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Transmission Strategies for Remote Estimation

under Energy Harvesting Constraints

Ayça Özçelikkale, Tomas McKelvey, Mats Viberg

Abstract—We consider the remote estimation of a time-
correlated field using an energy harvesting (EH) sensor. The
sensor observes the unknown field and communicates its observa-
tions to a remote fusion center using an amplify-forward strategy.
We consider the design of optimal transmission strategies in order
to minimize the mean-square error (MSE) at the fusion center.
Contrary to traditional approaches, the degree of correlation
between the field values constitutes an important aspect of our
formulation. We provide the optimal power allocation strategies
for a number of illustrative scenarios, including the circularly
wide-sense stationary (c.w.s.s.) signals with static correlation
coefficient and the sampled low-pass c.w.s.s. signals. Based on
these results, we propose low-complexity policies for the general
case. Numerical evaluations illustrate the performance of the
optimal and the low-complexity policies.

I. INTRODUCTION

Energy harvesting solutions offer a promising framework for

future wireless sensor networks. Instead of completely relying

on a fixed battery, sensors with EH capabilities can collect en-

ergy from the environment, such as solar power or mechanical

vibrations. In addition to enabling energy autonomous sensing

systems, EH capabilities also offer prolonged network life-

times and significant mobility for the nodes in the network

[1].

One of the key issues in the design of EH systems is

the intermittent nature of the energy supply. Here, due to

unreliable nature of the energy supply, the EH device has

to find the optimal trade-off between using all the available

energy for the current operations and saving all of it for the

future. In that respect, reliable communications with EH nodes

have been studied under a broad range of scenarios under rate

maximization criterion [1–3]. Here we adopt an alternative

approach and focus on the estimation aspect of problem, i.e.

recovery of the unknown field measured by the sensors.

Currently the treatment of the estimation aspect, in particu-

lar the effect of the possible statistical correlation between

the unknown field values, for the EH sensing systems is

quite limited. Optimal strategies for the case of i.i.d. Gaus-

sian sources follow from the findings of [3]. The parameter

estimation problems considered in [4], [5] provide insights

about the limiting case where the unknown value is fully

spatially correlated across sensors. Investigations in [6–8]

provide guidelines for Markov sources. The scenario with two

correlated Gaussian variables is studied in [9].
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Here we address this issue by focusing on the estimation

of a time-correlated field using an EH sensor. The EH sensor

observes the unknown field and communicates its observations

to the remote fusion center using an amplify-forward strategy

under energy harvesting constraints. We consider the problem

of design of transmission strategies in order to minimize the

MSE at the fusion center. We adopt the off-line optimization

scheme, i.e. the scheme where the sensor has acausal access

to arrival information for the energy packets. We provide the

optimal power allocation strategies for a number of illustrative

scenarios. In particular, we show that most majorized power

allocation strategies, i.e. power allocations as uniform as

possible, are optimal regardless of the degree of correlation in

the case of c.w.s.s. signals with static correlation coefficient

and sampled low-pass c.w.s.s. signals. Motivated by these

results, we propose low-complexity policies for the general

case. Numerical evaluations illustrate the trade-offs offered

by the effective degrees of freedom of the signal and the

performance of the proposed policies.

The rest of the paper is organized as follows. We present the

problem formulation in Section II. In Section III, the optimal

strategies for a number of illustrative scenarios are provided. In

Section IV, low-complexity strategies for the general case are

proposed. Numerical evaluations are provided in Section V.

The paper is concluded in Section VI.

Notation: The complex conjugate transpose of a matrix A is

denoted by A†. The ith row, kth column element of a matrix A
is denoted by [A]tk. The positive semi-definite (p.s.d.) ordering

is denoted by �. In ∈ Cn×n denotes the identity matrix.

II. SYSTEM MODEL AND PROBLEM STATEMENT

A. Signal Model

The aim of the remote estimation system is to estimate

the unknown complex proper zero-mean Gaussian field x =
[x1, . . . , xn] ∈ C

n×1, x ∼ CN (0,Kx) with Kx = E[xx†],
Px , tr[Kx]. Let s be the number of non-zero eigenvalues of

Kx, i.e. rank of Kx. Let Ω denote the index set of non-zero

eigenvalues. Here Kx = UΩΛx,sU
†
Ω is the reduced singular

value decomposition (s.v.d.) of Kx where Λx,s ∈ Cs×s is the

diagonal matrix of non-zero eigenvalues and UΩ ∈ Cn×s is

the sub-matrix formed by the columns of U corresponding to

the non-zero eigenvalues.

B. Sensing and Communications to the Fusion Center

At time slot t, the sensor measures xt, the field value at

time t and communicates it to the fusion center as follows:

yt =
√
atxt + wt, t = 1, . . . , n (1)
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Fig. 1: Energy Harvesting Sensor

where
√
at, yt and wt denote the amplification factor adopted

by the sensor, the received signal at the fusion center, and the

channel noise respectively. Here w = [w1, . . . , wn] ∈ Cn×1

is complex proper zero-mean Gaussian with w ∈ Cn×1 ∼
CN (0,Kw), Kw = σ2

wIn.

C. Energy Constraints at the Sensor

The average energy used by the sensor during transmission

of xt can be written as follows:

Jt=τE[||√atxt||2]=τatσ
2
xt
, (2)

where the transmit duration τ = 1 in the rest of the paper. At

each time slot t, an energy packet of Et arrives to the battery.

The sensor operates under the following energy neutrality

conditions

t
∑

l=1

Jl ≤
t

∑

l=1

El, t = 1, . . . , n. (3)

where the initial energy at the battery is zero. These conditions

ensure that the energy used at any time does not exceed the

available energy. Here we consider a device with a large

enough battery capacity so that no energy packet Et has to

be dropped.

D. Estimation at the Fusion Center

After receiving y = [y1, . . . , yn] ∈ Cn×1, the fusion center

forms the minimum MSE (MMSE) estimate of x, i.e. x̂ =
E[x|y]. The resulting MMSE can be expressed as [10, Ch2]

ε(A)=tr[Kx −KxyK
−1
y

K†
xy

] (4)

=tr
[

(Λ−1
x,s + γU †

Ω diag(at)UΩ)
−1

]

, (5)

where Kxy = E[xy†] = KxA
†, Ky = AKxA

† + Kw,

A = diag(
√
at) ∈ Rn×n and γ , 1/σ2

w. Here we have used

Sherman-Morrison-Woodbury identity [11]. We note that in

order to perform the above MMSE estimation procedure, the

fusion center needs to know the source and the noise statistics,

including the covariance matrices and at’s. We also note that

by adopting a second-order analysis framework and using the

optimum linear MMSE filter instead of the MMSE filter at the

fusion center, the above error analysis can be also performed

under non-Gaussian statistics [10].

E. Design of Optimal Transmission Strategies

Our goal is to design the optimal transmission strategies in

order to minimize the MMSE as follows

min
A

ε (A) (6a)

s.t.

t
∑

l=1

alσ
2
xl

≤
t

∑

l=1

El, t = 1, . . . , n− 1, (6b)

n
∑

l=1

alσ
2
xl

= Etot, (6c)

where (6b)-(6c) follow from (2), (3) and we have Etot ,
∑n

l=1 El; at ≥ 0, ∀t. Since for any optimum strategy all the

available energy should be used, (6c) is stated as an equality.

Here we consider the scenario where the sensor has access to

the energy realization for a look-ahead window of size n, i.e.

off-line optimization [1]. This type of approaches are well-

suited for the scenarios where these arrivals can be accurately

predicted, such as radio frequency EH systems with dedicated

power transfer scheduling. They also serve as benchmarks and

provide structural guidelines for the general case.

The objective function of (6) is a convex function since

tr[X−1] is convex for X ≻ 0. The constraints form convex

constraints since they are in the form of linear inequalities

and equalities. Hence (6) is a convex formulation and Karush-

Kuhn-Tucker (KKT) conditions are necessary and sufficient

for optimality under the assumption of a strictly feasible

point. Optimal solutions can be found using the standard

numerical optimization tools, such as SDPT3, SeDuMi and

CVX [12–14]. In Section III and Section IV, we provide

analytical solutions that reveal the structure of the optimal

power allocations for a number of cases and propose low-

complexity policies, respectively. Numerical evaluations are

provided in Section V.

III. OPTIMAL TRANSMISSION POLICIES

Here we discuss the structure of the solutions for a num-

ber of illustrative scenarios. These results motivate the low-

complexity policies proposed in Section IV.

A. Uncorrelated Sources

Here we consider the case where the components of x are

uncorrelated, hence Kx = diag(σ2
xt
), σ2

xt
> 0. The MMSE

can be expressed as follows:

ε(A) =

n
∑

t=1

σ2
xt

1 + γσ2
xt
at

. (7)

The Lagrangian can be expressed as follows:

(8)L =
∑

t=1

σ2
xt

1 + γσ2
xt
at

+

n−1
∑

T=1

ηTWT + νWn −
n
∑

t=1

µtat,

where WL =
∑L

t=1 σ
2
xt
at −

∑L
t=1 Et, 1 ≤ L ≤ n. Here

ηT ∈ R, ηT ≥ 0, 1 ≤ T ≤ n − 1, ν ∈ R and µt ∈ R,

µt ≥ 0, 1 ≤ t ≤ n are the Lagrange multipliers. Solving the

KKT conditions reveals that the optimal at can be expressed

in terms of a water-filling type solution at = (
√

1
κt

1
γσ2

xt

−
1

γσ2
xt

)+ where κt ,
∑n−1

T=t ηT + v is a time-index dependent

threshold, which is a typical property of the EH solutions [2].

We now focus on the solution structure in the i.i.d. case:

1) I.I.D. Sources: Here Kx = σ2
xIn, hence the MMSE can

be expressed as follows:

ε(A) =
n
∑

t=1

σ2
x

1 + γσ2
xat

. (9)

In this case, an optimal strategy can be found by adopting the

arguments of [3]. More precisely, we note the following:

Definition 3.1: [15, Ch.1] Let a = [a1, . . . , an] ∈ Rn and

b = [b1, . . . , bn] ∈ Rn. Then a is said to be majorized by



b if the following holds: i)
∑k

t=1 a[t] ≤
∑k

t=1 b[t], k =
1, . . . , n− 1; ii)

∑n
t=1 a[t] =

∑n
t=1 b[t]. Here a[t] denotes the

components of a in decreasing order, i.e. a[1] ≥, . . . ,≥ a[n].
This majorization relationship is denoted by a ≺ b.

Majorization can be interpreted as a measure of how bal-

anced or uniform the distribution of the components of vectors

are. In particular, the following relationship holds ∀a ∈ R:

ā ≺ a, where ā = (1/n)(
∑n

t=1 ai)[1, . . . , 1] ∈ R
n. The

following is of interest:

Definition 3.2: [15, Ch.3] Let us have S ⊆ Rn and f(.) :
S → R. Then f(.) is said to be Schur-convex on S if a ≺ b
on S implies f(a) ≤ f(b).

Lemma 3.1: [15, Ch.3] Let S ⊆ R, and g(.) : S → R be

convex. Then f(a) =
∑n

t=1 g(at) is Schur-convex.

By Lemma 3.1, (9) is Schur-convex since g(at) =
σ2
x

1+γσ2
x
at

is a convex function of at ≥ 0. Hence an optimal solution

is given by at that is majorized by all feasible power al-

locations, i.e. the strategy as balanced/uniform as possible.

Characterization of such solutions have been studied in relation

to maximizing the rate function in [3]:

Lemma 3.2: [3, Thm.3] The power allocation that is

majorized by all feasible solutions of (6b), (6c), can be

characterized as follows:

ār =
Ēτk − Ēτk−1

τk − τk−1
, r = τk−1 + 1, . . . , τk (10)

τk = arg min
r∈{τk−1+1,...,τ̄}

Ēr − Ēτk−1

r − τk−1
, k = 2, . . . ,K (11)

where 1 ≤ r ≤ n, τ1 = 0 and τ̄ = τK+1 = n, and 1 ≤ K ≤ n
is the number of constant power sections.

Here we have adopted the notation Ēr =
∑r

t=1 Et/σ
2
x, ār =

at for later notational convenience. Due to Schur-convexity

of (9), Lemma 3.2 also provides an optimal strategy for the

minimization of the MSE in (9). In the subsequent sections, we

will utilize this characterization to provide optimal solutions

in scenarios even when the source is not i.i.d.

B. Parameter Estimation
We refer to the scenario where Kx is of rank 1, hence there

is effectively only one random variable to be estimated, as the

parameter estimation scenario. Hence (5) can be expressed as

ε(A) =
1

1/Px + γ
∑n

t=1|[U ]tk|2at
=

1

1 + γ
∑n

t=1 σ
2
xt
at
Px,

where we have used |[U ]tk|2Px = σ2
xt

. Since
∑n

t=1 σ
2
xt
at =

Etot by (6c), any feasible strategy is an optimum strategy

including the most uniform strategy given by (10)-(11). The

optimum error value is given by (1 + γEtot)
−1Px.

C. A Lower Bound
We will now consider a lower bound on the performance

and then utilize this lower bound to propose optimal policies.

We consider the following setting:

εLB = min
A

ε (A) (12)

subject to (6c). Compared to (6), here only the total energy

constraint is imposed. Hence (12) forms a relaxation of (6)

and the optimum value of (12) provides a lower bound for the

optimum value of (6).

We focus on the case where Λx,s is of the form Λx,s =
Px

s Is
i.e. the non-zero eigenvalues are all equal. This type of models

have been used to represent signal families with a low degree

of freedom in various signal applications, for instance as a

sparse signal model in compressive sensing literature [16]. We

obtain the following analytical expression for εLB:

Lemma 3.3: Let Λx,s = (Px/s)Is. Then at = Etot/Px, ∀t
is an optimum strategy for (12). The optimal value is given by

εLB = 1
1+γEtot/s

Px.

The proof is presented in Section VII-A. Hence whenever

at = Etot/Px is a feasible allocation for (6), it is also an

optimal strategy. Hence we obtain the following result:

Corollary 3.1: Let Λx,s = (Px/s)Is. If 1
Px

∑t
l=1 σ

2
xl

≤
1

Etot

∑t
l=1 El, ∀t, then at = Etot/Px is an optimum strategy

for (6) with the optimal value 1
1+γEtot/s

Px.

We note that the conditions of Corollary 3.1 are always

satisfied for c.w.s.s. signals with Λx,s = (Px/s)Is under a

constant energy arrival scheme, Et = E, ∀t. Hence the lower

bound presented in Lemma 3.3 is achieved even under the

energy causality constraints in such scenarios.

D. Circularly Wide-Sense Stationary Signals

We now focus on the c.w.s.s signals, which constitute a

finite dimensional analog of wide-sense stationary signals [17],

[18]. By definition, the covariance matrix is circulant and

the unitary matrix U in the s.v.d. of Kx is given by the

DFT matrix [17], [18]. Let Fn denote the DFT matrix of

size n × n, i.e. [Fn]tk = (1/
√
n) exp(−j 2π

n (t − 1)(k − 1)),
1 ≤ t, k ≤ n. Hence the reduced s.v.d. of Kx is given

by Kx = Fn
ΩΛx,sF

n
Ω
†, where Λx,s = diag(λk) ∈ Rs×s

Fn
Ω ∈ Cn×s is the matrix that consists of s columns of Fn

corresponding to non-zero eigenvalues. Here due to circulant

structure, σ2
xt

= σ2
x = Px/n, ∀t.

Let ej ∈ R
n, 1 ≤ j ≤ n denote the jth unit vector. We

obtain the following result, which we will utilize later:

Lemma 3.4: Let the s.v.d. of Kx be given by Kx =
FnΛxF

n† with Λx = βIn + αeje
†
j with −β < α, β > 0,

α, β ∈ R. Then (10)-(11) is an optimal strategy for (6).

The proof is given in Section VII-B.

1) Almost I.I.D. Sources: When xt is i.i.d. distributed, we

have Kx = σ2
xIn. Hence the s.v.d. of Kx is given by Kx =

UΛxU
† with Λx = σ2

xIn where U is an arbitrary unitary

matrix. Motivated by this, we refer to the case where Λx ∝
In − ǫeje

†
j , 0 < ǫ < 1 as an almost i.i.d. source. We obtain

the following:

Corollary 3.2: Let x be almost i.i.d. with Kx = FnΛxF
n†,

Λx = In − ǫeje
†
j , 0 < ǫ < 1. Then (10)-(11) is an optimal

strategy for (6).

The result follows from Lemma 3.4. When the source is not

exactly i.i.d but only close to being i.i.d. as defined above, the

most uniform feasible allocation is still an optimal solution.

2) Static Correlation Coefficient: We now consider signals

whose covariance matrix has the following form

K(ρ) =
Px

n





1 ρ . . . ρ
. . . . . . . . .
ρ . . . . . . 1



 (13)



where K(ρ) ∈ Rn, 0 ≤ |ρ|≤ 1, ρ ∈ R. Hence the correlation

coefficient between xi and xj , i 6= j does not depend on i, j.

We obtain the following result:

Lemma 3.5: Let Kx = K(ρ). Then (10)-(11) is an optimal

strategy for (6).

Proof: Let v be the first row of Kx, i.e. v =
(Px/n)[1, ρ . . . ρ] ∈ Cn and z = [λ1, . . . , λn] ∈ Rn. Then

z =
√
nFnv [18]. Hence we obtain z1 = (Px/n)(ρ(n−1)+1)

and zi = (Px/n)(1− ρ), i 6= 1. Hence Lemma 3.4 applies. �

Hence regardless of the value of ρ, i.e. the level of statistical

dependency of the signal components, the strategy that allo-

cates the power as uniform as possible is an optimal strategy.

Nevertheless, we recall that in the limiting case of parameter

estimation, any strategy that spends all the energy is an optimal

strategy, hence correlation can be used to compensate for the

unreliable nature of the energy arrival process.

3) Low-Pass Signals: Let n/s ∈ Z. Let λk denote the

eigenvalue that corresponds to the eigenvector in the kth col-

umn of Fn, where Fn is as defined above. Here we consider

low-pass signals, i.e. signals for which λ1, . . . , λs = Px/s, and

the rest are zero. Similar to their deterministic counterparts,

given σ2
w = 0, these signals can be recovered from their

equidistant samples with zero mean-square error when the

number of samples is larger than s, or equivalently the spacing

between the samples satisfies ∆ ≤ n/s [16]. Motivated by

this, we consider communication strategies that send one out

of every ∆ samples, i.e. strategies in the form of

at =

{

≥ 0 if t = ∆r + td + 1, 0 ≤ r ≤ m− 1

0 otherwise
(14)

where m = n/∆, and td ∈ 0, . . . ,∆ − 1, the initial delay

before sending the first data, is fixed.

Lemma 3.6: Let ∆ = n/s. An optimal strategy for

(6) under the setting in (14) is given by (10)-(11) with

ār , a∆r+td+1, Ēr =
∑∆r+td+1

t=1 Et/σ
2
x and τ1 = 0,

τ̄ = τK+1 = s, and 1 ≤ K ≤ s.

The proof is provided in Section VII-C. This strategy allo-

cates the power as uniform as possible among the s samples

sent. Hence for a sampled low-pass c.w.s.s. signal, the most

balanced feasible power allocation is an optimum strategy.

In general, there may be more than one optimal strategy

for (6) for c.w.s.s. signals with s < n. An example is the

case of low-pass signals under Et = E ∀t. In this scenario,

both the uniform power allocation over all components, i.e.

at = E/σ2
x, ∀t, and the uniform allocation over the equidistant

samples with ār = nE/(sσ2
x), ∆ = n/s, td = ∆ − 1 are

optimal strategies since they both achieve the lower bound in

Lemma 3.3. (Here the performance of ār can be evaluated,

for instance, by adopting the arguments in Section VII-C.)

IV. LOW-COMPLEXITY TRANSMISSION POLICIES

We now propose a number of heuristic schemes. These

schemes provide possibly sub-optimal but nevertheless low-

complexity schemes. We consider the following upper bound

which avoids the matrix inverse in (5) in the optimization

formulation

ε(A) ≤
n
∑

t=1

σ2
xt

1 + γσ2
xt
at
, (15)

0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

 

N
o
rm

al
iz

ed
M

M
S

E

Energy Arrival Rate (p)

AO
AU -2
AU -4
AU -16
AG

(a) s = 4

0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

 

N
o
rm

al
iz

ed
M

M
S

E

Energy Arrival Rate (p)

AO
AU -2
AU -4
AU -16
AG

(b) s = 14

Fig. 2: Normalized MMSE versus energy arrival rate

where the inequality follows from the fact that the right hand

side of (15) is the error of the scheme where the possible corre-

lation between the field values are ignored, i.e. the covariance

matrix of x is assumed to be in the form of diag(σ2
xt
). We

propose a sliding window approach based on the minimization

of this upper bound. Let 1 ≤ lw ≤ n ∈ Z with n/lw ∈ Z be

the look-ahead window size. Let ti = (i − 1)lw + 1. At time

index ti, i = 1, . . . , n/lw, the sensor looks ahead lw time steps

and designs the following strategy:

min
ati

,...,ati+1−1

ti+1−1
∑

t=ti

σ2
xt

1 + γσ2
xt
at

(16a)

s.t.

t
∑

l=ti

alσ
2
xl

≤
t

∑

l=ti

El, t = ti, . . . , ti+1 − 2, (16b)

ti+1−1
∑

l=ti

alσ
2
xl

=

ti+1−1
∑

l=ti

El, (16c)

The overall strategy at, ∀t is obtained by solving (16) over

n/lw non-overlapping windows. We note that using (15) as a

performance metric is consistent with the c.w.s.s. signal sce-

nario with the static correlation coefficient, where a balanced

power allocation (which is optimal for the uncorrelated case)

is an optimal strategy regardless of the correlation of level.

V. NUMERICAL RESULTS

We now present the numerical evaluations. Let n = 16,

s= 4, 14, Px = n, γ = 20dB, Λx,s = Px

tr[Λ]Λ, Λ = diag(αk),

αk=0.8k, 0 ≤ k ≤ s−1. The unitary matrix U is drawn from

the uniform (Haar) unitary matrix distribution [19] and fixed

throughout the experiments. The energy arrivals are generated

with Et = δtE0, E0 = 1 where δt’s are i.i.d. Bernoulli with

probability of success p, 0 ≤ p ≤ 1. Average error over

N = 200 energy arrival realizations are reported. The error

is normalized as ε/Px.

The error versus energy arrival rate curves are presented in

Fig 2. Here AO and AU -lw refers to the solution of (6) and the

solutions provided by (16), respectively. The greedy approach

where the energy is spent as soon as it arrives is denoted

by AG. As expected, due to the low degree of freedom of

the signal (s = 4) and the possible high correlation between

the field values it is possible to obtain lower error values

in Fig 2a. In Fig 2a, the gap between the performance of

the optimal and the sub-optimal schemes are relatively small

compared to Fig 2b. This is consistent with the low degree of

freedom of the signal in Fig 2a and the relative insensitivity



of the performance to the energy allocation as suggested by

the parameter estimation case. In both scenarios, the low-

complexity scheme with the look-ahead window of lw = n,

AU -n, is remarkably successful so that the performance of

AO and AU -n are not distinguishable from each other in the

plots. In the case of Fig 2a, this is again consistent with the

insensitivity of the performance to the energy allocation for

parameter estimation and the fact that the correlation may

have limited effect on the optimal strategies as illustrated by

the static correlation coefficient case. In the case of Fig 2b,

the close performance of AO and AU -lw is supported by the

relative closeness of the source to an uncorrelated source due

to the relatively high degree of freedom provided by s = 14.

VI. CONCLUSIONS

We have considered remote estimation of a time-correlated

field using an EH sensor. We have provided the optimal power

allocation strategies for a number of scenarios and proposed

low-complexity policies for the general case.

VII. APPENDIX

A. Proof of Lemma 3.3

We have

ε(A) =
s

∑

i=1

1

1 + γλi(RA)

Px

s
(17)

where RA = Px

s U †
Ω diag(at)UΩ. We observe that tr[RA] =

Px

s tr[U †
Ω diag(at)UΩ] = Px

s tr[diag(at)UΩU
†
Ω] and hence

tr[RA] = tr[diag(at)Kx] =
∑n

t=1 atσ
2
xt

. Here we have used

tr[AB] = tr[BA] for matrices with appropriate dimensions

and Kx = Px

s UΩU
†
Ω. Hence (6c) is equivalent to the condition

tr[RA] =
∑

i λi(RA) = Etot. Since (17) is a Schur-convex

function of λi(RA), (17) is lower bounded by the performance

of a uniform eigenvalue distribution, i.e. λi = Etot/s, i =
1, . . . , s. Such an eigenvalue distribution, hence the associated

performance is achievable by choosing at = Etot/Px, since

(Px/s)U
†
Ω diag(at)UΩ = (Etot/s)Is where U †

ΩUΩ = Is.

B. Proof of Lemma 3.4
We rewrite ε(A) to show it is a symmetric function of at:

ε(A) = tr
[

(β̄In + ᾱeje
†
j + γFn† diag(at)F

n)−1
]

, (18)

= tr

[

R−1 −
R−1ᾱeje

†
jR

−1

1 + ᾱe†jR
−1ej

]

(19)

=
n
∑

t=1

θt −
ᾱ

1 + ᾱ 1
n

∑n
t=1 θt

1

n

n
∑

t=1

θ2t (20)

where ᾱ = 1/(α + β) − 1/β, β̄ = 1/β > 0 and R =
β̄In + γFn† diag(at)F

n = Fn† diag(β̄ + γat)F
n and (19)

follows from Sherman-Morrison-Woodbury identity with 1 +
ᾱe†jR

−1ej 6= 0 [11]. In (20), we have introduced the notation

θt = 1/(β̄+ γat) and we have used R−1 = Fn† diag(θt)F
n,

[R−1]ii =
∑n

t=1 θt|[Fn]it|2= (1/n)
∑n

t=1 θt, [R−2]ii =
(1/n)

∑n
t=1 θ

2
t and tr[AB] = tr[BA] for matrices with appro-

priate dimensions. Here (20) reveals that ε(A) is a symmetric

function of at. Since ε(A) is also a convex function of at,
(due to, for instance, (18) and the fact that tr[X−1] is convex

for X � 0 ) ε(A) is Schur-convex by [15, Ch.3-Prop.C2]. The

result follows from Lemma 3.2.

C. Proof of Lemma 3.6

Let fn = exp(−j 2π
n ). Here Fn

Ω consists of the first

s columns of Fn. Hence equidistantly row sampled Fn
Ω

can be associated with the DFT matrix of size s, F s,

as follows [Fn
Ω ](n/s)r+td+1,k+1 = (1/

√
n)f rk

s f tdk
n =

√

s/n[F s]r+1,k+1f
tdk
n , where 0 ≤ k ≤ s− 1, 0 ≤ r ≤ s− 1.

Let D = diag(dk), dk = f tdk
n . Hence

ε(Ā) = tr[(
s

Px
Is + γ

s

n
DF †

s Ā
†ĀFsD)−1], (21)

= tr[(
s

Px
Is + γ

s

n
Ā†Ā)−1] =

s−1
∑

r=0

1
s
Px

+ s
nγār

, (22)

where Ā = diag(
√
ār) ∈ R

s×s and (22) follows from the fact

that Fs and D are unitary matrices. Due to Lemma 3.1, (22) is

a Schur-convex function. The result follows from Lemma 3.2.
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[12] R. H. Tütüncü, K. C. Toh, and M. J. Todd, “Solving semidefinite-
quadratic-linear programs using SDPT3,” Mathematical Programming,
vol. 95, no. 2, pp. 189–217, 2003.

[13] J. F. Sturm, “Using SeDuMi 1.02, a Matlab toolbox for optimization
over symmetric cones,” Optimization Methods and Software, vol. 11,
no. 1-4, pp. 625–653, 1999.

[14] CVX Research Inc., “CVX: Matlab software for disciplined convex
programming 2.0.” http://cvxr.com/cvx, 2012.

[15] A. W. Marshall and I. Olkin, Inequalities: Theory of Majorization and
its Applications. Academic Press, 1979.

[16] A. Özçelikkale, S. Yüksel, and H. Ozaktas, “Unitary precoding and basis
dependency of MMSE performance for Gaussian erasure channels,”
IEEE Trans. Inf. Theory, vol. 60, pp. 7186–7203, Nov 2014.

[17] F. D. Neeser and J. L. Massey, “Proper complex random processes with
applications to information theory,” IEEE Trans. Inf. Theory, vol. 39,
no. 4, pp. 1293–1302, 1993.

[18] R. M. Gray, Toeplitz and Circulant Matrices: a Review. Now Publishers
Inc., 2006.

[19] F. Mezzadri, “How to generate random matrices from the classical
compact groups,” Notices of the AMS, vol. 54, pp. 592 – 604, 2007.


