, where an automaton is edited, an initial state of an automaton can be
seen. At the bottom, after compilation, the position and description of errors are
displayed.

Figure 3.11. UPPAAL’s GUI.

3.2.1 Editor

Under the editor-tab, it is possible to define global declarations ("Declarations"),
insert Templates in which the automata are defined (Edit -> Insert Template)
and to declare the systems ("System declarations"). The local declarations of the
template can be found when expanding the system.

20

3. Tools

3.2.1.1 Declarations

The syntax for both local and global declarations are equivalent and can be used to
define bounded integers (max range is [−32768, 32767]), channels, arrays, records,
clocks, types and methods. As in programming languages, variables can be read,
written and used for simple arithmetic operations [4]. Listing 3.1 shows and explains
the syntax for common declarations. All clocks (global or local) progress in the same
pace and are very important for the verification of real-time systems.

Listing 3.1. Syntax for Declarations in UPPAAL.
const int a = 2; // constant integer with value 2
bool b[5], c[3]; // two boolean arrays with 5 and 3 elements
int [0, 4] d = 2; // integer variable with range 0 to 4 initialised to 2
int e[2][3] = {{1,2,3}, {4,5,6}}; // multidimensional array with set size and initialised
clock f , g; // clocks f and g
chan h; // channel h
struct { int i ; bool j ;} s1 = {2, true}; // a struct where members i and j are initiated

typedef int [1, nTrain] train_t ; // integer set train_t of size 1 to nTrain

To create multiple instances of a system, one needs to first use typedef to create a
set (e.g. typedef int[1, nTrain] train_t) and add the set (e.g. const train_t id) to
the parameters of the template. The variable id can then be added to the channels,
variables, etc (if they were initiated appropriately e.g. chan h[train_t]).

There is the possibility to define methods which can be used as guards or assign-
ments. For a method to act as a guard, it has to return a value or true/false
(i.e. declared as a int or bool), otherwise it is defined as a void to be used as an
assignment.

Listing 3.2 shows an example method with a for-loop and an if-then-else-statement
to show the required syntax.

Listing 3.2. Syntax for a for-loop and an if-then-else-statement in UPPAAL.
void example(){

if (x == k){
y = 7;

}else{
y = 5;};

for(i = 1; i <= k; i ++){
z[i] = 1;};

}

For communication between sub-systems, channels are used. There are three differ-
ent kinds of channels: normal, urgent and broadcast (see Listing 3.3). The normal

21

3. Tools

channel works as handshaking i.e. one channel sends and one receives. The send-
ing channel is written with an exclamation mark a! while the receiver is indicated
with a question mark a?. Notice that expressions are first updated on the sending
transition and then on the receiving.

There are two kinds of sending channels: normal channel and broadcast channel.
When the normal channel send a signal only one, randomly selected, receiving chan-
nel will listen and fire. If the signal on the channel cannot be received, it cannot be
sent. A broadcast channel has one sender and multiple receivers, however the sender
is indifferent to whether a receiver is listening. Important is that no clocks can be
used as guards on receiving transitions and updates for the receiving channels are
executed from left-to-right of the processes defined in the system definition.

Listing 3.3. Syntax to Initialise Channels in UPPAAL.
chan a;
urgent chan b;
broadcast chan c;

When a state is reached with an urgent channel leading away from this state, the
transition is enabled without delay. Only other transitions which require no time to
pass may be executed first. Clocks may not be used as guards on either sending or
receiving transitions.

In global declarations it is possible to prioritise channels, for example with chan
priority a < b, c; where channel a has a lower priority than b and c. Similarly,
systems are prioritised in the system declarations with, for example, system P <
Q, R; where system P has a lower priority than Q and R [24].

3.2.1.2 Templates

When editing locations/states there is a Location, Comments and Test Code-tab.
In Location, the name can be defined and an invariant added. An "Invariant" is a
condition which has to be fulfilled before the state can be left. As seen in Figure
3.12, an invariant can be x < 3 with x being a clock. This means, that the state
has to change before the clock reaches the value 3. The idea behind the "Rate of
Exponential" is that when the delay has no upper bound (i.e. no invariant present),
a concrete delay is chosen which is based on the exponential probability distribution.
For example, if a rate of 4 is chosen this means that the average delay will be 1

4 time
units. The rate is proportional to how active the process is [24].

22

3. Tools

Figure 3.12. Example of a Location / State.
States can be defined as "Initial" and "Urgent" or "Committed". When a state is
"Urgent", indicated with a "U" in the state, time pauses and the state must be left
before the time continues. Therefore, only transitions which are time-independent
are possible. Time also pauses in a "Committed" state, indicated with a "C" in the
state, however only the transitions outgoing from that state are allowed. This is
very useful for creating atomic sequences. Note that if multiple states are commit-
ted simultaneously, they will interleave [6]. Every template must have an initial
state which is indicated with a double circle.

There are several possible labels for a transition: select, guard, sync and update.
In select it is possible to create a local (i.e. for only the transition) variable or
number. For example test : int[1, 5] generates a random natural number between
and including 1 and 5 and saves it in the local variable test. A guard is an expres-
sion which has to be fulfilled in order for the transition to be taken e.g. test == 2.
The next label is sync which is short for synchronise and refers to the signal on the
channel which should be sent or received . Lastly, the update assigns a value to a
variable e.g. test = 5. Table 3.1 shows the colors the labels are represented by in
UPPAAL. This increases the readability and understanding of the functionality of
the transitions.

select light brown
guard green
sync light blue

update dark blue
Table 3.1. Colorcoding of the Transition Labels in UPPAAL.

Figure 3.13 shows an example edge label. A local, random number i (1 or 2) is
generated and then the guard i == 2 & j == 3 is tested where j is a global variable
declared in another automaton. If this guard is true, the channel test! is sent and

23

3. Tools

the value of the global variables y and j are assigned appropriately.

Figure 3.13. Example Edge Label in UPPAAL.
It is possible, by using a trick, to have an urgent transition using an urgent channel.
This is done with a one-state automaton with a self-loop with the urgent channel
and receiving this channel with a guard on the transition which should be urgent
(see Figure 3.14).

Figure 3.14. Example Urgent Transition in UPPAAL.

3.2.1.3 System Declarations

In System Declarations, the processes and templates which UPPAAL should con-
sider need to be defined. The first example in Listing 3.4 shows how one declares the
systems, the second shows how to create two processes identical to the template A().

Listing 3.4. Syntax System Declarations in UPPAAL.
system test1, test2;

// Creating Identical processes with one template
P1 = A();
P2 = A();
system P1, P2;

It is possible to declare a template as dynamic if it should be dynamically spawned.
Parameters are limited to pass-by-value parameters or broadcasts channels. These
templates are spawned by any other template with a transition with the update
spawnN where N is the dynamic template name. The dynamic templates end
themselves with the update exit().

24

3. Tools

3.2.2 Simulator
There are two available simulators: normal and concrete. The difference is that the
concrete simulator includes time in the simulation. Figure 3.15 shows an example of
the normal simulator. The section Enabled Transitions shows all possible transi-
tions while Simulation Trace documents the transitions taken. The column in the
middle shows the values of all local and global variables. All automata are shown
in the section to the right, where the current states are marked red. The current
transition choice is also indicated by a red transition in the corresponding automata.
In the bottom right section, a trace shows the states the automata were in, based
on the transitions taken.

Figure 3.15. Example of the normal simulator in UPPAAL.
When choosing the transitions in the concrete simulator, the point of time in which
the transition fires is defined by where the user clicks when activating the transition
(see Figure 3.16). The exact time is shown under delay while the total simulation
time can be seen in the simulation trace. The transitions may have different colors
at different time spans. Red indicates that the transition should not, due to restric-
tions, be taken during that time. When green, the transition can be taken without
violating any guards. If no color is present, the transition has to be taken before or
after a specific time.

25

3. Tools

Figure 3.16. Example of choosing a transition in the concrete simulator in
UPPAAL.

It is possible to use a Gantt chart to illustrate start and end times of processes,
however it must first be defined in the system declarations. The line labels and the
colors with the corresponding states need to be defined, as seen in Listing 3.5. For
the systems switch(1) and all instances of model, some colors, depending on the
current states are defined [24].

Listing 3.5. Example of Gantt Chart declaration in UPPAAL [24].
gantt{

switch(1):
Switch(1).Busy −> 0; // red
Switch(1).Ready −> 1; // green

model(i:id):
Model(i). S1 −> 2; // blue
Model(i). S2 −> 3; // magenta

}

3.2.3 Verifier
The verifier is used, as the name suggests, to verify the system. This is done by
defining an appropriate logical expression in the Query-field, seen in Figure 3.17.
Table 3.2 shows a summary of the queries available and which property they can be
used to verify, while Figure 3.18 illustrates the queries. The yellow states are the
states fulfilling φ and the dotted line is to illustrate that the path can be in livelock
as long as the property is still fulfilled. A very useful property is A[] not deadlock,
which tests for deadlocks. deadlock is expressed using a special state formula built
into UPPAAL. If the query is proven to be true a button lights green, otherwise red
(see Figure 3.17). When using abstraction and choosing specific options, the verifier
may determine that the property is maybe satisfied which means, that due to the
approximations the verifier cannot determine true or false [4].

It is possible to see which trace caused a query to result negatively. This is done
by defining if some, the shortest or the fastest trace should be shown in the
simulator under Options and then Diagnostic Trace.

26

3. Tools

Figure 3.17. Example of the Verifier.

Figure 3.18. Query Language Illustrated [4].

Expression Definition Property
A[] φ for all paths φ always holds Safety

E<> φ there exists a path where φ eventually holds Reachability
Ψ−− > φ whenever Ψ holds φ will eventually hold Liveness
A<> φ for all paths φ will eventually hold Liveness
E[] φ there exists a path where φ always holds Safety

Table 3.2. Query language with Ψ and φ as state formula expressions in UP-
PAAL [6].

27

3. Tools

3.2.4 YGGdrasil
YGGdrasil is used for offline testing. With an input of a deterministic model with
no deadlocks, it generates traces from the model and converts them into test code.
The traces are generated in three steps: Query file, Depth Search and Single
step.

In Query file the input file in the Verifier is checked for reachability queries
which are then executed. The resulting traces are used in Depth Search to perform
a random depth first search. When no more coverage of the edges is possible, Single
step checks the remaining edges [6].

3.2.5 Memory Issues
When verifying large models in UPPAAL, an error message may appear that states
"Exhausted memory" and a link, see [25]. The memory is exhausted because of the
state space explosion problem mentioned in Section 2.3.1. The link leads to a home-
page with a conversation about this issue explaining that UPPAAL runs on 32-bit.
This means that the maximum memory capacity of UPPAAL is 4GB of RAM.

There are multiple ways to reduce the size of the model:
• Reduce the amount of clocks
• Use committed states
• Reduce the amount of variables and decrease their specified range
• Avoid unbounded loops on integers

3.3 Additional Software Tools
There are multiple software tools which allow modelling and verification of systems.
Table 3.3 summarises some of the features of the tools described below.

Symbolic Model Verifier (SMV) was developed at the Carnegie-Mellow University
in Pittsburgh, USA, by K. L. McMillan under the guidance of E. M. Clarke. Due to
the binary decision diagram (BDD) technology, it can verify very large systems. The
input to the automata is based on shared variables and the automata are described
textually. When verifying, a counter example is given if the property is not fulfilled
[19]. There are two kinds of automata which can be modelled: a synchronous Mealy
machine or an asynchronous network of abstract, nondeterministic processes. Both
finite (scalars, booleans, and fixed arrays) and static, structured data types can be
used [26].

An extension of SMV is the NuSMV2 which is an open source project and was devel-
oped by the University of Trento, University of Genova, Carnegie Mellon University
and FBK-IRST. It combines BDD-based with SAT-based model checking and works
with both synchronous and asynchronous finite state systems. Specifications can be
done using Computational Tree Logic (CTL) and Linear Temporal Logic (LTL)

28

3. Tools

while heuristics partially control the state space explosion. A textual interface and
a batch mode are available to the user. There are three possible simulation strate-
gies: deterministic, random and interactive [27].

G. J. Holzmann at Bell Labs (Murray Hill, New Jersey, USA) developed the tool
SPIN to simulate and verify distributed algorithms. Modelling is done with SPIN’s
specification language called Promela which can be compared to C programming
with a few communication primitives. Communication between the processes is
done using FIFO (First-In-First-Out), shared variables or rendez-vous. One of its
key features are the available state space reduction methods: state compression,
on-the-fly verification and hashing techniques [19].

VERIMAG developed the tool KRONOS which is used to analyse timed automata.
Its model checking algorithm for timed temporal logic allows the verification of live-
ness properties. KRONOS is more for advanced users and has neither a simulator
nor a GUI [19].

HYTECH was developed at the Cornell University and improved by the University
of California, USA. It is used to analyse linear, hybrid automata which are imple-
mented textually. HYTECH is the only tool handling parametric models which is
useful for the design and verification of systems. There is no available simulator or
verification using temporal logic and it can only handle small systems [19].

Tool Simulator System Size GUI Counter Example
SMV no large no yes

NuSMV2 yes large no yes
SPIN yes large yes unknown

UPPAAL yes small yes yes
KRONOS no small no unknown
HYTECH no small no no
Supremica yes large yes yes
Table 3.3. Comparing Modelling and Verification Software Tools.

29

3. Tools

30

4
MODELLING

This chapter first describes how the model of the train station was simplified and
then modeled. Two different approaches are modelled in UPPAAL and four in
Supremica.

4.1 Simplification
The model of Gothenburg train station with 28 switches is large (see Figure 4.1) and
therefore, in order to save time during the development phase, a smaller template
model of the train station is initially used (see Figure 4.2). The train starts by enter-
ing from a line (circles without numbers) and then, depending on the specification,
it arrives at the designated platform (squares). To do this, the train travels through
switches (circles with numbers) that decide the direction for the train. Keep in mind
that the train is using the RLSRS system described in Section 2.1.3. Therefore, the
models created both for UPPAAL and Supremica will have a similar structure and
some similar ideas.

1

2

10

11

3

14

12

13

4

5

7

6

8

21

9

17

18 16

1519

22

23

24

25

26

27

28

18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 219 1

20

L3 L2

L1

Figure 4.1. An overview of the train station.

31

4. Modelling

1
2

3

5

4

6

15 4 3 2

Figure 4.2. An overview of the simplified train station.

When creating switches, platforms and models of the train station, one model/-
variable is made and duplicated depending on the amount of switches, platforms
and trains respectively. In Supremica this is done with foreach-loops while in UP-
PAAL the appropriate parameters are given to the template as explained in Section
3.2.1.1.

4.2 UPPAAL

There are multiple ways to implement the automata to create a model describing
the system. To show UPPAALs features, one approach will use a lot of UPPAALs
different functionalities while the other approach will be more standard automata
theoretic.

4.2.1 Approach 1: Standard approach

The first idea is to use the theory described in Section 2.2 rather than to exploit
UPPAALs specific features.

4.2.1.1 Switches and Platforms

The switches are modelled as two 2-state automata, one for direction and one for
their occupancy, see Figure 4.3. The switch can be either ready or busy and left
or right. The platform is described by one 2-state automaton that has the states
ready or busy. The channels are defined as receivers and the template parameter
[id] is defined for the amount of models needed (trains, platforms, switches) as
described in Section 3.2.1.1.

32

4. Modelling

Figure 4.3. A 2-state automaton describing a switch occupancy - Approach 1.

4.2.1.2 The Trainmaker

Next an automaton that creates trains, defines a line and a platform is created, the
trainmaker. By adding several outgoing transitions with different sending chan-
nels from a state, the model randomly selects a channel representing the incoming
line. The trainmaker can only generate a new train and path if the maximum
number of trains for the system has not been reached and all platforms are not oc-
cupied. The trainmaker also decides when a train is allowed to leave its platform,
which can only happen if there is a train at any platform. Therefore, the variables
trainsAtPlatform and trainsInModel are created. When the trainmaker asks
for a train, it will determine which path the train should take. After that, it waits
for a confirmation coming from the specification that a train has started to move
until it allows another train to be created, see Figure 4.4.

Figure 4.4. A trainmaker model with 2 lines and 2 platforms both for in and
outgoing trains - Approach 1.

One specification is created for every possible line to platform combination. The
trainmaker automaton sends a random line and platform combination using chan-
nels and only the appropriate specification listens and is allowed to execute. The
use of broadcasted channels in the trainmaker and the selection of the route as
shown in Figure 4.5 is done in various steps:

1. The trainmaker randomly determines that a train wants to enter the station,
assuming the maximum amount of trains in the model has not been exceeded.
It then randomly chooses from which line this train comes from, e.g. from line
1.

2. Due to the channel fromLine1! being broadcasted, all the listening receivers
transition to their next state.

3. Next a platform is chosen, in this case platform 1, firing toPlat1! which only
one specification listens to because no other specification fits this combination
of line and platform.

33

4. Modelling

4. The last step is to return the specifications that listened to the broadcasted
event fromLine1! to their initial state. This is done by adding the broad-
casted channel confirm confirming that an automaton has fulfilled the chan-
nels from trainmaker going from line 1 to platform 1. Therefore, all except
that automaton, are back at their initial state and a train is added to the
model.

Figure 4.5. Steps taken in two specifications when the trainmaker creates a
train coming from line one to platform one - Approach 1.

Observe that every step of this process is committed, meaning that the choice of
path is done undisturbed from other channels. The same kind of process happens
when the trainmaker asks a train to leave its platform.

4.2.1.3 Specification

After a route is selected, the model checks if the switches required are available.
When using automata for the switches’ occupancy, it is not possible to change all
the switches simultaneously. However, by using committed states, it is possible to
simulate this change from the model’s point of view. The problem when using only
automata is that the model becomes messy and large, as seen in Figure 4.6. The
model checks the availability of the switches separately by using the channel that
sets the switch to busy. Due to the property of the channels, the transition can
only happen if the receiver accepts the channel. Therefore, the transition cannot
happen if the switch is already busy. If a route has many switches, it could occur
that all the switches except the last are busy, this means that the model has to set
the other switches back to ready again. If all the switches are ready, the direction
of the switch will have to be changed in several events as well.

34

4. Modelling

Figure 4.6. The specification of a train using 3 switches with switches and
directions as automata - Approach 1.

In order to reduce the model, the automata for the direction and the occupancy of
the switches are removed and replaced by variables (seen in Figure 4.7). When a
route has been selected, the specification checks if the switches required are available,
sets them to busy and their directions accordingly. To avoid similar problems later
on the platform is also changed to a variable.

Figure 4.7. Three switch specification using variables - Approach 1.

4.2.1.4 Model of the Train Station

The model of the train station is built-up as explained in Section 4.1. Every state has
two outgoing transitions with the direction of the switch as a guard (see Figure 4.8).
When transitioning, the switch left by the train becomes ready. An automaton can
only have one active state at a time so that a model of the train station is created for
the amount of trains. Therefore it is necessary to ensure that a specification cannot
initiate more than one model of the train station by using UPPAALs channel system.
As described in Section 3.2.1.1, a normal signal is only received by one receiver. The
channel in! is a normal channel so that only one of the models listens and initiates
as shown in Figure 4.9. If in! was a broadcasted channel, it would trigger all the
available models of the train stations and all trains would want to go simultaneously.

When the trainmaker sends a signal fromlineX! (where X is the number of the
line) that decides from which line the train will come, the model of the train station
receives the signal and positions the train to enter the station. Then the model of
the train station listens to the chosen specification goLineX? to allow the train to
start moving towards the desired platform. This will only happen when all required
switches are ready.

35

4. Modelling

Figure 4.8. The model for incoming trains - Approach 1.

Figure 4.9. A description of how the model receives an incoming train - Approach
1.

There is also a model of the train station for the outgoing direction which is similar
to the inbound model of the train station, and uses the same occupancy variables
for the switches and platforms. Regarding the direction of the switches, a new vari-
able outDirection is introduced that describes the direction a train should take to
reach its desired line. Observe that the inbound switch direction does not affect the
outgoing train as explained in Section 2.1.2.

When a train has reached a platform the variable trainsAtPlatform increases which
allows the trainmaker to send the signal out! on the channel. When this happens,
the specifications for the outgoing trains are initiated the same way as described in
Figure 4.5. The only difference is that, when the train has left the station, all the
models of the train stations have to be back at their initial state so that a new train
can enter.

In order to do this both models of the of the train stations are affected by the spec-
ification: The inbound model is moved to a temporary state until the train leaves
the system and then returns to its initial state. The outbound model gets triggered
to move the train to its destination and then also goes back to the initial state
as its final step. The trainmaker and the switches allow the specification to fire

36

4. Modelling

goPlatX!. This moves the inbound model to its temporary state and immediately
after, the channel leavePlatX! fires, allowing the outbound model to initiate, see
figures 4.10, 4.11 and 4.12. When the train leaves the last switch towards a line, a
channel gone! fires and resets both models back to their initial state, see Figure 4.13.

Figure 4.10. When switches are ready both goPlat! and leavePlat! will
happen at the same time - Approach 1.

Figure 4.11. goPlat sets the inbound
model of the train station in a temp-
state waiting for gone - Approach 1.

Figure 4.12. leavePlat starts the
train in the oubound model of the train
station - Approach 1.

Figure 4.13. The outmodel of the train station is done and immediately fires
gone - Approach 1.

37

4. Modelling

Due to the platform being busy when a train arrives, the trainmaker tells many
trains to head for the same platform. This is not a desired behaviour because another
train should not select a platform which a train is already heading to. To avoid this,
the variables arriving and leaving are introduced. When the trainmaker selects
a platform for a train, another train cannot be assigned to the same platform until
that train has started to leave the station. Similarly, if a train is already leaving a
certain platform, the trainmaker cannot request a train to leave that platform (see
Figure 4.14).

Figure 4.14. The complete trainmaker with two lines in and five platforms -
Approach 1.

4.2.1.5 Reducing the Model of the Train Station

Due to the memory issues in UPPAAL described in Section 3.2.5, verification is not
possible and some changes have to be made. Instead of having the intended five
trains they are now reduced to two trains, however, the model is still too large.

To further reduce states, the in- and outbound model of the train station are com-
bined. The same system as described above is used but the channel gone! is no
longer needed because the model of the train station is already at its initial state
when the train leaves the last switch. An additional variable trainDir is introduced
to ensure that the train reaches the platform before leaving, see Figure 4.15.

Figure 4.15. The in- and out-model of the train station combined with the
trainDir variable implemented - Approach 1.

38

4. Modelling

4.2.2 Approach 2: Using UPPAALs Programming Features
The next idea is based on Section 4.2.1 and therefore only the differences between
the models are described. The main difference is that the programming features
UPPAAL offers are used to check if a train is at a platform and to block the path
the train will take. The switches, their directions and the platforms are immediately
modelled as variables and only one model of the train station exists for both in- and
outbound trains.

The variable switch[id] describes the behaviour of switch number id and the direc-
tion of the switch is given by the variable direction[id]. To describe the platforms,
two variables are also needed. The variable rPlatform[nPlatforms] is 0 when the
platform is free and 2 when busy, so there is no need to request the platform. The
other variable implemented is the boolean platform[nTrains][nPlatforms] which
saves if a train is at a specific platform.

Due to only having one model of the train station per train, the variable In is created
and works identically as the variable trainDir from the previous model.

4.2.2.1 Request and RequestOut

Instead of having an automaton trainmaker, the automata Request and RequestOut
are used to determine which line and platform should be used and to request the
switches. There exist one automaton Request and RequestOut per train. Figure
4.16 shows that if the maximum number of trains in the model has not been reached,
a random integer between 1 and nLines (number of lines) is generated and saved
in the local variable randomPath while the amount of trains is increased. Immedi-
ately, another random integer between 1 and nP latforms (number of platforms) is
generated and saved in randomPath. Instantly, the method choosePath() (seen in
Listing 4.1 for two lines and two platforms) checks if the appropriate switches and
platforms are free. If they are, they are requested (i.e. switch[id] = 1) and the
directions are set appropriately with the variable direction[id].

Figure 4.16. Automaton Request Version 1 - Approach 2.
In order to avoid a deadlock when the required switches or platforms are not free,
the variable move and a self-loop are implemented, seen in Figure 4.17. If the path
is possible, the variable is set to 1 (i.e. move == 1). If not, the variable stays 0 and

39

4. Modelling

the self-loop continues until the path is available.

The next problem is that a new request for that train can happen before the train
has been in the station or gone out. Therefore, the channel gone is implemented
which sets the automaton to the initial state when the train is available again. Also,
the last step is to add the counter const nTrain_t id in the parameters of the
template and id in the appropriate channels and variables so that each train has a
corresponding Request automaton.

Lastly, the variable In is added to the transition with variable move to initiate move-
ment in the Model, described later on (see Figure 4.17).

Figure 4.17. Automaton Request Version 2 - Approach 2.

Listing 4.1. Example of Local Declarations Request - Approach 2.
int randomPath[2]; // Array randomPath with integers of size [1,2]
bool move[nTrain_t];
int i ;
void choosePath(){

move[id]=0; // reset
if (randomPath[0]==1){ //Line 1

line [id] = 1;

// L1P1
if (randomPath[1] == 1 & switch[1] == 0 & switch[3] == 0
& platform[id][1] == 0 & rPlatform[1] == 0){

switch[1] = 1; switch[3] = 1;
direction [1] = 0; direction [3] = 0;
move[id] = 1; rPlatform[1] = 1;};

// L1P2
if (randomPath[1] == 2 & switch[1] == 0 & switch[3] == 0
& switch[6] == 0 & platform[id][2] == 0 & rPlatform[2] == 0){

switch[1] = 1; switch[3] = 1; switch[6] = 1;

40

4. Modelling

direction [1] = 0; direction [3] = 1; direction [6] = 0;
move[id] = 1; rPlatform[2] = 1;};

}else if (randomPath[0]==2){ //Line 2
line [id] = 2;

// L2P1
if (randomPath[1] == 1 & switch[2] == 0 & switch[4] == 0
& switch[3] == 0 & platform[id][1] == 0 & rPlatform[1] == 0){

switch[2] = 1; switch[4] = 1; switch[3] = 1;
direction [2] = 0; direction [4] = 0; direction [3] = 0;
move[id] = 1; rPlatform[1] = 1;};

// L2P2
if (randomPath[1] == 2 & switch[2] == 0 & switch[4] == 0 &
switch[3] == 0 & switch[6] == 0 & platform[id][2] == 0 & rPlatform[2] == 0){

switch[2] = 1; switch[4] = 1; switch[3] = 1; switch[6] = 1;
direction [2] = 0; direction [4] = 0; direction [3] = 1; direction [6] = 0;
move[id] = 1; rPlatform[2] = 1;};

}else{
line [id] = 0;
};

}

The RequestOut automaton is based on the Request automaton. The method
atPlatform(), shown in Listing 4.2, checks if the specific train is at a station
and sets the variable temp to 1 if this is true. Then a random number between 1
and nLines is generated and saved in the variable randomPath to determine which
line the train should exit through. Again, the method choosePath() checks if the
switches are free, requests them and sets the variable move to 1. If not, the self-loop
continues to check and waits until the path is available.

Figure 4.18 shows the RequestOut automaton, with the guard platform[id][1] ==
1 | platform[id][2] == 1 | platform[id][3] == 1 | platform[id][4] == 1
| platform[id][5] == 1 which checks if that train is at a platform before the
method atPlatform() is executed. This should reduce the amount of transitions.
Again, the variable In is included when move == 1. The method initialise()
sets all values of position[id][nSwitch] to 1 which will be explained later on.

Listing 4.2 shows an example of the local declarations for RequestOut for two Lines
and Platforms. Some variables may have not been explained yet.

41

4. Modelling

Figure 4.18. Automaton RequestOut - Approach 2.

Listing 4.2. Example of Local Declarations RequestOut - Approach 2.
int randomPath;
int i ;
bool move[nTrain_t];
bool temp[nTrain_t];
int j ;

void initialise (){
for(j = 1; j <= nSwitch; j++){

position [id][j] = 1;
};

}

void atPlatform(){
temp[id] = 0;
for(i = 1; i <= nPlatform; i ++){

if (platform[id][i] == 1){
temp[id] = 1;};

};
}

void choosePath(){
move[id] = 0;

if (randomPath == 1){ // Line 1
line [id] = 1;

// L1P1
if (platform[id][1] == 1 & switch[1] == 0 & switch[3] == 0){

42

4. Modelling

switch[1] = 1; switch[3] = 1;
direction [1] = 0; direction [3] = 0;
move[id] = 1;
position [id][1] = 0; position [id][3] = 0;};

// L1P2
if (switch[1] == 0 & switch[3] == 0 & switch[6] == 0
& platform[id][2] == 1){

switch[1] = 1; switch[3] = 1; switch[6] = 1;
direction [1] = 0; direction [3] = 1; direction [6] = 0;
move[id] = 1;
position [id][1] = 0; position [id][3] = 0; position [id][6] = 0;};

}else if (randomPath == 2){ //Line 2
line [id] = 2;

// L2P1
if (switch[2] == 0 & switch[4] == 0 & switch[3] == 0
& platform[id][1] == 1){

switch[2] = 1; switch[4] = 1; switch[3] = 1;
direction [2] = 0; direction [4] = 0; direction [3] = 0;
move[id] = 1;
position [id][2] = 0; position [id][4] = 0; position [id][3] = 0;};

// L2P2
if (switch[2] == 0 & switch[4] == 0 & switch[3] == 0
& switch[6] == 0 & platform[id][2] == 1){

switch[2] = 1; switch[4] = 1; switch[3] = 1; switch[6] = 1;
direction [2] = 0; direction [4] = 0; direction [3] = 1; direction [6] = 0;
move[id] = 1;
position [id][2] = 0; position [id][4] = 0; position [id][3] = 0;
position [id][6] = 0;};

}else{
line [id] = 0;
};

}

4.2.2.2 Model of the Train Station

The Model automaton of the train station is similar to the one already described in
Section 4.2.1 and many lessons learnt are applied. The automaton can only be in
one state at a time, however, the goal is to implement multiple trains. Therefore,
each train needs its own Model automaton of the train station which is done by

43

4. Modelling

implementing the template parameter const nTrain_t id and adding [id] to the
appropriate channels or variables that are train specific.

Listing 4.3 shows an example label for the transition S1 to S4 which can be seen
in Figure 4.19. The model of the train station is similar to the one in Figure 4.8
where the direction of the switch is used as a guard (direction[i], with i being the
switch number) to block specific transitions and the variable switch[id] is reset to
0 after leaving a switch. When having only one model of the train station for both
in- and outbound trains, the variable In is added which defines if the train is in-
(In[id] == 1) or outbound (In[id] == 0).

Listing 4.3. Label for Transition S1 to S4 - Approach 2.
direction [1] == 1 // check if direction is correct
& In[id] == 1 // check if train is inbound

switch[1] = 0 // reset switch 1 − free

Figure 4.19. Transition between Switches in Model automaton - Approach 2.
The labels from Listing 4.3 cannot be used for outbound trains because a few prob-
lems occur and therefore they are changed to Listing 4.4. Firstly, both outgoing
transitions may be possible if the direction is correct. Therefore, the guards are ex-
tended to check if a switch is also busy, since the train should go to the busy switch.
However, another train can already be at the busy switch but has not yet released
it. Therefore the variable position[i], with i being the number of the switch, is
introduced which is set to 1 when a train is at that switch and 0 when the switch is
free again. All values of position are reset to 1 using the method initialise()

44

4. Modelling

in the automaton RequestOut when wanting to leave a platform. This is done to
lead the train back to the initial state.

Listing 4.4. Label for Transition S4 to S1 - Approach 2.
direction [1] == 1 // check if switch 1 is facing correct direction
& switch[1] == 1 // check if switch 1 is free
& In[id] == 0 // check if train is outbound
& position[id][1] == 0 // check if a train is at switch 1

position [id][1] = 1, // set position − train is at switch 1
position [id][4] = 0, // reset position − train not at switch 4
switch[4] = 0 // reset switch 4 − free

The label of the transitions going into a platform (see Figure 4.20) is similar to
Listing 4.3, however the variable platform[id][nPlatform] is set to 1, showing
that the train is at the platform. When the train leaves the platform, the variable
rPlatform[platform] is reset to 0.

Figure 4.20. Transition in and from the Platforms in Model automaton - Ap-
proach 2.

All trains are initially at the state start before an appropriate path is chosen (see
Figure 4.21). Depending on the line chosen (i.e. line[id] == 1 or line[id] ==
2) the train can go to either switch 1 or 2. When going to the initial state the
channel gone[id]! resets both automata Request and RequestOut to their initial
state.

45

4. Modelling

Figure 4.21. Lines in Model - Approach 2.

Listing 4.5 shows the global declarations.

Listing 4.5. Global Declarations - Approach 2.
// GLOBAL

// constants
const int nSwitch = 6;
const int nPlatform = 5;
const int nLines = 2;
const int nTrainsMax = 2;

// id to make multiple of something
typedef int [1, nSwitch] switch_t;
typedef int [1, nTrainsMax] nTrain_t;
typedef int [1, nPlatform] nPlatform_t;

// Channels
broadcast chan gone[nTrain_t];

// Multiple
int [0,2] switch[switch_t]; // 0 = free; 1 = requested; 2 = busy
int platform[nTrain_t][nPlatform_t]; // platform the train is at
bool rPlatform[nPlatform_t]; // 0 = free; 2 = busy
bool direction [switch_t]; // 0 = left , 1 = right
bool position [nTrain_t][switch_t]; // 0 = free; 1 = train there
int [0,3] line [nTrain_t];
bool In[nTrain_t]; // 1 = true, 0 = false

46

4. Modelling

4.3 Supremica
There are four possibilities of how to model the train station: with(out) variables
and with(out) a model describing the relationship between the switches. While
working with variables the problem of nondeterminisim surfaced which was solved
much later on as described in Section 3.1.6.2. In UPPAAL, it became obvious that
the model of the train station increases the amount of total state tremendously.
Therefore, approaches without a model of the train station are investigated.

4.3.1 Approach 1: Without Variables and with a Model of
the Train Station

The idea with the first approach in Supremica is to, by only using common events
rather than variables, create a functioning model of a train station. A switch should
only be busy when a train reserves it and become ready as soon as the train passes
it (see Section 2.1.3). Therefore, if enough events are used, it is possible to have
every train route set all the necessary switches to busy with one unique event. The
events are created by using the array technique explained in Section 3.1.1.4 and are
divided into incoming LPIN and outgoing events PLOUT in the format

LPIN[lines][platforms][steps][trains]
and
PLOUT[platforms][lines][steps][trains].

The amount of steps is the number of maximum steps taken by a train in the model
of the train station. This creates a large number of unused events because all trains
do not have to move through the same (maximum) amount of switches. Events that
are not used can be annoying when simulating in Supremica because those events
are constantly available in the event list. Therefore, it is hard to see what events
are actually changing the model of the train station so that an event alias for all
unused events is manually created and put into a blocked list, see Section 3.1.1.2.
Using one array is an easier way of creating many events instead of making several
arrays depending on how many switches a certain train is passing.

In order to reduce the amount of states, instead of having a switch as two 2-state
automata for ready/busy and left/right, the switch is described by three different
states: ready, left and right. Here, a switch set to any direction is regarded as
busy, see Figure 4.22. The platforms are also modelled as 3-state automata with
the states ready, reserved and platform, see Figure 4.24.

To explain this further, a small example is displayed in figures 4.22 and 4.23. A train
can only go to platform one or five and randomly the event LPIN[1][5][1][2] is
fired. This means that the train wants to go from line one to platform five and has
already taken the first step towards the desired platform. The value 2 decides that
the train represented by model two of the train station is activated. Since only one
version of switch one is available, no other train can use that switch until it has

47

4. Modelling

Figure 4.22. Example of a switch -
Approach 1.

Figure 4.23. A small example of a
model - Approach 1.

Figure 4.24. An example of a platform.
returned to its initial state.

All events that set a switch to busy are the first step of an event, representing a
train coming from a line and heading to a platform or a train leaving a platform
to some line. To set switch one to ready again, the train has to pass switch one
and reach switch two. The event LPIN[1][5][2][train] sets the switch back to
its ready position. Observe that [train] has the value 2 because no other train can
be at switch one to trigger the event. If the train continues past switch two it is
triggered by the event LPIN[1][5][1][2] and reset to its initial state by the event
LPIN[1][5][3][2].

When the train is heading out, with the events PLOUT, it needs to follow the de-
sired path. Therefore, switches responsible for the outwards direction are created.
However, to ensure a low state count, the events that steer the trains outwards are
added to the already created switches, see Figure 4.25.

48

4. Modelling

Figure 4.25. An example of a switch - Approach 1.
Finally, to make sure that a train reaches a platform before heading out again, a
specification is created and the events done and arrived added to the model of the
train station. The arrived event is added as a selfloop at the platforms while done
is added after the last outgoing event, see figures 4.26 and 4.27. After that, two
aliases are made for incoming and outgoing events respectively. Outgoing events
can only happen when a train has reached the designated platform, see Figure 4.28.

Figure 4.26. The event arrived shown in the model of the train station -
Approach 1.

49

4. Modelling

Figure 4.27. The event done shown in the model of the train station - Approach
1.

Figure 4.28. Specification to handle the train direction in the model - Approach
1.
4.3.2 Approach 2: Without Variables and no Model of the

Train Station
Approach 2 is based on Section 4.3.1, however, it does not include the model of the
train station and has an additional automaton order.

Figure 4.29 shows the new automaton order, now called orderIn, which ensures
that the steps are done in the correct order from 1 to 5. This is done by using the
alias Step[step][train] which holds all possible events for each step, duplicated
for each train. The event goOut[train] is train specific and is used to activate
automaton orderOut (see Figure 4.30).

Figure 4.29. Automaton orderIn Version 1 - Approach 2.
50

4. Modelling

Automaton orderOut ensures, similarly to orderIn, that the steps are done in the
correct order using the event StepO[step][train]. The event goIn[train] acti-
vates the automaton orderIn again when the train has left the station.

Figure 4.30. Automaton orderOut Version 1 - Approach 2.
This works, if all the paths have the same amount of steps. However, some paths
do not have five steps even though the events for five steps are generated. There-
fore, events exist which can occur in any state and have no affect on the automaton,
called "extra events". When creating the aliases step[stepNumber][trainNumber],
foreach-loops were used so that all events, independent of the maximum amount of
steps per path, are included. This leads to a problem because these extra events
are triggered while having no affect on the switches, however, disabling the correct
events.

For example, assume that the automaton orderIn is in state S3, as seen in Figure
4.31, and switch 5 is to the left as shown in Figure 4.32. Only one event should be
able to trigger to set the switch back to its initial state: LPIN[2][1][4][1]. How-
ever, the extra event LPIN[1][1][4][1] is included in the alias step[4][train]
and can also be triggered. The problem is, that the event, which is responsible to
reset the switch, is disabled so that a deadlock occurs. Therefore, the amount of
steps each path has needs to be considered.

Figure 4.31. Simulation of Automaton orderIn Version 1 - Approach 2.

Figure 4.32. Simulation of Automaton switch5 - Approach 2.

51

4. Modelling

The first idea, which might come to mind is to add the extra events to a blocked
list. However, it is necessary to use them to reach step 5 if the path is too short.
Otherwise the train stops at step 3 and a deadlock occurs.

One solution is shown in Figure 4.33, with the adapted automaton orderIn. It
can be seen that transitions are added for each step after step two. There exists
no last step before step two, therefore no transition in state S1 is needed. The
aliases goOutX[train], with X being a number between three and five, hold the
last steps of paths corresponding to the X. Therefore, if step four is the last step of a
path, it is stored in the alias goOut4[train] and activates the automaton orderOut.

Figure 4.33. Automaton orderIn Version 2 - Approach 2.
The automaton orderOut (see Figure 4.34) works similarly to orderIn.

Figure 4.34. Automaton orderOut Version 2 - Approach 2.
Additionally, an automaton is created to hold a "blocked-list" which includes all
the steps that should not happen because the last step has already been taken (see
Figure 4.35).

52

4. Modelling

Figure 4.35. Automaton blocked -
Approach 2.

Figure 4.36. Part of automaton
switch2 - Approach 2.

This however does not work, because it becomes non-deterministic as seen in Figure
4.37. In this example, switch 2 is set to right and there are multiple events which
can reset it back to its initial state (see Figure 4.36). The problem is that additional
to the correct event found in the alias goOut3[train], the alias step[3][train]
also holds possible events. Therefore, the automaton becomes non-deterministic.

Figure 4.37. Simulation of automaton orderIn - Approach 2.
Therefore, it is necessary to explicitly specify the path the train should take. The
implementation could either be one automaton for every possible path or one au-
tomaton which holds all possible paths, i.e. the model mentioned in the idea in
Section 4.3.1. Therefore, when using no variables, a model of the train station is
required.

4.3.3 Approach 3: With Variables and no Model of the
Train Station

One idea is to connect the switches and create a path using events to activate the
next switch in the path, as seen in Figure 4.38. Depending on whether the switch is
facing to the right or the left (i.e. S1_state == 1 or S1_state == 0 respectively),
the variable for switch four (ToS4) or switch three (ToS3) is set to one, which is used
as a guard in the next switch, as seen in Figure 4.39.

Figure 4.40 shows what the specification for a train looks like. If switch S1 is facing
to the right (i.e. S1_state == 1) then it can be passed. If not, the event S1R sets

53

4. Modelling

Figure 4.38. Connecting the Switches
with Variables Switch1- Approach 3.

Figure 4.39. Connecting the Switches
with Variables Switch2 - Approach 3.

Figure 4.40. Train Specification - Approach 3
the switch to right. The same process is done for switch S3, however, with it facing
left.

When using this idea, no model of the train station for each train is needed, as
described in Section 4.3.1. However, this increases the amount of states because the
specification train would be needed for each possible path from every incoming line
to each platform. Therefore, for the simple model of the train station, ten automata
for the in- and ten for the out-going paths are needed. The different automata have
states which represent the same switches since the switches are a shared resource
for the path. This means, that the amount of states and the amount of transitions
is quite large. Therefore, this idea is disregarded.

4.3.4 Approach 4: With Variables and with a Model of the
Train Station

To avoid unnecessary states the switches and platforms are created similarly to Sec-
tion 4.3.1 but instead in variable form, see Figure 4.41. The train is unaffected by
the direction of the switch when moving out of the station as mentioned in Section
2.1.2. However, to ensure that the train follows the desired outbound path, a vari-
able switchOut with the values left and right is created. This was not necessary
when working without variables because the events are divided up into steps and
are therefore unique. But in this case one event for out- and inbound train exists
respectively.

54

4. Modelling

Figure 4.41. The switches and platforms as variables - Approach 4.
The event trainIN[train] is used to describe the train going inbound and the
event trainOut[train] an outbound train. The build-up of the transitions labels
is quite consistent throughout the model of the train station, therefore Switch S1,
S3 and S4 are shown as examples in Figure 4.42. The transition from S1 to S4 can
only be triggered if switch S1 shows in the specific direction left (i.e. also busy).
When this transition is triggered, the train is no longer at switch S1 so that its
status is changed to ready, allowing other trains to use the switch. Switch S3 has
outbound transitions S3 to S4 and S3 to S1. If more than one outbound transition
exists, an extra guard is needed which defines which transition should be triggered
(switchOut[3] == left or switchOut[3] == right). Again, the transition sets the
recent switch to ready again.

Figure 4.42. Going in and out of a Switch - Approach 4.
Figure 4.43 shows the labels of the transitions leading to and from a platform. This
is done similarly to switches, however an action is included which defines, that a
train is at the platform (i.e. platform == train). This is necessary because a train
can only go outbound after it has reached a platform. The selfloop arrived[train]
is used in the specification, to ensure the correct order of in- and outbound.

55

4. Modelling

Figure 4.43. Going in and out of a Platform - Approach 4.
Figure 4.44 shows the events line1[train] and line2[train] from the initial state Init.
These events are used in the specification and determine which line the train origi-
nates from.

Figure 4.44. Going in and out of Init - Approach 4.
The specification (see Figure 4.45) consists of two states S0 (initial state) and S1.
The events line1[train] and line2[train] lead from S0 to S1 and initialize a train
going inbound. Each transition has different guards which correspond to a specific
line to platform combination. When at S1, the event trainIn[train] in a self-loop
occurs until the train has reached a platform. The event arrived[train], again with
guards corresponding to a specific line to platform combination, sets the specification
back to S0 where the event trainOut[train] in a self-loop occurs until the train is
back in the initial sate in the model of the train station.

Figure 4.45. Specification - Approach 4.

56

4. Modelling

Figures 4.46 and 4.47 give an overview of the transition labels for both in- and out-
bound trains. The guards check if a specific combination is possible and the actions
set the corresponding switches and platforms to busy or in a specific direction.

Figure 4.46. Inbound transition labels
for the Specification - Approach 4.

Figure 4.47. Outgoing transition la-
bels for the Specification - Approach 4.

57

4. Modelling

58

5
VERIFICATION

When verifying, one first has to decide which properties are supposed to be verified
for the system. Therefore the following properties are defined:

• The trains can continuously run i.e. no deadlock state exists.
• The trains do not crash i.e. switches and platforms are only occupied by one

train.
• The trains behave as required i.e. the specified platform or line is reached.

This is not a necessary requirement to check to ensure safety but rather if the
modeling is correct.

Different approaches for the simplified model of the train station with two lines and
five platforms are verified and then an appropriate approach is chosen and used
to model the Gothenburg train station. The results of the verifications are then
presented in Chapter 6.

5.1 UPPAAL
To get an overall idea if the model behaves as expected, the simulator is used to
observe the behaviour. Notice, that the verification is done only for two trains due
to the memory issues described in Section 3.2.5. Verification for both approaches
are equivalent unless specified differently.

5.1.1 Deadlock verification
The specification in UPPAAL is done using temporal logic, as explained in Section
2.3.3, and the verifier itself, as described in Section 3.2.3 specifically Table 3.2. To
check for deadlock, the built in deadlock command is used along with A[]:

A[] not deadlock

This implies that no matter where the trains are, there will never be a deadlocked
state.

5.1.2 Avoid same state verification
The next part is to ensure that the trains will not crash by specifying the forbidden
states and ensuring that these states are never reached. Forbidden states are defined

59

5. Verification

as when two trains are at the same state in their model of the train station. This is
done by using the following temporal logic expression:

A[] not((model(1).S1 and model(2).S1) or (model(1).S2 and model(2).S2)...

Here model(1) is the model of the train station describing the first train and S1 is
a state in that model of the train station, in this case representing switch one. This
is done for all switches and all platforms to ensure that the trains never collide.

5.1.3 Platform/Line chosen is reached
Next is to ensure that only the specified platform is reached by that specific train.
This is checked by using the expression Ψ → φ. Which, according to Table 3.2,
means that whenever Ψ holds φ will eventually hold.

When a trains destination has been determined, no other trains can affect the train
to eventually reach the destination. Other trains can only delay a train by occupying
the platform or switches that the train has to use. Therefore, it is enough to do this
verification for only one train, i.e. one model of the train station.

For the first model described in Section 4.2, the verification starts by naming the
state where a train specifies its path. In Figure 5.1 the state L1P2.go is a state
where a train has decided that it wants to go to platform two. From that state, the
model of the train station describing a train should eventually reach platform two,
described as model(1).P2:

L1P2.go –> model(1).P2

Figure 5.1. The state go top right.
When using this command in the verifier, the property is not satisfied and a coun-
terexample is given. In this case the counterexample is that the train remains at the
initial state and does not move. While this is a true counterexample, in reality the
trains are supposed to move and will move. In order to solve this, UPPAAL’s clock
feature is used to force the train to move. Section 3.2.1.2 Templates describes how
an invariant on a state can be connected to a clock to give a limited time a state

60

5. Verification

can be active.

A clock x is declared and an invariant x<1 added to every state of the model of
the train station except the initial state. This means that every second the train
has to move, see Figure 5.2. Notice that it is important to reset the clock on every
transition.

Figure 5.2. The invariants x<0 and updates x=0 added.
Checking the property again with the same logical expression results in the property
being satisfied. However, to complete the verification it needs to be ensured, that
the train does not reach any other platform than the specified one. So, to make sure
that the train headed to platform two cannot reach any other platform, another
expression is defined:

L1P2.go –> (model(1).P1 or model(1).P3 or model(1).P4 or model(1).P5)

This property is, as desired, not satisfied. All the platforms and outbound trains to
a specific line are tested similarly.

For the second model described in Section 4.2, the logical expression is changed a
little. The variable rPlatform is 1 when a platform is requested and 0 if not. There-
fore, when this variable is 1, the specified platform will eventually be reached. So
for rPlatform[2] requesting the platform two, the expression becomes:

rPlatform[2] == 1 –> model(1).P2

This property is satisfied, and in the same manner, the other platforms using the
following expression is not satisfied:

61

5. Verification

rPlatform[2] == 1 –> (model(1).P1 or model(1).P3 or model(1).P4
or model(1).P5)

The same principle as described above is also used for a train heading outbound
from a platform to a specific line.

5.2 Supremica
Supremica offers different possibilities to verify the model, as already mentioned in
Section 3.1.4.1. Depending on the size of the model, different verification methods
are appropriate. For smaller models, it is possible to automatically verify controlla-
bility and non-blocking in the analyzer. The feature "find states" can be used on the
synchronised/synthesised automaton to check for unwanted states. However, when
the automata gets too large, it is not possible to use these features. Instead, "conflict
check" and "controllability check" in the menu in "Verify" when in the "Editor"-tab
can be used.

This verification is done only for approach one, without variables and with a model
of the train station from Section 4.3.1 because approaches two and three in sections
4.3.2 and 4.3.3 were not successfully modelled. Approach four, with variables and
no model of the train station in Section 4.3.4, has a larger amount of states after
synchronization (for one to three trains) and is more complicated to implement than
when using the first approach.

5.2.1 Deadlock verification
A possibility to verify for deadlock (without using the analyzer) is using the conflict
check as described in Section 3.1.2. All initial states are set as marked states and
therefore should always be reachable. If all states can reach the initial states, it
means that the model is non-deadlock.

5.2.2 Avoid same state verification
To get a better understanding of Supremica and how properties can be verified, two
different alternatives are presented.

5.2.2.1 Alternative 1

A way to check if trains share a switch/platform simultaneously is to look at the
events. This means that two trains should not be able to go to the switch/platform
if the first train has not left it. Basically, the event leading into the switch (i.e. a
train is at that switch) should not happen twice unless the event leading from that
switch/platform (i.e. a train has left) has occurred. Similarly two trains should not
be able to leave a switch/platform twice before a train has entered. To specify this,
strings of events that have this undesired behaviour will reach a forbidden state, see

62

5. Verification

figures 5.3 and 5.4. A conflict check is then executed.

Figure 5.3. Plant of a switch. Figure 5.4. Specification of the switch.

5.2.2.2 Alternative 2

When working with automata there is a way of checking if two states are active
simultaneously by using uncontrollable events. As mentioned in Section 2.2.7 a su-
pervisor is controllable if it is able to follow all uncontrollable events that the plant
executes. Using this, it is possible to add a selfloop in two states with a common
uncontrollable event crash. This event is then blocked by a specification.

If the two states are active simultaneously the system will be uncontrollable because
event crash will be able to fire, see figures 5.5 and 5.6. In this example, the two
automata are not allowed to simultaneously be in their respective S1 states. Lets
say that event one is fired. If event three is fired next, then both automata will be
in S1 and the uncontrollable event crash can trigger. With crash being blocked in
the specification this will render the system uncontrollable.

In the model of the train station every switch and platform receives its own selfloop
with all crash combinations of that model of the train station to any other model
of the train station. It is important that the events in the respective selfloop are
shared only with one other train. If three trains share the same event in a selfloop
that means that all three trains have to be in the same state for the event to trigger.
These events where created using aliases.

Figure 5.7 shows the aliases with the uncontrollable events for the models of the
train station with 5 trains. The alias check[train][switch] is train and switch de-
pendent and it is important to differ between the values train takes, because the
events differ according to the value of train. This is done by using foreach-loops and

63

5. Verification

Figure 5.5. Example automaton one. Figure 5.6. Example automaton two.

their guards which create a switch statement known from programming. Also, it
is important that all events included affect two different trains and, therefore, the
foreach-loop with trainN is valid for a different value range. For example, train 1 is
connected to trains 2− 5, train 2 to trains 1, 3− 5 and train 3 to trains 1− 2, 4− 5.
Due to this, multiple foreach-loops with the same guard are sometimes necessary to
include all values. The constants nTest and nTest2 are used to trick the program
because it is not possible have a range [4..4] or [5..5].

Figure 5.7. Aliases for the uncontrollable events.
The foreach-loops all include the event cont[switch][train][trainN], however
it is also important to include the event cont[switch][trainN][train] which is
exactly the opposite. For example, cont[1][2][1] is equivalent to cont[1][1][2]
and therefore both train 1 and 2 need to include both events.

5.2.3 Platform/Line chosen is reached
Another property that can be verified using the conflict check, described in Section
3.1.2, is if the train actually arrives at the platform or line specified. Two train

64

5. Verification

specific specifications are added: one to reach the platforms and one to reach the
lines.

In figures 5.8 and 5.9 the five platforms are represented by the states P1 to P5.
The events leading to these states are the first step of the path leading to these
platforms, independent of the line (i.e. LPIN[X][Y][1][train] with X being the
line number and Y the platform number). The events leading back to the initial
state correspond to the last steps of each path leading to that specific platform.

Figure 5.8. Specification to reach Platforms.
Figure 5.9 shows the events on the transitions to the forbidden state. In general, the
events leading to any platform and any events leading back from all other platforms
are included. The specification for the outbound trains work similarly.

Figure 5.9. Specification to reach Platforms - Transitions to forbidden state.

65

5. Verification

5.3 Results
Due to the limited memory size of the programs and state space explosion, not
all models can be verified for the required amount of trains, platforms, lines and
switches. Therefore, it is interesting to measure the amount of time needed to verify
specific models. Note that verification options in UPPAAL are limited to the search
order while Supremica offers different algorithms which verify using different meth-
ods. The verification times for both programs with different models are measured
by the same computer and recorded. The verification times vary slightly (±10%)
for every test so that the average time of five tests are recorded.

5.3.1 UPPAAL
In UPPAAL, three or more trains cause memory issues for both models for both
deadlock and same state checks so that the memory is exhausted after about seven
minutes. Table 5.1 shows the different times depending on the model, amount of
trains and verification property for the simplified model of the train station with
two lines and five platforms.

Approach Amount of Trains Verification Time (s)
Standard 1 deadlock 0.162

Programming 1 deadlock 0.203

Standard 2 deadlock 13.485
Programming 2 deadlock 58.501

Standard 2 Same platform 5.513
Programming 2 Same platform 20.796

Standard 2 Same switch 7.750
Programming 2 Same switch 21.834

Standard 1 Reach platform 0.003
Programming 1 Reach platform 0.029

Table 5.1. Results for UPPAAL for the simplified model of the train station.
It can also be seen from Table 5.1 that the programming approach has a higher veri-
fication time than the standard approach. This is due to how UPPAAL handles the
programming features used in comparison to additional automata. It is a wonderful
example to underline that different ways of modelling can affect the verification.

66

5. Verification

5.3.2 Supremica
Supremica, compared to UPPAAL, has the possibility to increase its memory to
handle larger models (see Section 3.1.6). To compare with UPPAAL, the small
model of the train station is verified first with two trains and then with three trains
because, as explained in Section 6.2, that is the maximum amount of active trains
in the model.

When verifying for the smaller model of the train station, Supremicas analyzer (see
Section 3.1.4) is used. However, for the larger model of the train station the system
becomes too large for the analyzer to work with, and the conflict and controllability
check have to be used instead.

The conflict and controllability checks do not measure the verification time auto-
matically and therefore the results are estimated using a stopwatch. Controllability
refers to both a check for switches and platforms compared to UPPAAL where only
one switch/platform can be verified at a time. Table 5.2 shows the verification times
for the approach with no variables and a model of the train station in Supremica.
As already mentioned in Section 2.3.2, the compositional algorithm is only possible
for nonblocking verification and is compared with the monolithic approach. The
plants and specifications are first synchronized and then verified.

Trains Verification Time (h) Algorithm
2 nonblocking 0.045 Compositional
2 nonblocking 0.130 Monolithic

3 nonblocking 1.5 Compositional
3 nonblocking 12 Monolithic

2 Controllability 0.040 Monolithic
3 Controllability 1.2 Monolithic

1 Reach state 0.002 Monolithic
Table 5.2. Results for Supremica for the simplified model of the train station.

From Table 5.2 it can be seen that the monolithic algorithm takes longer time than
the compositional algorithm. This is expected because, as described in Section 2.3.2,
the compositional algorithm uses the monolithic approach in an optimised way.

The verification time for trains reaching the desired platform is very small with 0.002
seconds. This is of course partially because the verification only needs one train. Ad-
ditionally, not every state has to be checked but rather the path of the train followed.

It can be seen from tables 5.1 and 5.2 that the verification time dramatically increases
when adding a second train. As discussed in Section 2.3.1, the states increase
exponentially when adding models of the train stations. Every time the amount of
trains is increased, a complete model of the train station is added.

67

5. Verification

68

6
GOTHENBURG TRAIN

STATION

6.1 Modelling
After working with both tools and verifying, it becomes clear that UPPAAL cannot
handle the size of the train station and therefore Supremica is used to model and
verify. This is due to UPPAAL working on 32 bits (see Section 3.2.5) limiting its
memory to 4GB while Supremica runs on 64 bits (see Section 3.1.6.1).

The verification was successfully done for the first approach in Supremica, from
Section 4.3.1, without variables and with a model of the train station. Therefore,
this approach is used to model the Gothenburg train station. The modelling of
the train station is equivalent to the simplified model and will therefore, not be
explained again.

6.2 Verification
The verification of the simplified and the train station model is a little different.
This is due to problems that arise for the train station model which do not exist in
the simplified model. The complete model cannot be verified for all 19 trains due
to memory issues. Therefore, it is necessary to consider alternative approaches for
verification. The question is, how can the model be verified without exceeding the
memory limit?

6.2.1 Deadlock
First, the general structure of the model is checked. The new idea is that, assuming
that the trains will not affect and block each other (verified later), no deadlock ver-
ification with more than one train is needed. The deadlock check ensures, that the
model is correct and that a train cannot e.g. go inbound but not outbound after-
wards. Again, the initial states are set to marked and a conflict check is performed.

6.2.2 Only one train can claim a switch/platform
Since the shared resources, the switches and platforms, are all claimed simultane-
ously, trains should not be able to interfere or block each other. However, it is

69

6. Gothenburg Train Station

necessary to verify that only one train can use a switch/platform at a time. This is
done by creating a forbidden state which is reached when a switch is claimed twice
before it has been released, see Section 5.2.1.

Compared to the simple model of the train station, it is now realised that two trains
are enough to verify for an arbitrary amount of trains in the model. This is because
all trains share switches and platforms. There is no new switch or platform that
appears from adding more trains to the model. Therefore, if one train has claimed a
switch and there is no possibility for another train to claim that same switch, then
more trains will not make a difference.

One thing to note is that the deadlock check can be included by also setting the
initial states to marked.

6.2.3 The trains will not diverge from its route
The last part is to make sure that the trains will only pass the switches they have
claimed and that a train ends up at its desired line/platform. If a train diverges
from a switch, this would mean that the direction of the switch is wrong. This
cannot happen since the system has already been checked for non-blocking through
conflict check.

6.3 Results
As seen in Table 6.1, the monolithic and the compositional algorithm were not used
for the conflict check. The monolithic algorithm cannot handle more than 64-bits as
discussed in Section 3.1.6.4 which is required for the large model of the train station.
The available algorithms are tested and the fastest algorithm chosen: Partial Order.

Trains Verification Time (s) Algorithm
1 Conflict under 1 Partial order
2 Conflict 66 Partial order

Table 6.1. Results for Supremica for the Gothenburg train station.

70

7
CONCLUSION

The task was to model and verify the logical correctness of the Gothenburg train-
station using the programs Supremica and UPPAAL. Additionally, a tutorial for the
two programs should be included for future reference.

First, the Gothenburg station with three lines and 19 platforms was reduced to a
simple model with two lines and five platforms. This allowed faster implementation
and testing for different approaches and ideas. Initially UPPAAL was used to model
two different approaches (with and without UPPAALs programming features), how-
ever, this could not be continued due to memory issues. Therefore the knowledge
gained was used to model four different approaches in Supremica: with(out) vari-
ables and with(out) a model of the train station. Only the two approaches using a
model of the train station were successfully implemented and functioned as expected.

The properties which were verified for the simplified model of the train station were:

• No deadlock
• Trains are not at the same Switch/Platform
• Platform selected is reached

In UPPAAL, these properties could only be verified for the simplified models of the
train station and for two trains. The verification was successful in Supremica for the
approach with a model and no variables. The verification for a model of the train
station and variables was not done.

The verified approach in Supremica was used to model the Gothenburg train station.
However, due to memory issues, the verification was slightly changed. This resulted
in the following properties and the corresponding amount of trains needed to verify:

• No deadlock (one train)
• Train cannot claim an already busy switch or platform (two trains)
• The trains follow the specified path (two trains)

This resulted in a successful verification of the Gothenburg train station for an ar-
bitrary amount of trains.

The whole modelling procedure was a process, so that the models in Supremica
are more advanced than in UPPAAL. Nevertheless, even if the models in UPPAAL
would have been improved, memory issues would most likely still be present. This

71

7. Conclusion

process can also be seen when verifying, as this is done differently for the train sta-
tion than with the simplified model of the train station.

Elaborate tutorials for both Supremica and UPPAAL were successfully written and
describe the main features of the program including editor, simulation and verifica-
tion. Additionally, common problems and tricks were included to aid the user.

The results underline the difficulty present throughout the modelling and verification
phase: state space explosion. This is a prevailing problem when verifying automata
and solutions or new approaches to deal with this issue are continuously searched for.
It is also interesting to notice the effect using different algorithms on the verification
time has while verifying with Supremica.

72

8
FUTURE WORK

The fourth approach in Supremica, with variables and a model of the train station,
has not been verified for other properties than not deadlock. Therefore, the other
properties can be verified and the approach used to model the Gothenburg train
station.

As already described in the theory section about railways, Section 2.1, outside of
a train station, the signalling varies slightly and breaking curves for the trains are
constantly recalculated. Due to long distances between the switches, the railways
are divided into sections and a train reserves a section, instead of a switch. Also,
there always exists at least one section between trains because the speed a train
travels at is much larger and there needs to be enough time and space to break.
Therefore, it would be interesting to model the railways between two cities or before
entering the Gothenburg train station.

Another idea is to implement alternative routes for the trains. This means that if
a platform is free but the switches are not, an alternative route to the platform is
checked. If that route is available, it is pursued.

Furthermore, investigations to the efficiency of the algorithms depending on the
different scenarios could be conducted. These verification algorithms could be im-
proved in order to handle much larger systems and/or use less memory.

73

8. Future Work

74

Bibliography

[1] Google. Google maps. Website, 2016. https://www.google.de/maps (2016-
01-20).

[2] Directorate-General for Mobility European Commission and Directorate-
General for Energy Transport. ERTMS – delivering flexible and reliable rail
traffic. European Union, 2006.

[3] Network Rail. An introduction to switches & crossings - network rail engineering
education (12 of 15). Youtube, 2012. https://www.youtube.com/watch?v=
ZuR5QTlfOzk (2016-03-15).

[4] K.Larsen G. Behrmann, A. David. A tutorial on uppaal 4.0. 2006.
[5] Daniel Bergqvist. Bangårdsritningar. Website, 2016. http://www.bangardar.

se/filer/ritningar/J1-Jpeg/Jvm1184_J1_-0326.jpg (2016-01-25).
[6] T. Amnell M. Stigge, A. David. Uppaal 4.0: a small tutorial. 2009.
[7] U. Yıldırım S. Türk A. Sonat M. Söylemez, M. Durmuş. The application of au-

tomation theory to railway signalization systems: The case of turkish national
railway signalization project. In 18th IFAC World Congress, pages 10752–10757,
2011.

[8] S. Kurtulan E. Dincel, O. Eris. Automata-based railway signaling and interlock-
ing system design. IEEE Antennas and Propagation Magazine, 55(4):308–319,
2013.

[9] European Railway Accident Information. Sweden 2014, version 1, validated
accidents, 2014. https://erail.era.europa.eu/csi-data.aspx?country=
25&year=2014&public=1 (2016-05-30).

[10] A. Haxthausen L. Vu and J. Peleska. Formal modelling and verification of
interlocking systems featuring sequential release. Science of Computer Pro-
gramming, 2016.

[11] M. Yazdi A. Mirabadi. Automatic generation and verification of railway inter-
locking control tables using fsm and nusmv. Transport Problems, 4(1):103–110,
2009.

[12] C. Gao B. Chai T. Xu, T. Tang. Logic verification of collision avoidance system
in train control systems. IEEE, pages 918–923, 2009.

[13] hnf1930. Railroad switches and how they work. Youtube, 2014. https://www.
youtube.com/watch?v=Xfqt33x0QcQ (2016-03-15).

[14] S. van Hoesel P. Zwaneveld, L. Kroon. Routing trains through a railway station
based on a node packing model. European Journal of Operational Research,
128:14 – 33, 2001.

[15] Bengt Lennartson. Lecture notes in introduction to discrete event systems,
2014.

75

https://www.google.de/maps
https://www.youtube.com/watch?v=ZuR5QTlfOzk
https://www.youtube.com/watch?v=ZuR5QTlfOzk
http://www.bangardar.se/filer/ritningar/J1-Jpeg/Jvm1184_J1_-0326.jpg
http://www.bangardar.se/filer/ritningar/J1-Jpeg/Jvm1184_J1_-0326.jpg
https://erail.era.europa.eu/csi-data.aspx?country=25&year=2014&public=1
https://erail.era.europa.eu/csi-data.aspx?country=25&year=2014&public=1
https://www.youtube.com/watch?v=Xfqt33x0QcQ
https://www.youtube.com/watch?v=Xfqt33x0QcQ

Bibliography

[16] Extended finite state machine. Wikipedia, 2016. https://en.wikipedia.org/
wiki/Extended_finite-state_machine (2016-06-16).

[17] Martin Fabian. Lecture notes in discrete event control and optimisation, 2015.
[18] Formal verification. Wikipedia, 2016. https://en.wikipedia.org/wiki/

Formal_verification (2016-04-10).
[19] A. Finkel et al. B. Bérard, M. Bidoit. Systems and Software Verification.

Springer, 2001.
[20] Sahar Mohajerani. On Compositional Approaches for Discrete Event Systems

Verification and Synthesis. PhD thesis, Chalmers University of Technology,
2015.

[21] A. M. Partial order reduction with compositional verification. Master thesis,
University of Waikato, 2014.

[22] H. Flordal R. Malik K. Åkesson, M. Fabian. Supremica - an integrated envi-
ronment for verification, synthesis and simulation of discrete event systems. In
8th International Workshop on Discrete Event Systems, pages 384 – 385, 206.

[23] Graphviz. Graphviz - graph visualization software. Website, 2016. www.
graphviz.org/ (2016-06-27).

[24] A. Legay M. Mikučionis D. Poulsen A. David, K. Larsen. Uppaal smc tutorial.
International Journal on Software Tools for Technology Transfer, 17(4):397–
415, 2015.

[25] Gerd Behrmann. Bug 63 - st9 bad alloc exception. Website, 2005. http:
//bugsy.grid.aau.dk/bugzilla/show_bug.cgi?id=63 (2016-03-01).

[26] K. L. McMillan. The smv system. 2000.
[27] C. Jochim R. Cavada, A. Cimatti. Nusmv 2.6 user manual.

76

https://en.wikipedia.org/wiki/Extended_finite-state_machine
https://en.wikipedia.org/wiki/Extended_finite-state_machine
https://en.wikipedia.org/wiki/Formal_verification
https://en.wikipedia.org/wiki/Formal_verification
www.graphviz.org/
www.graphviz.org/
http://bugsy.grid.aau.dk/bugzilla/show_bug.cgi?id=63
http://bugsy.grid.aau.dk/bugzilla/show_bug.cgi?id=63

A
Old Map

Figure A.1. Old Map of the Gothenburg Train Station [5].
I

	List of Figures
	List of Tables
	INTRODUCTION
	Scope
	Related Research
	Outline

	THEORETICAL BACKGROUND
	Fundamentals of Railways
	European Train Control System
	Railway Switches
	Train Station
	Gothenburg Train Station

	Automata
	Extended Finite Automata (EFA)
	Marked/Forbidden States
	(Co-)Reachability
	Plants and Specifications
	Synthesize and Synchronize
	Deadlock and Livelock
	Uncontrollable Events
	Non-deterministic Automata

	Formal Verification
	The State Space Explosion Problem
	Verification Algorithms
	Monolithic
	Compositional
	Partial Order

	Temporal Logic

	TOOLS
	Supremica
	Editor
	Definitions
	Components
	Foreach Block
	Events as Arrays

	Verify Menu
	Simulator
	Analyser
	Verify
	Find States

	Opening Files in Other Programs
	Common Problems
	Increasing the Memory
	(Non-)Deterministic Variables
	"Event removed due to Optimisation"
	"State encoding requires x bits, 64 is the maximum!"

	UPPAAL
	Editor
	Declarations
	Templates
	System Declarations

	Simulator
	Verifier
	YGGdrasil
	Memory Issues

	Additional Software Tools

	MODELLING
	Simplification
	UPPAAL
	Approach 1: Standard approach
	Switches and Platforms
	The Trainmaker
	Specification
	Model of the Train Station
	Reducing the Model of the Train Station

	Approach 2: Using UPPAALs Programming Features
	Request and RequestOut
	Model of the Train Station

	Supremica
	Approach 1: Without Variables and with a Model of the Train Station
	Approach 2: Without Variables and no Model of the Train Station
	Approach 3: With Variables and no Model of the Train Station
	Approach 4: With Variables and with a Model of the Train Station

	VERIFICATION
	UPPAAL
	Deadlock verification
	Avoid same state verification
	Platform/Line chosen is reached

	Supremica
	Deadlock verification
	Avoid same state verification
	Alternative 1
	Alternative 2

	Platform/Line chosen is reached

	Results
	UPPAAL
	Supremica

	GOTHENBURG TRAIN STATION
	Modelling
	Verification
	Deadlock
	Only one train can claim a switch/platform
	The trains will not diverge from its route

	Results

	CONCLUSION
	FUTURE WORK
	Bibliography
	Old Map

