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ABSTRACT

There is good reason to model an asymmetric threat (a struc-
tured action such as a terrorist attack) as an HMM whose ob-
servations are cluttered. Recently a Bernoulli filter was pre-
sented that can process cluttered observations (“transactions”)
and is capable of detecting if there is an HMM present, and if
so, estimate the state of the HMM. An important question in
this context is: when is the HMM-in-clutter problem feasible?
In other words, what system properties allow for a solvable
problem? In this paper we show that, given a Gaussian ap-
proximation of the pdf of the log-likelihood, approximate de-
tection error bounds can be derived. These error bounds allow
a prediction of the detection performance, i.e. a prediction
of the probability of detection given an “operating point” of
transaction-level false alarm rate and miss probability. Simu-
lations show that our analysis accurately predicts detectability
of such threats. Our purpose here is to make statements about
what sort of threats can be detected, and what quality of ob-
servations are necessary that this be accomplished.

Index Terms— Asymmetric threat, Hidden Markov
Models, Bernoulli filter, detectability.

1. INTRODUCTION

The term asymmetric threat refers to tactics employed by,
e.g., terrorist groups to carry out attacks on a superior op-
ponent, while trying to avoid direct confrontation. Analysis
of prior terrorist attacks suggests that a high magnitude ter-
rorist attack requires certain enabling events to take place. In
this paper terrorist activities are modeled as Hidden Markov
(HMM). Excellent tutorials on HMMs can be found in [1, 2].
The applicability of HMMs for terrorist activity modeling and
other national security problem situations has been illustrated
in previous work, see e.g. [3, 4, 5, 6, 7, 8].

A number of different terrorist plan HMMs are proposed
in [5, 6, 7, 8], including models for a truck bombing, Fig-
ure 1, and production of weapons grade material, Figure 2.
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Fig. 1. Markov chain network modeling the planning of a
truck bombing. Refer to [5] for additional details.
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Fig. 2. Markov chain network modeling the production of
weapons grade material. Refer to [8] for additional details.

These HMMs include multiple paths from plan conception to
plan completion, following the intuition that there are mul-
tiple ways to, e.g., hijack a plane. An empirical HMM can
be constructed using available prior information, or with the
help from experienced intelligence analysts (SMEs) [5]. For
example, the HMM for development of a nuclear weapons
program (DNWP) in [7] is gleaned using the open sources
[9, 10, 11, 12, 13].

The basic motivation for modeling terrorist activities via
HMMs is twofold. First, carrying out a terrorist activity re-
quires planning and preparations, following steps that form
a pattern, admittedly with some “options” modeled as par-
allel paths within the HMM. This pattern of actions can be
modeled using a Markov chain. Second, the terrorists leave
detectable clues about these enabling events in the observa-
tion space. The clues are not direct observations of the plan-
ning and preparations, but are rather related to them, mean-
ing that the states in the Markov model (hence the name) are
hidden. For example, an observation of a purchase of chem-
icals could be indicative of intentions to produce a chemical
weapon. However, a purchase of chemicals could very well
be a benign event, which motivates inclusion of a model of
observations that are unrelated to the HMM. Following the
target tracking literature, see e.g. [14], such observations are



here designated as clutter observations.
Ultimately the task is to find out if there is an activity

being planned, and if so, find what stage the planning is in.
A Bernoulli filter that can solve this problem was recently
presented in [15]. Specifically, the Bernoulli filter jointly es-
timates the probability of HMM existence, denoted qk|k, and
the pmf, denoted Pk|k(·).

Given the Bernoulli filter [15], an important question to
consider is: for what system properties is the HMM-in-clutter
problem feasible? In this paper we approach this question by
focusing on the detection part of the problem, corresponding
to the estimated probability of HMM existence in the Bernoulli
filter. The ultimate aim is to be able to make statements about
maximum levels of clutter allowable; maximum intervals be-
tween relevant observations; and a minimum level of com-
plexity.

Specifically, the error probabilities are evaluated, i.e., the
probabilities of missed detection and of false detection. Using
error probability approximations it is possible to, for a set of
parameters that govern the properties of the HMM-in-clutter
problem, predict what the detection rate will be for a given
false alarm rate. A comparison to empirical results show that
the prediction is accurate. A preliminary detectability analy-
sis was presented in [16, 17], this paper extends the work by
including a thorough comparison to empirical data.

2. ASYMMETRIC THREAT MODELING

Let ζk ∈ S denote the HMM state at time tk, where S is a
discrete state space with Ns states, S = {S1, S2, . . . , SNs

}.
In the variant of HMMs used here the observations become
available only upon state transitions, and the HMM state tran-
sitions follow a first order Markov chain. The observations
zk ∈ Z are discrete random variables, where Z is a discrete
state space with Nz states, Z = {Z1, Z2, . . . , ZNz

}. If an
HMM state transition has happened, then with probability of
detection pD ∈ (0, 1) the HMM generates an observation zk.
The HMM observation process is defined by the probability
mass function (pmf) gs(zk|ζk). There are also clutter obser-
vations (false alarms) super-imposed on the true HMM obser-
vations. In each time-step, with probability pFA ∈ (0, 1) a
clutter observation is generated as a random sample from a
process with pmf gFA(zk).

3. DETECTABILITY PREDICTION

Given a sequence of time steps, for some of the time steps
there will be an observation, denoted zk, and for some there
will be no observation. The time is assumed to be discretized
in small enough increments such that there is never more than
a single observation per time step. Further, the scope of the
paper is limited by the assumption that the parameters of the
HMM and the clutter process are known. An important topic

for future work is to consider modeling errors, i.e. unknown
parameters.

In this section we present a detectability prediction
method. We consider the following two hypotheses:

H0: The observations were generated by a clutter process.
This means that there is no structure in the sequence of obser-
vations, it is random.

H1: The observations were generated by an HMM-in-
clutter process. This means that among the random clutter
observations, there are observations caused by the HMM that
has some degree of structure.

To decide between the hypotheses H0 and H1 we employ
a decision rule

δ` =

 1 >
γ if ` = τ
0 <

(1)

where ` is the log likelihood ratio, i.e., if δ` = 1 we choose
H1 and if δ` = 0 we choose H0. To analyze the detectability
we focus on the conditional error probabilities PF and PM
defined by

PF (δ) = P0(δ chooses H1) (2a)
PM (δ) = P1(δ chooses H0) (2b)

Given probability density functions (pdfs) p(`|H0) and
p(`|H1) it is easy to compute the errors for given model
parameters and a given threshold τ . However, expressing
the pdfs p(`|Hi) analytically is prohibitively difficult and
complex in the general case.

To alleviate this complexity we will consider a simpli-
fied type of HMM. Then using a Gaussian approximation of
p(`|H1) an exact expression for the probability of miss PM
can be computed, and for the probability of false alarm PF an
upper bound can be computed. Lastly, using the upper bound
for the false alarm probability, it is possible to derive the log
likelihood threshold that gives a certain false alarm probabil-
ity, and subsequently it is possible to compute a prediction for
the probability of detection.

3.1. Daisy chain HMMs

We consider a very simple kind of HMM– the daisy chain –
see Figure 3. It is defined by four model parameters:

1: NS : the number of states in the chain. This parameter
is related to the level of complexity of the HMM; generally
higher NS implies higher complexity.

2: PT : the probability of transitioning to the next state.
The transition probabilities are assumed uniform, i.e. in each
time step the probability of remaining in the same state for
one more time step is equal for all states; note that this as-
sumption only applies to this HMM, it is not in general nec-
essary for our analysis. Because the HMM observations are
modelled as only becoming available upon state transitions,
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Fig. 3. Daisy chain Markov network

PT is important as 1/(1− PT ) describes the expected length
of the intervals between the observations that are relevant to
the HMM.

3: pD: the probability of an HMM generated observation,
given that there was a state transition.

4: pFA: the probability of a clutter generated observation,
i.e. an observation that is not related to the HMM. This pa-
rameter governs the level of clutter.

In the examples in Figures 1 and 2 each way from the
first to the last state forms a daisy chain, and therefore the
comparatively simple daisy chain can be used as an approxi-
mation of more complex HMMs. It is assumed that the size of
the observation state space is equal to the HMM state space,
i.e. Nz = Ns, and that the observation pmf is

gs(z = Zj |sk = Si) =

{
Pobs if j = i

1−Pobs

Nz−1 otherwise (3)

where 0 � Pobs . 1 (i.e. Pobs is close to one). Additionally
it is assumed that the clutter is uniformly distributed

gFA(z) = Nz
−1 = Ns

−1 (4)

i.e. it is equiprobable for all the Nz possibilities. This obser-
vation model means that each state has a unique observation,
and it is unlikely that, given that a state transition is detected,
it is reported incorrectly. For example, if there are two states,
1) rent apartment and 2) buy fertilizer, then if apartment rental
is detected it is unlikely to be reported as fertilizer purchase,
and vice versa. The likelihood ratio for a Daisy Chain HMM
is given in [16, Eq. 15 - 16].

3.2. Approximate error probabilities

For the daisy chain type HMM described above previous work
[16] has shown that, under hypothesis H1, we can approxi-
mate the true pdf over ` with a Gaussian pdf

p(`|H1) ≈ N (` ; µ̂, σ̂) (5)

where the mean µ̂ and standard deviation σ̂ are functions of
the number of states NS , the transition probability PT , the
probability of HMM observation pD, and the probability of a
clutter observation pFA. Please refer to [16] for details that
are too lengthy to repeat here.

The probability of miss PM (δ) for a given threshold τ is
then given by

PM (δ) = P(` < τ) =

∫ τ

−∞
N (` ; µ̂, σ̂) d` = F`(τ) (6)

where F`(·) is the Gaussian cumulative distribution function
(cdf).

An approximation of the true pdf over `, under hypothesis
H0 has been attempted. However, empirical results showed
that the Gaussian approximation of p(`|H0) is not sufficiently
accurate. When the pdf for the log-likelihood under H0 is un-
known the probability of false alarm cannot be directly com-
puted. However, using the pdf under H1 we can derive the
Chernoff bound for the probability of false alarm. The upper
bound is, see e.g. [18],

PF (δ`) ≤ exp (µ`,0(s)− sτ) (7)

for all s > 0, where µ`,i is the cumulant generating func-
tion of ` under Hi. The upper bound (7) can be minimized
over s > 0 to find the tightest bound. Using the relationship
µ`,0(s) = µ`,1(s − 1), see e.g. [18], and a variable substitu-
tion t = s− 1, we can rewrite the bound (7) as

PF (δ`) ≤ exp (µ`,1(t)− (t+ 1)τ) (8)

for all t > −1. Inserting the Gaussian cumulant generating
function and maximizing w.r.t. t we get the minimum error
bound

PF (δT ) ≤ exp

(
tF µ̂+

1

2
t2F σ̂

2 − (tF + 1)τ

)
(9)

tF = max

{
−1 , τ − µ̂

σ̂2

}
(10)

Note that a property of the Chernoff bound is that it may be
trivial, i.e. for some µ̂, σ̂ and τ the error bound is larger than
one, see e.g. [18].

3.3. Predicting the detectability performance

Using the upper bound (9) for the probability of false detec-
tion it is possible to find a likelihood threshold τα that gives a
probability of false detection less than or equal to α. Letting
tF = (τ − µ̂)/σ̂2 and solving (9) for τ we get

τα ≤
(
µ̂− σ̂2 +

√
σ̂4 − 2µ̂σ̂2 − 2σ̂2 log(α)

)
(11)

For some values of α, µ̂ and σ̂ the solution will be an imagi-
nary number. In this case τ is trivially given by setting tF =
−1, which gives τ = µ̂− σ̂2. This gives a predicted detection
F`(τα) for a given combination of the parametersNS , PT , pD
and pFA.

Note that in general HMMs designed for asymetric threats
are not daisy chains, nor do they have equal transition prob-
ability for all state. However, the detectability prediction can
still be used, as will be shown in the next section.

4. SIMULATION RESULTS

Intelligence observation data of the kind considered here is
inherently secret, and for this reason results for real observa-



tion data records are unavailable, and could not be published
if they were. Instead we present results for simulated data.

Five different HMMs were simulated:
1) Planning of a truck bombing, see [5] for details.
2) Production of weapons grade material, see [8] for de-

tails.
3) Planning and strategy, see [6] for details.
4) Collection of resources, see [6] for details.
5) Preparations for a hijacking, see [6] for details.
In the remainder of this section we will refer to the models

as HMM 1, HMM 2, and so on. Neither of the models is a sim-
ple daisy chain; on the contrary all five have more complex
structure, as shown for HMM 1 in Figure 1, and for HMM 2 in
Figure 2. Because of page length constraints, illustrations of
remaining three HMMs are omitted.

The first two models have uniform transition probabili-
ties. The last three models do not have this property, in-
stead the transition probabilities are specified in the models,
see [6]. For the HMM state transitions in models 1 and 2,
three different probabilities of transition were simulated PT ∈
{0.10, 0.20, 0.30}.

The HMM observation pmf (3) and clutter pmf (4) were
used for all five models, with Pobs = 0.99. Different proba-
bilities of HMM observation and probabilities of clutter obser-
vation were simulated, pD ∈ {0.10, 0.20 . . . 0.90} and pFA ∈
{0.10, 0.20 . . . 0.90}, with Pobs = 0.99. Empirically we have
found that it is not necessary to also simulate multiple values
for Pobs because it is the product PobspD that is important,
i.e. it is sufficient to simulate different values of pD. For each
HMM and each parameter combination 100 Monte Carlo sim-
ulations were run. In Figure 4 the empirical detection rate at
10% empirical false alarm rate is shown1, and the line along
which the empirical detection rate is 50% is highlighted with
a white line.

For each HMM and each parameter combination a de-
tectability prediction was computed using the method out-
lined in Section 3. Because none of the five simulated HMMs
is a daisy chain, there is no direct correspondence between
the number of states NS of the HMM, and the value NS used
in the prediction. Empirically we have found that in the pre-
diction NS should be set to the expected value of the number
of states that the HMM passes through from first to last state.
The reason for this is that, in order to pass from the first to
the last state, it is not necessary to pass through each state.
For example, in HMM 1 there are four different ways to go
from state 1 to state 9, see Figure 1. The expected value of
the number of states that are passed is 6.5, which is rounded
down to NS = 6.

Additionally, in HMMs 3, 4 and 5, the transition probabili-

1Empirical detection rate is, for all time steps that an HMM existed, the
% time steps that the estimated probability of existence was larger than the
threshold τ0.1 (i.e. α = 0.1). Empirical false alarm rate is, for all time steps
that an HMM did not exist, the % time steps that the estimated probability of
existence was larger than the threshold τ0.1.
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Fig. 4. The heat maps show empirical detection rate at 10%
empirical false detection alarm rate for different combinations
of the parameters pD and pFA; the title of each plot indicates
the HMM and the probability of transition. The white lines
indicate 50% empirical detection rate, and the red dotted lines
indicate the corresponding predicted performance.

ties are not uniform, which is an assumption in the detectabil-
ity prediction. In the detectability predictions for HMMs 3, 4
and 5 we have set the transition probability to the mean of the
HMM transition probabilities.

The predicted 50% detection at 10% false alarm line, as
computed by the detectability prediction, is shown with a dot-
ted red line in Figure 4. The results clearly show that the de-
tectability prediction is quite accurate, especially for HMM 2,
which is the most complex of the five simulated models.

5. CONCLUSIONS AND FUTURE WORK

Recently a Bernoulli filter was presented that can process a
sequence of cluttered observations and determine if there is
an underlying structure to the observations caused by a ter-
rorist plan. This paper presented a detectability analysis of
the problem that, given a set of model parameters, allows the
probability of false alarm and probability of detection to be
predicted. A comparison to empirical false alarm rate and de-
tection rate show that the prediction is quite accurate. This
is important because it will allow us to answer questions such
as, for a given HMM, what is the maximum level of clutter that
can be handled? Important topics for future work includes
consideration of modelling errors, i.e., considering what the
performance is when the parameters of the process causing
the observations are unknown.
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