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Abstract—Millimeter-wave (mm-wave) communication is a
promising technology for next-generation wireless systems. One
challenging application lies in the vehicular domain, where
mm-wave should support ultra-fast and high-rate data exchanges
among vehicles and between vehicles and infrastructure. To
achieve ultra-fast initial access between nodes, we propose a
location-aided beamforming strategy and analyze the resulting
performance in terms of antenna gain and latency. We find that
location information can significantly speed up initial access.

I. INTRODUCTION

Millimeter wave (mm-wave) communication is a candidate
for becoming part of the next generation of mobile commu-
nication technology (also known as 5G). Its advantage lies
on its capability to support multi-Gbps throughput. However,
one of the major challenges for mm-wave communications
is the poor link budget, as radio signals propagating in the
mm-wave frequency band experience significant path loss,
penetration and reflection loss [1]. On the other hand, an
interesting feature in mm-wave systems is that the decrease
in wavelength enables packing many antennas elements in a
single array. Such large antennas arrays can compensate the
high propagation loss through their high beamforming gain.
In order to obtain the highest combined gain between the
transmitter and a receiver, it is necessary that as a first step
the two antennas are aligned. This is commonly achieved
through a multi-stage channel estimation process [2]–[4].

A key application of 5G lies in the automotive industry
[5], which is currently undergoing several technological
transformations, as more and more vehicles are connected to
the Internet and to each-other. Mm-wave could provide the
high throughput required in vehicular networks for safety and
awareness applications [3], as well as cooperative control.
Such vehicular networks operate under more severe conditions
than common cellular networks due to their high mobility,
which greatly reduces the coherence time. In the context
of mm-wave, achieving high beamforming is especially
challenging, as the beamforming process must be completed
in an extremely short time. Standard protocols, which rely
on adaptive beamforming are well-suited for static nodes, but
might be too slow for quick interactions.

In this paper, we propose a location-aided strategy,
whereby prior location information allows us to speed up
the adaptive channel estimation and beamforming. To the
best of the authors’ knowledge this is the first location-aware

channel estimation technique for mm-wave. We quantify the
performance in terms of SNR and latency.

II. SIGNAL MODEL

We consider communication between a base station (BS)
and a vehicle, both equipped with uniform linear arrays
(ULAs) of NBS and Nv antennas, with half-wavelength
spacing between adjacent antennas. If the BS uses the
beamforming vector fn to transmit a symbol s ∈ C with
unit-energy |s|2 = 1, and the vehicle employs a unit-norm
measurement vector wm, the received signal is given by

ym,n = wH
mHfns+ wH

mnm,n, (1)

where the mm-wave channel is represented by the Nv ×NBS
matrix H and wH

mnm,n is white Gaussian noise with variance
σ2. The channel is modeled as a pure narrow-band line of
sight (LOS) channel [6]:

H = α av (θ)aHBS (φ) , (2)

where α ∈ C denotes the deterministic unknown channel
gain, av(θ) represents the array response of the vehicle’s
ULA to the LOS angle-of-arrival (AOA) θ and aBS(φ)
represents the steering vector of the BS’s ULA for the LOS
angle-of-departure (AOD) φ, given by

aBS (φ) =
[
1 ejπ cosφ · · · ej(NBS−1)π cosφ

]T
(3)

av (θ) =
[
1 ejπ cos θ · · · ej(Nv−1)π cos θ

]T
. (4)

Our goal is to determine H in order to utilize high-gain
beamforming and measurement vectors, in the presence of
location information of the vehicle.

III. ADAPTIVE CHANNEL ESTIMATION

A. Procedure

Typically, in mm-wave, the channel is estimated by
using all different combinations of L beamforming vectors
and L measurement vectors in different time slots [2]–[4],
resulting in a total of L × L measurements. Organizing the
measurements in matrix form, we can write

Y = WHHFs+ N, (5)

where W = [w1 · · ·wL], and F = [f1 · · · fL] and
N ∼ CN (0, σ2I). The statistical independence among
the entries of N follows from the fact that they represent
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Fig. 1. Example of the adaptive channel estimation process at the receiver
with K = 2 stages and L = 4 vectors per stage. The ranges of the
beampatterns are designed according (10).

the noise at different time slots. We focus on the case of
channel estimation techniques whose sets of weight vectors
(at the transmitter and receiver) are precomputed off-line.
Adaptive approaches refine the process of channel estimation
in multiple stages. Hence, the signal model at stage k is

Y(k) = WH
(k)HF(k)s+ N(k), (6)

where

W(k) =
[
w(m̂(k−1)−1)L+1 · · · wm̂(k−1)L

]
(7)

F(k) =
[
f(n̂(k−1)−1)L+1 · · · fn̂(k−1)L

]
(8)

in which m̂(k−1) and n̂(k−1) are the indices of the weight
vectors selected in the previous stage k− 1. The general idea,
as portrayed in Fig. 1, is that at stage k = 1, it is assumed
that the AOD and AOA can be anywhere in the interval [0, π)
in the case of a ULA or [0, 2π) for arbitrary arrays. Then, the
transmitter and receiver sound the channel in multiple ranges
of AODs and AOAs and the ones resulting in the strongest
receive SNR are selected. In the subsequent stage, the
previous ranges are subdivided into L subranges. This process
is repeated until the desired resolution is achieved. Thus, at
stage k, there are Lk possible beamforming and measurement
weight vectors to choose from, which represent Lk disjoint
ranges at the BS and vehicle. Ideally, for well designed
codebooks, the ranges associated to the weight vectors
correspond to directions in which they have larger gains. The
gain as a function of the AOD or AOA can be computed by

gBS(φ) =
∣∣∣aHBS (φ) f (k)n

∣∣∣ (9a)

gv(θ) =
∣∣∣aHv (θ)w(k)

m

∣∣∣ , (9b)

where the dependency of gBS(φ) and gv(θ) on indices n, m,
and k has been omitted to avoid overloading the notation.

B. Codebook

Different codebooks will result in different beampatterns,
which in turn will result in different gains in different
directions (9) (see [7], [8] for some codebook examples).
For this work, we build on the method proposed in [2]. In
the case of a ULA, there are two viable ways to design
the beamforming and measurements weight vectors. Each
beamforming/measurement weight vector is associated to a
range of AOD/AOA angles. Let R(k)

m be the range of the
m-th weight vector at stage k at the transmitter or receiver.
On one hand, the weight vectors can be designed to have
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Fig. 2. Example of the adaptive channel estimation process at the receiver
with K = 2 stages and L = 4 vectors per stage. The ranges of the
beampatterns are designed according (11).

(a) Beampatterns designed
according to the ranges in (10).

(b) Beampatterns designed
according to the ranges in (11).

Fig. 3. Beampatterns at stage 1 for L = 4.

equal beamwidths at each stage as in Fig. 1, i.e. at stage k
the range of angles [0, π) is split into Lk subranges:

R(k)
m =

[
m− 1

Lk
π,

m

Lk
π

]
for m = 1, . . . , Lk. (10)

On the other hand, the weight vectors can be designed to have
equal widths in terms of spatial frequencies (see Fig. 2):

R(k)
m =

[
arccos

(
1− m− 1

Lk
2

)
, arccos

(
1− m

Lk
2
)]

(11)

for m = 1, . . . , Lk,

where 0 ≤ arccos(x) ≤ π. Designing the codebook according
to the ranges in (10) results in beampatterns of approximately
equal beamwidth but unequal gain (see Fig. 3a). Designing
the codebook according to the ranges in (11) results in
beampatterns of approximately equal gains but whose
beamwidths are wider on the endfire and narrower on the
broadside of the ULA (see Fig. 3b). In this paper we choose
the codebook designed according to the ranges of (11). The
algorithm for designing the weight vectors W(k) and F(k)

from the ranges R(k)
m can be found in [2].

C. Performance Metrics

The metrics of choice for assessing the adaptive channel
estimation techniques are:

1) Expected SNR: The expected receive SNR after
performing adaptive channel estimation.

2) Average duration: The time it takes to perform adaptive
channel estimation.1

1The time of a single transmission (1) is equal to 1 time unit.
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Fig. 4. Use case of interest, where prior information of the vehicle
(represented by the blue disc) is harnessed to improve adaptive mm-wave
channel estimation. In this particular scenario, the prior AOD and AOA
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)], respectively,
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2
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2
.

The parameters under control in adaptive channel estimation
are the number of refinement stages K, the number of beams
L used at each stage by the BS and vehicle, and the codebooks
at the transmitter and receiver.

IV. PERFORMANCE
IN THE PRESENCE OF POSITION INFORMATION

It is our hypothesis that adaptive channel estimation can be
improved in terms of the above performance metrics, when
prior position information of the vehicle is available [9], as
visualized in Fig. 4. In particular, we will assume that the
vehicle’s position is known to lie in a disk with radius D, with
a center that is a distance ddisk away from the BS, with an
AOD of θdisk. This location information can be converted to
information on the AOD/AOA by using simple trigonometry.
Prior AOD/AOA information can then be utilized to discard
AOD and AOA ranges that do not include the true AOD and
AOA, respectively. This technique exploits the fact that given
the BS and vehicle positions, the AOD/AOA of the LOS path
can be inferred. Thus, it is likely to fail if the LOS path is
blocked. With this clear adaptive channel strategy in mind,
we can determine the effect of prior information using the
various metrics of Section III-C. Formulas for these metrics
are derived next.

Define the prior AOD/AOA knowledge as φ ∈ Uφ and
θ ∈ Uθ, where the sets Uφ,Uθ ⊆ [0, π). Let m(1), . . . ,m(K)

and n(1), . . . , n(K) be the sequences of beamforming and
measurement vectors indices, and let P (m(K), n(K)) be the
probability that at the end of the channel estimation procedure
the pair of weight vectors (m(K), n(K)) is picked when s, α,
θ and φ are fixed. Then,

P
(
m(K), n(K)

)
=

K∏
k=1

P(k)

(
m(k), n(k)

)
, (12)

where P(k)(m(k), n(k)) is the probability of choosing the
pair of weight vectors (m(k), n(k)) at stage k. Statistical
independence between stages follows from the fact that
different stages happen in different time intervals. A pair of
weight vectors is picked only if their received signal strength
is the largest at that stage. Given (m(k), n(k)), from Fig. 1,
it follows that at stage k, the indices of all the candidate
beamforming and measurement weight vectors are

m ∈
{⌊m(k) − 1

L

⌋
L+ 1, . . . ,

⌊m(k) − 1

L

⌋
L+ L

}
(13)

n ∈
{⌊n(k) − 1

L

⌋
L+ 1, . . . ,

⌊n(k) − 1

L

⌋
L+ L

}
. (14)

Therefore,

P(k)

(
m(k), n(k)

)
= Prob

( ⋂
(m,n)∈S(k)

{|y(k)m(k),n(k)
|2 > |y(k)m,n|2}

)
,

(15)
where S(k) = {(m,n) : (m,n) 6= (m(k), n(k)),Uθ ∩ R

(k)
m 6=

∅,Uφ ∩ R(k)
n 6= ∅} and R(k)

m and R(k)
n represent the ranges

of the beamforming and measurement vectors, respectively,
defined as in (10) or (11) depending on the codebook design.
By Bayes’ theorem

P(k)

(
m(k), n(k)

)
=

=

∫ ∞
0

Prob
( ⋂

(m,n)∈S(k)

{
|ȳ(k)m,n|2 < x

}
|x
)
f(x) dx, (16)

where |ȳ(k)m,n|2 = |y(k)m,n|2/(σ2/2) is a noncentral Chi-square
random variable of two degrees of freedom with non-centrality
parameter

λ(k)m,n =
|α|2g2BS(φ)g2v (θ)

σ2/2
, (17)

and f(x) is the probability density function of |ȳ(k)m(k),n(k)
|2.

Recall that the dependency of gBS(φ) and gv(θ) on n, m, and
k has been omitted. Since all variables ȳ

(k)
m,n are mutually

independent it follows that

P(k)

(
m(k), n(k)

)
=∫ ∞

0

∏
(m,n)∈S(k)

(
1−Q1

(√
λ
(k)
m,n,
√
x

))
f(x) dx, (18)

where Q1

(√
λ
(k)
m,n,
√
x
)

is the complementary cumulative

density function of |ȳ(k)m,n|2 and Q1 is the Marcum Q-function
of first order.

Expressions (12) and (18) can be used to numerically
compute the expected receive SNR SNRrx(θ, φ) and the
average channel estimation duration T (θ, φ):

SNRrx(θ, φ) =

LK∑
m=1

LK∑
n=1

P (m,n)
g2v (θ) |α2|g2BS (φ)

σ2
(19)

T (θ, φ) =

LK∑
m=1

LK∑
n=1

P (m,n)Tm,n, (20)



where the dependency of P (m,n) on (θ, φ) is not written
explicitly, Tm,n = max(

∑K
k=1 |S(k)|, 1) is the duration of the

channel estimation procedure and | · | is the cardinality of a
set. Even if the AOD/AOA is perfectly known a priori (i.e.,∑K
k=1 |S(k)| = 0), at least one transmisson is necessary for

estimating the channel gain.

V. NUMERICAL RESULTS

In this section, we quantify the performance of adaptive
channel estimation when location information is available to
the system.

A. Simulation Set-up

We consider the scenario of Fig. 4 versus the distance
between the BS and the vehicle for two AODs: 20◦ and 70◦.
These two angles have been selected as their performance
is similar to all other angles. The scenario consists of a
BS (infrastructure) with known position, and a vehicle
whose position is uncertain. Different levels of precision are
assumed in regards to the vehicle position estimate. This
position uncertainty is modeled as a disk whose center point
is known and whose diameter D depends on the positioning
technology. The position of the vehicle is known to be
inside such a disk. In practice, the disk could correspond
to a confidence region. We consider three levels of position
information: (i) no position information (D = +∞), (ii)
position information with Global Navigation Satellite Systems
(GNSS) precision (D = 10 m); and high precision position
information (D = 1 m).The simulations showed no substantial
improvement for precisions higher than 1 m.

From Fig. 4, given a fixed AOD, the AOA is fixed to
θ = π − φ. As the distance increases, the SNR decreases
due to the larger pathloss, however, it also narrows the prior
AOD range Uφ and prior AOA range Uθ. Thus, it is not
clear how performance is affected by distance when location
information is available. In the numerical simulations, we
have assumed that the transmitted energy per symbol is
30 dBm, the vehicle’s receiver’s noise variance is −84 dBm
and the path loss model of [6]. The figures in this section
are Monte Carlo simulations where the average is taken over
different disk locations while the position of the BS and
vehicle remain fixed. The center of the uncertainty disk is
randomly positioned on a circle of diameter D around the
vehicle. The BS is equipped with a ULA of 20 antennas and
9 radio-frequency (RF) chains2, and the vehicle has a ULA
of 5 antennas and a single RF chain. The parameters of the
channel estimation procedure are K = 2 and L = 4.

B. Results and Discussion

In Fig. 5, we plot the average channel estimation time
versus the distance. As expected from the proposed strategy,
in absence of prior information, the channel estimation lasts
the longest and does not vary with the distance. In fact, it
can be computed by the formula T = K(L2 − 1). Including

2A RF chain is composed of analog quantized phase shifters and up/down
frequency converters. For more details see [2].
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coarse location information (GNSS) drastically reduces the
channel estimation duration. Such reduction is larger as the
distance increases because the ranges of AODs/AOAs become
narrower, thus, reducing the number of directions on which
the channel is sounded. In the case of high precision, the
prior knowledge on the AOD and AOA is so precise to start
with, that the location-aided channel estimation can already
output the final weight vectors, i.e., no channel estimation is
needed. In general, as observed in Fig. 5, the duration of the
channel estimation is shorter for angles close to the endfire
because the beams are wider (see Fig. 3b), and therefore, the
channel needs to be sounded in fewer directions.

Fig. 6 plots the expected receive SNR after performing
channel estimation versus distance. The behavior is almost
identical for AODs 20◦, 70◦ and other tested angles not plotted
in the figure. When the vehicle is in proximity of the BS, the
received power is large enough that location-aided and off-the-
shell channel estimation make no difference in terms of final
receive SNR. As the distance increases beyond 80 m, the use of
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prior location information starts to become relevant because,
by assisting the channel estimation procedure, it decreases
the probability of misalignment. Interestingly, there’s no sig-
nificant difference between coarse (GNSS) or high precision
location information. This phenomenon is due to the fact that
the ranges of AODs/AOAs defined by the location uncertainty
at 80 m for GNSS and high precision are equal or smaller than
the width of the smallest beam (∼ 7◦). In the case of massive
ULAs, very directional beams may be possible, and therefore,
precise location information may show significant improve-
ment over coarse location information in terms of receive SNR.
Nonetheless, it is challenging to use very narrow beams in
practice, because they require that the antennas remain com-
pletely static for correct beam alignment which is very chal-
lenging in the V2I scenario and in the presence of wind [4].

For Figs. 7–8, the distance between the BS and the vehicle
is fixed to 100 m. The uncertainty disk is centered on the
vehicle and its diameter is gradually changed, resulting in prior
AOD/AOA ranges from 0 to 180◦. As expected the duration
and received SNR get worse for larger prior AOD/AOA ranges.
The shape of both plots is due to the nature of the proposed
offline approach, which sounds the channel with all transmit or
receive beams whose ranges (11) overlap with the prior AOD
range Uφ or AOA range Uθ, respectively. The abrupt increase
in duration or receive SNR occur when by increasing the prior
AOD or AOA range, these ranges suddenly overlap with a
new transmit or receive beam range. Thus, online approaches,
whereby the ranges of the beams are adapted to the specific
prior AOD or AOA range may result in better performance.

VI. CONCLUSIONS

A simple adaptive channel estimation strategy for harness-
ing location information has been proposed. This strategy
has been shown to allow the channel estimation time to be
reduced substantially. Furthermore, numerical experiments
have revealed that the receive SNR improves when location
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information is available over distances of 80 m or more.
Finally, our analysis has revealed that off-line approaches
may have sub-optimal performance compared to online
approaches especially in the presence of location information.
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