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Abstract—The Closest Vector Problem (CVP) and the
Shortest Vector Problem (SVP) are prime problems in
lattice-based cryptanalysis, since they underpin the security
of many lattice-based cryptosystems. Despite the importance
of these problems, there are only a few CVP-solvers publicly
available, and their scalability was never studied.

This paper presents a scalable implementation of an
enumeration-based CVP-solver for multi-cores, which can
be easily adapted to solve the SVP. In particular, it achieves
super-linear speedups in some instances on up to 8 cores
and almost linear speedups on 16 cores when solving
the CVP on a 50-dimensional lattice. Our results show
that enumeration-based CVP-solvers can be parallelized as
effectively as enumeration-based solvers for the SVP, based
on a comparison with a state of the art SVP-solver. In
addition, we show that we can optimize the SVP variant of
our solver in such a way that it becomes 35%-60% faster
than the fastest enumeration-based SVP-solver to date.

I. INTRODUCTION

Lattices are discrete subgroups of the m-dimensional
Euclidean space Rm, with a strong periodicity property. A
lattice L generated by a basis B ∈ Rm×n, a set of linearly
independent row vectors b1,. . . ,bn in Rm, is denoted by

L(B) = {x ∈ Rm : x =

n∑
i=1

uibi,u ∈ Zn}, (1)

where n is the rank of the lattice. When n = m,
the lattice is said to be of full rank. Lattices have a
wide range of applications. These span from mathematics
(e.g. geometry of numbers [9]) to computer science (e.g.
integer programming [18] and lattice-based cryptography
[16], [22]). The use of lattices in cryptography started
in the beginning of the 80’s, when the Lenstra–Lenstra–
Lovász (LLL) algorithm [20] was used to break knapsack
cryptosystems, and became prominent in cryptography
in the mid-90’s, when the first lattice-based encryption
schemes were proposed (e.g. [3]).

Today, lattice-based cryptography is especially attrac-
tive because, among other reasons, it is believed to be
resistant against attacks operated with quantum com-
puters. Lattice-based cryptosystems can only be broken
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when specific lattice problems can be solved in a timely
manner. In this context, two lattice problems are espe-
cially relevant: the Shortest Vector Problem (SVP) and
the Closest Vector Problem (CVP). The SVP consists in
finding the shortest nonzero vector of the lattice, whose
norm is denoted by λ1(L), or, in other words, to find
u ∈ Zn\0 that minimizes the Euclidean norm ‖B · u‖.
The CVP consists in finding the closest vector of the
lattice to a given target vector t ∈ Rm, i.e. to find
u ∈ Zn minimizing ‖B · u − t‖. Algorithms that solve
these problems are usually referred to as SVP- and CVP-
solvers. There is a natural connection between the SVP
and CVP: the closest vector to the origin, excluding the
origin itself, is the vector with norm λ1(L). From a
computational perspective, the decisional variant of the
CVP is known to be NP-hard [8], whereas the decisional
variant of SVP is known to be NP-hard under randomized
reductions [2], [13].

Both CVP- and SVP-solvers work faster on reduced
lattice bases, i.e., lattices whose bases have short, nearly
orthogonal vectors. The main algorithms used in prac-
tice to reduce lattices are the Lenstra-Lenstra-Lovász
(LLL) and the Block Korkine-Zolotarev (BKZ) algo-
rithms. There is a close relation between lattice reduction
algorithms and SVP-solvers. BKZ, for instance, uses
SVP-solvers as part of its logic, as a way to improve
the quality of their output.

The SVP has been extensively studied during the last
three decades and two main families of SVP-solvers have
emerged and evolved. The first is the family of sieving
algorithms, i.e., probabilistic, randomized algorithms that
repeatedly sieve a list of vectors, until a given stop
criterion is met [4], [19]. Enumeration algorithms, on
the other hand, enumerate all the possible vectors within
a given search radius around the origin, and select the
shortest among those [23], [17], [19].

The CVP has also been studied during the last decades,
but to a lesser degree than the SVP [13]. In particular,
the computational practicability of the CVP has received
little attention. While several SVP-solvers have been im-
plemented on various computer architectures [10], [15],



few open implementations of CVP-solvers are available.
In particular, the scalability of CVP-solvers was never
studied. One of the reasons why the CVP has attracted
less attention than the SVP might be the lack of a public
repository for the assessment of CVP-solvers, such as the
SVP-challenge1, which only covers the SVP.

The lack of study of the practicability of the CVP
is a considerable gap in knowledge. The design and
assessment of efficient implementations of CVP-solvers
are of prime importance, because (1) they provide us
with knowledge of the security of lattice-based cryp-
tosystems, (2) they might be used as efficient building-
blocks of SVP-solvers and (3) CVP is a problem of
major relevance in other fields, such as in multiple-input
multiple-output (MIMO) wireless networks, for coded
and uncoded signals, where it is called sphere decoding.
An example where the CVP is used as a building-block
is the deterministic SVP-solver with the best known
complexity, based on the Voronoi-cell of a lattice [1],
which is based on executing a big number of CVP calls.

Our contribution: In this paper, we address two fun-
damental problems. On one hand, we study the practi-
cability of the CVP, to which end we implement and
assess the performance of an enhanced version of the
Schnorr-Euchner enumeration routine, described in [12],
a CVP-solver that can easily be modified to solve the
SVP, from here on referred to as SE++. In particular, we
propose a parallel version of this algorithm for shared-
memory CPU systems, implemented with OpenMP, and
we analyze its performance on a 16-core CPU system
against the parallel SVP-solver proposed in [10].

On the other hand, we improve the SVP variant of the
SE++ algorithm, discarding the computation of symmet-
rical branches of the enumeration tree, which generate
vectors with identical norm and are, therefore, irrelevant
in the context of the SVP. We refer to this implementation
as “Improved SE++”.

Results: Our results show that enumeration-based
CVP-solvers, whose scalability was never studied, can
be parallelized at least as efficiently as enumeration-
based SVP-solvers, based on a comparison of the CVP
and SVP versions of our algorithm and the state of the
art SVP implementation described in [10]. In particular,
our parallel version of this algorithm achieves super-
linear speedups in some instances on up to 8 cores and
a speedup factor of 14.8x for 16 cores when solving
the CVP on a 50-dimensional lattice, on a dual-socket
machine with 16 physical cores. These speedups are only
possible due to the introduction of two parameters that
improve load balancing between the threads, and mini-
mization of synchronization, as explained in Section V.
On the SVP variant of the SE++ algorithm, we improved
the algorithm in such a way that it outperforms that of

1http://www.latticechallenge.org/svp-challenge/

[10] by a factor of 35%-60%, depending on the lattice
dimension, thus becoming the fastest full enumeration-
based SVP-solver to date.

Roadmap: The rest of this paper is organized as fol-
lows. Section II introduces the notation used and defini-
tions. Section III overviews CVP/SVP-solvers and avail-
able implementations. Section IV overviews the SE++
algorithm in detail. Section V describes the optimization
that avoids symmetric branches, our parallel implemen-
tation, and its mechanism that balances the workload
among threads. Section VI shows the results of the
performance and scalability of our implementation, for
both the CVP and the SVP, as well as in comparison to
the implementation of the SVP-solver described in [10].
Finally, Section VII concludes the paper.

II. NOTATION AND DEFINITIONS

The Euclidean norm of a vector v ∈ Rn, denoted by
‖v‖, is the distance spanned from the origin of the lattice
to the point given by the vector v, i.e. ‖v‖ =

√∑n
i=1 v2

i ,
where vi is the ith coordinate of v. Vectors and matrices
are written in bold face, vectors are written in lower-case,
and matrices in upper-case, as in vector v and matrix M,
and their scalar elements are denoted by vi and Mi,j ,
respectively. The absolute value of a is given by |a|. The
lattice L generated by a basis B is denoted L(B).

III. RELATED WORK

This section overviews the development of the enumer-
ation algorithms for the SVP and CVP, in Section III-A,
and the corresponding sequential and parallel implemen-
tations, in Section III-B. Lattice-reduction algorithms,
and algorithms for the approximate SVP fall out of the
scope of this paper, and are not, therefore, overviewed
in this section. Algorithms for the approximate CVP are
briefly recapped in Section III-A.

A. Algorithms

1) Exact CVP- and SVP-solvers: : P. van Emde Boas
showed, in 1981, that the general closest vector problem
as a function of the dimension n is NP-hard [8]. The
breakthrough papers in the SVP and the CVP date back
to 1981, when Pohst presented an approach that examines
lattice vectors that lie inside a hypersphere [23], and to
1983, when Kannan showed a different approach using
a rectangular parallelepiped [17]. Extensions of these
two approaches were published later on, by Fincke and
Pohst, in 1985 [11], and by Kannan (following Helfrich’s
work [14]), in 1987 [18]. In 1994, Schnorr and Euchner
proposed a significant improvement of Pohst’s method
[25], that was later on found to be substantially faster than
Pohst’s and Kannan’s approaches [1]. The improvement
proposed by Schnorr and Euchner was influenced by
the Nearest Plane algorithm by Babai, a polynomial-
time method to find vectors that are close to a given
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Fig. 1. Timeline of the most relevant publications regarding CVP-solvers, enumeration SVP-solvers, approximate CVP-solvers, and their
connections.

target vector [6]. Recently, Ghasemmehdi and Agrell
showed that there are some redundant operations in the
algorithm, which can be eliminated, thereby accelerating
it substantially [12].

2) Approximate CVP-solvers: : There are essentially
two different approximate CVP-solvers: the Nearest
Plane algorithm, developed by Babai in 1986 [6], and
specific sieving algorithms. The first algorithm uses LLL
to solve the approximate CVP in polynomial time, with
an approximation ratio of 2( 2√

3
)n, where n is the rank

of the lattice. A distilled, yet precise, description of the
algorithm can be found in [19].

The root of sieving algorithms dates back to 2001,
when Ajtai et al. proposed a randomized algorithm that
solves the exact version SVP, with very high probability
[4]. This algorithm became known as AKS and it was
later on extended to solve the approximate CVP [5]. It is
still unclear (1) how practical this algorithm can be for the
CVP and (2) if and how other sieving algorithms, such as
GaussSieve [21], can be modified to solve the problem.
Further improvements on the AKS were proposed by
Blömer et al. [7].

Figure 1 shows a time-line and the connections be-
tween the most relevant of these publications.

B. Implementations

GPU and CPU parallel implementations of the
Schnorr-Euchner enumeration, otherwise known as
ENUM, were proposed in 2009 [15], and 2010 [10],
respectively. The latter achieves almost linear speedups
on a 16-core machine, for the SVP. In Section VI we
show a comparison between our implementation and that
described in [10].

The fplll library includes an implementation of the
Kannan–Fincke–Pohst algorithm for the SVP [24]. It is
still unclear what performance levels a modified version
of this algorithm can attain on CVP, since it is neither
included in the fplll library nor other available implemen-
tations are known. Another implementation of an enu-

meration process can be found in Magma2. However, it
requires users to contribute to distribution costs (licenses
start at 1000AC).

The NTL library includes an implementation of the
Nearest Plane algorithm for the approximate CVP (fplll
includes a non-supported implementation). Comparisons
with these implementations fall out of the scope of
our paper, since we are only interested in performance
comparisons for the SVP and CVP.

In summary, there are neither sequential nor parallel
publicly available CVP-solvers, to the best of our knowl-
edge. However, implementations of this kind are very rel-
evant, because they permit to assess the security of lattice-
based cryptosystems whose hardness is proportional to
the hardness of the CVP.

IV. THE SE++ ALGORITHM

This section provides a brief description of the clos-
est point search algorithm, dubbed SE++, proposed by
Ghasemmehdi and Agrell [12]. This algorithm is an
improved version of the algorithm described by Agrell et
al. called SE [1], which is based on the Schnorr-Euchner
variant [25] of the Fincke-Pohst method [11].

The SE++ algorithm can be separated in two different
phases: the basis pre-processing and the sphere decoding.
In the pre-processing phase, the matrix that contains
the basis vectors, denoted by B, is reduced (e.g., with
the BKZ or LLL algorithms). The resultant matrix D,
is transformed into a lower-triangular matrix, which we
refer to as G, with either the QR decomposition or the
Cholesky decomposition (see [1] for further details). This
transformation can be seen as a change of the coor-
dinate system. The decomposition of D also generates
an orthonormal matrix Q. The target vector r, i.e., the
vector that we want to compute the closest vector to, is
also transformed into the coordinate system of G, i.e.,
r′ = rQT . Finally, the sphere decoding is fed with the
dimension of the lattice n, the transformed target vector

2http://magma.maths.usyd.edu.au/magma/



r’ and the inverse of G, i.e., H = G−1, which is itself a
lower triangular matrix.

There are two different ways of thinking about the
sphere decoding process. Mathematically, it is the process
of enumerating lattice points inside a hypersphere (cf.
[12] for a detailed mathematical description). Algorith-
mically, this can be described as a traversal of a tree, a
useful view to understand the logic behind the proposed
parallelization approach. In particular, it consists in
a depth-first traversal on a weighted tree formed by
all vectors of projections of L orthogonally to basis
vectors. We will refer to the process of visiting a child
node (decrementing i, where i denotes the depth of the
node that is being analyzed at any given moment) as
moving down and the process of visiting a parent node
(incrementing i) as moving up.

The algorithm iterates over all the nodes in a zigzag
pattern. It starts at the root and stops when it reaches
the root again. The node at depth (i − 1) that is being
visited is determined by ui. The siblings of this node are
visited in a zigzag pattern, based on the Schnorr-Euchner
refinement [25]. ∆i contains the step that has to be taken
to visit the next node at depth (i−1) and is used to update
ui. The squared distance from the target vector r to the
node that is being analyzed is denoted by λi, while C is
the squared distance of r to the closest vector to r found
so far. C is initialized to infinity. If λi < C, the algorithm
will move down, otherwise it will move up again.

Whenever a leaf is reached, the values of vector u are
saved in û, which represents the closest vector to r found
so far, and C is updated, which reduces the number of
nodes that still have to be visited. Although the algorithm
behaves as a tree traversal, there is no physical tree (i.e.
a data structure) implemented.

As proposed by Ghasemmehdi and Agrell [12], a vec-
tor d is used to store the starting points of the computation
of the projections. The value di = k determines that, in
order to compute Ei,i (see [12] for further details about
matrix E), it is only necessary to calculate the values of
Ej,i for j = k−1, k−2, . . . , i, thereby avoiding redundant
calculations.

V. IMPLEMENTATION

A. Avoiding symmetric branches

Both the SE algorithm and its enhanced version SE++,
respectively presented in [1] and [12], compute the whole
enumeration tree, thereby computing several vectors that
are symmetric of one another. Since the purpose of the
algorithm is to find the shortest vector v of norm ‖v‖, it
is not relevant whether v or −v is found, since v and -v
have exactly the same norm. Therefore, the computation
of one of these vectors can be avoided, thus reducing
the number of vectors that are ultimately computed.
We have incorporated this optimization in SE++, an

Computed Nodes

Avoided Nodes

Fig. 2. Representation of the symmetric subtrees whose computation
can be avoided.

implementation we refer to Improved SE++, from here
on.

The ENUM algorithm avoids these computations al-
ready, by using a variable, called last nonzero, which
stores the largest index i of the coefficient vector u for
which ui 6= 0. For example, if ui = 0, but its parent
ui+1 6= 0, then all its subtrees have to be computed.
On the other hand, there are only symmetric subtrees on
nodes where uj = 0, j = i, ..., n. As shown in Figure 2,
there are only subtrees whose computation can be avoided
on the leftmost nodes of each level. Since u defines
the subtree of each level that will be computed next, it
is updated differently for nodes that contain symmetric
subtrees than for nodes that do not contain them. On
trees that contain symmetric subtrees, the value of ui is
incremented, searching only in one direction. On the other
hand, on trees that do not have symmetric subtrees ui is
updated in a zigzag pattern, searching in both directions
(positive and negative values of ui).

Each time the algorithm moves up on the tree and
i ≥ last nonzero, the variable is updated, indicating the
new lowest level that contains symmetric subtrees. At the
beginning of the execution, last nonzero is initialized to
1, the index of the leaves. Due to the similarities between
both algorithms, we applied this strategy to SE++ in the
same way.

B. Parallelization

As previously mentioned, the workflow of the algo-
rithm can be naturally mapped onto a tree traversal, where
different branches can be computed in parallel. Figure 3
shows a partition of these branches into several tasks that
can be computed in parallel, by different threads. (Very
fine grained) synchronization is only used to update the
best vector found at any given instant (the closest to the
target vector, at a given moment), as explained below. The
proposed implementation was written in C, and creates
these tasks with OpenMP. Once tasks are created, they are
added to a queue of tasks, and scheduled by the OpenMP
run-time system among the running threads. This system
also defines the order of execution of the created tasks,
in run-time.
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Fig. 3. Map of the algorithm workflow on a tree, partitioned into tasks,
according to the parameters MAX BREADTH and MAX DEPTH.

Our implementation combines a depth-first traversal
with a breadth-first traversal. The work is distributed
among threads in a breadth-first manner (across one
or more levels), while each thread computes the work
that it was assigned in a depth-first manner. First, a
team of threads, whose size is set by the user, is
created. Then, a number of tree nodes, based on two
parameters, MAX BREADTH and MAX DEPTH, are
computed sequentially. These two parameters also define
the number and size of the tasks that are created. Once
the MAX DEPTH level is reached, a task for each
of the nodes in that level is created, as also shown
in Figure 3. However, when creating the task number
MAX BREADTH, i.e. |∆i| = MAX BREADTH, the
task entails not only the current node but also all the sib-
lings of that node (excluding those within other tasks) and
their child nodes, as shown in Task 5, in Figure 3. Once
tasks are created, they are (either promptly or after some
time) assigned to one of the threads within the team, by
the OpenMP run-time system. As there is an implicit
barrier at the end of the single region, which means
that all the created tasks will be, at that point, already
processed.

There is a number of problems that must be addressed
in such an implementation. In first place, the tree is
considerably unbalanced. |∆i| can be used to estimate
the size of the subtree of the node that is being analyzed,
because it can be seen as a relative distance between
a node at depth (i − 1) that is being analyzed and
the first vector of the same subtree that was analyzed.
Therefore, |∆i| is used to identify heavier and lighter
subtrees: the lower |∆i| is, the heavier the tree. As
mentioned, MAX BREADTH determines the value of
|∆i| from which subtrees are grouped together, thus
preventing the creation of too fine-grained tasks. We set
MAX BREADTH = 6, based on empirical tests presented
in Section VI.

Some of the heavier subtrees need to be split in order to

attain better load balancing. The maximum depth is cho-
sen based on the number of threads on the system. In par-
ticular, the more threads, the more split the tree is. There-
fore, we define MAX DEPTH = n− log2(#Threads),
which determines the lowest depth that is reached to
split subtrees. Like MAX BREADTH, the value for this
parameter was also chosen based on empirical tests. To-
gether, these 2 parameters represent the trade-off between
the granularity and the number of created tasks.

When a thread processes a task, it computes all the
nodes on the branch spanned from the root of the enu-
meration tree up to the root of the subtree in the task, then
computing the subtree entailed by the task. The level of
the subtree that was assigned, given by i lvl, and the
nodes that have to be recomputed, given by the vector
u Aux, are passed as arguments. Additionally, the value
of |∆i| is also sent to the task, allowing to distinguish
subtrees that were grouped together from single subtrees.

The recomputation of nodes that belong to previous
levels of the tree allows to lower the number of memory
allocations and boost performance. Instead of allocating
each vector and matrix for each task, it is only necessary
to allocate a much smaller vector u Aux that contains
the coefficients of the nodes that have to be recomputed.
Therefore, each thread concurrently allocates its own
(private) block of memory (a struct) for matrix E and
vectors u, y, λ, ∆ and d (for more about these these
structures see [12]) and re-uses the same memory for the
execution of all the tasks that are assigned to it. Empirical
tests showed that performance can be improved by a
factor of as much as 20% with this optimization.

The value of C is stored in a global variable, accessible
by every thread. Threads check the value of C, which
dictates the rest of the nodes that are visited by each
thread. C is initialized with 1/H1,1, instead of infinity,
to prevent the creation of unnecessary tasks. For the same
reason, û is initialized with û = (1, 0, . . . , 0). Although
these variables are shared among all the threads, only
one thread updates them at a time. An OpenMP critical
zone is used to manage this synchronization. Every time
a thread executes the critical zone, it checks λ1 < C
again, since other threads might update those values in
the meantime.

VI. RESULTS

The tests were performed on a dual-socket machine
with 2 Sandy Bridge Intel Xeon E5-2670 processors, each
with 8 cores, and simultaneous multi-threading (SMT)
technology. The machine has a total of 128 GB of RAM.
The codes were written in C and compiled with the
GNU g++ 4.6.1 compiler, with the -O2 optimization flag
(-O3 was slightly slower than -O2). Additionally, the
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Fig. 4. Execution time of our implementation with 16 threads solving the CVP on random lattices in dimensions 40, 50 and 60, in (a), and
number of tasks created for 4, 8, and 16 threads for a lattice in dimension 50, in (b). BKZ-reduced bases with block-size 20.

NTL3 (for LLL and BKZ basis reduction) and Eigen4

(for the QR decomposition, inverse and transpose matrix
computations) libraries were also used. Although the
code was written in C, the g++ compiler was required
for these libraries. We have used Goldstein-Mayer bases
for random lattices, available from the SVP Challenge5,
all of which were generated with seed 0. Although the
execution times of the programs were fairly stable, each
program was executed three times and the best sample
was selected. The basis pre-processing, as described in
Section IV, was not included in the time measurements.

As aforementioned, two parameters are used to prevent
the creation of too many fine-grained tasks and to break
down the biggest tasks into smaller tasks. The value for
each of these parameters was set based on empirical
tests. Several tests were performed in order to find the
optimal value of MAX BREADTH for different lattices
and number of threads, for both solvers. For simplicity,
Figures 4(a) and 4(b) show the results of only some of
them. Different values for MAX BREADTH were tested
for both solvers in order to find its optimal value. Figure
4(a) shows the execution time for different values of
MAX BREADTH for BKZ-reduced lattices (with block-
size 20) when running with 16 threads (for other number
of threads the results were very similar), when solving
the CVP. Figure 4(b) shows the number of tasks that
are created in our parallel implementation, for 4, 8 and
16 threads, when solving the CVP. For the SVP and the
Improved SE++, the number of tasks as a function of
the MAX BREADTH is similar. The higher the value of
MAX BREADTH the higher the number of tasks that are
created. We set MAX BREADTH = 6, since it was the re-
sult that revealed to be slightly better than the others, de-
spite of creating many more tasks than MAX BREADTH
= 5. Since the difference between the number of created
tasks is much higher than the difference between the

3http://www.shoup.net/ntl/
4http://eigen.tuxfamily.org/
5http://www.latticechallenge.org/svp-challenge/

execution time, it is possible to conclude that OpenMP’s
implementation of the task queue is very optimized.
To choose the best values for MAX DEPTH, the level
at which tasks are created was set manually. For each
level, the execution time of the tasks was registered and
compared to the total execution time. To ensure linear
and super-linear speedups, the execution time of the
heaviest task has to be lower than 1

#Threads . To avoid
creating more tasks than it is necessary to guarantee a
good load balancing, MAX DEPTH is set dynamically
as n − log2(#Threads). With the parameters set with
these values, an ideal trade-off between load balancing
and granularity of the tasks is guaranteed.

We tested the SE++ and the Improved SE++ with
LLL- and BKZ-reduced bases (BKZ ran with block-
size 20). For LLL-reduced bases, they were tested with
lattices in dimensions 40, 45 and 50. For BKZ-reduced
bases, they were tested with lattices in dimensions 40,
50 and 60, since they run much faster in BKZ-reduced
bases. Figure 5(a) shows the execution time of SE++, for
the CVP, running with 1-32 threads6, with LLL-reduced
bases, and Figure 5(b) shows the same tests for BKZ-
reduced bases. Figures 6(a) and 6(b) show the execution
time, on the same conditions, for the SVP, of SE++ and
the Improved SE++ (which includes the optimization of
avoid symmetric branches), on LLL- and BKZ-reduced
bases, respectively.

There is a number of conclusions to be drawn. In
first place, SE++ scales linearly for up to 8 threads
and almost linearly for 16 threads, for both the CVP
and SVP. The implementation can also benefit from the
SMT technology, since the dependencies between the
instructions prevent the full use of the functional units
within each core. In second place, BKZ-reduced bases
are much faster to compute, both for the CVP and
SVP, than LLL-reduced bases. Last but not least, our
implementation solves the CVP much faster than the SVP,

6We used the parallel version running with a single thread as a single-
core baseline, which is 5% slower than the pure-sequential version.
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Fig. 5. Execution time of SE++ solving the CVP on random lattices in dimensions 40, 45 and 50 for LLL-reduced bases, in (a), and 40, 50 and
60, for BKZ-reduced bases, in (b), for 1-32 threads.
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Fig. 6. Execution time of our implementation solving the SVP on random lattices in dimensions 40, 45 and 50 for LLL-reduced bases, in (a),
and 40, 50 and 60, for BKZ-reduced bases, in (b), for 1-32 threads.

but the results are dependent on the target vector and on
the tested lattice. In our experiments, we used a vector
t = sB, where si = 0 for i = 1, . . . , n/2 and 0.75 for
i = n/2+1, . . . , n, and B is the basis of the lattice. This
vector was chosen due to not being too close to the basis
vectors, but also not too far away.

A few points need to be addressed regarding the
scalability of our implementation. In the first place, and as
in [10], the implementation might possibly have a smaller
workload than the sequential execution would have. This
might occur because some threads might find, at a given
point, a vector that is strictly shorter than the distance
from the input vector r′ to the (i−1)-dimensional layers
that would be analyzed in a sequential execution. This
justifies the super-linear speedups that are achieved for
some cases, such as on the CVP, with a BKZ-reduced
50-dimensional lattice, using four threads.

For the remaining cases, efficiency levels of >90%
are attained for the majority of the instances of up to
8 threads, except for lattices in dimension 40, where the
workload is too small to compensate for the creation and
management of more than 4 threads. With 16 threads, the
scalability is lower than for up to 8 threads, presumably
because of the use of two CPU sockets, which is naturally
slower than the use of a single socket, due to the Non-

Uniform Memory Access (NUMA) organization of the
RAM. In addition, Figures 6(a) and 6(b) show that the
Improved SE++ outperforms SE++ for the SVP by a
factor of ≈50% with similar scalability.

Figure 7 shows a comparison between the Improved
SE++ and the implementation in [10], for the SVP on two
random lattices. It is possible to see that, in the general
case, our implementation scales better. For the lattice in
dimension 45 our approach has higher workload savings
than the implementation in [10]. Both implementations
are influenced by the NUMA organization of the RAM,
as we can see in the case of the lattice in dimension
50. In general, with 1 thread, SE++ seems to be slower
than [10], by a factor of 10% to 25%, even though it
was 25% faster for the lattice in dimension 40. However,
the Improved SE++ outperforms [10] by a factor of
35% to 60%, thus becoming the fastest deterministic
enumeration-based solver to date.

VII. CONCLUSIONS

We developed, implemented and assessed a multi-
core CPU parallel implementation of the CVP-solver
described in [12], a solver that, with slight modifications,
can also be used to solve the SVP. We showed that
the solver can be efficiently parallelized, achieving linear
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Fig. 7. Execution time of our implementations and the implementation
in [10], for the SVP on LLL-reduced lattices..

speedups for up to 8 threads and almost linear speedups
for 16 threads, both when running the CVP and the SVP.
The use of 16 threads implies the use of two CPU sockets,
which can explain the loss of linear scalability, due to
the use of point-to-point processor interconnect buses,
since the synchronization cost of threads on different
sockets is higher. The implementation achieves super-
linear speedups in some instances on up to 8 cores,
due to workload savings with the parallel algorithm, as
explained in Section VI. Some speedup factors of >14x
are achieved for 16 cores, with efficiency levels of up
to 93%. A crucial part of our parallelization scheme is
the thorough load balancing via two added parameters,
MAX BREADTH and MAX DEPTH, that (1) prevent
the creation of too many fine-grained tasks and (2) break
down the biggest tasks into smaller tasks.

Our results show that enumeration-based CVP-solvers
can be parallelized as efficiently as enumeration-based
SVP-solvers, since we compared the scalability both with
the SVP version of our algorithm and a third party im-
plementation, described in [10]. These results expand the
knowledge that the community has on the practicability
and scalability of enumeration-based CVP-solvers, which
are not as studied as SVP-solvers. Moreover, it can be
used as an efficient, parallel building block of algorithms
such as the Voronoi-based SVP solver described in [1],
which lacks of practical assessment to this day.

In addition, we showed that by avoiding the computa-
tion of symmetric branches, SE++ outperforms ENUM,
the fastest deterministic enumeration-based SVP-solver
known to this day. In particular, the Improved SE++
is faster than [10], by a factor of between 35% and
60%, depending on the lattice dimension, running with
one thread. We also showed that the scalability of our
implementation compares well with the implementation
described in [10].
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