
Declarative, SAT-solver-based Scheduling for
an Embedded Architecture with a Flexible Datapath

Nikita Frolov, Magnus Själander, Per Larsson-Edefors, Sally A. McKee
Department of Computer Science and Engineering

Chalmers University of Technology
412 96 Gothenburg, Sweden

Email: frolov@student.chalmers.se, {hms,perla,mckee}@chalmers.se

Abstract—Much like VLIW, statically scheduled architectures that
expose all control signals to the compiler offer much potential for highly
parallel, energy-efficient performance. Bau is a novel compilation infras-
tructure that leverages the LLVM compilation tools and the MiniSAT
solver to generate efficient code for one such exposed architecture.
We first build a compiler construction library that allows scheduling
and resource constraints to be expressed declaratively in a domain-
specific language, and then use this library to implement a compiler that
generates programs that are 1.2–1.5 times more compact than either a
baseline MIPS R2K compiler or a basic-block-based, sequentially phased
scheduler.

I. INTRODUCTION

Design-time configurable datapaths may increase computational
efficiency for certain applications, but such finely tuned microarchi-
tectures require configurable compiler back-ends to generate code for
individual architectural variants. Furthermore, an exposed datapath
controlled by wide instruction words places the burden of assigning
microinstructions (syllables) to units on the compiler, rather than
on the instruction decoder. Datapaths with flexible interconnect
templates may enjoy more routes between execution units than would
a fixed architecture. In contrast to traditional pipelined architectures
whose compiler back-ends perform instruction selection and register
allocation in separate, consecutive phases, these exposed architectures
force compilers to concurrently assign units and value locations that
mutually depend on each other.

We present a method to divide the scheduling problem into
subproblems by expressing them as logical constraints to be simulta-
neously considered by a SAT solver. We build a compiler construction
library, Bau, that allows generic scheduling constraints and target-
specific resource constraints to be expressed declaratively in a manner
independent from both the set of available execution units and from
the instruction decode logic. We use this library to implement a new
compiler for an instance of an exposed architecture based on the Flex-
Core [1] processor architecture defined in the FlexSoC project [2].
We compare performance of three processor/compiler combinations:
a reference MIPS using gcc, our FlexCore implementation using a
sequentially phased scheduler, and our FlexCore instance using our
solver-based scheduler.

II. TARGET ARCHITECTURE

FlexCore’s exposed architecture lacks a conventional instruction
set architecture (ISA) and has no fixed set of assembly instructions.
Operations at the machine level can instead be expressed as register
transfer notations (RTN) specifying operations to be performed on
output port registers of the various datapath units (Figure 1). The
output port from which a value is read represents the address of
the interconnect multiplexer, and the operation represents the control
signals (i.e., the op-code) to a specific datapath unit. Decoded
control words are simply concatenations of the RTN operations of

all datapath units for a given clock cycle. (Compact representation
of these control words along with the design of efficient decoders
represent an orthogonal path of research [3].)

PC

Datapath interconnect

R
E

G

LS

R
E

G

RF

R
E

G

R
E

G

ALU

R
E

G

MULT

R
E

G

R
E

G

B
U

F
 1

B
U

F
 2

Fig. 1. A basic variant of FlexCore extended with a fast multiplier unit.

Architecture variant description has to be provided to the compiler
as a list of valid operations and available resources. It is represented
as a list of triples, where every triple denotes a type of execution
unit, number of units of this type available, and the unit type’s
latency. For example, for a Viterbi accelerator, a configuration file
entry might look like (VITERBI, 1, 3), which means “this
architecture variant has one Viterbi accelerator, and its latency is three
cycles”. The scheduler relies on this information to avoid hazards
when allocating resources.

III. COMPILER CHALLENGES

We are using LLVM [4] for front- and middle-ends of the compiler.
LLVM is a powerful set of tools for compiler construction, and
rapidly gains popularity because of greater modularity than provided
by still dominant GCC [5]. Many languages can already be compiled
to LLVM bytecode, and many optimization techniques are imple-
mented as LLVM passes. Although LLVM has many off-the-shelf
components for developing RISC or CISC back-ends (e.g., instruction
selectors and schedulers, register allocators, and peephole optimiz-
ers), these cannot be readily reused for an exposed architecture.
Compiling LLVM bytecode to RTN assembly requires three steps:
lowering the LLVM instructions to the RTN microoperations (uops)
supported by a given variant of architecture, allocating resources to
assign uops to execution unit instances and intermediate values to
memory locations, and adjusting RTN microcode according to the
produced schedule. Figure 2 illustrates the flow chart of activities
implementing these steps.

The first step generates RTN in its template form, which includes
references to types of execution units (but not to specific units,
themselves) and specifiers for which dataport to use on a given unit
type. The static single assignment form (SSA) of LLVM bytecode is
preserved in this transformation, and lowering can be accomplished
by instantiating instruction templates defined in terms of variant-
specific uops. Bau is written in Haskell, so both LLVM and RTN
code are represented with a hierarchy of abstract data types, and the

Template RTN

LLVM

RTN

SAT prepositions

SAT solution

instruction lowering

schedule finalizing

constraint generation

constraint solving

Fig. 2. Compilation flow

translator can be implemented by straightforward, recursive pattern
matching. While traversing the code tree, the translator calls a target-
specific, instruction-lowering function for each leaf. The type system
performs dispatch according to the fully specified type of target
(Figure 3).

class Target arch where
lower :: (String, InstrDesc) -> [MicroOp arch]

Fig. 3. Interface for variant-specific lowering functions

The parts of the compiler that are specific to a given architectural
instance must then: 1) define abstract datatypes that represent new
execution units, and 2) define lowering functions that transform
LLVM instructions to RTN code by implementing the interface shown
on Figure 3. It is possible to generate code for a specific operation
and operand type while still preserving the SSA form of LLVM
(Figure 4).

instance Target core where
...
lower (v, IDBinOp BOAdd

(TDInt U 32) a b) =
[MO2 v ALUOp 0 AO_ADDU (DPU a) (DPU b)]

...

Fig. 4. A LLVM-RTN lowering rule written in Haskell

The second step consists of resource allocation — specifying units
at which to map uops and the dataports from which to read operands.
The latter is required, because an exposed architecture imposes the
burden of forwarding data between execution units on the compiler.
Because every unit has its own register to store its result, the choice
of dataports for a uop to read operands from depends on the unit
used to compute a given operand. It means that the compiler cannot
perform instruction scheduling and register allocation sequentially.
In a system based on an exposed architecture, these operations must
be performed concurrently and globally, which is reflected as the
phase sequence problem [6]. Resource allocation can be expressed
as a constraint satisfaction problem, and recent progress in SAT
solver implementation makes such tools attractive building blocks
for powerful schedulers, due to both the simplicity of formulating
and refining problems and to the impressive performance [7].

The third step is to substitute identifiers of unit instances and names
of dataports into RTN code according to the schedule produced by

the SAT solver. Spilling code generation is performed when the value
schedule is interpreted — not only dataport names are supplied into
a uop instead of value names, but additional uops are inserted to
ensure that values are stored in memory after they are computed and
read back when they are required by other uops. Different spilling
strategies can be implemented to either optimize for access latency
or for total number of transfers. The current version of Bau uses a
simple strategy that allocates faster memory for values that are to be
used sooner.

IV. SAT INTERFACE

Issues of interaction with a SAT solver are abstracted away by
the satchmo library [8]. satchmo provides a primitive for logical
relations — assignments of truth values to tuples. Elements of rela-
tions would correspond to indexed boolean variables that constitute
boolean propositions representing the constraints. Constraints can be
imposed on relations with the assert function that builds clauses
out of variables included in the relation. After the solution is found,
the relation data structure representing the schedule can be translated
to the final RTN code.
satchmo provides the SAT monad that encodes the SAT problem

and is based on the State monad. A constraint is then defined as
a function that generates propositions in conjunctive normal form
(CNF) accepted by the SAT solver by combining asserts. Compo-
sition of several constraints can thus be represented by composition
of several monadic functions (Figure 5).

bbConstrs constrs res scheds bbs = do
forM_ (zip bbs scheds)
$ \ ((BBU label succs ops), s) -> do
mapM_ ($ (res, ops, s)) constrs

Fig. 5. Local scheduling constraint combinator

Sec. V and VI formulate the scheduling problem as a constraint
satisfaction problem. Constraints are defined over a set of triples of
uop name (i.e., name of SSA value produced by it), resource name
(execution unit or memory location) and cycle number. Every possible
schedule entry (triple) can be encoded by a boolean variable with
three indexes xorc, where o corresponds to value name, r to resource
name, and c to cycle number. The maximum possible number of
cycles C in the schedule is equal to the sum of latencies of all
instructions in a basic block to be scheduled. Every uop and execution
unit instance are also given a numerical identifier with the maxima
of O being equal to the number of uops in a basic block and U and
L being equal to amount of all unit instances and memory locations
accordingly, regardless of their type. The maximum location index L
is calculated as the sum of the maximum number of values that never
are used outside of a basic block that defines them and the number
of all values that are transferred between basic blocks.

V. INSTRUCTION PLACEMENT

A. Problem Statement

After the program has been expressed in terms of uops imple-
mented by available execution units, assignment of operations to units
and values to registers (both output port registers and register file)
can be performed. The instruction ordering problem can be defined
as follows [9]:

• every instruction should be assigned to exactly one unit and
exactly one cycle;

• every execution unit performs just one instruction at a time;

• types of operands and result should match types of execution
unit and registers;

• instruction ordering preserves data dependencies.

B. Translation to Propositions

1) Every instruction has exactly one entry in the schedule: As
instruction types are known, the search space can be reduced by
limiting the number of units where an instruction o can be placed
to those of corresponding type UT . First, an instruction o should
have no more than one entry in the schedule. This is achieved by
demanding impossibility of every unique pair of variables to be
assigned with true:

∀o, u1, u2, c1, c2 : u1, u2 ∈ UT (o), xo,u1,c2 ∧ xo,u1,c2 (1)

Second, an instruction o should have no less than one entry, which
is assured by a disjunction of all possible places of i in the schedule:

∀o :

i=U
k=C∧
i=1
k=1

xi,u,k (2)

2) Every unit runs no more than one instruction at a time:
For every unit instance u there should not be any pair of variables
assigned with true at the same cycle:

∀o1, o2, u, c : o1 6= o2, xo1,u,c ∧ xo2,u,c (3)

3) Instruction types match: If types of an instruction and an
execution unit do not match (e.g., an ALU operation cannot be
assigned to a load-store unit), the corresponding variables should
never be assigned with true:

∀u : u 6∈ UTo,

i=O
k=C∧
i=1
k=1

x̄i,u,k (4)

4) Data dependencies are not broken: Given an instruction c
dependent on the result of instruction p and a latency du, it could be
assumed that c should never be scheduled before cycle du after p:

up ∈ UTp, uc ∈ UTc, xp,u,cp → ¬
∨

cc≤cp+du

xc,u,cc (5)

VI. VALUE PLACEMENT

A. Problem Statement

The SSA form of RTN code defines paths between value producers
and value consumers, and for values with many consumers those
paths may overlap. Value paths define where a value will reside at a
given point in time. A value can travel between two units in a number
(and a combination) of ways: directly through the interconnect or
through a pipeline buffer, a register or memory. The constraints can
be summarized as following:

• a memory location can hold just one value at a time;
• type of a memory location and of a value should match; and
• a value should be stored continually at the same location after

it is produced and before it is consumed.
It should be noted that priorities of different memory levels (e.g.,

prefer a register to a RAM location) are not considered at the
constraint resolution layer. It is the solution interpreter who has to
select locations with faster access times based on amount of accesses
to a values or some other criteria (Section IV).

B. Translation to Propositions

Every basic block has its independent schedule, because uops
cannot be moved between basic blocks without analysis that will
prove that code movements will not change the semantics of a
program. Currently, Bau does not implement this kind of analysis.
Nevertheless, values may be live across basic blocks BB, and value
placement constraints cannot consider independent basic blocks. A
limited form of liveness analysis has to be performed to determine
what values are live in a given basic block and, vice versa, in what
basic blocks is a given value live.

1) Every location stores just one value at a time: For every
memory location l there should not be any pair of variables assigned
with true in the same cycle:

∀bb ∈ BB : ∀o1, o2 ∈ Obb, (u, cbb) : yo1,u,cbb ∧ yo2,u,cbb (6)

2) Location types match: If types of a value and a memory
location (e.g., a register) do not match, corresponding variables
should never be assigned with true:

∀bb ∈ BB : ∀u : u 6∈ UTo,

i=Obb
k=Cbb∧
i=1
k=1

ȳi,u,k (7)

3) Value paths are not broken and have a start and an end:
A value should be stored during all cycles between the ones on
which the producer and the consumer instructions are scheduled,
not inclusive (if the path has zero length, it would mean direct
forwarding), and not on the others:

∀bb ∈ BB : ∀op ∈ Obb : (xop,u,c ∧ xoc,u,c+du)⊕
⊕ j=L

k=cbb∧
j=1
k=1

yo,j,k

(8)

VII. RESULTS

We use the FlexCore [1] processor as a representative for design-
time configurable and exposed architectures to compare performance
of different schedulers. Three benchmarks from the EEMBC bench-
mark suite [10] were compiled for this architecture.

Table I compares size of benchmark assembly code as produced
by a sequentially phased scheduler [11] and Bau. Note that the two
schedulers accept different input representations — the sequential
scheduler works on MIPS assembly, and Bau works on LLVM
bytecode. Since LLVM has SSA form and never reuses value names,
an LLVM program is lexically longer than an equivalent MIPS
program.

Autcor FFT Viterbi
MIPS 346 691 617
seq. 402 827 641

LLVM 465 698 690
Bau 204 295 401

TABLE I
TOTAL NUMBER OF INSTRUCTIONS

RTN assembly produced by Bau is twice as short as RTN assembly
produced by the sequential scheduler, but it doesn’t say much about
performance. EEMBC benchmarks have similar organization — the
setup and output sections that are largely sequential but perform many

function calls for result output, and the actual computation routine
that has no to few function calls but has many inner loops. Table II
shows code size for computationally intensive functions that lie at
the core of the benchmarks.

Autcor FFT Viterbi
MIPS 38 337 324
seq. 42 392 307

LLVM 70 569 617
Bau 35 266 338

TABLE II
NUMBER OF INSTRUCTIONS IN INNERMOST FUNCTIONS OF VARIOUS

BENCHMARKS

Bau produces code that is 20-50% smaller for the autocorrelation
and FFT transform benchmarks, but on the Viterbi algorithm imple-
mentation Bau performs 10% worse. The reason for this difference is
that autcor and fft benchmarks do not perform any function calls
at all during the computation, and viterbi depends on a recursive
function, which imposes high pressure on the call stack in the current
version of Bau.

VIII. RELATED WORK

Instruction reordering and register allocation are two interde-
pendent scheduling phases with opposite goals. During instruction
reordering parallelism is exploited at the cost of increasing register
pressure and spilling. Optimization criteria of a register allocator
are exactly opposite — decreasing the number of spills at the cost
of parallelism. Many approaches to choose an optimal scheduling
phase sequence were summarized by Norris and Pollock [6]. They
have also proposed several strategies for phase communication and
making instruction scheduler and register allocator mutually sensitive.
More recent works on the topic [12], [13] have not departed from the
scheme of separate but iteratively communicating phases but barely
proposed alternative communication strategies. A notable exception is
[14] where serialization of CFG is performed incrementally. However,
neither approach is directly applicable to an exposed architecture
where the compiler has control over the instances of executions units
and the forwarding paths a value can take.

A major reason not to unite instruction reordering and register allo-
cation is the NP-hardness of a combined problem [15]. Building phase
communication strategies upon heuristics improves performance but
makes it hard to guarantee a specific scheduling outcome in a larger
number of cases than it was thought of during design of heuristics.
While SAT solvers might still employ heuristics to find a solution
quickly [7], [16], we gain in clarity of the problem definition directly,
by imposing constraints on the schedule that do not change the
optimization criteria, and indirectly, with constraints that increase
scheduling speed [17]. Improving performance of SAT solvers is a
topic of ongoing research, with proposed support for parallelization
of solvers to run on multicore and multinode architectures [18], [19],
GPUs [20] and FPGAs [21].

IX. CONCLUSION

The Bau library reduces required effors to develop compilers for
new variants of configurable architectures by separating architecture-
specific resource constraints from the generic scheduling constraints.
Furthermore, it enables separating scheduling algorithm from the
scheduling engine (in this case, the SAT solver) and reduce the
code base that developers must maintain. We have demonstrated
that modularized design of the scheduler establishes clear boundaries

between loosely-related properties of the schedule and allows better
utilization of hardware resources. In many cases, Bau generates
schedules that are 1.2–1.5 times smaller than sequentially phased
scheduler. This has important implications for the design of future,
energy-efficient, application-specific embedded systems.

REFERENCES

[1] M. Thuresson, M. Själander, M. Björk, L. Svensson, P. Larsson-Edefors,
and P. Stenstrom, “FlexCore: Utilizing exposed datapath control for
efficient computing,” Signal Processing Systems, vol. 57, no. 1, pp. 5–19,
2009.

[2] J. Hughes, K. Jeppson, P. Larsson-Edefors, M. Sheeran, P. Stenstrom,
and L. Svensson, “FlexSoC: Combining flexibility and efficiency in SoC
designs,” in Proc. IEEE NorChip Conference, Nov. 2003, pp. 52–55.

[3] M. Thuresson, M. Själander, and P. Stenstrom, “A flexible code com-
pression scheme using partitioned look-up tables,” in Proc. High Perfor-
mance Embedded Architectures and Compilers, Jan. 2009, pp. 95–109.

[4] C. Lattner and V. Adve, “LLVM: A compilation framework for
lifelong program analysis & transformation,” in Proc. 2nd IEEE/ACM
International Symposium on Code Generation and Optimization, Mar.
2004, pp. 75–86. [Online]. Available: http://llvm.org

[5] “GNU Compiler Collection,” http://gcc.gnu.org.
[6] C. Norris and L. Pollock, “Experiences with cooperating register al-

location and instruction scheduling,” International Journal of Parallel
Programming, vol. 26, no. 3, pp. 241–284, 1998.

[7] N. Een and N. Sörensson, “An extensible SAT-solver,” in Proc. Interna-
tional Conference on Theory and Applications of Satisfiability Testing,
ser. Lecture Notes in Computer Science, May 2003, no. 2919, pp. 333–
336.

[8] “satchmo: SAT encoding monad,” http://dfa.imn.htwk-leipzig.de/
satchmo/.

[9] S. Memik and F. Fallah, “Accelerated SAT-based scheduling of con-
trol/data flow graphs,” in Proc. IEEE International Conference on
Computer Design, Sep. 2002, pp. 395–400.

[10] J. Poovey, T. Conte, M. Levy, and S. Gal-On, “A benchmark character-
ization of the EEMBC benchmark suite,” IEEE Micro, vol. 29, no. 5,
pp. 18–29, September/October 2009.

[11] T. Schilling, M. Själander, and P. Larsson-Edefors, “Scheduling for an
embedded architecture with a flexible datapath,” in Proc. IEEE Computer
Society Annual Symp. on VLSI, May 2009, pp. 151–156.

[12] I. Cutcutache and W.-F. Wong, “Fast, frequency-based, integrated reg-
ister allocation and instruction scheduling,” Software: Practice and
Experience, vol. 38, no. 11, pp. 1105–1126, Sep. 2008.

[13] D. Koes, “Register allocation aware instruction selection,” Carnegie
Mellon University School of Computer Science, Tech. Rep. CMU-CS-
09-169, Oct. 2009.

[14] N. Johnson and A. Mycroft, “Combined code motion and register
allocation using the value state dependence graph,” in Proc. of the 12th
International Conference on Compiler Construction, Apr. 2003, pp. 1–
16.

[15] R. Motwani, K. Palem, V. Sarkar, and S. Reyen, “Combining register
allocation and instruction scheduling,” Courant Institute, Tech. Rep. TR
698, Jul. 1995.

[16] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik, “Chaff:
Engineering an efficient SAT solver,” in Proc. 38th ACM/IEEE Design
Automation Conference, Jun. 2001, pp. 530–535.

[17] J. Crawford and A. Baker, “Experimental results on the application of
satisfiability algorithms to scheduling problems,” in Proc. Conference
on Artificial Intelligence (AAAI), Jul. 1994, pp. 1092–1097.

[18] M. Lewis, T. Schubert, and B. Becker, “Multithreaded SAT solving,” in
Proc. of the 12th Asia and South Pacific Design Automation Conference,
Jan. 2007, pp. 926–931.

[19] Y. Hamadi and L. Sais, “ManySAT: a parallel SAT solver,” Satisfiability,
Boolean Modeling and Computation, vol. 6, no. 12, pp. 245–262, Jun.
2009.

[20] C. Thompson, S. Hahn, and M. Oskin, “Using modern graphics archi-
tectures for general-purpose computing: A framework and analysis,” in
Proc. IEEE/ACM 35th International Symposium on Microarchitecture,
Nov. 2002, pp. 306–317.

[21] A. Dandalis and V. Prasanna, “Run-time performance optimization of
an FPGA-based deduction engine for SAT solvers,” ACM Transactions
on Automation of Electronic Systems, vol. 7, no. 4, pp. 547–562, Oct.
2002.

