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Abstract— In this paper, we present the analysis, design and 

characterization of the first frequency multiplier using 

distributed SIS junctions. We derived analytical expressions 

describing the properties of the distributed SIS junction as a 

frequency multiplier. The modeling of the distributed SIS 

junctions shows that high conversion efficiency can be achieved 

when used as the multiplier. The measured output power 

generated by such multiplier employing the distributed SIS 

junction at the second harmonic of the input frequency is in good 

agreement with the model. Furthermore, the frequency 

multiplier based on distributed SIS junction was for the first 

time able to pump an SIS mixer. The multiplication efficiency of 

the distributed SIS junction is 15-30 % for a fractional 

bandwidth of 10% with excellent spectral line purity. The -3 dB 

line width of the multiplied signal is 1 Hz, which was limited by 

the resolution bandwidth of the spectrum analyzer. The results 

attained in this work show that the distributed SIS junction 

frequency multiplier has considerable future potential, and 

could possibly be used in LO source in single-end and multi-

pixel SIS mixer receivers. 
 

Index Terms—SIS frequency multipliers, Superconducting 

tunnel junctions, Submillimeter wave devices. 

I. INTRODUCTION 

ODERN cryogenic heterodyne millimeter and sub 

millimeter receivers for radio-astronomy most often 

employ Superconductor-Insulator-Superconductor (SIS) 

tunnel junctions as mixers. The noise contribution from the 

mixer is greatly reduced due to quantum nature of the SIS 

tunnel junction operation and limited by zero-fluctuation 

quantum noise. When operated in the quantum mode, the SIS 

mixer enables conversion gain while the tunneling current 

voltage (I-V) characteristic of the junction exhibits extremely 

sharp quasiparticle tunnel current (QTC) nonlinearity [1]. 

This technology provides ultimate sensitivity and offers 

possibilities for spectral line (spectroscopic) observations [2], 

[3], [4]. 

Generally, in these ultrasensitive SIS receivers, the LO source 

and frequency multipliers are placed at room temperature, 

and the LO signal is coupled to the mixer either using long 

stainless- steel waveguide or quasi-optics. In the case of 

waveguide LO coupling, quite substantial fraction of the LO 

power is lost because of the waveguide losses. For multi-pixel 

receivers, the LO distribution system introduce even a bigger 
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challenge as it becomes bulky and extremely complex. 

Because, apart from quantum cascade lasers, the solid-state 

fundamental sources are not available above 120-130 GHz 

the LO source end stage is typically some sort of frequency 

multiplier, where the nonlinear element is usually a Schottky 

diode. These LO frequency multipliers can generate signals 

up to 1-2 THz [5],[6]. There has also been a lot of work 

carried out on frequency generation based on Josephson 

effect, both using low-Tc superconductors [7] and high-Tc 

superconductors [8]. Often, the superconductor electronics 

based LO source and the mixer are integrated on a single chip 

[7, 9]. However in the majority of the practical receivers, a 

semiconductor multiplication of the frequency was used to 

generate the LO power with disadvantages described above.  

On the other hand, the extremely nonlinear behavior and 

quantum nature of operation of an SIS tunnel junction give 

reasons to believe that an SIS device designed for frequency 

multiplication can operate with very high conversion 

efficiencies, since the higher order QTC harmonics in an ideal 

SIS junction would be similar to the Fourier series of a Dirac 

delta function. However, until now, little work has been done 

on understanding and modeling of the harmonic generation 

(frequency multiplication) in SIS devices using quasiparticle 

tunneling effect [10, 11] in comparison to sub harmonic 

mixers [12],[13],[14]. The power output is defined primarily 

on the tunnel current, since the voltage scale of the SIS 

junction is fixed with respect to the gap voltage, Vg of the 

superconductors. Likewise, the tunnel current in the SIS 

junction is dependent on the junction area and transparency. 

It is the physical parameters, such as the junction area, A, and 

normal resistance, RN, which defines the output power of the 

SIS junction and is therefore proportional to the junction size 

(which is relatively small for SIS junction frequency 

multiplier), since the voltage scale, which leaves the current 

as the only parameter defining the power. According to our 

simulations, the generated output power at the second 

harmonic ranges over a few nano-watts to few hundreds of 

nano-watts depending on the SIS junction structure and size. 

The output power produced by an SIS junction based 

multiplier could be further increased by using an array of SIS 

junctions [1] or by power combining techniques [6]. 

Furthermore, the most sensitive heterodyne receivers in the 

millimeter/submillimeter region use the SIS and HEB mixers 
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[15], which require a very low LO power. From this 

perspective, the SIS frequency multiplier is completely 

compatible with the SIS/HEB mixer systems with respect to 

its operating environment and power requirements [16].  

Moreover, the SIS junction frequency multiplier could also 

be integrated with the SIS mixer on the same chip, similar to 

the approach described for flux-flow oscillators in [9] to 

minimize the path between the multiplier and the SIS mixer, 

and thus minimize the power loss. From the other hand, in 

multi-pixel heterodyne systems, where the complexity of the 

LO distribution and LO power requirement are among the 

biggest challenges, an SIS frequency multiplier could offer a 

very attractive alternative. In such a scenario, the phase 

locking (if needed) and distribution of the LO (e.g., Schottky 

or HBV multipliers) signal can be carried out at much lower 

frequencies, where attaining high output power is much easier 

[17], [18], [19], and the transmission loss is less detrimental. 

In this case, the final multiplication stage could consist of a 

SIS frequency multiplier integrated with the mixer and with 

a possibility to adjust the power through the choice of the DC 

bias at the SIS multiplier junction. In this paper, we analyze 

and design the first frequency multiplier based on a 

distributed (long) SIS junction. Even though the approach of 

integrating the multiplier and SIS mixer on a single chip is 

very appealing, for the first demonstration, we opt for a 

nonintegrated approach. 

Recently, an experimental paper published by Billade et al. 

[20] experimentally proved the presence of the second 

harmonic generated by a SIS junction series array consisting 

of 68 elements. However, the overall conversion efficiency 

was insufficient and only a few nano-watts of power could be 

delivered at the output frequency and not enough to pump an 

SIS mixer. In this paper we suggest and study both 

theoretically and experimentally a frequency multiplier based 

on presumably more practical alternative, the distributed 

(long) SIS junction. We employ the both large signal 

modeling and the Tucker’s approximation, i.e., assuming that 

the pumping signal applied across the SIS junction is purely 

sinusoidal [1] and study the conversion efficiency for both 

cases. Furthermore, in the study, it is shown that different 

junction parameters had pronounced impact on the 

performance of the SIS junction frequency multiplier.  

 The structure of this paper is as following: in the Section 

II-A below, the induced QTC due to an external pumping 

signal (PS) is discussed. In the Section II-B, the harmonic 

behavior of the QTC is discussed, where the importance of 

some key features is highlighted. In the Section II-C, both the 

lumped and series array SIS junction are discussed. In the 

Section II-D, we develop the closed form expressions 

describing the properties of the distributed SIS junction 

frequency multiplier, which are later used in the circuit 

design. The output power and efficiency at the generated 

harmonics of interest are discussed in the Section II-E. In the 

Section II-F, we introduce the large signal model. The 

estimated conversion efficiency from the large signal model 

is also presented. The multiplier circuit design is discussed in 

the Section III. Finally, the Section IV treats the measurement 

setup and the obtained results. The measurement results are 

also compared with modeled data as shown in the Section IV. 

II. THEORY 

A. Quasi-particle Tunnel Current 

The quasi-particle tunnel current in SIS tunnel junctions 

has been studied in great detail in [1]. The induced QTC due 

to an applied fundamental RF signal, i.e., pumping signal is 

given by:  

 

𝐼𝑃𝑆(𝑉𝑏𝑖𝑎𝑠 , 𝜔) =   

2𝜋 ∑ [𝑎𝑚 − 𝑖𝑏𝑚]

∞

𝑚=0

 

  (1) 

with the magnitudes of am and bm given by: 

 

2𝑎𝑚 = 

∑ 𝐽𝑛(𝛼)(𝐽(𝛼)𝑛+𝑚 + 𝐽(𝛼)𝑛−𝑚)

∞

𝑛=−∞

𝐼𝑑𝑐 (𝑉𝑏𝑖𝑎𝑠 +
𝑛ℏ𝜔

𝑒
) 

 

2𝑏𝑚 = 

∑ 𝐽𝑛(𝛼)(𝐽(𝛼)𝑛+𝑚 − 𝐽(𝛼)𝑛−𝑚)

∞

𝑛=−∞

𝐼𝐾𝐾 (𝑉𝑏𝑖𝑎𝑠 +
𝑛ℏ𝜔

𝑒
) 

  (2) 

where, m is the harmonic number and m=0 is for the pumped 

dc QTC, 𝐽𝑛(𝛼) is the Bessel function of the first kind, 𝛼 is the 

pumping factor i.e., the amplitude of the PS waveform 

normalized with the photon voltage 𝛼 = 𝑒𝑉𝑃𝑆 ℏ𝜔𝑃𝑆⁄ . Idc and 

IKK are the imaginary and real parts of the complex current 

response function: 

 

 𝑟(𝑉) = 𝑗𝐼𝑑𝑐(𝑉) + 𝐼𝐾𝐾(𝑉) (3) 

Furthermore, IKK is the reactive part of the QTC, which relates 

to the dissipative part of the tunnel current through the 

Kramers-Kronig transform: 

 

 𝐼𝐾𝐾(𝑉) = 𝑃 ∫
𝑑𝑉

𝜋

𝐼𝑑𝑐(𝑉)−𝑉 𝑅𝑁⁄

𝑉−𝑉

∞

−∞
  (4) 

 

where P is the Cauchy principal value integral and RN is the 

normal state resistance of the niobium superconducting 

electrodes of the SIS junctions.  

 Clearly, even though it may sound controversial, the real 

and imaginary part of the induced tunnel current given by eq. 

(1)-(2), are proportional to the imaginary (Idc) and real (IKK) 

part of the current response function respectively.  

The real and imaginary part of the response function in eq. 

(3) must be obtained in order to compute the closed form 

expression of the QTC given by eq. (1)-(2). The dissipative 

part of the current response function could be either directly 

measured (dc I-V characteristics) or calculated from 

complicated theoretical expressions, which has to be 

computed numerically [1, 21]. The reactive part of the un-

pumped tunnel current i.e., IKK, could be obtained through 

eq. (4). In this paper we use an empirical model, eq. (5) for 

the dissipative part of the tunnel current i.e., 𝐼𝑑𝑐 , in order to 

study the IKK current effect on the overall QTC.   

 

𝐼𝑑𝑐(𝑉) = 

[
𝑉

𝑅𝐿
(

1

1+e−a(V+Vg)
 ) +

𝑉

𝑅𝑁
(

1

1+ea(V+Vg)
 )]  

 + [
𝑉

𝑅𝐿
(

1

1+ea(V−Vg)
 ) +

𝑉

𝑅𝑁
(

1

1+e−a(V−Vg)
 )]  (5) 
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The empirical model we suggest has four fitting parameters: 

RL is the subgap resistance, RN is the normal resistance, Vg is 

the gap voltage, and the coefficient, a, accounts for the 

transition width at gap voltage, henceforward referred to as 

the current onset sharpness. Three out of the four fitting 

parameters (RL, RN, and Vg) used in the empirical model are 

physical parameters, which are extracted from the measured 

I-V characteristics [22]. The current  onset sharpness width 

coefficient, a, is estimated through fitting and has a typical 

value of approximately 3-4∙104 (V-1) for the Nb-AlOx-Nb 

junctions produced in-house [23]. This parameter can be used 

as a measure of the junction quality, as explained in section 

II-E. 

The first term in the square bracket in the eq. (5) is the dc 

quasiparticle tunnel current with respect to negative bias 

voltage, whereas the second term in the square bracket 

accounts for positive bias voltage. The two terms inside the 

square brackets refer to the subgap and normal electron 

current, i.e., the current before and after the gap onset, 

whereas the Fermi-Dirac-like functions define where the 

onset occurs and its sharpness. Fig. 1 shows the comparison 

between the modeled and the measured I-V characteristics. 

Clearly, the modeled I-V characteristic of the SIS junction is 

in a very good agreement with the measured one. 

 

 
Fig. 1: Modeled I-V according to equation (5) compared with measured I-V 
characteristics. The insert shows the I-V curve close to the gap voltage. 

B. Harmonic behavior of the QTC 

When PS is applied, the behavior of the output current at 

different harmonics could be studied through eq.  (1). 

However, the SIS quantum impedance is required in order to 

study the output power. The small signal quantum admittance 

of the SIS junction [1] is expressed as: 

 

 𝑌𝑚𝑚′ = 𝐺𝑚𝑚′ + 𝑗𝐵𝑚𝑚′  (6) 

 

𝐺𝑚𝑚′ =   

𝑒

2ℏ𝜔𝑚′
∑ 𝐽𝑛(𝛼)𝐽𝑛′(𝛼)𝛿𝑚−𝑚′ ,𝑛′−𝑛

∞

𝑛,𝑛′=−∞

{ 

[𝐼𝑑𝑐 (𝑉0 + 𝑛′ ℏ𝜔

𝑒
+

ℏ𝜔
𝑚′

𝑒
) − 𝐼𝑑𝑐 (𝑉0 + 𝑛′ ℏ𝜔

𝑒
)]  

+[𝐼𝑑𝑐 (𝑉0 + 𝑛
ℏ𝜔

𝑒
) − 𝐼𝑑𝑐 (𝑉0 + 𝑛

ℏ𝜔

𝑒
−

ℏ𝜔
𝑚′

𝑒
)]} 

  (7) 

𝐵𝑚𝑚′ =   

𝑒

2ℏ𝜔𝑚′
∑ 𝐽𝑛(𝛼)𝐽𝑛′(𝛼)𝛿𝑚−𝑚′ ,𝑛′−𝑛

∞

𝑛,𝑛′=−∞

{ 

[𝐼𝐾𝐾 (𝑉0 + 𝑛′ ℏ𝜔

𝑒
+

ℏ𝜔
𝑚′

𝑒
) − 𝐼𝐾𝐾 (𝑉0 + 𝑛′ ℏ𝜔

𝑒
)]  

-[𝐼𝐾𝐾 (𝑉0 + 𝑛
ℏ𝜔

𝑒
) − 𝐼𝐾𝐾 (𝑉0 + 𝑛

ℏ𝜔

𝑒
−

ℏ𝜔
𝑚′

𝑒
)]} 

  (8) 

 

The quantum admittance at the different harmonics is given 

by m=m’, i.e., Ymm.  The generated power at the second 

harmonic (m=2) could be estimated through equations (1)-

(8). The power due to the real, imaginary and resultant part of 

the quasiparticle tunnel current with respect to the bias 

voltage at pumping factor, α=1.2  are shown in Fig. 2 for the 

second harmonic. Table I summarizes the SIS junction 

parameters used for the calculations. The pumping frequency 

in this example is 100 GHz, whereas the 2nd harmonic 

corresponds to 200 GHz. 

The fine structures in Fig. 2 are separated exactly by the 

voltage corresponding to the multiple of the applied PS 

photon size. Thereby, Fig. 2 clearly shows the presence of the 

multi-photon processes. Furthermore, Fig.2 also shows that 

the maximum total power corresponds to the maximum 

reactive power, and that the real part of the power at that point 

is zero. The importance and the impact of the reactive 

component of the total power will be further discussed in the 

Section II-E. 

 

 
Fig. 2: The calculated power generation due to the second harmonic of the 

QTC at the pumping factor 𝜶 = 𝟏. 𝟐. The dashed line shows the power due 

to the non-reactive QTC, whereas the solid gray plot illustrates the power 

due to the reactive QTC. The dotted line shows the total power at the second 

harmonic. 

 
Fig. 3: The calculated pumped dc I-V at the pumping factor 𝛼 = 1.2, 
whereas the insert show the induced static I-V for the voltage rang of 0-5 

mV. 
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TABLE I. COEFFICIENT VALUES FOR THE EMPIRICAL IVC MODEL OF Nb-

AlOx-Nb SIS JUNCTION.  

Leakage  

resistance, 

RL (Ω) 

Normal 

resistance, 

RN (Ω) 

Gap voltage, 

Vg (mV) at 

4 K 

Onset 

coefficient, 

a (1/V) 

55 0.91 2.91 4.104 

 

C. Lumped single or series array SIS junctions 

When designing a frequency multiplier, several properties 

of the multiplier need to be considered. One of the key 

properties is the output power at the generated harmonic of 

interest. Another key parameter is the impedance at the input 

and at the harmonics frequencies of interest.  

 With the fixed voltage scale to Vg, the output power of SIS 

junctions can be assumed to be proportional to the area of the 

junction [10] for the given tunnel barrier transparency, and N2 

for a series array configuration [1], where N is the number of 

SIS junctions. However, the SIS junction geometric 

capacitance is also proportional to the junction area, which 

limits the SIS junction size, since the higher harmonics would 

be short-circuited due to the geometric capacitance. This 

seriously limits the performance of the SIS junction as a 

frequency multiplier. The solution to this problem is in 

principle to have several or many junctions in series, which 

would reduce the junction capacitance and at the same time 

increase the total output power of SIS junction array by a 

factor of N2. Billade et al. [20] employed this approach. 

However, it seems that this approach raises many new 

challenges and questions.  

The series SIS junction array, even just a few elements 

must be considered as a distributed array of junction at these 

frequencies. The reason is that the simplifying assumption 

regarding the inductance in the equivalent circuit of series SIS 

junctions array used in [1] is only valid for relatively low 

frequencies. Consequently, this means that the waveform 

across all of the SIS frequency multiplier junctions must be 

considered and simultaneously solved for, in order to account 

for the impedance due to the junctions themselves and the 

transmission line inductance in between the junctions. 

Furthermore, it is also likely that in such arrangement, the 

first few junctions could be pumped much harder than 

remaining junctions [20]. This could lead to local 

(over)heating of the junctions and thus affecting the total 

performance of SIS multiplier as discussed in [20].  

Another drawback with the series array arrangement may 

be that the power from the PS would be distributed among 

other harmonics than the expected one in the multiplication 

chain. This is most likely because the first junction would 

generate numerous harmonics with different magnitudes as 

shown in (1) and (2) as a response to the input PS signal; these 

harmonics are then input to the next junction. At the second 

junction, there would be both multiplications, up and down 

conversion of the input signals. The output of the second 

junction would contain low and high output frequencies with 

sufficient output power, and these are the input for the 

following junctions. This would lead to local heating of the 

junctions and severe degradation of the SIS frequency 

multiplier efficiency with overall complexity of achieving the 

optimum performance of all the junctions in the series array. 

Obviously, a different option for using SIS junction as 

frequency multiplier is warranted.  

 

D. The distributed SIS junction 

In 1996, Belitsky et al. published an extensive paper 

regarding the distributed (long) SIS junction and its 

characteristics [24]. However, in that paper, the reactive 

portion of the quantum impedance, which is due to the 

Kramers-Kronig part of the tunnel current was neglected, as 

commonly done when considering the SIS junction for mixer 

operation. On the other hand, when the SIS junction is 

considered for frequency multiplication, it is essential that the 

reactive portion of the SIS quantum impedance is included 

[25]. 

For the modeling, a similar approach as in [24], [26] was 

employed; the distributed SIS junction is therefore modeled 

as a microstrip-line (MSL) as shown in Fig.4, where s is the 

tunnel barrier thickness, W is the strip width, ds is the 

thickness of the superconducting counter electrode, dg is the 

superconducting ground electrode.   

 
Fig. 4: Topology of the distributed SIS tunnel junction, s is the tunnel barrier 

thickness, ds and dg are the superconducting counter and ground electrodes 

respectively, W is the distributed junction width.  

The circuit diagram of the presented SIS microstrip line 

tunnel junction is shown in Fig.5. 

 

 
Fig. 5: Circuit diagram for small portion dx of a superconductor-insulator-

superconductor tunnel microstrip line. L and C are specific geometrical 
inductance and capacitance per unit length, whereas Zss and Zsg are the 

surface resistance of the strip and ground electrode respectively. Bmm is 

reactive part of SIS quantum admittance. 

 From the circuit diagram, the propagation factor, γ, for a 

microstrip line with series impedance Z and admittance Y of 

unit length can be expressed as follows: 

 

 𝛾 = √𝑍𝑌 (9) 

 

 𝑍 = 𝑗
𝜔𝜇0𝑠

𝑊
+

1

𝑊
(𝑍𝑠𝑠 + 𝑍𝑠𝑔) (10) 

 

 𝑌 = 𝑊 ∙ 𝐺𝑅𝐹 + 𝑗𝜔𝑊 ∙ 𝐶𝑠 + 𝑗𝐵𝑅𝐹  (11) 
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 𝐶𝑠 =
0.3

ln(𝑅𝑁𝐴)
 (12) 

 

 

 

  
𝐺𝑅𝐹 =

𝐺𝑚𝑚

𝐴
 (13) 

   

 𝐵𝑅𝐹 =
𝐵𝑚𝑚

𝐴
 (14) 

   

where Zss and Zsg are the surface impedance of the 

superconducting counter and ground electrodes respectively, 

Cs is the specific capacitance in pF/µm2 [27], GRF (Ω µm2)-1 is 

the conductance of the RF quantum admittance real part that 

originates from the photon-assisted tunneling current through 

the barrier per area unit, whereas BRF is the reactive part of 

the RF quantum admittance per area unit.  

The specific surface impedance ZS per square of a 

superconducting film with thickness d is expressed as 

following [26]: 

 𝑍𝑠(𝜔) =  √
𝑗𝜔𝜇0

𝜎
coth(𝑑√𝑗𝜔𝜇0𝜎) (15) 

 

where 𝜔, is the angular frequency, 𝜇0 is the magnetic 

permeability of vacuum and 𝜎 is the complex conductivity of 

a superconductor [28].  The specific surface impedance in eq. 

(15) is calculated in the same fashion as in [24, 26]; the 

superconducting material parameters for niobium that was 

used in our modelling could be found in Table II. 

In order to study the behavior of SIS microstrip line tunnel 

junction propagation factor, both the series impedance Z and 

admittance Y has to be calculated through eq. (5)-(7) and (8)-

(10) respectively, which then results in the following 

expression:  

𝛾 = √(𝑗𝜔𝜇0𝑠 + (𝑍𝑠𝑠 + 𝑍𝑠𝑔)) ∙ (𝐺𝑅𝐹 + 𝑗𝜔𝐶𝑠 + 𝑗𝐵𝑅𝐹)  (16) 

 

TABLE II: Nb SUPERCONDUCTING MATERIAL PARAMETERS 

London 
penetration 

depth (nm)a 

Gap voltage 
Vg (mV) at 

(T=0 K) 

Critical 
temperature 

Tc (K) 

Normal state 
conductivity 

𝜎𝑛(𝛺−1𝑚−1) 

85 2.86  9 1.57·107 

a
SEE REFERENCE [24]. 

From eq. (16) it could be seen that the junction capacitance is 

tuned with the aid of the reactive part of the quantum 

impedance BRF, hence, changing the propagation factor 

significantly. In a separate study [29], it was shown that the 

losses (real part of the propagation factor) in the distributed 

SIS junction was significantly increased, up to 35% at 

specific junction parameters and bias voltages as a 

consequence of the introduction of the reactive portion of the 

quantum impedance. The impact of the losses on the 

generated power at the higher harmonics could be introduced 

through the characteristic impedance of the distributed SIS 

junction given by eq. (18). A practical configuration of the 

microstrip line is the open stub, as it results in useful input 

and output impedance values.  The input impedance of an 

open stub lossy microstrip line is given as following: 

  𝑍𝑖𝑛 = 𝑍0coth (𝛾𝑙) (17) 

 

where l is the length of the distributed SIS junction and Z0 is 

the characteristic impedance of the microstrip line SIS 

junction, given by: 

 𝑍0 = √
𝑍

𝑌
 (18) 

 

where Z and Y is given by (10) and (11) respectively. 

From the input impedance plotted in Fig. 6, it can be seen 

that the impedance values occur periodically, and with values 

larger than 2 Ohms. This is a very interesting result, showing 

that the microstrip line SIS junction is not restricted to the 

generation of only the first or second harmonic of the input 

signal. It could actually as well be used for the 3rd and 4th 

harmonics. Furthermore, it can be seen that the input 

impedance at the lower frequencies (𝑓 < 150 GHz) is 

reduced compared to the higher frequencies. 

 The advantages of the distributed SIS junction are that 

because of internal resonances the impedance could be pure 

real and reach reasonably high values but also practical for 

both large area of the distributed SIS junction and high 

frequency. Compared to the series SIS array, the distributed 

(long) SIS junction at resonant frequency would neither 

suffer from the local heating effect, which would occur due 

to over pumping in a few junctions, nor would the multiplier 

have major efficiency degradation due to the propagation of 

both multiple harmonics and mixing products simultaneously 

as the series of resonances provide favorable matching for 

harmonics’ signal only.  

In conclusion, according to our modelling, the distributed 

SIS junction, when operated as a frequency multiplier shows 

considerable advantages over the lumped SIS junction 

(insufficient attainable power) or a series SIS junction array 

(heating and complex junction interaction). For this reason, 

the distributed SIS junction is used as the frequency 

multiplier in this paper. 

 

 
Fig. 6: The complex impedance of the resonant distributed SIS junction for 
the two different lengths of the junction, l=20 µm and l= 13.5 µm at the 

pumping factor α= 2. 

E. Output Power and Efficiency  

As it was shown by our earlier publication [30], the reactive 

part of the QTC has a fundamental impact on the total tunnel 

current of the SIS junction since it determines the maximum 

power of the generated harmonic, which is clearly seen in Fig. 

2. This also could be understood from eq. (1)-(2), since the 

reactive QTC is proportional to the real part of the current 

response function IKK. Therefore, the larger the peak value of 

IKK, hence the larger the peak value of the reactive current 
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would be, as shown in Fig. 7. Recall that the peak value of 

IKK, which occurs at the gap voltage, is shifted by the photon 

voltage ±𝑛ℏ𝜔 𝑒⁄  as shown in eq. (2) when RF signal is 

applied across an SIS junction. Consequently, the peak 

powers of the generated signals at higher harmonics are found 

at the bias voltages of 𝑉𝑔 ± 𝑛ℏ𝜔 𝑒⁄ , as seen in Fig. 2. 

Furthermore, by taking the second derivative of eq. (4) 

together with the modeled dc QTC expression in eq. (5), it 

was also shown in [30] that the maximum value of the 

reactive tunnel current depends strongly on the quality of the 

SIS junction. Consequently, the normal resistance, RN should 

be low, approximately 1-3 Ω so that an practical attainable 

impedance value is achieved, whereas the leakage resistance, 

RL and the onset sharpness coefficient, a, should be as high as 

possible for practical SIS junctions in order to maximize the 

reactive tunnel current, thereby maximizing the output power 

of the SIS junction at the desired harmonic. In fact, the 

conversion efficiency of the SIS multiplier is strongly 

dependent on the onset sharpness parameter.  This fact 

emphasizes upon the importance of the SIS junction quality 

quantified by parameter a, e.g., a 37.5% change of the onset 

sharpness a, results up to 15 % degradation in the conversion 

efficiency.  

In [1], a simplifying assumption of the PS signal applied to 

the SIS junction was made in order to attain the expression 

shown in eq. (7) and (8). It was assumed that the waveform 

of the PS source at the SIS junction is purely sinusoidal. We 

believe that this assumption can still be valid if a bandpass 

(BP) filter is used in front of the SIS junction in order to short 

out the unwanted harmonics of the PS source. For this reason, 

the resulting quantum impedance of SIS junction due to this 

approximation was used to calculate the conversion 

efficiencies of the SIS frequency multiplier. The conversion 

efficiency of the 2nd and 3rd harmonics with different pumping 

factors, α is shown at the Fig.8. The onset sharpness, a used 

for the plots in Fig. 8, is 2.5∙104 (V-1), which is 37.5% lower 

than the typical value. The exaggerated lower value of the 

onset sharpness accounts for the possible heating due to the 

large pumping factor and the power dissipation in the coil 

used for the suppression of the Josephson effect. 

Respectively, the peak values of conversion efficiencies 

shown in Fig.8 would improve by up to 15 % when the typical 

onset sharpness a= 4∙104 (V-1) is used in the model.   

The output power of the distributed SIS junction at the 

second harmonic is of the order of a few hundreds of nano 

Watts. In order to increase the output power of the distributed 

SIS junction, a power combining technique could be used 

rather than a series array layout for the same reasons as 

discussed in the Section II-C. 

 
Fig. 7: The IKK current with respect to the bias voltage for junctions with 
different quality factors (onset sharpness), a.  

 

 
Fig. 8: The conversion efficiency at the 2nd (black curves) and 3rd (gray 
curves) harmonics three different pumping factors, α=1.2, 2 and 3.  

F. Large Signal Model 

Accurate analysis of a circuit containing a SIS junction 

requires a self-consistent large-signal solution for the voltage 

across the nonlinear device. In the method used here, two 

realistic simplifications are made; 1: The Josephson effect is 

not included as it is assumed to be suppressed with external 

magnetic field; 2: Self-oscillation and other nonharmonic 

frequency generation effects are ruled out.  

The harmonic balance method employed here follows the 

procedure described by Hicks et al. [31] for SIS mixers.  

The equivalent circuit diagram used in this analysis is shown 

in Fig. 9. The circuit diagram is bisected at the linear-

nonlinear interface and each half is treated separately. The 

nonlinear portion of the circuit is modelled in the time domain 

whereas the embedding network, which includes the surface 

impedance and the geometrical capacitance of the distributed 

SIS junction, is treated in frequency domain.  

Early results of the harmonic balance simulations confirms 

the high conversion efficiency from the simplified single tone 

PS waveform given by equations (1)-(2) and (6)-(8), as 

discussed and shown in previous section, see Fig.8. The 

conversion efficiencies for the 2nd harmonic at the pumping 

factor α = 1.5 and α = 3 attained with the large signal 

modeling are 90% and 50% respectively. The conversion 

efficiencies of the 3rd harmonic for the same pumping factors 

were approximately 30% and 15% respectively. Furthermore, 

according to the tunnel current spectrum attained by the large 

signal model and presented in  Fig.10, even higher harmonics 

such as the 4th or 5th may have sufficiently good 

multiplication efficiency, for the model based on the given 

above assumptions. 

 

 
Fig. 9: Distributed SIS multiplier circuit. L and CJ are geometrical 

inductance and capacitance, whereas Zss and Zsg are the surface resistance 
of the microstrip and ground electrode respectively. 
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Fig.10: The large signal harmonic spectrum of the induced quasiparticle 

tunnel current. The pumping frequency signal at 100 GHz is presented along 

with harmonic tones up to 7th harmonic.  It is clearly seen enhanced intensity 
of the harmonics 2, 3, 4. 

However, the limitation of this large signal modeling 

technique resides in the use of time domain simulations, 

which could be quite demanding for computation power. 

However, to our experience, modern computers provide 

enough computation power to make those time domain 

simulations affordable. Another limitation seems to be that 

the dependence of the reactive part of the tunnel current, 

which is given by the Kramers-Kronig transform of the dc 

tunnel current in the frequency domain is not that pronounced 

with respect to the conversion efficiency in the time domain 

simulations, i.e., the sharper the onset current is, the higher 

would become the peak power. However, the spectral domain 

large signal model technique [32], where all the calculations 

are directly made in the frequency domain, show that the 

imaginary part of the induced QTC is proportional to the real 

part of the current response function (i.e., IKK) as suggested in 

the previous section.  

In summary, the distributed SIS junction shows promising 

potential for high conversion efficiency for frequency 

multiplication, both in attainable power and multiplication 

efficiency even at the higher order harmonics. 
 

III. FREQUENCY MULTIPLIER CIRCUIT DESIGN AND 

FABRICATION 

A prototype frequency Multiplier employing a 
Distributed Superconducting-insulator-superconductor 
junction (DSM) was designed and fabricated as shown in 
Fig. 12. Aiming for enhancing the generated power of the 
2nd harmonic, a topology with two DSM in parallel with 
power combining by a Wilkinson power combiner. The 
DSM chip was designed for a frequency multiplication 
factor of two with a WR-10 input (3-mm band), resulting 
in the frequency output in WR-5 (1.5-mm band). The 
reason for choosing this particular frequency band was 
the availability of the metrology, and, in particular, a 163–
211 GHz SIS mixer [33] intended to be used to study the 
generated signals. 
 The DSM chip consists of two waveguide to microstrip 
transitions (also referred to as probes), two impedance 
transformers, two Wilkinson power dividers, two 
bandpass (BP) filters and two distributed SIS multipliers 
as schematically shown in Fig. 11. Furthermore, the DSM 
chip employs a choke structure on the top of a 60 µm high 
resistivity silicon substrate used as the ground for the 

entire circuitry. As the insulation for various microstrip 
structures we used a 0.2 µm SiO2 dielectric layer. 

Fig. 13 shows a photograph of the multiplier waveguide 
block with an E-plane split. The DSM chip is placed inside 
a chip channel and the coupling between the PS and the 
generated second harmonic signal in waveguides and the 
chip is achieved using E-probes extending inside the 
waveguides. For the pumping frequency side, a radial 
probe as described in [34] was used, whereas, for the 
high-frequency side, a probe with integrated bias-T [35] 
was used to allow the dc biasing of the DSM. An SMA 
connector was employed for dc biasing the DSM, where 
the SMA center pin was soldered to an intermediate dc 
substrate. The dc substrate was then connected to the 
DSM chip using bond wires. The choke structure was dc 
grounded by connecting one bond wire on each side of the 
low impedance section directly to the waveguide block, as 
shown in Fig. 12. The BP filters are used to isolate the 
input and output from each other and at the same time 
filter out unwanted possible harmonics of the pumping 
signal, whereas the Wilkinson divider and combiner are 
used for the parallel DSM operation in order to increase 
the total output power. From Fig.12, it can be seen that the 
silicon substrate is tapered to a smaller substrate width 
from approximately the center i.e., right after the 
distributed SIS junctions. The reason is that after the 
multiplication of the input signal, all dimensions of the 
choke structure scales with the frequency, i.e., the choke 
structure needs to be scaled accordingly for normal 
operation at the output frequency.  
The input and output impedance of the distributed Nb-

AlOx-Nb SIS junction, which is 1 µm wide, 20 µm long and 
RNA = 30 Ohm.μm2 was calculated as shown in section II-
D. The input impedance at 93 GHz was Z1≈1+j0.3 Ω 
whereas the impedance at the second harmonic i.e., 186 
GHz is Z2≈2.3 Ω. The input and output circuit chains in the 
DSM chip were optimized with respect to the input and 
output impedance, i.e., Z1 and Z2. The optimization 
procedure was carried out in Keysight EMPro, ADS and 
Momentum  [36]. Furthermore, all microstrip lines were 
made of superconducting niobium in order to minimize 
the loss in the microstrip lines due to finite conductivity 
and non-zero operating temperature [26]. Notice that in 
this case, the loss of the superconductor arises when high-
frequency magnetic field penetrates a thin surface layer 
and induces oscillations of the electrons which are not 
bound in Cooper pairs. Therefore, the power dissipation 
caused by the motion of the unpaired electrons [37]. 
Furthermore, the characteristic impedance and lengths of 
all circuit elements has to be corrected due to the added 
kinetic inductance of the superconducting transmission 
line. Detailed description and closed form expression for 
both characteristic impedance and propagation factor 
could be found in [38].  

Fabrication of the DSM chips generally followed the 

process flow described in [23]. The Nb/Al–AlOx/Nb trilayer 

was grown in a single vacuum run by means of dc magnetron 

sputtering. The patterns of the layers forming the DSM 

circuitry were defined by contact photolithography. The 

bottom Nb electrode, 200 nm thick, was deposited at 0.9 nm/s 

rate followed by about 7 nm Al deposited at 0.3 nm/s rate. 

The fresh Al surface was exposed to pure oxygen at room 

temperature and at a pressure of 6.9∙10−2 mbar for 15 min to 



> IEEE TRANSACTIONS ON TERAHERTZ SCIENCE AND TECHNOLOGY 

 

8 

form the AlOx tunnel barrier. Finally, 100 nm thick Nb 

counter electrode was deposited under the same conditions as 

the bottom electrode. The base electrode pattern has been 

etched through the Nb/Al–AlOx/Nb trilayer by a sequence of 

CF4 +O2 for Nb and Cl2 for Al–AlOx reactive ion etching 

(RIE), correspondingly. The junction pattern was defined by 

RIE process with a stop at Al–AlOx layer. Anodization with 

voltage up to 13 V was followed by a deposition of 200 nm 

thick SiO2 by means of reactive RF magnetron sputtering; the 

SiO2 layer was lifted-off forming interlayer insulation. 

Another SiO2 layer of 150 nm thickness was consequently 

deposited and defined by lift-off forming locally areas where 

thicker SiO2 layer was required by the DSM design. Layer of 

Ti-N alloy with a sheet resistance of 11.5 Ohm/square had 

been formed by reactive magnetron sputtering of Ti target in 

Ar and N2 atmosphere and its shape was defined by lift-off. 

A 350 nm thick Nb lines layer was deposited by dc sputtering 

and followed by RIE. Finally, the contact pads were formed 

by lift-off of the Nb 100 nm / Pd 150 nm bilayer. 

The DSM device was designed to be made on as thin as 60 

μm Si substrate. For easier handling during the DSM SIS thin 

film processing, it was carried out on the silicon-on-insulator 

(SOI) wafer with 60 μm thick device and 550 μm thick carrier 

parts of the wafer. Upon the DSM SIS processing was 

completed and dc testing of the fabricated circuits proved 

their suitability for the measurements, the individual chips 

shape was formed by etching down in the device layer of the 

SOI wafer and, consequently, the carrier part of the SOI wafer 

was etched away, both following the process described in 

[39]. 

 

 
Fig. 11. Block diagram overview of the DSM test chip. 

 

 
Fig. 12: The CAD drawing of the test chip showing the two distributed SIS 

stub junctions in parallel, two filter sections, the input and the output probes 
together with respective waveguides. The dc bias and choke structure ground 

(GND) ports are shown as well. Each distributed SIS junction is 1 µm wide 

and 20 µm long. 

IV. MEASUREMENTS AND RESULTS  

A. Measurement Setup 

The characterization of the device performance was carried 

out at 4 K in a cryostat with a closed-cycle refrigerator similar 

to [20]. Fig. 14 shows a block-diagram of the test setup used 

for the DSM measurements. To study the response from 

DSM, an SIS mixer [33] that covers the RF frequencies from 

163–211 GHz with 4–8 GHz intermediate frequency (IF) 

bandwidth, was connected at the output of DSM . The DSM 

was pumped with a phase locked 83-105 GHz Gunn oscillator 

through a WR-10 waveguide, and the output of the DSM was 

coupled to the input of the mixer using a 3 cm long WR-5 

waveguide. 
 

 
Fig. 13: Photograph of the multiplier assembly showing input and output 
waveguide, SMA connector for dc biasing and location of the DSM chip. 

In this experiment, the Josephson effect for both the SIS 

mixer and DSM were suppressed using two independent 

magnetic coils. An isolator and a cryogenic low-noise 

amplifier were used at the output of the SIS mixer. The SIS 

mixer was pumped using a 171-203 GHz LO consisting of an 

Agilent frequency synthesizer and followed by a amplifier / 

multiplier chain (×6) [40]. The IF output was analyzed with a 

spectrum analyzer.  

In order to investigate the spectral response of the DSM, 

the LO frequency of the SIS mixer used for this purpose was 

set between 174–203 GHz, and the DSM was pumped with 

frequencies such that the expected DSM output power at the 

second harmonic would always fall inside the 4–8 GHz band 

of the down converted mixer IF.  All measurements were 

performed using specially developed data acquisition 

software. 

 

Fig. 14: Schematic of the experimental setup used to study the test device. 

The cryostat contains the DSM test chip connected through a WR-5 

waveguide to a 163–211 GHz SIS mixer. Both the SIS mixer and the DSM 
test chip are pumped using two separate local oscillators 
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B. DSM Output Power 

The physical parameters of the SIS (Nb-AlOx-Nb) junction 

such as gap voltage (Vg), normal resistance (RN) and subgap 

resistance (RL) were calculated from the measured dc I-V 

characteristics, see Fig. 1. The fitting parameter, a, which is 

associated with quasiparticle tunnel current onset sharpness 

in equation (3) was also estimated from the measured dc I-V 

characteristic. These parameters were implemented in 

equation (3) and (2) for m=0 in order to extract the pumping 

factor. Here, we used a simple extraction procedure of the 

pumping factor, were we compared the modeled and 

measured pumped dc I-V characteristics of the DSM. The 

pumping factor in the model is adjusted until satisfactory 

agreement between the model and the measurement was 

achieved, see Fig. 15.  

The output power dependence of the frequency multiplier 

on the dc bias voltage was investigated by measuring the IF 

power of the SIS mixer while sweeping the DSM bias 

voltage. In this case, both the frequency and the output power 

of the two sources used for the SIS mixer (LO) and the DSM 

(PS) test chips respectively were fixed. The process was 

repeated for different pumping factors. A comparison 

between the measured and the predicted power at the second 

harmonic is shown in Fig. 16, where the amplification of the 

LNA and cable losses are accounted for. The comparison is 

made for a typical power response of the DSM test chip at 93 

GHz and a pumping power of α≈3. The predicted output 

power at the second harmonic was estimated by 𝑃 =
0.5𝑅𝑒(𝑍2)|𝐼𝑅𝐹|2, the impedance Z2 being calculated as 

shown in section II-D, whereas the induced QTC, IPS is 

calculated using eq. (1) and (2). The modeled and measured 

power are in good correspondence for the extracted pumping 

factor especially taking into consideration that the modeling 

did not accounted changes in the pumping power delivered to 

the junction vs. dc bias. The peak values of the modeled and 

measured power at 𝑉 − 𝑛ℏ𝜔𝑅𝐹 𝑒⁄  were almost identical 

between the measured and the simulated curves, see Fig. 16. 

Furthermore, it can be seen that all the fine structure of the 

theoretically predicted curve (equation (1)-(2)) could be 

found in the measured data. The fine structures in Fig. 16 are 

separated exactly by the voltage corresponding to the 

multiple of the applied LO photon size. Thereby, Fig. 16 

clearly shows the presence of the multi-photon processes. The 

peak power vs. the frequency at the second harmonic, which 

corresponds to a fractional band width of 10%, is shown in 

Fig. 17.  There is a minor deviation close to the gap voltage 

between the model and the measurement data in Fig. 16. 

Furthermore, the measured power response seems to be 

slightly wider than predicted by the model. In our model, a 

constant pumping factor was assumed for all dc bias points, 

whereas in reality, the pumping factor varies depending on 

the bias voltage because of the DSM changing impedance. 

This explanation was tested in our model by splitting the 

pumped dc I-V in to three sections, were the pumping factor 

for each section was extracted separately. In this case, the 

modelled output power at the second harmonic with the new 

pumping factors proved to give even better agreement 

between model and measurement than shown in Fig. 16. 

However, at this stage, the constant pumping for the entire I-

V employed in order to avoid a figure containing stitched 

plots.   Additionally, some discrepancy could also be 

attributed to the possible limitations of measurement setup 

itself. Nonetheless, the measured power of the second 

harmonic shown in Fig. 16 is in a good agreement with the 

theoretically predicted power and corresponds to the features 

predicted by the model attributed to the contribution from the 

IKK as discussed in section II-F.   

 

C.  Efficiency 

During the same experiment, we were also able to 

demonstrate pumping of the SIS mixer only with the output 

signal of the DSM test chip. In this case, the LO power of the 

SIS mixer (LO of the down converter at the Fig.14) was 

switched off and the DSM was biased at the maximum power 

at the pumping factor α≈3. Once, the DSM parameters were 

set, a bias voltage sweep of 0-3.4 mV of the SIS mixer and 

the measurement was conducted. The pumped dc I-V 

characteristic of the SIS mixer is shown in Fig. 18. The un-

pumped SIS mixer current at 2.5 mV bias voltage was 

approximately 1 µA, whereas the pumped SIS mixer current 

was approximately 25 µA. The pumping factor, αmix, of the 

SIS mixer driven by the output signal of the DSM test chip 

was estimated with the same iteration method as described 

earlier in the Section IV-B, which resulted in the value αmix ≈ 

0.35. Even though a higher output power is desired for normal 

operation of an SIS mixer (αmix ≈ 0.8-1) this shows potential 

possibility to use DSM as a part of practical receiver. It should 

be noted though that the conditions of the test setup are not 

fully optimum for achieving maximum pumping factor at the 

mixer. Since the DSB was placed onto a separate chip and 

employed dedicated waveguide mount. For the purpose of 

assessing the power of the second harmonic generated by 

DSM, we should include losses as the output signal travels 

through a BP filter, Wilkinson power combiner, impedance 

transformer, waveguide probe and roughly 6 cm long WR-5 

waveguide in total with two flanges until it arrives to the input 

of the SIS mixer block. Inside the SIS mixer block the signal 

continues to travel 3 cm before it arrives to the waveguide to 

microstrip probe, which is then impedance transformed and 

connected to a SIS mixer through a LO coupler [4]. The input 

and output power of the DSM was estimated by using the 

extracted pumping factor related to the DSM chip at the input 

frequency and the pumping factor related to the SIS mixer at 

the output frequency. Furthermore, by taking into account the 

losses of the high frequency superconducting microstrip line 

as shown in [26], and accounting for various mismatch as 

shown in Table III, we were able to make an estimation of the 

DSM efficiency to be at 15-30%. This indicates that the 

output power at the DSM is 4.3-7.4 dB or 2.7 to 5.5 times 

higher than the measured power at the SIS mixer junction.  

The estimated from the measurements efficiency of the SIS 

junction frequency multiplier of 15-30% is reasonably close 

to the modelled perfectly matched DSM at 200 GHz, which 

is close to 50% according to the large signal model. 

Furthermore, it is seen from the modelling in section II-D that 

the DSM input impedance at 100 GHz is approximately 1 Ω, 

whereas the output impedance is 2.3 Ω. The efficiency 

calculated with 𝜂 = 𝑃2 𝑃1 = 𝑅𝑒(𝑍1)|𝑉2|2 𝑅𝑒(𝑍2)|𝑉1|2⁄⁄  

show that the input and output impedance ratio is 

approximately 43% for the DSM input pumping frequency of 

100 GHz, whereas the impedance ratio is 125% for the input 

frequency at 300 GHz (see the impedance curve for 13.5 µm 

long distributed junction in Fig. 8). This indicates that the 

efficiency at higher frequencies should be expected to be 

greater than 15-30 %. Furthermore, the output of the DSM 

chip could be further increased by combining the power of 

more DSM junctions.  
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Furthermore, the results demonstrated here open up 

possibility of the DSM integration with the SIS mixer in order 

to maximize the power transmission from the DSM to the SIS 

mixer. This technology show future potential as LO source 

especially for multi-pixel SIS mixer layout. 

D. Spectral Width 

One of the most important requirements on any frequency 

multiplier is that it preserves the spectral purity of the input 

signal.  

The spectral line-width of the multiplied signal was 

measured with the resolution and video bandwidth of the 

spectrum analyzer set to 1 Hz (lowest value the spectrum 

analyzer could set) and 10 Hz respectively. Furthermore, 

during the measurement, the Gunn oscillator (signal to DSM) 

was phase locked. The -3dB line-width of the output signal 

was found to be 1 Hz. Fig. 19 shows the power spectrum of 

the multiplied signal. The spectrum is centered at 6 GHz with 

a 2 kHz span and resolution bandwidth of 20 kHz. 

Furthermore, for careful investigations, we could determine 

that the spurious in Fig. 19 originates from the LO signal to 

the SIS mixer.  

 
TABLE III: LOSS AND MISMATCH BETWEEN DSM AND SIS MIXER 

Circuits Loss 

Two WR-5 Probes 0.5-0.9 dB 
Two Filters 0.7-1.1 dB 

Wilkinson Power combiner 0.5-1.0 dB 

Two 2-Section impedance transformers 0.6-1.2 dB 
Thickness discontinuity in the choke 

structure SiO2 dielectric 
0.2-0.4 

Total Waveguide distance 1.5-1.8 dB 
LO coupler in the SIS mixer block 0.3-1 dB 

Total Loss 4.35-7.4 dB 

 

 
Fig. 15: The pumped dc DSM is compared with the model. The pumping 

factor in the model is adjusted until satisfactory agreement between model 

and measurement is achieved. The pumping factor in this plot is 𝜶 ≈ 𝟑. 
Discrepancy was caused by varying the pumping factor while changing the 

dc bias and consequently the matching impedance of the DSM. 

 

 
Fig. 16: A comparison of the measured and predicted power at the 2nd 

harmonic i.e., 186 GHz (93 GHz input frequency) vs. bias voltage and 

pumping factor 𝜶 ≈ 𝟑. The peak powers are due to the real part of current 
response function, i.e., IKK. The figure shows excellent correspondence 

between model and measurement. Furthermore, contribution of the IF 
amplification chain is removed here. The measured power is also corrected 

with 5.85 dB, which corresponds to the average value of the estimated losses 

in table III. 

 

 
Fig. 17: The peak power vs the frequency at the second harmonic over a 

fractional bandwidth of 10%. 

 

 
Fig. 18: Pumped dc I-V characteristics of the SIS mixer. The zoomed plot 

clearly shows the quantum response of the SIS mixer for the output power of 

the DSM at twice the input frequency i.e., at 186 GHz. The step-structure of 
the zoomed IVC is due to limitation of data acquisition system (steps show 

the last digit of the current ADC). 
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Fig. 19: The spectrum is centered at 6 GHz with a 2 kHz span and 

resolution bandwidth of 100 Hz.  

V. CONCLUSIONS 

In this paper, we have introduced, modelled, designed and 

experimentally demonstrated for the first time a frequency 

multiplier using a distributed (long) SIS junction. We have 

presented analytical expressions describing the properties of 

such distributed SIS junction. The modeling of the device 

shows that the distributed SIS junction can achieve high 

conversion efficiency, which was consistent with large signal 

harmonic balance simulations of the SIS junction multiplier. 

The measured output power of the distributed SIS junction in 

the regime of the generated second harmonic is in good 

agreement with the modeled output power. Furthermore, the 

distributed SIS junction as a frequency multiplier was for the 

first time able to pump an SIS mixer. The efficiency of the 

distributed SIS junction is estimated to be 15-30 % for a 

fractional bandwidth of 10% with excellent spectral line 

purity. The -3 dB line width of the multiplied signal is 1 Hz, 

which was limited by the lowest resolution bandwidth of the 

spectrum analyzer. The results presented in this work show 

that the distributed SIS junction frequency multiplier has 

potential to become useful component in LO source of 

superconducting low-noise single-end receivers, SIS and 

HEB, and possibly be used in multi-pixel receivers. 
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