
Foreign Exchange at Low, Low Rates

A lightweight FFI for web-targeting Haskell dialects

Anton Ekblad Chalmers University of Technology
antonek@chalmers.se

ABSTRACT
We present a novel yet simple foreign function interface, designed
for web-targeting Haskell dialects but also applicable to a wider
range of high-level target languages. The interface automates mar-
shalling, eliminates boilerplate code, allows increased sanity check-
ing of external data, allows the import of functions as well as ar-
bitrary expressions of JavaScript code, and is implementable as a
plain Haskell ’98 library without any modification to the Haskell
compiler or environment.
We give an implementation of this interface for the JavaScript-
targeting Haste compiler, and show how the basic implementation
can be further optimized with minimal effort to perform on par with
Haskell’s vanilla foreign function interface, as well as extended to
support automatic marshalling of higher-order functions and auto-
matic marshalling of host language exceptions. We also discuss
how the interface may be extended beyond the web domain and
implemented across a larger range of host environments and target
languages.

CCS Concepts
•Information systems → Web applications; •Software and its
engineering→ Functional languages; Runtime environments;

Keywords
compilers; interoperability; web

1. INTRODUCTION
Interfacing with other languages is one of the more painful aspects
of modern day Haskell development. Consider figure 1, taken from
the standard libraries of GHC; a piece of code to retrieve the cur-
rent time [19]. A relatively simple task, yet its implementation is
surprisingly complex.
This code snippet is more akin to thinly veiled C code than id-
iomatic, readable Haskell; an unfortunate reality of working with
the standard foreign function interface. When using compilers such
as the Haste [9] and GHCJS [13] – GHC-based Haskell compil-
ers which target the web browser – the situation is even worse.
The modern web browser environment is highly reliant on callback

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

IFL ’15 September 14-16, 2015, Koblenz, Germany
c© 2015 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-4273-5/15/09.

DOI: http://dx.doi.org/10.1145/2897336.2897338

data CTimeval = MkCTimeval CLong CLong

instance Storable CTimeval where
sizeOf _ = (sizeOf (undefined :: CLong)) * 2
alignment _ = alignment (undefined :: CLong)
peek p = do

s ← peekElemOff (castPtr p) 0
mus ← peekElemOff (castPtr p) 1
return (MkCTimeval s mus)

poke p (MkCTimeval s mus) = do
pokeElemOff (castPtr p) 0 s
pokeElemOff (castPtr p) 1 mus

foreign import stdcall unsafe "time.h gettimeofday"
gettimeofday :: Ptr CTimeval → Ptr () → IO CInt

getCTimeval :: IO CTimeval
getCTimeval = with (MkCTimeval 0 0) $ \ptval → do
throwErrnoIfMinus1_ "gettimeofday" $ do
gettimeofday ptval nullPtr

peek ptval

Figure 1: Foreign imports using the vanilla Foreign Function In-
terface

functions and complex data types, none of which are trivial to pass
through the FFI; the user has a wealth of high-level JavaScript li-
braries within arm’s reach, but is forced to go through the low-level
gateway of the Haskell FFI [3] to touch them. While the example
given in figure 1 certainly works when compiled with either Haste
or GHCJS, it is not something the user would like to write.
Traditionally, Haskell programs have used the Foreign Function In-
terface extension to communicate with other languages. This works
passably well in the world of native binary programs running on
bare metal, where C calling conventions have become the de facto
standard of foreign data interchange. The C language has no notion
of higher-level data structures or fancy data representation, making
it the perfect lowest common denominator interlingua for language
to language communication: there is no ambiguity or clash between
different languages’ built-in representation of various higher-level
data structures, as there simply are no higher-level data structures
on the interface level.
The same properties that make Haskell’s traditional foreign func-
tion interface a good fit for language interoperability make it un-
desirable as a vehicle for interfacing with the web-targeting code
produced by compilers such as Haste and GHCJS: said Haskell
implementations commonly rely on the browser environment for
a large part of their runtime and internally use many of its native

data UTCTime = UTCTime {
secs :: Word,
usecs :: Word

} deriving Generic

instance FromAny UTCTime

getCurrentTime :: IO UTCTime
getCurrentTime =
host "() ⇒ {var ms = new Date().getTime();\

\return {secs: ms/1000,\
\ usecs: (ms % 1000)*1000};}"

Figure 2: Foreign imports using our FFI

high-level data structures and representations, making the forced
low-level representations of the vanilla foreign function interface
an unnecessary obstacle rather than a welcome common ground
for data interchange.
With this background, we believe that low-level interfaces such as
the vanilla FFI are not ideally suited to the domain of functional
languages targeting the web browser or other high-level environ-
ments. More specifically, we would like a foreign function inter-
face for this domain to have the following properties:
• The FFI should automatically take care of marshalling for

any types where marshalling is defined, without extra manual
conversions or other boilerplate code.
• Users should be able to easily define their own marshalling

schemes for arbitrary types.
• The FFI should allow importing arbitrary snippets of foreign

code, not just named, statically known functions. This allows
users to efficiently compose code from different libraries in
a single import, as well as transform data which may be in-
efficient or cumbersome to import into Haskell as-is.
To be clear, this capability is not intended to subsume writ-
ing proper, external JavaScript, but to give a means of reduc-
ing the impedance mismatch between Haskell and JavaScript
without forcing the user to create stub after stub after stub.
• Finally, the FFI should be easy to implement and understand,

ideally being implementable without compiler modifications,
portable across Haskell implementations targeting high-level
environments.

Making this list a bit more concrete in the form of an example, we
would like to write high level code like that in figure 2, without
having to make intrusive changes to our Haskell compiler.
Contrasting this with the standard FFI code from figure 1:
• The low-level machine types are gone, replaced by a more

descriptive record type, and so is the peeking and pokeing of
pointers.
• The imported function arrives “batteries included”, on equal

footing with every other function in our program. No extra
scaffolding or boilerplate code is necessary.
• Whereas the code in figure 1 had to import the gettimeofday

system call by name, its actual implementation given else-
where, we have actually implemented its JavaScript counter-
part at the location of its import from the building blocks
available to us, without having to resort to external stubs.

To be clear, the idea of a higher-level foreign function interface
is by no means novel in itself; there already exists a large body
of work in this problem domain, solving many of the problems of
figure 1, which is used here as an example mainly to establish the
baseline for foreign function interfaces.

We discuss these related approaches in section 6.5, contrasting them
with our approach. To our knowledge, our solution is the first to ad-
dress all of the aforementioned criteria however. In particular, we
are not aware of any other FFI framework that can be implemented
entirely without compiler modifications.

Our contribution.
In section 2, we present a novel interface for a web-targeting Haskell
dialect to interface with its JavaScript host environment at a high
level of abstraction, and describe its implementation for the Haste
compiler. The interface lets users import arbitrary JavaScript ex-
pressions in addition to the named functions traditionally importable
through Haskell’s FFI, exploiting JavaScript’s built-in lambda
abstraction for parameter interpolation in lieu of heavier and less
portable solutions like anti-quotes. This enables users to create ef-
ficient bindings to foreign code with a potentially high impedance
mismatch without having to pay with excessive boilerplate code.
It allows for context dependent sanity checking of incoming data,
improving the safety of foreign functions.
The interface makes use of dynamic code evaluation and the fact
that JavaScript – the “machine language” of the web – is intended
for human consumption to achieve a surprisingly lightweight im-
plementation, which does not rely on modifications to the Haskell
compiler; a feat which, to our knowledge, we are the first to per-
form.
The basic interface is implementable using plain Haskell ’98 with
the Foreign Function Interface extension, and is extensible by the
user in the types of data which can be marshalled as well as in how
said marshalling is performed.
In section 3 we discuss various safety and performance concerns
about our implementation, and show how these concerns can be
alleviated by reaching outside the confines of Haskell ’98.
In section 4 we show the flexibility of our design by using it to im-
plement marshalling of higher-order functions between Haskell and
JavaScript, as well as a mechanism for automatically marshalling
JavaScript exceptions into Haskell equivalents. We also discuss
how to remove dynamic code evaluation from the equation with a
slight modification to the Haskell compiler in use.

2. AN FFI FOR THE MODERN WEB

2.1 The interface
This section describes the programmer’s view of our interface and
gives examples of its usage. The Haskell formulation of the inter-
face is given in figure 3.
As the main purpose of a foreign interface is to shovel data back and
forth through a rift spanning two separate programming worlds, it
makes sense to begin the description of any such interface with one
central question: what data can pass through the rift and come out
on the other side still making sense?
The class of data fulfilling this criterion is embodied in an abstract
HostAny data type, inhabited by host-native representations of ar-
bitrary Haskell values. Its representation is not fixed, but rather a
reference to a value of any type representable in the underlying host
language. From the Haskell point of view, its representation can be
seen as a completely opaque reference. Hence, the only parts of the
library that can interact directly with a HostAny value are the ones
explicitly imported through the vanilla FFI. A data type is consid-
ered to be marshallable if and only if it can be converted to HostAny

and back again using some such imported function or combination
thereof.
Having established the class of types that can be marshalled, we
can now give a meaningful definition of importable functions: a

type HostAny

class ToAny a where
toAny :: a → HostAny

class FromAny a where
fromAny :: HostAny → IO a

class Import f
instance (ToAny a, Import b) ⇒ Import (a → b)
instance FromAny a ⇒ Import (IO a)

-- Instances for functions and basic types
instance ToAny Int
instance FromAny Int
...
instance Import f ⇒ FromAny f
instance (FromAny a, Exportable b) ⇒ ToAny (a → b)
instance ToAny a ⇒ ToAny (IO a)

host :: Import f ⇒ String → f

Figure 3: The programmer’s view of our interface

function can be imported from the host language into our Haskell
program if and only if:
• all of its argument types are convertible into HostAny;
• its return type is convertible from the host-native HostAny;

and
• its return type resides in the IO monad, accounting for the

possibility of side effects in host language functions.
At first glance, it might seem strange to separate ToAny and FromAny

instead of merging them into a single Marshal class. The reason
for this is that merging the two classes breaks marshalling of pure
higher-order functions in a rather subtle way, as discussed in sec-
tion 4.
We let the classic “hello, world” example illustrate the import of
simple host language functions using the interface described in fig-
ure 3:

hello :: String → IO ()
hello = host "name ⇒ alert(’Hello, ’ + name);"

To further illustrate how this interface can be used to effortlessly
import even higher-order foreign functions, we have used our li-
brary to implement bindings to JavaScript animation frames for the
Haste compiler, a mechanism whereby a user program may request
the browser to call a certain function before the next repaint of the
screen occurs:

type Time = Double
newtype FrameHandle = FrameHandle HostAny
deriving FromAny

requestFrame :: (Time → IO ()) → IO FrameHandle
requestFrame = host "window.requestAnimationFrame"

cancelFrame :: FrameHandle → IO ()
cancelFrame = host "window.cancelAnimationFrame"

The resulting code is straightforward and simple, even though it
performs the rather non-trivial task of importing a foreign higher-
order function, automatically converting user-provided Haskell call-
backs to their JavaScript equivalents.
In the rest of section 2, we give an implementation of the basic

Haskell ’98 interface for the Haste compiler. We then extend it
with features requiring some extensions to Haskell ’98 in section 4,
to arrive at the complete interface presented here.

2.2 Implementing marshalling
As usual in the functional world, we ought to start with the base
case: implementing marshalling for the base types that lie at the
bottom of every data structure.
This is a simple proposition, as this is the forte of the vanilla foreign
function interface.

foreign import stdcall intToAny :: Int → HostAny
foreign import stdcall anyToInt :: HostAny → IO Int

instance ToAny Int where toAny = intToAny
instance FromAny Int where fromAny = anyToInt

The JavaScript implementation of these two functions is simply the
identity function. As explained in section 2, HostAny is simple
an opaque reference to Haskell, but to JavaScript a reference is
just another dynamically typed value. These functions are essen-
tially a slightly roundabout way to coerce, rather than convert, base
type values into HostAny without having to know anything about
the compiler’s FFI implementation or internal representation of the
base types. The same approach is used for the other base types.
We might also find a HostAny instance for ToAny and FromAny

handy. Of course, HostAny already being in its JavaScript repre-
sentation form, the instances are trivial.

instance ToAny HostAny where toAny = id
instance FromAny HostAny where fromAny = return

However, if passing simple values was all we wanted to do, then
there would be no need to look any further than the vanilla foreign
function interface. We must also provide some way of combin-
ing values into more complex values, to be able to represent lists,
record types and other conveniences we take for granted in our day
to day development work. But how should these values be com-
bined?
JavaScript, supports two basic types, which are sufficient to repre-
sent values of any non-arrow type: arrays and dictionaries.
Converting Haskell lists into arrays is a relatively straightforward
affair. We need two functions: one to create a new, empty array,
and one to push a new value onto the end of the array.1 Converting
arrays back into lists is similarly easy: we simply need to obtain
the array’s length, and read the requisite number of elements back
into Haskell, building a list as we go along.
For dictionaries, the conversion is not as clear-cut. Depending on
the data we want to convert, the structure of our desired host lan-
guage representation of two values may well be different even when
their Haskell representations are quite similar, or even identical.
Hence, we need to put the power over this decision into the hands
of the user, providing functionality to build as well as inspect dic-
tionaries.
We will need three basic host language operations: creating a new
dictionary, associating a dictionary key with a particular value, and
looking up values from dictionary keys. From these we construct
two functions to marshal sum and product types to and from dic-
tionaries: mkDict which creates dictionaries from association lists,
and getMember, which looks up dictionary values by key. While a
Map would normally be the go-to data structure for describing dic-
tionaries, mkDict only iterates over its argument in order to add the

1A JavaScript array is quite a different beast from an “actual” array
as seen in C, making the push operation more efficient than one
would normally expect.

foreign import stdcall newDict :: IO HostAny
foreign import stdcall newArr :: IO HostAny

foreign import stdcall
set :: HostAny → HostString → HostAny → IO ()

foreign import stdcall
get :: HostAny → HostString → IO HostAny

foreign import stdcall
push :: HostAny → HostAny → IO ()

mkDict :: [(String, HostAny)] → HostAny
mkDict xs = unsafePerformIO $ do
d ← newDict
mapM_ (\(k, v) → set d (toHostString k) v) xs
return d

instance ToAny a ⇒ ToAny [a] where
toAny xs = unsafePerformIO $ do
arr ← newArray
mapM_ (push arr . toAny) xs
return arr

instance FromAny a ⇒ FromAny [a] where
fromAny arr = do
len ← fromAny =<< get arr (toHostString "length")
sequence [fromAny =<< get arr (toAny i)

| i ← [0..len-1 :: Int]]

getMember :: FromAny a ⇒ HostAny → String → IO a
getMember dict key =
get dict (toHostString key) >>= fromAny

Figure 4: Marshalling arrays and dictionaries

corresponding entries to the created JavaScript dictionary, making
simple association lists a less heavyweight choice than a Map.
The complete implementation of marshalling for lists and dictio-
naries is shown in figure 4.
Note the use of the generally unsafe unsafePerformIO in mkDict

and in the ToAny instance for lists. The only side effects performed
by said functions are to create a new references, mutate them, and
then return them, never to mutate them again. As the references to
the mutated objects are not accessible outside said functions until
after all mutation has taken place, these side effects are not observ-
able and this use of unsafePerformIO can thus be considered safe.
Together with the previously defined instances for base types, this
gives us the power to marshal any non-arrow data type into an
equivalent HostAny value and back again. Figure 5 shows a pos-
sible marshalling for sum and product types using the aforemen-
tioned dictionary operations.
It is worth noting that the implementation of getMember is the rea-
son for fromAny returning a value in the IO monad: foreign data
structures are rarely, if ever, guaranteed to be immutable and look-
ing up a key in a dictionary is effectively following a reference,
so we must perform any such lookups at a well-defined point in
time, lest we run the risk of the value being changed in between the
application of our marshalling function and the evaluation of the
resulting thunk.

2.3 Importing functions
Implementing the host function – the function by which JavaScript
functions are imported into Haskell – turns out to be slightly trickier
than marshalling data between environments. We want to be able

instance (ToAny a, ToAny b) ⇒
ToAny (Either a b) where

toAny (Left a) = mkDict
[("tag", toHostString "left")
, ("data", toAny a)]

toAny (Right b) = mkDict
[("tag", toHostString "right")
, ("data", toAny b)]

instance (FromAny a, FromAny b) ⇒
FromAny (Either a b) where

fromAny x = do
tag ← fromHostString <$> getMember x "tag"
case tag of
"left" → Left <$> getMember x "data"
"right" → Right <$> getMember x "data"

instance (ToAny a, ToAny b) ⇒ ToAny (a, b) where
toAny (a, b) = toAny [toAny a, toAny b]

instance (FromAny a, FromAny b) ⇒
FromAny (a, b) where

fromAny x = do
[a, b] ← fromAny x
(,) <$> fromAny a <*> fromAny b

Figure 5: Sums and products using lists and dictionaries

to use a single function to import any JavaScript function, using
the declared Haskell type of the imported function to determine
its arity, argument types and return type. There is a well known
way to accomplish this, colloquially known as “the printf trick”
[1], which uses an inductive class instance to successively build up
a list of arguments over repeated function applications, and a base
case instance to perform some computation over said arguments
after the function in question has been fully applied. In the case
of the host function, that computation would be applying a foreign
function to said list of arguments.
This suggests the following class definition.

type HostFun = HostAny
class Import f where
import_ :: HostFun → [HostAny] → f

foreign import stdcall
apply :: HostFun → HostAny → IO HostAny

instance FromAny a ⇒ Import (IO a) where
import_ f args =
apply f (toAny (reverse args)) >>= fromAny

instance (ToAny a, Import b) ⇒
Import (a → b) where

import_ f args =
\arg → import_ f (toAny arg : args)

When applied to some HostFun and a list of arguments collected
so far, import_ returns a variadic function f , whose arity is de-
cided by how many arguments it is applied to or by explicit type
annotation. When f is applied to an argument, said argument is
marshalled into a HostAny value and added to the list of arguments.
When f is fully applied and we reach the base case – a nullary
computation in the IO monad – the HostFun provided to import_ is
shipped off to JavaScript via the vanilla FFI to be applied to the list
of arguments built up during the recursion. After apply returns, its

return value is marshalled back into Haskell through fromAny and
returned to the caller of f . The apply function which performs the
actual application is very simple:

function(f, args) {
return f.apply(null, args);

}

With this, we have all the building blocks required to implement the
host function. With all the hard work already done, the implemen-
tation is simple. For the sake of brevity, we assume the existence
of a host language specific HostString type, which may be passed
as an argument over the vanilla foreign function interface, and a
function toHostString :: String → HostString.

foreign import stdcall
eval :: HostString → HostFun

host :: Import f ⇒ String → f
host s = import_ f []
where
f = eval (toHostString s)

The foreign eval import brings in the host language’s evaluation
construct. Recall that one requirement of our method is the exis-
tence of such a construct, to convert arbitrary strings of host lan-
guage code into functions or other objects. eval is then used to
create a function object – represented as a HostFun – which is used
to create the aforementioned Haskell function f . This is all we
need to be able to import first order JavaScript functions such as
the motivating example in figure 2

3. OPTIMIZING FOR SAFETY AND PER-
FORMANCE

While the implementation described up until this point is more
or less feature complete, its non-functional properties can be im-
proved quite a bit if we allow ourselves to stray from the tried and
true, but slightly conservative, path of pure Haskell ’98.
Aside from implementation specific tricks – exploiting knowledge
about a particular compiler’s data representation to optimize mar-
shalling, or even completely unroll and eliminate some of the basic
interface’s primitive operations, for instance – there are several gen-
eral optimizations we can apply to significantly enhance the perfor-
mance and safety of our interface.

3.1 Eliminating argument passing overheads
The performance-minded reader may notice something troubling
about the implementation of import_: the construction of an inter-
mediate list of arguments. Constructing this intermediate list only
to convert it into a host language suitable representation which is
promptly deconstructed as soon as it reaches the imported function
takes a lot of work. Even worse, this work does not provide any
benefit for the task to be performed: applying a foreign function.
By the power of rewrite rules [15], we can eliminate this point-
less work in most cases by specializing the host function’s base
case instance for different numbers of arguments. In addition to the
general apply function we define a series of apply0, apply1, etc.
functions, one for each arity we want to optimize function applica-
tion for. The actual specialization is then a matter of rewriting host

calls to use the appropriate application function.
Figure 6 gives a new implementation of the base case of the Import
class which includes this optimization, replacing the one given in
section 2.

3.2 Preventing code injection

{-# NOINLINE [0] dispatch #-}
dispatch :: FromAny a ⇒ HostFun → [HostAny] → IO a
dispatch f args = apply f (toAny args) >>= fromAny

instance FromAny a ⇒ Import (IO a) where
import_ = dispatch

foreign import stdcall apply0 ::
HostFun → IO HostAny

foreign import stdcall apply1 ::
HostFun → HostAny → IO HostAny

foreign import stdcall apply2 ::
HostFun → HostAny → HostAny → IO HostAny

...

{-# RULES
"apply0" [1] ∀f. dispatch f [] =

apply0 f >>= fromAny
"apply1" [1] ∀f a. dispatch f [a] =

apply1 f a >>= fromAny
"apply2" [1] ∀f a b. dispatch f [b,a] =

apply2 f a b >>= fromAny
...
#-}

Figure 6: Specializing the host base case

Meanwhile, the safety-conscious reader may instead be bristling
at the thought of executing code contained in something as egre-
giously untyped and untrustworthy as a common string. Indeed, by
allowing the conversion of arbitrary strings into functions, we’re
setting ourselves up for cross-site scripting and other similar code
injection attacks!
While this is indeed true in theory, in practice, accidentally passing
a user-supplied string to the host function, which in normal use
ought to occur almost exclusively on the top level of a module, is a
quite unlikely proposition. Even so, it could be argued that if it is
possible to use an interface for evil, its users almost certainly will
at some point.
Fortunately, the recent 7.10 release of the GHC compiler, on which
both Haste and GHCJS are based, gives us the means to eliminate
this potential pitfall. The StaticPointers extension, its first incar-
nation described in [10], introduces the static keyword, which is
used to create values of type StaticPtr from closed expressions.
Attempting to turn any expression which is not known at compile
time into a StaticPtr yields a compiler error.
Implementing a safe_host function which can not be used to ex-
ecute user-provided code becomes quite easy using this extension
and the basic host function described in section 2, at the cost of
slightly more inconvenient import syntax:

safe_host :: Import f ⇒ StaticPtr String → f
safe_host = host . deRefStaticPtr

safe_hello :: IO ()
safe_hello = safe_host $
static "() ⇒ alert(’Hello, world!’)"

3.3 Eliminating eval

Relying on eval to produce our functions allows us to implement
our interface in pure Haskell ’98 without modifying the Haskell
compiler in question, making the interface easy to understand, im-
plement and maintain. However, there are reasons why it may be

in the implementor’s best interest to forgo a small bit of that sim-
plicity.
The actual call to eval does not meaningfully impact performance:
it is generally only called once per import, the resulting function
object cached thanks to lazy evaluation.2 However, its dynamic
nature does carry a significant risk of interfering with the ability of
the host language’s compiler and runtime to analyse and optimize
the resulting code. As discussed in section 5, this effect is very
much in evidence when targeting the widely used V8 JavaScript
engine.
In the JavaScript community, it is quite common to run programs
through a minifier – a static optimizer with focus on code size –
before deployment. Not only do such optimizers suffer the same
analytical difficulties as the language runtime itself from the pres-
ence of dynamically evaluated code, but due to the heavy use of
renaming often employed by minifiers to reduce code size, special
care needs to be taken when writing code that is not visible as such
to the minifier: code which is externally imported or, in our case,
locked away inside a string for later evaluation.
Noting that virtually every sane use of our interface evaluates a
static string, a solution presents itself: whenever the eval function
is applied to a statically known string, instead of generating a func-
tion call, the compiler splices the contents of the string verbatim
into the output code instead.
This solution has the advantage of eliminating the code analysis
obstacle provided by eval for the case when our imported code is
statically known (which, as we noted before, is a basic sanity prop-
erty of foreign imports), while preserving our library’s simplicity
of implementation. However, it also has the disadvantage of re-
quiring modifications to the compiler in use, however slight, which
increases the interface’s overall complexity of implementation.

4. EXTENDING OUR INTERFACE
While the interface described in sections 2 and 3 represents a clear
raising of the abstraction layer over the vanilla foreign function
interface, it is still lacking some desirable high level functional-
ity: marshalling of higher order functions, exception handling and
generic marshalling. In this section we demonstrate the flexibility
of our interface by showing how this functionality can be imple-
mented on top of it.

4.1 Dynamic function marshalling

Dynamic imports.
One appealing characteristic of our interface is that it makes the
marshalling of functions between Haskell and the host language
easy. In the case of passing host functions into Haskell, the import_
function used to implement host has already done the heavy lifting
for us. Only adding an appropriate FromAny instance remains.
Due to the polymorphic nature of functions, however, we must
resort to using some language extensions to get the type checker
to accept our instance: overlapping instances, flexible instances,
and undecidable instances. Essentially, the loosened restrictions on
type class instances allow an Import instance to act as a synonym
for FromAny, allowing host language functions to return functions
of any type admissible as an import type by way of the host func-
tion.

instance Import a ⇒ FromAny a where
fromAny f = return (import_ f [])

2The main reason for eval getting called more than once being
unwise inlining directives from the user.

Passing functions to foreign code.
Passing functions the other way, out of Haskell and into our host
language, requires slightly more work. While we already had all
the pieces of the dynamic import puzzle at our disposal through
our earlier implementation of host, exports require one more tool
in our toolbox: a way to turn a Haskell function into a native host
language function.
Much like the apply primitive used in the implementation of host,
the implementation of such an operation is specific to the host lan-
guage in question. Moreover, as we are dealing with whatever for-
mat our chosen compiler has opted to represent functions by, this
operation is also dependent on the compiler.
In order to implement this operation, we assume the existence of
another function hfsun_to_host, to convert a Haskell function f
from n HostAny arguments to a HostAny return value r in the IO
monad into a host language function which, when applied to n host
language arguments, calls f with those same arguments and returns
the r returned by f .

foreign import stdcall hsfun_to_host
:: (HostAny → ... → HostAny) → HostFun

But how can we make this operation type check? As we are bound
to the types the vanilla foreign function interface lets us marshal,
we have no way of applying this function to a variadic Haskell func-
tion over HostAnys.
We know that, operationally, hsfun_to_host expects a Haskell func-
tion as its input, but the types do not agree; we must somehow find
a way to pass arbitrary data unchanged to our host language. For-
tunately, standard Haskell provides us with a way to do exactly
what we want: StablePointers [17]. Note that, depending on the
Haskell compiler in use, this use of stable pointers may introduce a
space leak. This is discussed further in section 6.3, and an alterna-
tive solution is presented.

import Foreign.StablePtr
import System.IO.Unsafe

foreign import stdcall
_hsfun_to_host :: StablePtr a → HostFun

hsfun_to_host :: Exportable f ⇒ f → IO HostFun
hsfun_to_host f =
_hsfun_to_host ‘fmap‘ newStablePtr (mkHostFun f)

Just being able to pass Haskell functions verbatim to the host lan-
guage is not enough. The functions will expect Haskell values as
their arguments and return other Haskell values; we need to some-
how modify these functions to automatically marshal those argu-
ments and return values. Essentially, we want to map fromAny over
all input arguments to a function, and toAny over its return values.
While superficially similar to the implementation of the Import

class in section 2.3, this task is slightly trickier: where import_

modifies an arbitrary number of arguments and performs some ac-
tion with respect to a monomorphic value – the HostFun represen-
tation of a host language function – we now need to do the same to
a variadic function.

Modifying variadic functions using type families.
A straightforward application of the printf trick used to imple-
ment Import is not flexible enough to tackle this problem. Instead,
we bring in yet another language extension, closed type families
[8], to lend us the type level flexibility we need. We begin by defin-
ing the Exportable type class which denotes all functions that can
be exported into JavaScript, and a closed type family describing the

type level behavior of our function marshalling.

type family Host a where
Host (a → b) = HostAny → Host b
Host (IO a) = IO HostAny

class Exportable f where
mkHostFun :: f → Host f

This is relatively straightforward. Inspecting the Host type family,
we see that applying mkHostFun to any eligible function must result
in a corresponding function of the same arity – hence the recursive
type family instance for a → b – but with its arguments and return
value replaced by HostAny.
Giving the relevant Exportable instances is now mostly a matter
of making the types match up, and concocting a ToAny instance is
only a matter of composing our building blocks together.

instance ToAny a ⇒ Exportable (IO a) where
mkHostFun = fmap toAny

instance (FromAny a, Exportable b) ⇒
Exportable (a → b) where

mkHostFun f =
mkHostFun . f . unsafePerformIO . fromAny

instance Exportable f ⇒ ToAny f where
{-# NOINLINE toAny #-}
toAny = unsafePerformIO . hsfun_to_host

The one interesting instance here is that of the inductive case, where
we use fromAny in conjunction with unsafePerformIO to marshal
a single function argument. While using fromAny outside the IO

monad is unsafe in the general case as explained in section 2, this
particular instance is completely safe, provided that mkHostFun is
not exported to the user, but only used to implement the ToAny in-
stance for functions.
When a function is marshalled into a HostAny value and subse-
quently applied, fromAny will be applied unsafely to each of the
marshalled function’s arguments. There are two cases when this
can happen: either the marshalled function is called from the host
language, or it is marshalled back into Haskell and then applied. In
the former case, the time of the call is trivially well-defined assum-
ing that our target language is not lazy by default. In the latter case,
the time of the call is still well-defined, as our interface only admits
importing functions in the IO monad.
Slightly more troubling is the use of unsafePerformIO in conjunc-
tion with hsfun_to_host. According to [17], the creation of stable
pointers residing in the IO monad – the reason for hsfun_to_host
residing there as well – is to avoid accidentally duplicating the allo-
cation of the stable pointer, something we can avoid by telling the
compiler never to inline the function, ever.
It is also worth pointing out that the concern over duplicating this
allocation is only valid where the implementation also has the afore-
mentioned space leak problem, in which case the alternative imple-
mentation given in section 6.3 should be preferred anyway.

Marshalling pure functions.
The above implementation only allows us to pass functions in the
IO monad to foreign code, but we would also like to support passing
pure functions. There are two main obstacles to this:
• The hsfun_to_host’ function expects a function in the IO

monad.
• Instantiating Exportable for any type ToAny t ⇒ t would

accidentally add a ToAny instance for any type at all. Even

worse, this instance would be completely bogus for most
types, always treating the argument to its toAny implementa-
tion as a function to be converted into a host language func-
tion!

We sidestep the first problem by assuming that hsfun_to_host’
can determine dynamically whether a function is pure or wrapped
in the IO monad, and take action accordingly. Another, slightly
more verbose, possibility would be to alter the implementation of
our marshalling code to use either hsfun_to_host’ or a function
performing the same conversion on pure functions, depending on
the type of function being marshalled.
Looking closer at the problematic ToAny instance, we find that the
Exportable t ⇒ ToAny t instance provides ToAny for any
Exportable type, and the ToAny t ⇒ Exportable t instance pro-
vides Exportable in return, creating a loop which creates instances
for both type classes matching any type.
The ToAny t ⇒ Exportable t instance is necessary for our type
level recursion to work out when marshalling pure functions, but
we can prevent this instance from leaking to ToAny where it would
be unreasonably broad by replacing our ToAny function instance
with two slightly more specific ones. This is the reason for hav-
ing two separate type classes for marshalling data into and out of
Haskell. We need to be able to export pure functions from Haskell
while for safety reasons not allowing them to be imported, and we
want to avoid creating the problematic unlimited export instance
described above; forcing importable types to be exportable and vice
versa disallows both.
Figure 7 gives our final implementation of dynamic function ex-
ports. Looking at this code we also see why the use of closed type
families are necessary: the open type families originally introduced
by Chakravarty et al [5] do not admit the overlapping type equa-
tions required to make pure functions an instance of Exportable.

import Foreign.StablePtr
import System.IO.Unsafe

foreign import stdcall
_hsfun_to_host :: StablePtr a → HostFun

hsfun_to_host :: Exportable f ⇒ f → IO HostFun
hsfun_to_host f =
_hsfun_to_host ‘fmap‘ newStablePtr (mkHostFun f)

type family Host a where
Host (a → b) = HostAny → Host b
Host (IO a) = IO HostAny
Host a = HostAny

class Exportable f where
mkHostFun :: f → Host f

instance (ToAny a, Host a ~ HostAny) ⇒
Exportable a where

mkHostFun = toAny

instance (FromAny a, Exportable b) ⇒
ToAny (a → b) where

{-# NOINLINE toAny #-}
toAny = unsafePerformIO . hsfun_to_host

instance ToAny a ⇒ ToAny (IO a) where
{-# NOINLINE toAny #-}
toAny = unsafePerformIO . hsfun_to_host

Figure 7: Dynamic function exports implemented on top of our
interface

4.2 Static function exports
Very rarely are users prepared to abandon person-decades of legacy
code; to reach these users, the ability to expose Haskell functional-
ity to the host language is important. Alas, being implemented as
a library, our interface is not capable of foreign export declara-
tions – the vanilla FFI’s mechanism for making Haskell functions
available to forein code. We can, however, implement a substitute
on top of it.
Rather than a writing a library which when compiled produces a
shared library for consumption by a linker, we give the user access
to a function export which when executed stores an exported func-
tion in a known location, where foreign language code can then
access it. While this may seem like a silly workaround, this is how
JavaScript programs commonly “link against” third party libraries.
Using the function marshalling implemented in section 4.1, imple-
menting export becomes a mere matter of passing a function to the
host language, which then arranges for the function to be available
in a known, appropriate location.

export :: ToAny f ⇒ String → f → IO ()
export =
host "(name, f) ⇒ window[’haskell’][name] = f;"

4.3 Generic marshalling
Returning to our motivating example with figure 2, we note a con-
spicuous absence: the UTCTime instance of FromAny is not defined,
yet it is still used by the host function in the definition of
getCurrentTime. Although the instance can be defined in a sin-
gle line of code, it would still be nice if we could avoid the te-
dium of writing that one line altogether. As stated in section 2.2,

any non-arrow Haskell type can be represented using a combination
of arrays and dictionaries. Using one of the generic programming
frameworks offered by Haskell, such as GHC generics [11] or Tem-
plate Haskell [18], it is possible to create a default instance of the
marshalling type classes, applicable to any Haskell type.
As the implementation of such an instance is neither novel nor par-
ticularly interesting in the context of this paper, we refer the reader
to the one used by the aeson package for encoding and decoding of
JSON values [14]. This default instance provides the final piece of
the puzzle required to use the interface as presented in figure 2.

4.4 Marshalling JavaScript exceptions
Trapping errors in foreign C code is relatively straightforward, al-
beit cumbersome, owing to the relative absence of structured er-
ror handling in C. However, when interacting with a higher-level
language, one must take into account the risk of exceptions being
raised in any imported foreign code. In the basic Haste.Foreign in-
terface, such exceptions must be manually handled lest they termi-
nate the enclosing Haskell program much like a segmentation fault
in imported C code would terminate a native Haskell program.
Thankfully, we can leverage the higher-order import capabilities
described in section 4 to catch JavaScript exceptions and re-throw
them within Haskell’s exception handling framework. We import
a JavaScript function catchJS which accepts an exception handler
function and an IO computation as its arguments. When called,
catchJS executes IO computation inside a try-catch block. If an
exception is raised, it is passed to the exception handler function
which then takes appropraite action.
catchJS may be used similarly to Haskell’s catch function to catch
exceptions in foreign functions where they are expected to occur.
However, it is not necessarily the case that we always want to han-
dle exceptions right at the call site of a foreign function – quite
the opposite! Instead, we can create an exception-safe equivalent
to host which uses catchJS to dispatch all calls to functions im-
ported through it, with an exception handler function that simply
re-throws the JavaScript exception wrapped in a Haskell exception.
The wrapped exception can then be caught anywhere a “normal”
Haskell exception could be caught. A complete implementation of
this extension is given in figure 8.
An interesting side-effect of this approach to exception handling
and the fact that JavaScript syntax errors are catchable exceptions
is that the exception-safe host function is not only catch dynamic
errors, but incorrectly written foreign imports as well.
It should be noted that this approach incurs a performance penalty
due to the extra function call and marshalling required to dispatch
a function, as further discussed in section 5.

5. PERFORMANCE
While increased performance is not a major motivation for this
work, it is still important to ascertain that using our library does not
entail a major performance hit. To determine the runtime perfor-
mance of our interface vis a vis the vanilla FFI – a useful baseline
for performance comparisons – we have benchmarked a reference
implementation of our interface against the vanilla FFI, both imple-
mented for the Haste compiler.
While benchmarking code outside the context of any particular ap-
plication is often tricky and not necessarily indicative of whole sys-
tem performance, we hope to give a general idea of how our library
fares performance-wise in several different scenarios. To this end,
several microbenchmarks were devised:
• Outbound, which applies a foreign function to several argu-

ments of type Double. The function’s return value is dis-
carded, in order to only measure outbound marshalling over-

catchJS :: (ToAny a, FromAny a)
⇒ (String → IO ())
→ IO a → IO a

catchJS = "(handle, act) ⇒\\
\\{ try { return act(); }\\
\\ catch (ex) { handle(ex.toString()); }}"

data HostException = HostException String
deriving Show

instance Exception HostException

class Safely a where
safely :: a → a

instance Safely b ⇒ Safely (a → b) where
safely f x = safely (f x)

instance (FromAny a, ToAny a) ⇒ Safely (IO a) where
safely m = catchJS (throwIO . HostException)

very_safe_host :: Import a ⇒ StaticPtr String → a
very_safe_host = safely safe_host

Figure 8: Marshalling JavaScript exceptions

head for primitive types.
• In-out, which applies a foreign function to several Double

arguments and marshals its return value, also of type Double,
back into Haskell land. This measures inbound as well as
outbound marshalling of primitive types.
• Product types, which benchmarks the implementation of

getCurrentTime given in figure 2 against the equivalent im-
plementation given in figure 1, both modified to accept an
UTCTime value as input in addition to returning the current
time, in order to measure outbound marshalling of product
types as well as inbound.
• HOF import, which calls a higher-order function f using

both the vanilla FFI and our method, with a function over
a single Double value as its argument. The only purpose of f
is to call its argument repeatedly, evaluating the speed with
which a higher-order Haskell function may be called from
external code in addition to the speed of marshalling itself.

These functions were then applied 500 000 times in two different
contexts: one tight, strict, tail recursive loop, intended to produce as
efficient code as possible; and one which simply consists of running
mapM_ over a list containing 500 000 elements, to obtain higher-
level code which is harder to optimize and analyse for strictness.
The resulting programs, compiled with version 0.5.4.2 of the Haste
compiler which incorporates all the optimizations described in sec-
tion 3, were then repeatedly executed using version 4.2.2 of the
Node.js JavaScript interpreter, and the average run times of the
programs using our interface compared against the average run
times of their FFI counterparts. The benchmarks were executed
on a Lenovo ThinkPad X230 laptop running Debian GNU/Linux,
equipped with an Intel i5 3210M CPU and 8 GB of RAM.
The results for each benchmark are given in table 1 as the ratio of
the run time for our library over the run time for the vanilla FFI.

Outbound.
Looking at the performance numbers, our library performs surpris-
ingly well in both the highly optimized and less optimized loop
cases, with the loose loop showing a modest 7 % slowdown over
the vanilla FFI, and the tight loop even eking out a tiny performance

Tight loop mapM_ Tight + exceptions

Outbound 0.98 1.07 8.21

In-out 0.97 1.08 11.70

Product types 0.83 0.95 2.42

HOF import 0.94 0.96 1.09

Table 1: Execution times as fractions of FFI execution times

benefit.
In contrast, the performance hit when using the exception-safe ver-
sion defined in section 4.4 is huge. This is by no means surprising:
using the exception-safe version entails marshalling no less than
two additional higher-order functions, which is quite a bit heav-
ier than the otherwise very lightweight marshalling performed for
plain numbers.

In-out.
Moving on to the benchmarks where we actually marshal incoming
data, the picture is much the same as for the outbound benchmark.
The performance hit from the exception marshaller becomes even
more problematic here, as the return value of the function needs to
be marshalled first into Haskell, then back into JavaScript for the
exception handler, and finally back into Haskell again.

Product types.
Our interface shows a small performance advantage when it comes
to marshalling more complex values, being 5 – 20 % faster de-
pending on the loop. Our assumption about peeking and poking
at pointers being suboptimal in an environment where such opera-
tions are considerably more expensive than on bare metal seems to
have been correct.
Worth noting is that the performance overhead of the exception
marshaller becomes significantly less prohibitive in this benchmark,
as the complexity of marshalling grows. This indicates that while
expensive compared to the minimal marshalling required for base
types, exception safety may not be all that expensive after all, when
calling a function which performs actual work.

HOF import.
Our interface seems to compare favorably to the vanilla FFI for
this case, although the performance gain difference is quite min-
imal. This is to be expected, as the heavy lifting required to ex-
port Haskell functions into JavaScript is relatively similar and quite
heavy regardless of how the relatively lightweight marshalling of
the function’s base type arguments is carried out. Again, it is worth
pointing out how the significance of the exception marshaller’s per-
formance penalty dwindles as the marshalling process as a whole
grows heavier.

Performance verdict: acceptable.
Judging by these numbers the performance of our library is quite
acceptable, with the exception of the heavy toll taken by the ex-
ception marshaller on the less complex marshalling cases. Inter-
estingly, the optimization described in section 3.3 does not impact
performance measurably in these benchmarks. If any performance
benefit is to be had from this optimization, is will likely come from
increased opportunities for minifiers and JavaScript engines to per-
form inlining over more complex programs.
It is encouraging that our interface’s intended use case - marshalling

more complex types and higher-order functions - is showing tangi-
ble performance benefits in addition to the added convenience it
affords the user. For code which has no choice but to make a large
number of calls to low level host language functions over primitive
types in performance critical loops, using the vanilla FFI instead,
or at least handling JavaScript exceptions in foreign code instead of
relying on our library’s exception marshaller, may be an attractive
option to reduce the performance penalty incurred by our interface
in unfavorable circumstances, allowing the user to have the FFI
cookie and eat it at the same time.
The benchmarks used here are available online from our repository
at https://github.com/valderman/ffi-paper.

6. DISCUSSION
While two of the tree main limitations our interface places on its
host language – the presence of a dynamic code evaluation con-
struct and support for first class functions – have hopefully been
adequately explained, and their severity slightly alleviated, in sec-
tions 2 and 3.3, there are still several design choices and lingering
limitations that may need further justification.

6.1 fromAny and error handling
The fromAny function used to implement marshalling in section 2
is by definition not total. As its purpose is to convert dynamically
typed JavaScript values into statically typed Haskell values, from
the simplest atomic values to the most complex data structures, the
possibility for failure is apparent. Why, then, does its type not admit
the possibility of failure, for instance by wrapping the converted
value in a Maybe or Either?
Recall that fromAny will almost always be called when automati-
cally converting arguments to and return values from callbacks and
imported foreign functions respectively. In this context, even if a
conversion were to fail with a Left "Bad conversion" error, there
is no way for this error value to ever reach the user. The only sen-
sible action for the foreign call to take when encountering an error
value would be to throw an exception, informing the user “out of
band” rather than by somehow threading an error value to the en-
tire call. It is then simpler, as well as reducing the amount of error
checking overhead necessary, to trust that the foreign code in ques-
tion is usually well behaved and throw the previously mentioned
exception immediately on conversion failure rather than taking a
detour via error values, should this trust prove to be misplaced.
It should also be noted that the basic interface does neither handles
syntax errors nor exceptions thrown from foreign code: it is the
responsibility of the user

6.2 Generalising to other languages
The implementation so far has been quite clearly focused on the
needs of web-targeting Haskell dialects. However, the interface and
library described should be portable across other host languages
with relative ease, provided that they have the following properties:
Dynamically typed. The reliance on the HostAny type to represent
host language values makes support for statically typed host lan-
guages very cumbersome, at best.
Garbage collected. Our interface completely ignores something
which very much concerns traditional foreign function interfaces:
ownership and eventual deallocation of memory. This careless be-
havior is enabled by the fact that the host language is assumed to be
garbage collected. Removing garbage collection from the equation
would land us in a position much more similar to the vanilla FFI,
albeit with less restrictions on marshallable types.
Dynamic code evaluation. The ability to import foreign code with-
out compiler modification relies crucially on the ability of the host

language to execute arbitrary strings of code. While this restriction
can be lifted with a compiler modification as described in 3.3, this
diminishes the utility of the interface, limiting the portability and
ease of implementation that are some of its greatest strengths.
Higher order. Dynamic code evaluation is not much use if we can’t
evaluate a piece of code and get a function object back – there is
nothing for our Haskell program to call! While it is certainly con-
ceivable to re-evaluate strings of host language code anew on each
function application, with arguments spliced into the evaluated pro-
gram, this strikes us as an approach which is both brittle and slow,
leading us to conclude that our interface would fare quite badly in
a first order language.
Languages that fulfill these criteria and might make attractive tar-
gets for porting include Python, PHP and Ruby. While our interface
should be portable to any such language, we have yet to implement
our interface for any non-JavaScript environment.

6.3 Limitation to garbage collected host lan-
guages

The observant reader may notice that up until this point, we have
completely ignored something which very much concerns tradi-
tional foreign function interfaces: ownership and eventual deallo-
cation of memory.
Our high level interface depends quite heavily on its target language
being garbage collected, as having to manually manage memory
introduces significant boilerplate code and complexity: the very
things this interface aims to avoid. As target platforms with garbage
collection having to deal with low level details such as memory
management is the core motivation for this work, rectifying this
issue does not fall within the scope of this paper.
Even so, memory management does rear its ugly head in section
4.1, where stable pointers are used to pass data unchanged from
Haskell into our host language, and is promptly ignored: note the
complete absence of calls to freeStablePtr. Implementing our
interface for the Haste compiler, this is not an issue: Haste makes
full use of JavaScript’s garbage collection capabilities to turn stable
pointers into fully garbage collected aliases of the objects pointed
to. It is, however, quite conceivable for an implementation to per-
form some manual housekeeping of stable pointers even in a garbage
collected language, in which case this use of our interface will
cause a space leak as nobody is keeping track of all the stable point-
ers we create.
As the stable pointers in question are never dereferenced or oth-
erwise used within Haskell, this hypothetical space leak can be
eliminated by replacing stable pointers with a slight bit of unsafe,
implementation-specific magic.

import Unsafe.Coerce
import Foreign.StablePtr hiding (newStablePtr)

data FakeStablePtr a
fakeStablePtr :: a → FakeStablePtr a

newStablePtr :: a → StablePtr
newStablePtr = unsafeCoerce . fakeStablePtr

The FakeStablePtr type and the function by the same name are
used to mimic the underlying structure of StablePtr. This makes
its exact implementation specific to the Haskell compiler in ques-
tion, unlike the “proper” solution based on actual stable pointers.
The Haste compiler, being based on GHC, has a very straightfor-
ward representation for stable pointers, merely wrapping the “ma-
chine” level pointer in a single layer of indirection, giving us the
following implementation of fake stable pointers:

data FakeStablePtr a = Fake !a

fakeStablePtr = Fake

Thus, we may choose our implementation strategy depending on
the capabilities of our target compiler. For a single implementation
targeting multiple platforms however, proper stable pointers are the
safer solution.

6.4 Restricting imports to the IO monad
The interface presented in this paper does not support importing
pure functions; any function originating in the host language must
be safely locked up within the IO monad. This may be seen as quite
a drawback, as a host language function operating solely over local
state is definitely not beyond the realms of possibility. Looking at
our implementation of function exports for pure functions, it seems
that it would be possible to implement imports in a similar way, and
indeed we could.
However, “could” is not necessarily isomorphic to “should”. For-
eign functions do, after all, come from the unregulated, disorderly
world outside the confines of the type checker. Haskell’s type sys-
tem does not allow us to mix pure functions with possibly impure
ones, and for good reason. It is not clear that we should lift this
restriction just because a function is defined in another language.
Moreover, as explained in section 2, marshalling inbound data is
in many cases an inherently effectful operation, particularly when
involving complex data structures. Permitting the import of pure
functions, knowing fully well that a race condition exists in the
time window between the import’s application and the resulting
thunk’s evaluation, does not strike us as a shining example of safe
API design.
Better, then, to let the user import their foreign code in the IO
monad and explicitly vouch for its purity, using unsafePerformIO

to bring it into the world of pure functions.

6.5 Related work
Aside from the vanilla foreign function interface used as the basis
of our interface, there are several different, more modern, takes on
interfacing purely functional languages with host language code.
One common denominator is specialization: without exception,
these implementations rely in large part on modifications to the
compiler or language itself, in contrast to our interface which makes
some sacrifices in order to be implementable as a library, maximiz-
ing portability across host and Haskell implementations alike.

Idris: host-parametric FFI.
Idris is a dependently typed, Haskell-like language with backends
for several host environments,
JavaScript being one of them [2]. Like Haskell, Idris features
monadic IO, but unlike Haskell, Idris’ IO monad is, in a sense its
foreign function interface. IO computations are constructed from
primitive building blocks, imported using a function not unlike our
host function described in section 2, and parameterized over the
target environment. This ensures that Idris code written specifi-
cally for a native environment is not accidentally called from code
targeting JavaScript and vice versa.
Idris’ import function does not necessarily accept strings of foreign
language code, but is parameterized over the target environment
just like the IO monad; for JavaScript-targeting code, foreign code
happens to be specified as strings, but could conceivably consist
of something more complex, such as an embedded domain-specific
language for building Idris-typed host language functions.

Fay: featureful but static.
Our interface was partially inspired by the foreign function inter-
face of the Fay language, a “proper subset of Haskell that compiles
to JavaScript” [7]. While the two are very similar in syntax, al-
lowing users to import typed strings of host language code, Fay’s
solution is highly specialized. The compiler takes a heavy hand in
the marshalling and import functionality, parsing the host language
code and performing certain substitutions on it. While marshalling
of arbitrary types is available, this marshalling is not easily control-
lable by the user, but follows a sensible but fixed format determined
by the compiler. This approach makes sense, as the interface is de-
signed to support the Fay language and compiler alone, but differs
from our work which aims to create a more generally applicable
interface.

GHCJS: JavaScriptFFI.
The GHCJS Haskell-to-JavaScript compiler [13] utilizes the rel-
atively recent JavaScriptFFI GHC extension, which has unfortu-
nately been rarely described outside a GHCJS context, to the point
of being conspicuously absent from even the GHC documentation.
Much like Fay, this extension parses and performs substitutions
over imported host language code to make imports slightly more
flexible, allowing for importing arbitrary expressions rather than
plain named functions. It also enables additional safety levels for
foreign imports: safe, where bad input data is replaced by default
values and foreign exceptions caught and marshalled into Haskell
equivalents, and interruptible, which allows host language code
to suspend execution indefinitely even though JavaScript is com-
pletely single threaded. This is accomplished by handing interrupt-
ible functions a continuation in addition to their usual arguments,
to call with the foreign function’s “return value” as its argument
when it is time for the foreign function to return and let the Haskell
program resume execution.
The JavaScriptFFI extension preserves the regular FFI’s onerous re-
strictions on marshallable types however, and while while GHCJS
comes with convenience functions to convert between these more
complex types and the simple ones allowed through the FFI, mar-
shalling is not performed automatically and functions in particular
are cumbersome to push between Haskell and JavaScript.

UHC: the traditional FFI, on steroids for JavaScript.
The UHC Haskell compiler comes with a JavaScript backend as
well, and matching higher-level extensions to its foreign function
interface [6]. Like Fay, UHC provides automatic conversion of
Haskell values to JavaScript objects, as well as importing arbi-
trary JavaScript expressions, with some parsing and wildcard ex-
pansion. Also like Fay, the JavaScript representation produced by
this conversion is determined by the compiler, and is not user con-
figurable. UHC does, however, provide several low level primitives
for manipulating JavaScript objects from within Haskell, both de-
structively and in a purely functional manner.

Clean: mixing host and client language code.
The Clean language sports a foreign function interface which dif-
fers slightly from the rest of the interfaces discussed here. In Clean,
the module system makes a difference between definition modules,
where abstract types and functions are declared, and implementa-
tion modules, where implementations are given for the types and
functions declared in the corresponding definition modules. In-
stead of using a special “foreign import” syntactic form, Clean
allows developers to write system implementation modules: mod-
ules where the implementations of functions defined in a definition
module may be written in a language other than Clean [16]. How-

ever, only primitive types may be passed to this foreign code and
no guarantees, making higher-level interoperability cumbersome.
Clean’s FFI is thus more flexible than the foreign function inter-
face of GHC, allowing host and client language code to be mixed,
but less so than the other interfaces discussed in this section due to
its less expedient marshalling capabilities.

Quasiquoting.
Quasiquoting represent another, more radically different, approach
to the problem of bridging with a host language [12]. Allowing for
the inline inclusion of large snippets of foreign code with compile
time parsing and type checking, quasi-quotes have a lot in common
with our interface, even eclipsing it in power through anti-quotes,
which allow the foreign code expressions to incorporate Haskell
data provided that the proper marshalling has been implemented.
Recent work by Manuel Chakravarty has extended the usefulness
of quasi-quotes even further, automating large parts of the stub gen-
eration and marshalling required for using quasi-quoted host lan-
guage code as a foreign function interface [4].
This usefulness comes at the price of a more involved implemen-
tation. Quasiquoting requires explicit compiler support in the form
of compile time template metaprogramming as well as special ex-
tensions for running the quasiquoters themselves. In order to make
full use of its compile time parsing and analysis capabilities an im-
plementor also need to supply a parser for the quoted language.

7. CONCLUSIONS AND FUTURE WORK

Future work.
While our interface is designed for web-targeting Haskell dialects,
extending its applicability is generally a venue worthy of further
exploration.
As described in section 6.2 our interface has yet to be implemented
for host languages other than JavaScript. Demonstrating that it is
practically portable to at least one other host language would give
additional weight to our claims of portability and improve the gen-
eral applicability of the interface.
By combining two optimizations given in section 3, the restriction
of our safe_host function to only accept statically known strings
and the elimination of calls to eval for statically known strings,
it is possible to remove the requirement that a potential host lan-
guage support dynamic code evaluation. If all foreign imports are
statically known, and we are able to eliminate eval calls for all stat-
ically known functions, it follows that we are able to eliminate all
eval calls. While the actual implementation of this idea has yet to
be worked out, guaranteeing the complete absence of eval from the
generated host code would remove the restriction that our host lan-
guage supports dynamic code evaluation at runtime, nearly making
our interface implementable on recent versions of the Java Virtual
Machine if not for the dynamic typing requirement. Investigating
ways around this restriction and an implementation of our interface
for the Java Virtual Machine, with the prerequisite Haskell-to-JVM
compiler, would lend additional applicability to our interface.
Due to the hard requirement that our host language be garbage col-
lected, our interface is not currently applicable in a C context. This
is unfortunate, as C-based host environments are still by far the
most common for Haskell programs. It may thus be worthwhile to
investigate the compromises needed to lift the garbage collection
requirement from potential host environments.

Conclusions.
We have presented the design and implementation of a novel,

portable foreign function interface for web-targeting Haskell di-
alects. While designed for the web sphere, the given implemen-
tation is also applicable to a wide range of other high level target
languages as well.
We have also given a number of optimizations, improving the per-
formance and safety of our interface and lightening the restrictions
placed on the host environment, and implemented our interface as
a library for the Haste Haskell-to-JavaScript compiler. Finally, we
have used this library to further extend our marshalling capabilities
to cover functions and foreign exceptions, contrasted our approach
with a variety of existing foreign function interfaces, and demon-
strated that our library does not introduce excessive performance
overhead compared to the vanilla FFI.
While our interface is currently not applicable to Haskell imple-
mentations targeting low level, C-like environments, it brings sig-
nificant reductions in boilerplate code and complexity for users
needing to interface their Haskell programs with their correspond-
ing host environment in the space where it is applicable: web-
targeting Haskell implementations.

8. ACKNOWLEDGEMENTS
This work has been partially funded by the Swedish Foundation
for Strategic Research, under grant RAWFP. Many thanks to Koen
Claessen, Emil Axelsson and Atze van der Ploeg for their valuable
feedback and comments.

9. REFERENCES

[1] L. Augustsson and B. Massey. The Text.Printf mod-
ule. http://hackage.haskell.org/package/base-4.8.0.0/
docs/Text-Printf.html, 2013.

[2] E. Brady. Cross-platform compilers for functional languages.
Under consideration for Trends in Functional Programming,
1, 2015.

[3] M. M. Chakravarty. The Haskell Foreign Function Interface
1.0: An Addendum to the Haskell 98 Report. 2003.

[4] M. M. Chakravarty. Foreign inline code: systems demonstra-
tion. In ACM SIGPLAN Notices, volume 49, pages 119–120.
ACM, 2014.

[5] M. M. Chakravarty, G. Keller, and S. P. Jones. Associated
type synonyms. In ACM SIGPLAN Notices, volume 40, pages
241–253. ACM, 2005.

[6] A. Dijkstra, J. Stutterheim, A. Vermeulen, and S. D. Swier-
stra. Building javascript applications with haskell. In Imple-
mentation and Application of Functional Languages, pages
37–52. Springer, 2012.

[7] C. Done. Fay programming language. https://github.com/
faylang/fay/wiki, 2015.

[8] R. A. Eisenberg, D. Vytiniotis, S. Peyton Jones, and
S. Weirich. Closed type families with overlapping equations.
In Proceedings of the 41st ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages, POPL ’14,
pages 671–683, New York, NY, USA, 2014. ACM.

[9] A. Ekblad and K. Claessen. A seamless, client-centric pro-
gramming model for type safe web applications. In Pro-
ceedings of the 2014 ACM SIGPLAN Symposium on Haskell,
Haskell ’14, pages 79–89, New York, NY, USA, 2014. ACM.

[10] J. Epstein, A. P. Black, and S. Peyton-Jones. Towards Haskell
in the cloud. In Proceedings of the 4th ACM Symposium on
Haskell, Haskell ’11, pages 118–129, New York, NY, USA,
2011. ACM.

[11] J. P. Magalhães, A. Dijkstra, J. Jeuring, and A. Löh. A generic
deriving mechanism for Haskell. In Proceedings of the Third
ACM Haskell Symposium on Haskell, Haskell ’10, pages 37–
48, New York, NY, USA, 2010. ACM.

[12] G. Mainland. Why it’s nice to be quoted: Quasiquoting for
Haskell. In Proceedings of the ACM SIGPLAN Workshop on
Haskell Workshop, Haskell ’07, pages 73–82, New York, NY,
USA, 2007. ACM.

[13] V. Nazarov, H. Mackenzie, and L. Stegeman. GHCJS Haskell
to JavaScript compiler. https://github.com/ghcjs/ghcjs,
2015.

[14] B. O’Sullivan. The aeson package. http://hackage.haskell.
org/package/aeson-0.11.1.0/, 2015.

[15] S. Peyton Jones, A. Tolmach, and T. Hoare. Playing by the
rules: rewriting as a practical optimisation technique in GHC.
In Haskell workshop, volume 1, pages 203–233, 2001.

[16] R. Plasmeijer and M. van Eekelen. Clean language report
version 2.1, 2002.

[17] A. Reid. Malloc pointers and stable pointers: Improving
Haskell’s foreign language interface. In Glasgow Functional
Programming Workshop Draft Proceedings, Ayr, Scotland.
Citeseer, 1994.

[18] T. Sheard and S. P. Jones. Template meta-programming for
haskell. In Proceedings of the 2002 ACM SIGPLAN workshop
on Haskell, pages 1–16. ACM, 2002.

[19] A. Yakeley. The time package. http://hackage.haskell.org/
package/time, 2014.

