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New transport equations for chemical reaction rate and its mean value in turbulent
flows have been derived and analyzed. Local perturbations of the reaction zone by
turbulent eddies are shown to play a pivotal role even for weakly turbulent flows. The
mean-reaction-rate transport equation is shown to involve two unclosed dominant
terms and a joint closure relation for the sum of these two terms is developed.
Obtained analytical results and, in particular, the closure relation are supported by
processing two widely recognized sets of data obtained from earlier direct numer-
ical simulations of statistically planar 1D premixed flames associated with both
weak large-scale and intense small-scale turbulence. Published by AIP Publishing.
[http://dx.doi.org/10.1063/1.4960390]

The critical point of turbulent reacting flow theory stems from averaging reaction rates subject
to fluctuations in the local temperature, T , and concentrations. The problem is particularly severe
in the case of premixed burning, because (i) the rates of reactions that control heat release depend
non-linearly on T , (ii) the magnitudes of the temperature fluctuations are typically large, and (iii)
these fluctuations exhibit a wide range of length and time scales. As reviewed elsewhere,1–6 models
developed to solve this highly non-linear and multiscale problem can be divided into two major
groups: (i) models that yield a closed expression for the mean reaction rate, and (ii) models that
deal with a transport equation for a quantity, e.g., mean scalar dissipation rate,6,7 or mean flame
surface density,3,4,8–10 that is assumed to be linearly related with the mean reaction rate. However,
the present authors are not aware of a transport equation derived directly for a mean reaction rate
in a turbulent flow. The goal of the present communication is to fill this gap by introducing such a
transport equation and exploring it in the case of premixed mode of burning.

To derive a transport equation for reaction rate, let us assume that the state of a mixture in a
premixed flame is characterized by a single combustion progress variable c, which varies from zero
in unburned gas to unity in combustion products. Such a simplification is typical for a majority
of models that address adiabatic burning at low Mach and unity Lewis numbers.4 The transport
equation of c takes the following form:

ρ
∂c
∂t
+ ρu · ∇c = ∇ · (ρD∇c) + ρW, (1)

where t is time, u is the flow velocity vector, ρ = ρ(c), D = D(c), and W = W (c) are the density,
molecular diffusivity, and reaction rate, respectively. The four terms in Eq. (1) are associated with
non-stationarity, convection, molecular diffusion, and reaction, respectively.
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Then, using the continuity equation

∂ρ

∂t
+ ∇ · (ρu) = 0, (2)

we have
∂

∂t
(ρW ) + ∇ · (ρuW ) = ρ

∂W
∂t
+ ρu · ∇W =

dW
dc


ρ
∂c
∂t
+ ρu · ∇c



=
dW
dc
∇ · (ρD∇c) + ρW

dW
dc
= ∇ ·

(
ρD

dW
dc
∇c

)
− ρD∇c · ∇

(
dW
dc

)
+ ρW

dW
dc

. (3)

Finally, we arrive at

∂

∂t
(ρW ) + ∇ · (ρuW ) = ∇ · (ρD∇W ) −ρN

d2W
dc2            

L3

+ ρW
dW
dc      

L4

, (4)

where N ≡ D∇c · ∇c is the scalar dissipation rate. The Left Hand Side (LHS) of Eq. (4) involves
unsteady and convection terms. The RHS contains a molecular diffusion term and sink/source terms
L3 and L4. The sign of L3 or L4 is controlled by the sign of d2W/dc2 or dW/dc and, therefore,
changes with c.

First, let us consider an unperturbed laminar flame, i.e., a planar 1D flame that has a steady
structure and propagates at a constant speed SL into the unburned gas. Integration of Eq. (4) along
the normal to the flame in the coordinate framework attached to it yields ∞

−∞

(
ρN

d2W
dc2 − ρW

dW
dc

)
dx = 0. (5)

Therefore, the terms L3 and L4 exactly balance one another after integration in this case.
Second, let us consider stretched laminar premixed flames, i.e., spherical or cylindrical flames

expanding in quiescent mixture and planar or cylindrical flames stabilized in divergent laminar
flows of unburned gas (e.g., v = gy and u = −gx or u = −gr/2 in the planar or cylindrical case,
respectively, where g is the rate of strain, y-axis is tangential to the flame, v is the y-component of
velocity vector, and u is the axial, i.e., x, or radial, i.e., r , flow velocity). As reviewed elsewhere,11,12

such flames are used to mimic generic local flame structures in a turbulent flow. As discussed in
detail by Dixon-Lewis13 and Law,14 all these laminar flames can be modeled using the following
unsteady 1D transport equations:

∂

∂t
(ϱΦ) + ϱgΦ +

1
rk

∂

∂r
�
rkϱvΦ

�
=

1
rk

∂

∂r


rkϱdφ

∂Φ

∂r


+ ϱSφ. (6)

Here, Φ = {1, g, c}, dφ = {0, ν, D}, Sφ = {0, − g2 + J2/ϱ, ϱW}, k = {0,1,2} for planar (r = x in
this case), cylindrical, and spherical flames, respectively, with Eq. (6) being valid along a symme-
try line y = 0 if k < 2, ϱ = ρ/ρu = 1/[1 + (σ − 1)c] is the normalized density, σ = ρu/ρb is the
density ratio, ν is the kinematic viscosity, subscripts u and b designate fresh mixture and products,
respectively, and boundary conditions read

v(0, t) = ∂c
∂r

(0, t) = ∂g

∂r
(0, t) = 0,

∂c
∂r

(r → ∞, t) = 0, g(r → ∞, t) = J, (7)

where J ≥ 0 is an input parameter required to vary the strain rate, with J = 0 if k = 2.
Application of a method that was used to derive Eqs. (4)–(6) results in

∂

∂t
(ϱW ) + ϱgW +

1
rk

∂

∂r
�
rkϱvW

�
=

1
rk

∂

∂r


rkϱD

∂W
∂r


− ϱN

d2W
dc2 + ϱW

dW
dc

. (8)

Multiplication of Eq. (8) with rk, followed by integration from r = 0 to∞ yields

duc

dt
+

kuc

r f

dr f

dt
+

1
rk
f

 ∞

0
gϱWrkdr =

1
rk
f

 ∞

0

(
ϱW

dW
dc
− ϱN

d2W
dc2

)
rkdr, (9)
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where

uc =
1
rk
f

 ∞

0
ϱWrkdr (10)

is the consumption velocity and r f is the flame radius.
The theory of stretched laminar premixed flames15,16 is based on the Activation Energy Asymp-

totic (AEA), i.e., activation temperature of the combustion reaction is considered to be asymptoti-
cally high when compared to the temperature of products. Accordingly, W (c) is a highly non-linear
function and vanishes everywhere with exception of an asymptotically thin reaction zone at c → 1.
Therefore, variations in the strain rate within such a thin zone can be neglected. Consequently, the
third term on the LHS of Eq. (9) reads gfuc, where gf is the local value of g in the reaction zone.
Moreover, in the case of unity Lewis number, the linear AEA theory of weakly stretched flames15,16

predicts that uc is equal to the unperturbed laminar flame speed SL. Therefore, substituting the third
term on the LHS of Eq. (9) with gfuc and neglecting duc/dt due to uc ≈ SL, we arrive at

1
rk
f

 ∞

0

(
ϱW

dW
dc
− ϱN

d2W
dc2

)
rkdr = uc

(
k
r f

dr f

dt
+ gf

)
= uc ṡ, (11)

where ṡ is the stretch rate, which is the major characteristic of weak (τc ṡ ≪ 1, where τc = Du/S2
L)

perturbations of laminar flames within the framework of the AEA theory.15,16

Thus, the sum of terms L3 and L4 on the RHS of Eq. (4), integrated across a stretched laminar
flame, is equal to a product of the consumption velocity and stretch rate.

Let us consider turbulent combustion. Ensemble averaging of Eq. (4) yields

∂

∂t
�
ρ̄W̃

�
+ ∇ · ρuW        

T1

= ∇ · ρD∇W              
T2

−ρN
d2W
dc2            

T3

+ ρW
dW
dc      

T4

, (12)

where W̃ ≡ ρq/ρ̄ is the Favre-averaged (mass-weighted) value of the rate W . Application of
Eq. (12) to a statistically planar, 1D flame, followed by integration along x, yields

ρu
dUt

dt
=

 ∞

−∞
*
,
ρW

dW
dc
− ρN

d2W
dc2

+
-

dx, (13)

where

Ut =
1
ρu

 ∞

−∞
ρ̄W̃ dx (14)

is the turbulent burning velocity. Equation (13) proves that spatially integrated terms T3 and T4
should not balance one another in the statistically planar, 1D flame. Otherwise, turbulent burning
velocity cannot develop, e.g., starting from Ut = SL at t = 0.

However, if the influence of turbulence on a premixed flame is reduced to an increase in
the flame surface area by turbulent eddies, whereas perturbations of the local flame structure and
burning rate are neglected, as widely assumed for weakly turbulent combustion, then, the RHS of
Eq. (13) vanishes. Indeed, taking a mean of (L3 + L4) on the RHS of Eq. (4) consists of averaging
this sum over an ensemble of laminar flames in a turbulent flow, i.e., involves local integration of
(L3 + L4) along the normal n to each flame element. If the flame element is associated with the
unperturbed laminar flame, the result of the local integration vanishes, see Eq. (5). If the ensemble
of local integrations is accompanied by integration along x over the mean flame brush, the (L3 + L4)
vanishes after this double integration over x and n. Therefore, the discussed simplification (unper-
turbed laminar flames) yields a wrong result, i.e., dUt/dt = 0. Consequently, the simplification
appears to be wrong.

Thus, even unclosed Eq. (12) has allowed us to draw a conclusion regarding a pivotal role
played by local perturbations of flame structure actually in weakly turbulent burning. To the best of
the present authors’ knowledge, this fundamental feature of weakly turbulent premixed combustion
has not yet been highlighted in the literature.
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Let us consider the problem of closing Eq. (12). If the probability γ of finding finite values of
the rate W is low, a characteristic value W f of W within the reaction zone should be high so that a
product of γW f , normalized using a ratio δt/Ut of turbulent flame brush thickness to turbulent burn-
ing velocity, yields a value of the order of unity.17 Indeed, γW f = O(Ut/δt) is required in order for
ρ̄W̃ to be comparable with the magnitude of the LHS of the Reynolds-averaged Eq. (1). Therefore,
one can expect that the magnitudes of terms T3 and T4 are much (by a factor of γ−1) larger than the
magnitudes of other terms in Eq. (12). As reviewed elsewhere,12,18 recent experimental data indicate
that reaction zones are thin not only in weakly turbulent flows, but also in intense turbulence.
Accordingly, terms T3 and T4 appear to dominate in Eq. (12) in a wide range of conditions.

The fact that two unclosed terms T3 and T4 dominate in Eq. (12), with (T3 + T4) playing a
substantial role, is a challenge. Indeed, in order to propose closure relations for these dominant
terms and to predict (T3 + T4), whose magnitude is much less than |T3| or |T4|, both T3 and T4
should be modeled with a high precision. A solution could consist of studying the sum of (T3 + T4)
instead of modeling each term separately. As the above analysis of laminar flames has shown that
the sum of (L3 + L4) in Eq. (4), which is the predecessor of the sum of (T3 + T4) in Eq. (12),
yields uc ṡ after integration along the normal to a laminar flame, see Eq. (11), we can assume
that (T3 + T4) ∝ γuc ṡ f /δr , where the reaction zone thickness δr results from transformation of the
integration over c to the integration along the local normal to the reaction zone. Moreover, it can be
expected that W̃ ∝ γW f ∝ γuc/δr .

Therefore, we arrive at the following transport equation:

∂

∂t
�
ρ̄W̃

�
+ ∇ · ρuW = ρ̄W̃ ⟨ṡ|c1 < c < c2⟩. (15)

Here, the stretch rate ⟨ṡ|c1 < c < c2⟩ is conditioned to the reaction zone and, for simplicity, the
diffusion term is combined with (L3 + L4) before averaging, because the diffusion term vanishes
after integration along the normal to a laminar flame.

In order to assess the proposed model Eq. (15) and to test whether or not T3 and T4 dominate
in Eq. (12), we analyzed data obtained earlier in two sets of Direct Numerical Simulations (DNS),
which were consistent with the framework of the present study (single-step chemistry, unity Lewis
number). One DNS database (flames H, M, and L) was created by Nishiki et al.19,20 by simulating
weakly turbulent combustion and was analyzed in a number of recent papers cited elsewhere.21

Another DNS database (flames C and E) was created by Chakraborty et al.22,23 by simulating
combustion in small-scale intense turbulence (the thin-reaction-zone regime1 of premixed burning)
and was also analyzed in a number of recent papers cited elsewhere.24 Because the DNS data were
already discussed in detail in the literature, we will restrict ourselves to a very brief summary of the
simulations.

In both cases, unsteady 3D balance equations for mass, momentum, energy, and mass frac-
tion of the deficient reactant were numerically solved and the ideal gas state equation was used.
Basic flame characteristics are reported in Table I, where Ret = u′L/νu, Dath = LSL/(u′δth), Kath =

(u′/SL)3/2(L/δth)−1/2 are the Reynolds, Damköhler, and Karlovitz numbers, respectively, u′ and
L are the rms turbulent velocity and an integral length scale, respectively, and δth = (Tb − Tu)/
max |dT/dx | is a laminar flame thickness.

The computational domains were rectangular boxes (8 × 4 × 4 mm or 36.2δth × 24.1δth ×
24.1δth in H, M, and L or C and E DNS, respectively) and were resolved using uniform Cartesian

TABLE I. Flame characteristics.

Case u′/SL L/δth σ Ret Dath Kath

H 0.9 15.9 7.5 96 18.0 0.21
M 1.0 18.0 5.0 96 17.8 0.24
L 1.3 21.8 2.5 96 17.3 0.30
C 7.5 2.5 5.5 48 0.33 13.0
E 11.3 3.75 5.5 110 0.33 19.5
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FIG. 1. Various terms in Eq. (12) obtained from flames (a) H and (b) E associated with the flamelet and thin-reaction-zone
regime, respectively.

meshes of 512 × 128 × 128 or 345 × 230 × 230 points, respectively. The mean flow velocity was
parallel to the x-axis and normal to the mean flame brush, with the periodic boundary conditions
being set at the transverse sides. Homogeneous isotropic turbulence was used to initialize velocity
fluctuations and a single planar laminar flame was embedded into the computational domain at
t = 0. In cases C and E, turbulence decayed with time and averaging was performed over transverse
planes at t/τt = 3. In cases H, M, and L, homogeneous isotropic turbulence was generated in a
separate box, was injected into the computational domain at x = 0, and decayed along the direction
x. Averaging was performed over transverse y z-planes and over time (about 200 snapshots) during
that both Ut(t) and mean flame brush thickness δt(t) oscillated around statistically steady values.21

Figure 1 shows that, in line with the above analysis, terms T3 and T4 dominate not only in
weakly turbulent flames, cf. dotted-dashed lines in Fig. 1(a), but also in highly turbulent flames
associated with the thin-reaction-zone regime,1 see Fig. 1(b).

Figure 2(a) shows that the RHS of Eq. (15) generally reproduces the behavior of the sum of
(T2 + T3 + T4), extracted from DNSs of highly turbulent flames, but there are quantitative differ-
ences. It is worth remembering, however, that, because DNS studies have not yet aimed at analyzing
Eq. (12), a mesh used in a typical DNS of turbulent burning may not be sufficiently fine to properly
resolve spatial variations in W dW/dc and Nd2W/dc2. A target-directed DNS with a fine mesh is
necessary to quantitatively explore terms T2, T3, and T4 on the RHS of Eq. (12).

In statistically stationary cases H, M, and L, the problem can be circumvented by comparing
the well-resolved flux ρuW extracted from the DNS with the flux obtained by integrating Eq. (15)
whose RHS is extracted from the same DNS. Results are reported in Figure 2(b). Agreement be-
tween the DNS data (solid lines) and model results (dashed lines) is encouraging, especially as
the model does not involve any tuning constant. Moreover, if W̃ = (ρuW − ρu′′W ′′)/( ρ̄ũ), where

FIG. 2. (a) Comparison of the sum of (T2+T3+T4) extracted from DNS and the RHS of Eq. (15) extracted from the same
DNS in cases C and E. (b) Comparison of the flux ρuW extracted from DNS data (solid lines) and yielded by Eq. (15)
(dashed lines), with c1 and c2 being set so that ρW (c1)= ρW (c2)=max{ρW (c)}/2.
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ρ̄ũ = ρu, u′′ = u − ũ, and W ′′ = W − W̃ , is evaluated using (i) ρuW computed by integrating statis-
tically stationary 1D Eq. (15) and (ii) ρu′′W ′′, ρ̄, and ũ extracted from the DNS, the spatial integra-
tion of the so-obtained W̃ yields Ut = 0.97, 0.89, and 0.77 m/s in cases H, M, and L, respectively.
These values are close to Ut = 1.15, 1.02, and 0.75 m/s, respectively, extracted straightforwardly
from the DNS, thus, supporting the model Eq. (15). Thus, while Eq. (15) does not resolve a problem
of closing Eq. (12), as the conditioned stretch rate and ρu′′W ′′ have still to be modeled, Eq. (15)
appears to be a key step forward in the right direction.

Integration of Eq. (15) along x over the mean flame brush yields

ρu
dUt

dt
=

 Λx

0
ρ̄W̃ ⟨ṡ|c1 < c < c2⟩dx, (16)

where Λx is the length of the computational domain. Figure 3 shows that this model equation
reasonably well captures the large-scale dynamics of turbulent burning velocity in flames H and L
without tuning. It is worth remembering that (i) precision of evaluation of dUt/dt by numerically
differentiating Ut(t) obtained from the DNS data is limited, because the data were stored once per
100 time steps, and (ii) the highly positive (or negative) values of dUt/dt, obtained in the DNS, are
associated with growth (or disappearance) of unburned mixture fingers, as discussed elsewhere.21

It is also worth remembering that response of a laminar premixed flame to an unsteady stretch rate
depends substantially on the frequency of variations in the stretch rate25 and such local transient
effects can play a role in the interaction of a premixed flame with small-scale turbulent eddies.26 The
simplest model Eq. (15) does not seem to allow for such small-scale effects, but we are not aware of
another model capable of doing so. The issue definitely requires further analysis.

It is worth stressing that Eq. (15) clearly shows an important role played by turbulent stretch
rates in premixed combustion and, moreover, implies a crucial role played by the stretch rate ṡle
conditioned to the leading edge (c̄ → 0) of a premixed turbulent flame brush. Indeed, the structure
of Eq. (15) is such that an increase in ṡle results in increasing dW̃/dc̄ at c̄ → 0 and, therefore,
increasing turbulent burning velocity Ut ≡ ρ−1

u

 ∞
−∞ ρ̄W̃ dx. This feature of Eq. (15) is consistent with

the leading point concept of premixed turbulent combustion, which also highlights the importance
of stretch rates conditioned to the leading edge27 and is capable of explaining a very strong effect
of a decrease in the Lewis number Le on Ut, which was well documented in various experiments
reviewed elsewhere.11,12,26,28 Accordingly, extension of the present approach to flames characterized
by Le < 1 appears to be of particular interest in order to model such effects.

In summary, new transport equations for instantaneous and mean reaction rates in a turbulent
flow have been derived, see Eqs. (4) and (12), respectively. An analysis of these equations has
shown that (i) local perturbations of reaction zone structure by turbulent eddies always play a
pivotal role, including weakly turbulent flows, where such effects are often neglected, and (ii) the
latter transport equation, i.e., Eq. (12), involves two unclosed dominant terms. A joint closure
relation for the sum of these two terms has been developed and validated by processing two sets of
DNS data obtained earlier from weakly and highly turbulent premixed flames. The closure relation

FIG. 3. Comparison of dUt/dt evaluated by differentiating Ut(t) extracted directly from DNS and dUt/dt obtained by
integrating 1D Eq. (16) whose RHS is extracted from the same DNS.
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highlights a crucial role played by turbulent stretching in the influence of turbulence on mean
reaction rate.
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edges the financial support by the Chalmers Transport and Energy Areas of Advance, and by the
Combustion Engine Research Center (CERC). N.C. gratefully acknowledges the financial support
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