
THESIS FOR THE DEGREE OF LICENTIATE OF ENGINEERING

Robust intersection of hexahedral meshes and
triangle meshes with applications in finite volume

methods

Frida Svelander

Department of Mathematical Sciences
Division of Mathematics

Chalmers University of Technology and University of Gothenburg
Gothenburg, Sweden 2016



Robust intersection of hexahedral meshes and triangle meshes with applications in
finite volume methods
Frida Svelander

Copyright c© Frida Svelander, 2016.

Department of Mathematical Sciences
Division of Mathematics
Chalmers University of Technology and University of Gothenburg
SE-412 96 Gothenburg, Sweden
Telephone: +46 (0)31-772 10 00

Fraunhofer-Chalmers Research Centre for Industrial Mathematics
Chalmers Science Park
SE-412 88 Gothenburg, Sweden
Telephone: +46 (0)31-772 42 39
frida.svelander@fcc.chalmers.se

Printed by Chalmers Reproservice
Gothenburg, Sweden, 2016



Robust intersection of hexahedral meshes and triangle
meshes with applications in finite volume methods

FRIDA SVELANDER
Department of Computational Engineering and Design
Fraunhofer-Chalmers Research Centre for Industrial Mathematics
and
Department of Mathematical Sciences
Division of Mathematics
Chalmers University of Technology and University of Gothenburg

Abstract

The topic of this thesis is the intersection of a structured hexahedral grid and
one or more triangle meshes. The interest in the problem has arisen in con-
nection with a finite volume method for simulation of conjugated heat transfer.
In the particular finite volume method, axis-aligned hexahedra are used for the
discretization of the simulation domain, and solids are represented by triangle
meshes. The heat equation is discretized over the hexahedral cells. Special
treatment is needed in the cells that are intersected by the surface of the solid.
In these cells, the solid temperature is found after discretization of the heat
equation over the solid part of the cell.

To implement the above, it is of great importance to find the geometry of
the cut cells. Of particular interest is the solid volume fraction of a cell, and
the solid area fraction of the cell faces. The solid volume fraction is defined as
the fraction of the hexahedral cell that is intersected by the solid. Similarly, the
solid area fraction is defined for each cell face as the fraction of the face that is
intersected by the solid.

Two algorithms for calculation of the solid volume fraction and the solid
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area fractions are presented. One algorithm is exact, and the other is approxi-
mate. The algorithms are extended to handle double surfaces, which is a com-
mon mesh degeneracy in engineering applications. A double surface is two
layers of coplanar triangles, formed when the triangles are put on top of each
other.

The handling of double surfaces is an extension of similar algorithms, which
only handle non degenerate triangle meshes. This work is a step towards an al-
gorithm that can be used with such meshes without preprocessing through a
repair algorithm. A mesh repair method could be adopted, if available, but that
is not always desirable since the existing repair algorithms could fail in remov-
ing the degeneracies without introducing unwanted side effects. This motivates
the need for an algorithm that handles degenerate triangle meshes.

The algorithms are validated against a geometry from an industrial applica-
tion, which includes a double surface. It is concluded that the exact algorithm
is independent of cell size, while the approximate algorithm is second order
accurate for the test case that has been studied. It is further concluded that the
methods handle the major problems with double surfaces.

Finally, it is described how the algorithms are used in a finite volume frame-
work for simulation of conjugated heat transfer.

Keywords: triangle-hex intersection, overlapping triangles, degenerate mesh,
volume fraction, area fraction, cut cell, conjugated heat transfer.
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1. Introduction

1.1 Outline

The outline of this thesis is as follows. The current chapter continues with the
background and motivation to the work, presented in Section 1.2 and Section
1.3, respectively. In Section 1.4, a formal problem statement is given, and in
Section 1.5 previous work is reviewed. In Chapter 2, some mathematical tools
used to solve the problem are discussed. In Chapter 3, the proposed algorithms
are summarized, and in Chapter 4 the algorithms are validated against an in-
dustrial test case. In Chapter 5, it is described how the algorithms are used in a
finite volume framework for simulation of conjugated heat transfer. In Chapter
6, advantages and drawbacks of the algorithms are discussed. Finally, in Chap-
ter 7, some conclusions are drawn. A manuscript describing the algorithms in
more detail is found in the appendix.

1.2 Background

Researchers at the Fraunhofer-Chalmers Centre for Industrial Mathematics (FCC)
have developed a multiphase flow simulation software called IBOFlow (Im-
mersed Boundary Octree Flow Solver) [20]. It is built on a finite volume dis-
cretization of the Navier-Stokes equations, and an immersed boundary method
[27, 28] is used for the modeling of solid-fluid interactions. In the particular
finite volume method, axis-aligned hexahedra are used for the discretization of
the simulation domain, and solids are represented by triangle meshes.
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A solid and a fluid heat transfer solver is available for simulation of conju-
gated heat transfer. Both solvers are built on a finite volume discretization of
the heat equation. The solid solver is used in the solid cells, and the fluid solver
is used in the fluid cells. When the fluid temperature is solved for, the fluid and
the solid are coupled through an immersed boundary condition [29]. When the
solid temperature is solved for, the two phases are coupled through a heat flux
condition. The heat flux coupling is done in the mixed cells, which are cells cut
by the surface of the solid. The mixed cells are also called cut cells.

The solid-fluid heat flux in a mixed cell is found by summing up the fluxes
through each triangle that intersects the cell, and the solid heat equation is dis-
cretized and solved on the solid part of the cell. For these reasons, it is of great
importance to find the geometry of a cut cell. From the cut cell geometry, the
solid volume fraction of the cell and the solid area fractions of the cell faces can
be determined. The solid volume fraction is the fraction of the hexahedral cell
that is intersected by the solid. Similarly, the solid area fraction is defined for
each cell face as the fraction of the face that is intersected by the solid. That
information is needed when the heat equation is discretized over a mixed cell.
Also included in the cut cell geometry is the intersection between each triangle
and the cell. That information is needed in the solid-fluid heat flux coupling.

1.3 Goal of the project

The goal of this thesis work is to develop a geometric algorithm for the intersec-
tion between an axis-aligned hexahedral cell and one or more triangle meshes.
The triangle meshes represent the surface of one or more solids. Of particular
interest is the solid volume fraction of a cut cell, and the solid area fractions of
the cell faces.

The information generated by the algorithm is to be used in a finite vol-
ume method for simulation of conjugated heat transfer, as described in Section
1.2. The triangle meshes used in the simulation framework often originate from
industrial applications, where mesh degeneracies such as large scale triangle
overlaps are common. It is therefore of interest to make sure that the algorithms
handle such overlaps. Large scale triangle overlaps will throughout this the-
sis also be called double surfaces. A double surface is formed when two or
more coplanar triangles are put on top of each other. A formal statement of the
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geometric problem is found in Section 1.4.

1.4 Mathematical problem formulation
From a geometric point of view, the problem formulation is as follows. Let
T = {Ti}nT

i=1 be a triangle mesh, where Ti ⊂ R3, i = 1, . . . , nT , are triangles.
The triangular mesh is oriented by the triangle normals {ni}nT

i=1 pointing out of
T . If T encloses a bounded volume, the interior of T is denoted ΩT .

Let C ⊂ R3 be a Cartesian cell, i.e. an axis-aligned cuboid consisting of
its boundary ∂C and interior ΩC . Then ∂C =

⋃6
i=1 Fi, where {Fi}6i=1, are the

rectangular cell faces.
We are interested in the following:

• the solid volume fraction of C, defined as the fraction of the cell C inside
the triangle mesh T ,

• the solid area fraction of Fi, i = 1, . . . , 6, defined as the fraction of the
cell face Fi inside the triangle mesh T .

A cell C intersecting a triangular mesh T is seen in Figure 1.1(a), and the part
of the cell inside the triangle mesh is seen in Figure 1.1(b). The part of the cell
inside the triangle mesh is given by ΩT

⋂ C, where ΩT denotes the closure of
the interior of T , and ΩT

⋂ C denotes the intersection between ΩT and C.

(a) A cell C intersecting a triangular mesh
T . The arrows represent triangle normals
pointing out of ΩT .

(b) The polyhedron ΩT
⋂ C resulting from

intersecting C and T .

Figure 1.1: Intersection between a triangle mesh T and a Cartesian cell C.
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We also want the algorithms to be robust against geometrically degenerate
triangle meshes. In particular, we want them to handle double surfaces, since
that is a common mesh degeneracy in engineering applications.

To define the concept of a double surface, let T1 = {T 1
i }

n1
T

i=1 and T2 =

{T 2
i }

n2
T

i=1 be proper triangle meshes (without geometric degeneracies). Let S1 ⊂
T1 and S2 ⊂ T2 be such that

⋃
Ti∈S1

⋃
S2
Ti lie in a plane and (

⋃
Ti∈S1

Ti)
⋂

(
⋃

Ti∈S2
Ti) 6=

∅. Then D = (
⋃

Ti∈S1
Ti)
⋂

(
⋃

Ti∈S2
Ti) is a double surface. A typical double sur-

face is seen in Figure 1.2.

T 1
2

T 2
1

T 1
1

n1
1

n1
2

n2
1

D

Figure 1.2: Triangles from different meshes overlap in a double surface. The
double surface is the intersection of triangles T 1

1 and T 1
2 from one triangle mesh

T1, and triangle T 2
1 from a second triangle mesh T2.

In a double surface, T1 and T2 could be two separate meshes, but the two
meshes could also be merged to a single mesh T . In the following we mainly
consider double surfaces on a single mesh T = T1

⋃ T2.

1.5 Previous work
The problem formulated in Section 1.4 is interesting from a geometrical point
of view, but is also used in more practical applications. In particular, it emerges
as a problem in computational fluid dynamics (CFD) when cut cell methods are
used to model the presence of solid bodies in a fluid. This is also where we find
the most relevant previous work.

In CFD, and in particular in the finite volume method, the geometries in-
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volved are commonly represented by discrete meshes, consisting of polygonal
or polyhedral objects. One approach is to model the fluid by structured hexa-
hedra [39], and represent the surface of solid objects by triangle meshes. The
fluid mesh can be refined in the vicinity of a solid to better fit the surface of the
solid [8, 9, 17, 39], resulting in unstructured or block-structured grid arrange-
ments.

An alternative to Cartesian (axis-aligned) hexahedral meshes is body-fitted
meshes [14, 37, 39], where the fluid cells are formed to fit the surface of the
geometry. Another alternative is the cut cell method [1, 2, 15, 21, 23, 36, 38, 40].
In the cut cell method, a Cartesian fluid grid is used as a base grid, and new
irregular cells are formed where the surface of the solid intersects the fluid. An
important step in a cut cell method is to find the geometry of the cut cells. The
same step is needed to calculate the solid area and volume fractions in Section
1.4, which makes previous research within cut cell methods relevant to this
work. Figure 1.1(b) shows an example of a cut cell.

Approximate cut cells have been used for example by [36, 40]. In [36], a
two-dimensional cut cell method is introduced, where the intersection between
the mesh and the cell is approximated by a line. This approximation is moti-
vated by the fact that a more complex intersection indicates that the grid is not
fine enough to resolve the solid properly. In [40], Yang et al. presents a three-
dimensional cut cell method where the intersection between the mesh and the
cell is represented by a quadrilateral. They find the area of the quadrilateral and
each cut face and use Gauss’s divergence theorem to calculate the volume of
the part of the cell located inside the triangle mesh.

In [1, 2] Aftosmis et al. present an approach for completely resolving the
geometry of a cut cell in three dimensions. They introduce triangle-polygons,
face-polygons and face-segments to describe the polyhedron that represents a
cut cell. To construct the triangle-polygons they use the Sutherland-Hodgman
algorithm [35] for clipping each triangle against the cell boundary. They men-
tion that face-polygons are easily formed by connecting face-segments with the
edges of the cut cell. Cieslak et al. [15] also present a cut cell method that pre-
serves the real geometry by finding the exact cut out polygons and polyhedron.
They find the face polygons through connectivity criteria such as common faces
or common triangles.

In [15,36,40] little or nothing is mentioned about geometrically degenerate
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triangle meshes. In engineering applications the triangle mesh often includes
some artifact, such as hanging nodes (T-vertices), gaps, cracks, overlapping
meshes, or overlapping triangles. These artifacts can emerge for example when
a CAD surface is triangulated and used as a triangle mesh. If the degeneracies
are removed before the mesh is given as input to a method that calculates the cut
cell information, there is no need to modify the method to account for geometric
artifacts.

Several methods for removing geometric degeneracies are described in the
literature. They can in general be classified as either surface oriented or vol-
umetric. Surface oriented methods such as [6, 19, 26] operate directly on the
degenerate geometry. Volumetric methods such as [11, 22, 32] create an inter-
mediate volumetric representation of the geometry that is used to create a new
mesh without degeneracies. Both classes of methods have drawbacks [16]. Vol-
umetric methods destroy connectivity structures of the input geometry and can
lead to loss of model features. Surface oriented methods can fail in resolving
certain types of artifacts and suffer from robustness problems for other types
such as large scale triangle overlaps.

Aftosmis et al. [1, 2] adopt a volumetric approach to degenerate and over-
lapping triangle meshes. An alternative is to let the cut cell method handle
geometric degeneracies, as is done for double surfaces in this thesis.
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2. Mathematical tools

We here give a short overview of parts of the mathematical tools needed to solve
the problem described in Section 1.4. We also discuss the intersection between
a triangle mesh and an axis-aligned hexahedral cell. It is needed in the solid
volume fraction algorithms, but is not in focus in the appended paper.

2.1 Volume and area of polyhedrons and polygons

The intersection between a triangle mesh and a hexahedral cell is a polyhedron,
consisting of several polygonal faces. To calculate the area and volume frac-
tions we need to be able to calculate the area of a polygon and the volume of
a polyhedron. A formula for the volume of a polyhedron P can be derived
from the divergence theorem. When the theorem is applied with the vector field

F(x, y, z) =
1

3
(x, y, z) we get

V (P ) =
1

3

∑

i

ci · n̂iAi, (2.1)

where V (P ) is the volume of the polyhedron P , ci is the centroid, n̂i the unit
normal and Ai the area of the i:th face Si of the surface of P . To see this, note
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that ∇ · F = 1 and

V (P ) =

∫

P

dV =

∫

P

∇ · F dV =

∫

∂P

F · n̂ dS

=
1

3

∑

i

∫

Si

(x, y, z) · n̂i dSi

=
1

3

∑

i

n̂i ·
∫

Si

(x, y, z) dSi

=
1

3

∑

i

n̂i · ciAi.

(2.2)

The area A and centroid c = (cx, cy) of a polygon with vertices
(x0, y0), . . . , (xn−1, yn−1), (xn, yn) are given by [7]

A =
1

2

n−1∑

i=0

(xiyi+1 − xi+1yi), (2.3)

and

cx =
1

6A

n−1∑

i=0

(xi + xi+1)(xiyi+1 − xi+1yi),

cy =
1

6A

n−1∑

i=0

(yi + yi+1)(xiyi+1 − xi+1yi),

(2.4)

where (xn, yn) = (x0, y0).

2.2 Triangle-cell intersections

To calculate the area and volume fractions, we first need to find the intersection
between the triangle mesh and the hexahedral cell. This step is not addressed in
the appended paper, and is therefore discussed briefly in the following.

What we basically want to do is to intersect a number of triangles and an
axis-aligned hexahedron in a robust way. By robustness we mean that we want
to locate the points of intersection, we do not want to miss an intersection due to
numerical imprecision, and we want related intersection tests to give consistent
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results. The latter requirement could fail for example if an edge that is shared
between two triangles is not represented consistently between the two triangles
[18]. We also want unique intersections, meaning that an intersection point on
a triangle edge is shared between the two triangles meeting at the edge, and
that an intersection point in a triangle vertex is shared between all triangles that
meet in the vertex.

The above robustness criteria makes the triangle-box intersection problem
hard to solve. Determining whether a triangle and an axis-aligned box intersect
or not is a well studied problem, discussed for example in [3]. Robustness is-
sues are discussed by among others [18, 33]. It gets more complicated when
the locations of the intersection points are also required. One approach to this
is to perform a sequence of simpler intersection tests, where the triangle edges
are intersected with the rectangular faces of the box, and the box edges are
intersected with the triangle. Such line segment-rectangle and line segment-
triangle intersection tests are common in several applications, often build upon
the parametric representation of the geometric objects, and summarized for ex-
ample in [18].

To get unique intersections, we have introduced vertices and edges that are
shared between triangles. Similarly, we have introduced box vertices and box
edges that are shared between the rectangular faces of the box. These joint
edges and vertices are then used in a sequence of simpler intersection tests, as
described above. Before the intersection points are calculated numerically, we
have tried to discretely determine how many intersections there are by using co-
ordinate comparisons similar to the outcodes described in [1,2]. The coordinate
comparison approach is appealing since the cell is axis-aligned, and the x-, y-
and z-coordinates can be considered separately. Neither are there any numeri-
cal issues with the coordinate comparisons, since no floating point calculations
have to be performed.
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3. Algorithms

Two algorithms have been developed and implemented to solve the problem in
Section 1.4, one exact algorithm and one approximate algorithm. The two algo-
rithms are summarized in this chapter, and presented in detail in the appended
paper. The exact algorithm is summarized in Section 3.1, and the approximate
algorithm is summarized in Section 3.2. In Section 3.3, we briefly describe
how the algorithms handle triangle meshes including double surfaces. For a
more thorough explanation, we refer to the appended paper.

3.1 Exact algorithm

In the exact algorithm, we use a methodology similar to [1,2,15] for extracting
the polyhedron of intersection ΩT

⋂ C between the mesh and the cell. The area
and volume fractions can then be calculated after the volume of the polyhedron
and the area of the polyhedral faces are found. We note that the solid volume
fraction α can be defined as

α =
V (ΩT

⋂ C)
V (C) , (3.1)

where V (X) denotes the volume of a subset X of R3. Similarly, the solid area
fraction βi of face Fi can be defined as

βi =
A(ΩT

⋂
Fi)

A(Fi)
, (3.2)
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whereA(X) is the area of a two-dimensional objectX . The area of the possibly
non-convex polygon(s) ΩT

⋂
Fi, i = 1, . . . , 6, in (3.2), are calculated from

(2.3). The volume of the polyhedron ΩT
⋂ C in (3.1) is calculated from Gauss’s

divergence theorem as in (2.1).
The required steps can broadly be summarized as follows:

Main steps in the exact algorithm:

1. Intersect the triangle mesh and the cell

2. For each cell face, use the intersections from step 1 and the face
vertices to find the face polygon(s) ΩT

⋂
Fi

3. For each triangle, use the intersections from step 1 to find the
polygon of intersection between the triangle and the cell

4. For each cell face, use the face polygons from step 2 and the area
of the face to calculate the area fraction of the face according to
(3.2)

5. Use the face polygons from step 2 and the triangle polygons from
step 3 to calculate the solid volume fraction from (2.1) and (3.1).

A sketch of the different steps in the exact method is found in Figure 3.1.
For more details we refer to the appended paper.
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(a) A Cartesian cell C inter-
sected by a triangle mesh T .

(b) The intersection points be-
tween the mesh and the cell
are found.

(c) For each face Fi of C,
the intersection points on that
face are connected into poly-
gons.

(d) For each triangle, the in-
tersection points on that trian-
gle are connected into a poly-
gon.

(e) When all intersecting tri-
angles are processed, the poly-
hedron ΩT

⋂ C is complete.

(f) The volume fraction is cal-
culated according to (3.1) and
(2.1), where normals, areas
and centroids are required.

Figure 3.1: Description of how the polyhedron of intersection is found in the
exact algorithm.

3.2 Approximate algorithm

In the approximate algorithm, the polyhedron of intersection ΩT
⋂ C in Section

3.1 is not exactly resolved. Instead, ΩT
⋂ C is approximated by a simpler,

convex, polyhedron P , with convex polygonal faces. This is done by fitting
a total least squares plane [31] to the intersection between the cell C and the
triangle mesh T . The plane splits the cell in two parts, of which one is the
approximate polyhedron of intersection.

The required steps can broadly be summarized as follows:

13



Main steps in the approximate algorithm:

1. Intersect the triangle mesh and the cell

2. Fit a total least squares plane to the intersections from step 1

3. Cut the cell in two by intersecting the least squares plane from
step 2 with the cell

4. Identify the approximate polyhedron of intersection among the
two parts in step 3

5. For each cell face, calculate the area of the intersection between
the face and the polyhedron in step 4 and divide the result by the
area of the face to calculate area fraction

6. Apply (2.1) to the approximate polyhedron of intersection and
divide the result by the volume of the whole cell to calculate the
solid volume fraction.

A sketch of the different steps in the approximate method is found in Figure
3.2. For more details we refer to the appended paper.
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(a) A Cartesian cell C inter-
sected by a triangle mesh T .

(b) The intersection points be-
tween the mesh and the cell are
found.

(c) A least squares plane is fit-
ted to the intersection points.

(d) The least squares plane
and the intersection points
from another view angle.

(e) The intersection points be-
tween the plane and the cell are
located.

(f) The approximate polyhe-
dron of intersection P is de-
fined by the intersection points
in (e) and the normal of the
plane.

Figure 3.2: Description of how the polyhedron of intersection is found in the
approximate algorithm.

3.3 Geometric degeneracy

As mentioned in Section 1.4, the algorithms should handle large scale triangle
overlaps, or double surfaces. An example of a mesh including a double surface
is seen in cross section in Figure 3.3. The mesh consists of two merged triangle
meshes T1 and T2, with triangles from the two meshes overlapping in a double
surface.

Both algorithms are modified to handle double surfaces. In the exact algo-
rithm, the double surface could cause problems when the intersections on the
cell faces are connected into polygons. A condition is therefore added at this
stage of the algorithm, which makes sure that the correct polygons are created.
In the approximate algorithm, the aim is to detect double surfaces before any
intersection points are calculated. A double surface is present if all triangles
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T2

T1

C

(a) A cell C intersecting a double surface.

T2
C

T1
(b) A cell C intersecting both a double sur-
face and another part of the mesh.

Figure 3.3: Cross section of typical cases of intersection between a cell and a
double surface.

intersecting the cell are coplanar and there are triangle normals pointing in op-
posite directions. For more details we refer to the appended paper.

An issue that is not discussed in the appended paper is how the algorithms
handle the numerical representation of a double surface. When floating points
are used, the triangles in a double surface could slightly overlap or be slightly
separated, as in Figure 3.4. The algorithms proposed in the appended paper
work even if the triangles in the double surface are slightly separated and not
overlapping. However, an extra condition has to be added if small overlaps are
to be handled. Problems with numerical overlaps have not been encountered in
the studied test case, but we still discuss how they could be solved.

������������������������������������������������������������������������������
����������������������������

T1

T2
C

(a) A cell C intersecting an overlapping dou-
ble surface.

��������������������������

������������������������������������������������������������������������������

T1

T2
C

(b) A cell C intersecting a double surface
with a small separation between the trian-
gles.

Figure 3.4: Cross section of typical cases of intersection between a cell and a
double surface. The double surface includes small overlaps or small separations
between triangles.
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To handle numerical overlaps, a limit ε for the maximal overlap allowed
can be introduced and used to indicate when a double surface is found. Two
intersection points at a separation distance smaller than ε are assumed to lie on
a double surface if they also belong to triangles with opposite normals. Due
to numerical issues, it will be necessary to have a limit on the oppositeness of
normals. In the following we assume that two normals are opposite if π−θ < δ,
where θ is the angle between the normals and δ is a prescribed limit.

In the approximate method, it is enough to use the limits to determine when
two triangles with opposite normals are coplanar. In the exact method, the lim-
its are used in the face polygon connection step to indicate whether a certain
intersection point can be taken as the next vertex in the face polygon or not.
The polygon connection step corresponds to step 2 in the numbered list in Sec-
tion 3.1, and is exemplified in Figure 3.1(c). In the following, we discuss the
treatment of double surfaces in the exact algorithm.

When a double surface intersects a cell, as in Figure 3.3, we wish to connect
the intersection points on T1 to one polyhedron of intersection, and the inter-
section points on T2 to another polyhedron of intersection. How this is done is
explained in the appended paper. The result after a correct polygon connection
step is visualized in Figure 3.5, where the different striped patterns correspond
to the different polyhedrons of intersection, one for T1 and one for T2.
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(a) A cell C intersecting a double surface.
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(b) A cell C intersecting both a double sur-
face and another part of the mesh.

Figure 3.5: Cross section of typical cases of intersection between a cell and a
double surface. The intersections have been connected into the correct polyhe-
drons of intersection, one for T1 and one for T2.

For an overlapping double surface, the aim is to get to the result in Figure
3.6. The two meshes T1 and T2 still contribute with one polyhedron of inter-
section each, but there will now be an overlap between the polyhedrons. This
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overlap corresponds to the overlap of the double surface. The area and volume
of the overlap is counted twice in the solid area and solid volume fraction cal-
culations. To get to the result in Figure 3.6, the face polygon connection step
has to be modified, or the result will be as in Figure 3.7 where only a fraction
of the correct polyhedrons of intersection is found.
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(a) A cell C intersecting a double surface.
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(b) A cell C intersecting both a double sur-
face and another part of the mesh.

Figure 3.6: Cross section of typical cases of intersection between a cell and
an overlapping double surface. The intersections have been connected into the
correct polyhedrons of intersection, one for T1 and one for T2.
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(a) A cell C intersecting a double surface.
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(b) A cell C intersecting both a double sur-
face and another part of the mesh.

Figure 3.7: Cross section of typical cases of intersection between a cell and
a double surface. The intersections have in both cases been connected erro-
neously to only one polyhedron of intersection.

The problem with the cases in Figure 3.7 is that the algorithm can not dis-
tinguish the overlapping double surface from a thin or sharp-edged part of the
mesh. Examples of thin and sharp-edged meshes are found in Figure 3.8(a)
and Figure 3.8(b), respectively. A sharp edge is in this case formed when two
triangles meet at an angle less than δ. For the cases in Figure 3.8, it is correct
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to connect the two close intersections at the left and right cell faces, while it is
wrong to do the same thing for the cases in Figure 3.7.
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(a) A cell C intersecting a thin
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(b) A cell C intersecting a
sharp-edged mesh T .

Figure 3.8: Meshes that can not be distinguished from an overlapping double
surface in the method based on a maximal limit of the allowed overlap.

To avoid the problem demonstrated in Figure 3.7, the maximal overlap limit
ε is used as an upper limit on how close two nearby vertices of a face polygon
can be. If the distance between the current vertex and a candidate for the next
vertex is closer than ε, and the two vertices belong to triangles with opposite
normals, the candidate can not be taken as the next vertex. With this modifica-
tion of the polygon connection algorithm, the result will be as in Figure 3.6. A
consequence is that sharp-edged meshes and meshes thinner than ε can not be
handled.

The above modification of the exact algorithm is necessary only if the dou-
ble surface belongs to a single mesh T = T1

⋃ T2. If T1 and T2 are handled
separately, the double surface is resolved by finding the face polygons and poly-
hedrons of intersection for one mesh at a time. The area and volume fractions
from the different meshes are then added.

For separate meshes T1 and T2, the overlaps that can be handled are not
restricted to double surfaces. It is even possible to handle arbitrary overlaps, as
long as it is reasonable to count the overlap volume and area twice.
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4. Numerical results

The exact and approximate volume fraction algorithms have been validated and
compared against a geometry including a double surface. The geometry (Figure
4.1), which is taken from an industrial application, represents a heat sink used
to cool a CPU. The whole mesh is seen in Figure 4.1(a), and in Figure 4.1(b) we
have zoomed in on the part of the mesh that is marked by a circle. The triangle
pattern in the lower right part of the zoom-in reveals that the geometry contains
a double surface.

(a) Test geometry representing a heat sink. (b) Zoom in on the part in the left figure
marked by a circle. The overlapping triangles
indicate that there is a double surface.

Figure 4.1: The test case.

The algorithms have been implemented in the C++-based multiphase flow
framework IBOFlow [20]. Grid convergence and CPU times were analysed and
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compared. The fluid grid was stored in an octree and initially consisted of 1 800

cubical cells with side 4.16 · 10−3 m. It was refined up to five times around the
triangular mesh, resulting in a finest grid with 8 438 270 cells of size 1.3·10−4 m

or larger. At each refinement level, the smallest cell size was halved and eight
new cells were formed. The test setup resulting after the fluid grid was refined
three times is demonstrated in Figure 4.2. All computations were carried out
on a 3.50GHz Intel Core i7 processor (5930K) and 64 GB of RAM (1066 GHz
DDR4).

Figure 4.2: Test setup for volume fraction calculation. The colour of the cells
represents cell size, where blue is smallest and red is largest.

Results of the grid study are presented in Figure 4.3(a). The total vol-
ume of the interior of the geometry was calculated by running the exact and
approximate volume fraction algorithms for each cell. This was repeated for
each refinement level. The calculated volume was compared to the real volume
1.45 · 10−5 m3, which was found by applying (2.1) to the whole triangle mesh.
A plot of the CPU time against the number of fluid cells is seen in Figure 4.3(b).
The times are the average results from 10 runs. In summary, the exact method
is independent of cell size, while the approximate method is second order accu-
rate. The exact method is a constant factor slower than the approximate method.
The constant factor is close to 2 when the number of cells is large.
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Figure 4.3: Results from grid and CPU time studies.
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5. Applications in conjugated
heat transfer

The volume fraction algorithms described in the appended paper and summa-
rized in Chapter 3 are developed to be used together with an immersed boundary
method [28, 29] for simulation of conjugated heat transfer with IBOFlow [20].
In this chapter it is described how the volume fraction is used in the discretiza-
tion and numerical solution of the heat equations. In Section 5.1, the physics of
heat transfer are discussed. In Section 5.2, the equations governing the temper-
ature field in a fluid and a solid are presented. In Section 5.3 it is described how
a finite volume approach is used to discretize the governing equations, and how
the volume fraction enters in the discretized equations. Finally, in Section 5.4,
a numerical example of forced convection cooling of a CPU and a heat sink is
described.

5.1 Heat transfer

There are many situations in which it is of interest to describe or predict the
temperature field in a physical system. Some well known examples are building
insulation [4, 41] and cooling of electronics [13]. The temperature field in the
building or electronic equipment can be described by equations derived from
fundamental principles of physics. The equations governing the temperature
field in a fluid or solid are described in Section 5.2. In this section the physical
mechanisms that affect the temperature field are discussed.
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Heat transfer is the mechanism that causes change in temperature, as heat is
transferred from a location of higher temperature to a location of lower temper-
ature. The mechanism can be classified into one of three main classes: conduc-
tion, convection, or radiation [30]. These modes of heat transfer are described
briefly below.

5.1.1 Conduction

Conduction is the transfer of heat by direct surface contact. At a molecular
scale, it occurs as molecules with higher kinetic energy collide with or vibrate
against less kinetic molecules. The speed of the less kinetic molecules is in-
creased and the speed of the molecules with higher kinetic energy is decreased,
thus increasing the temperature in the cooler area and decreasing the temper-
ature in the hotter area. Since the process is due to molecular collisions, it is
not dependent on a bulk velocity. Conduction is therefore present in both solids
and fluids. Heat conduction is in general more effective in solids due to the
molecular structure [25].

Heat conduction can be described by Fourier’s law

qi = −k ∂T
∂xi

, (5.1)

where qi is the heat flux in
W

m2
, T is the temperature, and k is the thermal

conductivity of the material.

5.1.2 Convection

In contrast to conduction, convection occurs as a result of movements of fluids.
Hence there is no convection in solids. There are two main modes of convec-
tion: natural convection and forced convection.

Natural or free convection occurs in fluids when buoyancy forces cause fluid
movement. This occurs in gravitational fields when the fluid has varying tem-
perature and therefore varying density. The hot fluid is less dense and moves
against the gravity [25]. This happens for example when a radiator is heating a
room [24].

In forced convection it is assumed that temperature differences do not af-
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fect the fluid motion. Instead, heat is transported from one place in the fluid
to another by the fluid flow [25]. An example is air motion caused by a fan.
Another example is the wind, which transports hot or cold air from one location
to another.

Mixed convection is a combination of forced convection and natural con-
vection.

5.1.3 Radiation

Thermal radiation is the transfer of energy by electromagnetic waves. All bod-
ies at non-zero temperature emit energy in the form of thermal radiation [12].
A black body (a body which absorbs all incoming electromagnetic radiation)
emits energy according to Stefan-Boltzmann’s law:

Eb = σT 4
b , (5.2)

where Eb is the heat flow per unit surface area and second, σ = 5.67 · 10−8 is
the Stefan-Boltzmann constant, and Tb is the temperature of the black body.

A surface that is not a black body has emissive power E satisfying

E = εσT 4, (5.3)

where ε is the surface emissivity of the non-black body, and T is its temperature
[39].

5.2 Governing equations

The equations governing the temperature field of an incompressible fluid are
the continuity equation (5.4), the momentum equations (5.5), and the transport
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equation for temperature (5.6), given by

∂ui
∂xi

= 0, (5.4)

ρ
∂ui
∂t

+ ρ
∂(uiuj)

∂xj
= − ∂p

∂xi
+

∂

∂xj

(
µ
∂ui
∂xj

)
− ρ0giβ(T − T0), (5.5)

ρcp
∂T

∂t
+ ρcp

∂(Tuj)

∂xj
=

∂

∂xj

(
k
∂T

∂xj

)
+ qext. (5.6)

Here ui is the fluid velocity field, T is the fluid temperature, ρ is the fluid
density, p is the pressure, µ is the dynamic viscosity of the fluid, ρ0 is the fluid
density at the reference temperature T0, gi is the gravitational field, β is the
coefficient of thermal expansion of the fluid, k is the thermal conductivity of
the fluid, and qext denotes external heat sources. Together, (5.4) and (5.5) form
the Navier-Stokes equations.

Boussinesq approximation is assumed for the coupling between the momen-
tum equation (5.5) and the heat equation (5.6). The approximation is a model
for fluid flow driven by density differences. The fluid density is considered con-
stant, except in the gravitational fluid body force fi = ρgi where it is assumed
that ρ = ρ(T ) = ρ0 − ρ0β(T − T0). Inserting this relation in the formula for
the gravitational fluid body force, we get fi = ρ0gi− ρ0giβ(T −T0). The con-
tribution from −ρ0giβ(T − T0) is included in (5.5) as an explicit source term,

while ρ0gi is included in the definition of the pressure term
∂p

∂xi
. Boussinesq

approximation implies that ρ = ρ0 in (5.5) and (5.6).
The temperature field in a homogeneous solid is also governed by the heat

equation, but the advective term is zero since the velocity field vanishes inside
the solid. The equation reads:

ρscp,s
∂Ts
∂t

=
∂

∂xj

(
ks
∂Ts
∂xj

)
+ qext,s, (5.7)

where Ts is the solid temperature, ρs is the solid density, cp,s is the specific
heat capacity of the solid, ks is the thermal conductivity of the solid, and qext,s
denotes external heat sources.

The different terms in the Navier-Stokes equations (5.4)-(5.5) and the heat
equations (5.6)-(5.7) can be related to the modes of heat transfer discussed in
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Section 5.1. In Section 5.1, conduction was described by Fourier’s law, qi =

−k ∂T
∂xi

. In the heat equation it enters through the term
∂

∂xj

(
k
∂T

∂xj

)
. Natural

convection was in Section 5.1 described by buoyancy forces in a gravitational
field causing fluid to move from hot to cold areas. It enters Navier-Stokes equa-
tion through the Boussinesq approximation and the term ρ0giβ(T−T0). Forced
convection was in Section 5.1 described as the transport of heat by the bulk flow.

It enters the heat equation for the fluid through the term ρcp
∂(Tuj)

∂xj
. Finally,

eventual radiation enters the heat equations through the source terms qext and
qext,s.

When it is of interest to describe the heat transfer between a solid and a
fluid, the two heat equations (5.6) and (5.7) have to be coupled. This is done
by prescribing the heat flux between the solid and the fluid at the solid-fluid
interface. The heat flux is due to conduction and radiation, since there is no
velocity field at the interface that could transport heat by convection. The flux
coupling is therefore described as

qtot = qcond + qrad, (5.8)

where qtot is the total heat flux entering or leaving the solid, qcond is the con-
ductive heat flux, and qrad is the radiative heat flux.

The conductive heat flux qcond is governed by Fourier’s law (5.1). An ap-
proximate way of describing the conductive heat transfer is Newton’s law of
cooling [10]. The law states that the heat flux is proportional to the temperature
difference between the body and the surroundings. This can be written

qcond ≈ h (T∞ − Ts) , (5.9)

where h is the heat transfer coefficient, T∞ is the temperature of the surround-
ings, and Ts is the temperature of the solid body. The heat transfer coefficient
depends on the geometry of the solid, the fluid, and the flow. The boundary
layer thickness and the Nusselt number are two important factors. The bound-
ary layer is the location close to the solid surface where there is a significant
velocity gradient. The Nusselt number describes the relative importance of
convective and conductive heat transfer. The heat transfer coefficient can be
defined in different ways, but has to be chosen in conjunction with the ambient
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temperature T∞ [5].

5.3 Discretization and numerical solution

In IBOFlow, the governing equations in Section 5.2 are discretized and solved
on a dynamically refined octree grid. The fluid is represented by an anisotropic
Cartesian hexahedral grid, and the solids are represented by triangle meshes.
Other solid representations are possible, but these are not considered here.

The finite volume method is used for the discretization of the governing
equations. Roughly, each fluid cell is either marked as fluid or solid. A cell is
marked as solid if it has a non-zero solid volume fraction. A cell in which both
the solid volume fraction and the fluid volume fraction is non-zero is called a
mixed cell. A two-dimensional visualization of the different kinds of cells is
seen in Figure 5.1, where cell 3 is a standard fluid cell, and cell 4 is a standard
solid cell. The rest of the cells are intersected by the solid triangle mesh T , and
have both a solid and a fluid part. These are the mixed cells.

The momentum equations, the continuity equation and the fluid heat equa-
tion are discretized on the fluid cells, while the heat equation for the solid is
discretized on the solid cells. The mixed cells have both a solid and a fluid
temperature. All fluid and solid properties are stored in the cell centers.

The governing equations are coupled through the velocity field ui and the
temperature T . In each time step the continuity equation (5.4) and the mo-
mentum equations (5.5) are first solved for the velocity field through the SIM-
PLEC [34] method. The fluid velocity at the IB is constrained to the velocity
of the IB by an implicit immersed boundary condition [27, 28]. The velocity in
the solid is set by a Dirichlet boundary condition to the velocity at the IB.

Next, and in the same time step, the heat equations are solved. The heat
equation for the solid is first solved in the solid cells. After that, the heat equa-
tion for the fluid is solved. The mixed cells require special treatment, and this is
where the solid area and volume fraction is used. In the mixed cells the control
volume used in the finite volume discretization is the polyhedron of intersec-
tion between the triangle mesh and the cell, instead of the whole cell. The solid
area fractions are thus used to ensure physical fluxes over the cell faces, and the
solid volume fraction enters in the formula for the size of the control volume.
There is also a heat flux from solid to fluid or from fluid to solid, which enters
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4 5 6

Figure 5.1: Two dimensional representation of a fluid grid intersected by a tri-
angle mesh T . The triangle mesh represents the boundary of a solid body. Cells
3 and 4 are standard fluid and standard solid cells respectively. The remaining
cells have both a fluid and a solid volume fraction. They are the mixed cells.

and leaves through the triangles that intersect the cell. Referring to the volume
fraction algorithm in the appended paper, heat flows between solid and fluid
through the cell polygons.

In Figure 5.2 a two-dimensional visualization of a mixed cell is seen. In
the discretized equations, heat flows through the cut faces and triangles in the
positive or negative direction of the arrows. The direction of the heat flow is de-
termined by the temperature difference according to Fourier’s law or Newton’s
law of cooling.

If Fourier’s law is used for the heat flux, direct numerical simulation (DNS)
is used to calculate qcond in (5.8). The temperature gradient in (5.1) is approxi-
mated by a forward difference using the fluid temperature interpolated to a point
close to the solid surface and the fluid temperature at the surface. If Newton’s
law of cooling is used, the approximate relation in (5.9) is employed with the
predefined heat transfer coefficient h and the reference temperature T∞.

The solid area and volume fractions are used in a similar way in the mo-
mentum equations to ensure physical momentum fluxes.
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Figure 5.2: Two-dimensional representation of a mixed cell cut by the triangles
τ1, τ2 and τ3. Heat flows from the solid to the fluid through the triangles. Heat
flows through the cell faces with non-zero solid area fraction to the solid in the
neighboring cells.

5.4 Numerical example

The conjugated heat transfer solver has been used to simulate air cooling of a
CPU by forced convection. The CPU was mounted on a rectangular block, and
a fin heat sink was placed on top to increase the heat transfer from the CPU to
the surrounding air. The block and the heat sink together form the geometry
in Section 4, which was used to validate the solid volume fraction algorithms.
The block, the heat sink and the CPU together are henceforth referred to as the
geometry.

The simulation setup is seen in Figure 5.3. The rectangular box, which
measures 0.25 m × 0.03 m × 0.025 m, represents the simulation domain. The
geometry was placed in the middle of the simulation domain. An anisotropic
fluid grid was used, with base cell size 0.0033 m× 0.0017 m× 0.0005 m. The
grid was refined two times around the geometry. For each refinement level, the
cell size was halved and eight new cells were formed, resulting in a total of
628 445 fluid cells.

The heat sink and the block were made of an aluminum alloy with den-
sity 2800 kg/m3, specific heat capacity 900 J/(kgK), and thermal conductiv-
ity 205 W/(mK). For the air, the corresponding values were 1161 kg/m3,
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Figure 5.3: Simulation setup for forced convection air cooling of a CPU
mounted on a rectangular block, and with a heat sink on top.

1005 J/(kgK), and 0.026 W/(mK), respectively.
To model the heating of a CPU in work, an external heat source of 50 W

was applied between the block and the heat sink. Air was let in with a speed of
10 m/s through a short side of the simulation domain, to simulate the presence
of a blowing fan. In Figure 5.3, the air inlet and the direction of the flow is
indicated by the arrow.

At the inlet, Dirichlet boundary conditions were used for the velocity and the
temperature, and a zero Neumann boundary condition was used for the pressure.
The temperature of the inlet air was set to 293 K. An outlet was located at
the short side opposite to the inlet. At the outlet, zero Neumann conditions
were used for the velocity and the temperature, and a zero Dirichlet boundary
condition was used for the pressure. For the remaining boundaries, symmetry
conditions (zero Neumann) were used for the temperature and the pressure, and
the no-slip boundary condition was used for the velocity.

A steady state artificial time-stepping method was used. The resulting tem-
perature field in the solid and a slice of the fluid is illustrated in Figure 5.4. As
seen from the figure, the solid temperature is highest close to the heated CPU,
which is located between the block and the heat sink. It is also seen how heat is
spread from the source to the block and the heat sink, where heat is exchanged
with the surrounding air. The fins are cooled, and the surrounding air is heated
and convected by the flow towards the outlet. In this way, overheating of the
CPU can be avoided.
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Figure 5.4: Temperature field in the solid and the fluid, resulting from the con-
jugated heat transfer simulation.
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6. Discussion

The advantages and drawbacks of the implemented algorithms are here dis-
cussed. We also consider the robustness problems in the triangle-cell intersec-
tion routine from Section 2.2, and briefly discuss the extra condition introduced
in Section 3.3 to handle overlapping double surfaces. We start the discussion
by addressing the robustness issue.

When intersecting the triangle mesh and the cell, the aim is to use a robust
routine, as noted in Section 2.2. However, the intersection method we have
discussed and used is not completely robust. To ensure robustness, an alter-
native would be to use exact arithmetics, interval arithmetics or other similar
approach. For a discussion of exact arithmetics and interval arithmetics, see for
example [33]. We have not done this, but instead tried to as far as possible dis-
cretely determine how many intersections there are and where they are located.
Still, there is more work to be done to make the intersection routine completely
robust. It would be interesting to study the intersection routine further and see
how accurately the intersection points can be located without introducing nu-
merical errors. This could possibly include use of interval arithmetics.

If the intersections are not calculated correctly, we might not be able to
find the correct faces of the polyhedron of intersection in Section 3.1. This
might cause the polyhedron of intersection to be degenerate. For example, a
polyhedral face could be missing, which would create a hole in the surface of
the polyhedron. This is a problem, since formula (2.1) for the volume of a
polyhedron is sensitive to such geometrical degeneracies. How the polyhedral
faces are found is discussed in more detail in the appended paper.

The approximate algorithm, which is not as sensitive to numerical robust-
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ness issues, was therefore implemented. It is more robust against numerical
issues since the intersection between the triangle mesh and the cell is approxi-
mated by a least squares plane before the faces of the approximate polyhedron
of intersection are found. A missed or erroneously calculated intersection point
will make the approximating plane less accurate, which affects the size and
shape of the approximate polyhedron of intersection, but it does not make it
degenerate. The approximate algorithm is also easier to implement. Moreover,
it has been shown to be faster than the exact algorithm, and second order ac-
curate for the test case in Section 4. Second order accuracy is enough in many
applications.

The approximate algorithm is not as accurate for double surfaces as the
exact algorithm, as shown in the appended paper. Another advantage of the
exact algorithm is its exactness, as demonstrated by the convergence results in
Section 4. Also, since the exact algorithm is only a constant factor slower than
the approximate algorithm, it is likely to be preferred.

The convergence result shows that the occurrence of numerical issues is
overall negligible. However, it can be of importance that the solid volume and
area fractions in individual cells are accurate as well. This could fail due to the
previously discussed numerical issues. Our solution to this problem is to accept
potential robustness problems at the intersection stage, and use the approximate
volume fraction algorithm if the exact algorithm should fail.

Finally, we mention something about the overlap of double surfaces, which
was discussed in Section 3.3. A drawback of the proposed solution is that
meshes including sharp edges or thin parts can not be handled, since the polygon
connection algorithm can not distinguish these details from an overlapping dou-
ble surface. On the other hand, overlaps due to numerical imprecision should be
small in comparison to the size of the mesh, unless the details of the mesh are
very fine. There could be other reasons to discuss if meshes with sharp edges
or thin parts are valid as well. It would be interesting to investigate if there is a
discrete solution to the problem, in contrast to the proposed numeric one. There
could be a discrete constraint on the order in which the intersections are con-
nected to polygons that solves the problem. A clever choice of the start vertex
might also be a possible solution.
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7. Conclusion

In this thesis work, two algorithms for calculation of the solid volume fraction
and solid area fractions of an axis-aligned heaxahedral cell intersected by a
triangle mesh have been presented. The triangle mesh, which is allowed to
include double surfaces, represents the surface of a solid. The first algorithm is
in principle exact, and the second algorithm is based on a least squares plane fit
to the intersection between the triangle mesh and the cell.

The algorithms have been implemented in the multiphase flow framework
IBOFlow [20], where they are used in a finite volume method for simulation
of conjugated heat transfer. The solid volume fraction describes how much of
each fluid cell that is intersected by the solid. Similarly, the solid area fractions
describe how much of each cell face that is intersected by the solid. This infor-
mation is needed in the conjugated heat transfer solver when the heat equation
is discretized over a cell that is intersected by the triangle mesh.

It is concluded that the exact algorithm is independent of cell size, while
the approximate algorithm is second order accurate for the test case in study.
Besides being more accurate, the exact algorithm is better at handling double
surfaces. The handling of double surfaces is an extension of similar algorithms,
which only handle non degenerate triangle meshes. The triangle meshes used
in engineering applications are often degenerate, and this work is a step towards
an algorithm that can be used with such meshes without preprocessing through
a repair algorithm. A mesh repair method could be adopted, but that is not
always desirable since the existing repair algorithms could fail in removing the
degeneracies without introducing unwanted side effects. This motivates the
need for an algorithm that handles degenerate triangle meshes.
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The approximate algorithm is a constant factor faster than the exact algo-
rithm, and more robust against numerical imprecisions. The exact algorithm
could fail due to numerical robustness problems at the stage of intersecting the
triangle mesh and the cell. These problems are avoided in the approximate
algorithm by approximating the intersection by a least squares plane.

The aim is to use an intersection routine that is numerically robust, though
the currently used intersection routine does not completely fulfill this require-
ment. It would be interesting to study the intersection routine to see if robust-
ness can be ensured. Meanwhile, to assure robustness when the exact algorithm
is used, the approximate algorithm is utilized in case of failure.

As a next step towards an algorithm that is robust against geometric de-
generacies, the exact algorithm could be extended to account for overlapping
triangle meshes and hanging nodes. Overlaps between meshes could be found
by handling each mesh separately. To solve the problem with hanging nodes
the triangle edges would need to have subedges, and these would have to be
accounted for in the polygon connection algorithms.
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