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Abstract

Bark pellets have been pyrolyzed in a fluidized bed reactor at temperatures between 700 &t I @ified
nitrogen-containing species were hydrogen cyanide (HCN), ammonig)(MHd isocyanic acid (HNCO). Quan-
tification of HCN and to some extent of NHvas unreliable at 700 and 80C due to low concentrations. HNCO
could not be quantified with any accuracy at any temperature for bark, due to the low concentrations found. Since
most of the nitrogen in biomass is bound in proteins, various protein-rich model compounds were pyrolyzed with
the aim of finding features that are protein-specific, making conclusions regarding the model compounds applica-
ble for biomass fuels in general. The model compounds used were a whey protein isolate, soya beans, yellow pea:
and shea nut meal. The split between HCN and;MEpends on the compound and temperature. It was found that
the HCN/NH; ratio is very sensitive to temperature and increases with increasing temperature for all compounds,
including bark. Comparing the ratio for the different compounds at a fixed temperature, the ratio was found to
decrease with decreasing release of volatile nitrogen. The temperature dependence implies that heating rate ar
thereby particle size affect the split between HCN andgNIFbr whey, soya beans, and yellow peas, HNCO was
also quantified. It is suggested that most HCN and HNCO are produced from cracking of cyclic amides formed
as primary pyrolysis products. The dependence of the HNCO/HCN ratio on the compound is fairly small, but
the temperature dependence of the ratio is substantial, decreasing with increasing temperature. The release ¢
nitrogen-containing species does not seem to be greatly affected by the other constituents of the fuel, and protein
appear to be suitable model compounds for the nitrogen in biomass.

0 2004 The Combustion Institute. Published by Elsevier Inc. All rights reserved.
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1. Introduction mation of nitrogen compounds from the nitrogen in
the fuel, it is important to apply air staging in such
Complete combustion is important in order to @ Way that the nitrogen compounds are reduced to
minimize emissions of harmful species such as car- Molecular nitrogen in a reducing combustion zone
bon monoxide and various hydrocarbon compounds. Pefore enough air is supplied to produce complete

However, to simultaneously minimize also the for- burnout. Undesirable nitrogen-containing combustion
products are N@, NO, and NO. NO and NQ cause

acid rain and contribute to the formation of photo-

* Corresponding author. chemical smog and ground-level ozone,Nis a
E-mail addressmartinh@entek.chalmers.se greenhouse gas and it also takes part in the destruc-
(K.-M. Hansson). tion of the ozone layer in the stratosphere.
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Table 1

Literature data on HCN and Nfields from biomass pyrolysis

Biomass Heating rate Tiinal (°C) NH3—N (%) HCN-N (%) Ref.
Bagasse Tube reactor 800 ~12 ~54 [22]
Rapeseed Fluidized bed 500-700 ~11-27 n.a. [32]
Wood bark (birch, fir, pine) Entrained flow reactor 800 4555 0.55-0.73 [8]
Wood bark (pine) 10 Kmin 810-930 10-15 n.a. [9]

n.a., not analyzed.

Advanced kinetic modeling of the gas-phase re-
actions is a useful tool to optimize the formation of
molecular nitrogen from fuel nitrogen, while com-
plete oxidation of the fuels is achieved. However,
in order to be useful, the kinetic schemes need in-
formation on the primary volatile nitrogen species
that result from pyrolysis. The question of whether
the volatile nitrogen species are §NHHCN, or some
other compounds is crucial for the results of the mod-
eling. Gas combustion experiments, as well as kinetic
modeling of combustible mixtures doped with HCN,
have revealed that HCN forms NO ang® under
combustion [1-3]. In mixtures doped with NHNO
is formed, while MO formation is negligible [1-3].
HNCO has not been as thoroughly investigated as
HCN and NH; but the formation of MO is mainly
a result of the reaction

NCO+ NO — N0 + CO. @)

HNCO can therefore be expected to be a precursor
to N>O [1]. In fact, before NO was recognized as

a problem, urea was injected into hot combustion
gases in order to reduce NO emissions (the SNCR
process). However, this practice led to high emissions
of N2O [4]; this is probably because HNCO is formed
by the pyrolysis of urea [5].

Proteins have been found to be the main source of
nitrogen in wood (see [6,7] for a review). However,
during the past 10 years, the idea that most of the ni-
trogen in biomass is in the form of proteins has been

residue and the gas phase as well as the HCN/béH
lectivity. Since the amino acid composition of the pro-
teins greatly affects the selectivity between volatile
nitrogen and char nitrogen as well as the selectivity
of the different volatile nitrogen-containing species, it
is important to choose proteins that have amino acid
compositions similar to those found in biomass when
using proteins as model compounds [6]. The literature
data on the formation of HCN and NHrom bio-
mass show great variations in yields (Table 1) and in
HCN/NH3; ratio. Due to the scatter in the results, it is
not possible at present to predict the release of volatile
nitrogen from biofuels. The differences can be an
effect of different experimental conditions or inade-
guate gas analysis, but also of variations in the fuels.
Different kinds of trees may have different amino
acid compositions, and trees in the temperate zone
show seasonal changes in protein concentrations and
protein composition [11,12]. Because of these uncer-
tainties it is important to investigate different proteins
to find out which variations in pyrolysis products can
be expected from biomass, and this is one of the ob-
jectives of this paper.

When biomass is pyrolyzed at low temperatures,
most of the fuel nitrogen has been reported to be
found in the char and tar (Table 2). However, nitrogen
gas from air has been found to adsorb on chars derived
from coal [13] and phenol formaldehyde resin [14] as
well as on other carbon-rich solids such as molecular
sieving carbon and activated carbon fiber [14]. The

seriously questioned. Instead it has been suggestedadsorbed nitrogen contributes to the total nitrogen

that all nitrogen in biomass should be in heterocyclic
aromatic structures [8—10put as outlined in previous
work [6,7], the evidence for nitrogen being in hete-
rocyclic structures are not conclusive. In contrast, all
available data support the view that proteins are the
main source of nitrogen in wood and other biomass
[6,7].

In previous studies, it has been suggested that
the pyrolysis of proteins as model compounds would
lead to increased insight regarding the formation
of nitrogen-containing species from biomass [6,7].
These studies revealed that HCN, §ythnd HNCO
are the main pyrolysis products from proteins and
that the amino acid composition of the protein greatly
affects the distribution of nitrogen between the solid

content measured by instrumental analyzers based on
combustion of the solid samples [13,14]. This is why
this method can give overestimated nitrogen concen-
trations [13,14]. Nitrogen gas is expected to adsorb
on biomass chars as well, and due to the low nitro-
gen concentrations in biomass such adsorbed nitrogen
can contribute significantly to the analyzed concentra-
tions. The low concentrations of nitrogen in biomass
can also make quantification uncertain. The uncer-
tainty in the analyzed amounts of nitrogen in fuel,
char, and tar fractions is apparent from the fact that
the reported nitrogen yields in char and tar fractions
sometimes exceed 100% of the nitrogen in the orig-
inal fuel (Table 2). Adsorbed nitrogen has probably
contributed to the analyzed nitrogen in these cases.
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Table 2
Literature data on yields of nitrogen in char and tar (in some cases oil) fractions from biomass pyrolysis
Biomass Heating rate Tiinal (°C) Char—N (%) Tar—N (%) Ref.
Bagasse 12 Kmin 500 ~50 n.a. [17]
Bagasse ~2.5 K/min 530 ~40 ~45 [17]
Coffee husk 500-900 48-32 n.a. [33]
Cottonseed cake 7 Mnin 550 n.a. ~135 [34]
E. rigida 7 K/min 500 ~19 ~22 [35]
E. rigida 7 K/min 500 n.a. ~40 [36]
Hazelnut shell 7 Kmin 500 n.a. ~30 [36]
Oil palm shell Fluidized bed 500 n.a. ~70 [37]
Olive husk 500 ~33 n.a. [38]
Olive bagasse Isothermal 500 ~50-100 n.a. [39]
Olive waste 800 40-50 n.a. [40]

1000 25-30

Rapeseed 40 Knin 500 n.a. ~50 [41]
Rapeseed 300 Knin 550 ~4 ~37 [42]
Rape (straw and stalk) 30/Knin 650 n.a. ~24 [43]
Rape (straw and stalk) 5Mnin 400-900 75-53 n.a. [44]
Safflower seed 5 Kmin 500 ~28 ~24 [45]
Sunflower (pressed) 7 nin 550 n.a. ~55 [36]
Sunflower (pressed) 300/iin 550 ~22 ~45 [46]
Sunflower (pressed) 300/Knin 550 n.a. ~51 [47]
Sunflower (pressed) Tubular reactor 550 ~7 ~35 [48]
Wood (poplar) Fluidized bed 500 ~30 >100 [49]
Wood (bark mix) Sealed batch reactor 500 n.a. ~252 [50]
Wood (bark mix) 500 ~307 n.a. [51]
Wood (beech) Fluidized bed 800 ~32 n.a. [52]
Wood (birch) Fluidized bed 850 ~42 n.a. [53]
Wood (spruce) Fluidized bed 850 ~45 n.a. [53]
Wood bark (pine) 10 Kmin 810-930 ~60-80 n.a. [9]

Many of the yields were calculated from char and tar yields and nitrogen concentrations in fuel, tar (or oil), and char. n.a., not

analyzed.

@ The nitrogen content in the fuel, 0.5% dry basis (2.5% ash), was not given in Refs. [50] and [51].

Proteins that do not contain reactive side chains
form cyclic dipeptides, 3,6-disubstituted-2,5-diketo-
piperazines (DKPs) [15]. DKPs belong to the group
cyclic amides (Fig. 1). In a study on the mild py-
rolysis of human hair, other cyclic amides known
as 5-substituted-2,4-imidazolidinediones were sug-
gested to be pyrolysis products from proteins [16].
From a study on the pyrolysis of bagasse, the cyclic
amide 3-methyl-2,4-imidazolidinedione has been re-
ported to be a pyrolysis product [17]. Pyrolysis of the
polyamide nylon 6 at low temperatures produces the
cyclic amidee-caprolactam [18]. Proteins that con-
tain amino acids with reactive side chains have been
suggested to cross-link and form char [6,7].

Amides contain the functional group —-NH-CO-.
The linear amides (Fig. 2) urea [5], nylon 6,6 [19],
and the proteins poly-leucine and poly--proline
[6] all form HNCO under pyrolysis. Urea lacks the
functional group —CHR-NH-, which nylon 6,6, as
well as poly+-leucine and poly--proline, has. Con-
sequently, urea does not form HCN as the other linear
amides do. All of the above-mentioned linear amides
form ammonia under pyrolysis [5,6,19]. Urea has pri-

mary amine groups, nylon 6,6 and palyleucine
mainly contain secondary amine groups (Fig. 2), and
poly-L-proline mainly contains tertiary amine groups.

The cyclic amides 2-azetidinone [20], 2-pyridone,
and 2,5-diketopiperazine [21] all form both HNCO
and HCN under pyrolysis. It was suggested that all
cyclic amides should decompose through similar re-
actions and that the selectivity between HNCO and
HCN should have similar temperature dependencies
for all cyclic amides [6]. The HNCO yield decreases
and the HCN yield increases with increasing temper-
ature for 2-azetidinone [20] as well as for 2-pyridone
and 2,5-diketopiperazine [21]. Hence, the HNCO/
HCN ratio decreases with increasing temperature for
all three cyclic amides.

The formation of light gases from proteins can
be either directly from the polymer chain or from
cracking of tar products. In either case, HNCO can
be expected to be a pyrolysis product from proteins.
Poly-L-leucine and poly--proline have previously
been shown to produce HNCO as well as HCN and
NH3 [6]. Since neither of these proteins has reactive
side chains and since neither of them formed any char,
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Fig. 2. Structures of linear amides.

it was suggested that the primary reaction for these
two proteins was depolymerization to form DKP.

Little is known about the formation of HCN and
NH3 from wood and other biomasses. The formation
of HNCO had not been expected previously, which
is reflected by the fact that the analysis method usu-
ally used [8,9,22] to quantify Nkfi.e., wet chemical
analysis) converts HNCO into ammonia so that the
measured concentrations of Nhh fact are the sum
of the concentrations of Ngdand HNCO [23].

The aim of this study was to investigate if HNCO
is a pyrolysis product from wood and to investigate
the selectivity between HCN and NHat different

temperatures for bark and some model compounds.

Since the low concentrations of nitrogen in wood lead
to low concentrations of nitrogen-containing species
in the gas phase, which complicates their analysis,
bark was used due to its comparatively high nitro-
gen content. Furthermore, a whey protein isolate was
found to have an amino acid composition approxi-
mately comparable to the amino acid compositions
reported for Scots pine wood (Table 3). Therefore,
this whey protein was used as a model compound
for the nitrogen in wood. It is possible that reactions
between proteins and the other constituents of bio-

reactions in the gas phase have also been suggested
to have an impact on the distribution between HCN
and NH;. The fuel's O/N ratio has been suggested
to be a measure of the fuel's tendency to take part
in such secondary reactions [8]. That hypothesis was
tested by including three more fuels in this study. The
protein concentrations in these fuels are higher than
in bark, but lower than for the whey protein isolate.
Consequently, the five fuels have very different O/N
ratios, and the importance of this ratio on secondary
reactions could be assessed.

2. Experimental procedures
2.1. The fuel samples

Five different biofuels have been pyrolyzed: bark,
shea nut meal (i.e., the residue after oil extraction—
here referred to as shea), yellow peas, soya beans,
and whey protein. The elemental analysis of the fu-
els is listed in Table 4. The fuels’ nitrogen content
varies from 0.4 to 15.3 wt%. The whey protein used
in this study is an isolate called Lacprodan DI-9224. It
contains less than 0.2% fat and lactose, respectively.

mass can occur in the condensed phase. SecondaryThe protein content is close to 90 wt%. Five of the
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Table 3

Amino acid composition (molar %) of the whey protein isolate used in this study and literature data on scots pine [54,55]
Amino acid Whey protein Scots pifi¢54] Scots pinE [54] Scots pine [55]
Alanine a7 77 79 9.6
Valine 59 8.8 7.3 75
Leucine 102 7.2 6.1 7.9
Isoleucine 6l 50 49 53
Methioniné& 18 14 2.0 17
Proline 58 30 6.1 58
Phenylalanine G 4.7 41 37
Tryptophan 17 11 12 n.a.
Glycine 17 6.6 53 9.7
Serine 50 6.4 6.5 8.3
Threonine 3 6.4 7.3 75
Tyrosine 37 30 6.9 13
Cysteiné 2.4 5.0 29 n.a.
Aspartic acid 110 94 7.8 9.6
Glutamic acid 167 99 7.8 99
Lysine 92 41 33 51
Arginine 19 33 24 4.2
Histidine 19 2.8 24 16

n.a., not analyzed.
@ Quter sapwood.
b Inner heartwood.
¢ Sulfur-containing amino acid.

Table 4

Ultimate and elemental analysis of the fuels used

Fuel Moisturé Ash? ch Hb NP b oc o/Nd
Bark 90 3.0 550 6.2 04 0.03 384 950
Shea 12 53 524 5.4 29 0.28 390 136
Pea [°¢] 2.4 463 6.6 4.3 0.16 426 9.9
Soya 4 4.6 545 7.6 6.8 0.36 307 45
Whey 74 38 531 71 153 129 232 15

a Weight % as received.

b Weight %, dry ash-free basis.

¢ Weight % by difference, ash-free basis.
d Weight ratio.

proteins in bovine milk are whey proteins [243- from which fragments were cut. The fragments’
Lactoglobulin makes up=45% of the whey proteins ~ weight ranged from 117 to 174 mg and they were
anda-lactalbumin an additional 20%. These proteins all thinner than 1 mm. The soya beans weighed 150
contain 162 and 123 amino acid residues, respec- to 250 mg and werex3—-4 mm thick. The yellow
tively. The proteose-peptones make 0% of the peas were somewhat bigger, 240-270 mg, 4-5 mm
whey proteins and are large polypeptides rather than thick. Small pieces of bark (200-260 mg), with-
proteins [24]. The molar sulfur-to-nitrogen ratio for ~mm sides, were cut from bark pellets. Fragments of
the amino acid composition of the whey (Table 3) is sheawere cut from larger pieces to sizes-8+5 mm
0.035, while the ratio calculated from the elemental (250-260 mg). Experiments with whey, bark, and
composition (Table 4) is 0.037. Consequently, all of SOya beans were done at 700, 800, 900, and 1G00
the sulfur in the whey belongs to the protein fraction EXxperiments with shea and yellow peas were made at
and not to the salt fraction. Soya beans and peas have 900°C. All experiments were made in triplicate runs.
low concentrations of sulfur-containing amino acids,
which are reflected by their low S/N ratios. In wood, 2.2. Experimental setup
most of the sulfur exists in proteins [25].

The particles were pyrolyzed one at a time. The The fuels were pyrolyzed in a fluidized bed reactor
whey protein powder was compressed into a disk (Fig. 3). The reactor is a cylindrical quartz glass reac-
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Fig. 3. The experimental setup.

tor (i.d. 60 mm), placed in a vertical three-zone tube
furnace, which is electrically heated. The temperature
was separately controlled in each zone. Gas was intro-
duced into the bottom of the reactor and heated in the
first zone, 500 mm long. The quartz sand bed rested
on a gas distribution plate that was located between
the first and the second zone. The lengths of the sec-
ond and third zones were 300 mm each. The bed ma-
terial had sizes ranging between 250 and 315 pum and
the static height of the sand-bed wa60 mm. The
particles were fed from the top of the reactor through
a small cylinder with two valves, one at the top and
one at the bottom of the cylinder. This arrangement
prevented air leakage and disturbances of the gas flow
pattern within the reactor by always keeping one of
the valves closed.

Experiments were made with nitrogen as the
fluidizing gas. Nitrogen was also introduced some
300 mm from the top of the reactor. This second

gas flow was intended to increase turbulence and gas

mixing in the reactor. Gases left the reactor through
holes in the reactor’s top plate. Most of the gas from
the reactor was removed as exhaust gas. However,
pumps withdrew as much gas as the analysis instru-
ments required. A filter placed on top of the reactor
prevented fly ash, soot, and bed material from en-
tering the analysis instruments. After the filter, the
gas flow was divided into three streams: one lead-
ing to a FTIR (Fourier transform infrared) instru-

ment (Bomem Model 9100), one leading to a FID
(flame ionization detector) instrument (JUM Engi-
neering Model 3-300A), and one leading to two
NDIR (nondispersive infrared photometer) instru-
ments (Rosemount Binos 100), a paramagnetic O
analyzer (Leybold-Heraeus AG, Oxynos-1) and a
chemiluminescence NQanalyzer (ECO Physics).
The concentrations of CO and GQvere measured
with one of the NDIR instruments, total hydrocar-
bons (THC) were analyzed with the FID. @Ghivas
measured with the second NDIR instrument. HCN,
NH3, and HNCO were analyzed with the FTIR. The
data acquisition times were 1 s for all instruments ex-
cept the FTIR, which had a data acquisition time of
~3 s. In order to prevent Nffrom being catalyt-
ically destroyed at the ntallic junction connecting
the ceramic gas sampling probe in the reactor with
the filter placed on top of the reactor top plate, or in
the filter, the gases were cooled+300-400°C in a
water-cooled fourth zone of the quartz glass reactor,
~100 mm long, located between the third zone of the
reactor and the reactor’s top plate (Fig. 3).

2.3. Quantification

The concentrations of N(Hand HCN were de-
termined from the~20—-40 FTIR spectra from each
experiment, by spectral subtraction. No HNCO cal-
ibration spectra were available from the FTIR used
in the experiments, but HNCO spectra from another
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FTIR, differing from the present FTIR only in gas cell
volume and optical path lengttl), were available.
Ideally, the absorbancogt) at a specific wavenumber
(v) is linearly dependent on gas concentrati@,
according to Bouguer—Lambert-Beers latv= alc)
wherea is the absorptivity. The absorptivity is gas-
specific and is a function of wavenumber. Ideally)
from the second FTIR instrument could be used to
quantify HNCO in the spectra from the present ex-
periments. The functions(v) calculated from both
FTIR instruments were compared for gases that ab-
sorb IR light in approximately the same spectral range
as HNCO. The functionsg(v) for the two instruments
were identical for both CO and 4D, so it was as-
sumed that the same should be true for HNCO. The
absorbance at 2269 cm 1 was used as a measure
of [HNCO]. CO, also absorbs at that frequency, and
therefore the interference with Ghas to be taken
into account. [CQ] was measured at 2389.5 crh

and before [HNCO] was quantified at 2269.6 ¢h
the absorption caused by GGat that wavenum-
ber was subtracted from the total absorbance. The
absorbance was found to be linearly dependent on
[HNCOQ] for the second FTIR, and the constant
derived from this correlation was used to quantify
[HNCO] from the experiments in this study. In prac-
tice the absorbance is often not linearly dependent on
concentration. The nonlinearity is mainly an effect of
insufficient resolution. Many of the gases calibrated in
the FTIR show linear absorbance—concentration cor-
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compared to the other gases. The conclusion from this
observation is that no gas other than Nétlsorbs to
any significant extent in the gas line. For experiments
with bark at 700 and 800C, the concentrations of
HCN were too low to allow quantification with high
accuracy as in the other experiments. Although the
concentrations of Nkl were quantified with higher
accuracy than the HCN concentrations for bark at 700
and 80C°C, the accuracy was not high enough to be
completely satisfactory in these experiments.

3. Results

HCN and NH; were identified as pyrolysis prod-
ucts from all five fuels at all temperatures used in
this study. HNCO could be identified in all spectra
from whey, soya bean, and yellow pea. Because the
HNCO/CO; ratio decreases with decreasing nitrogen
content in the fuel, the HNCO signal became weaker
and weaker in comparison to the g@nd CO spectra.
Consequently, identification of HNCO became more
difficult for fuels with low nitrogen content. Fig. 4
illustrates how the HNCO spectra became more and
more obscured by Cf and CO as the fuel nitro-
gen content decreased. All the spectra in Fig. 4 were
from experiments at 900C and with approximately
the same C@ concentrations. For shea, the HNCO
spectrum did not appear until the spectra of GDd
CO had been subtracted from the spectrum of the py-
rolysate. This is probably the reason HNCO has not

relations at low absorbance, but at higher absorbance been observed in previous studies of wood pyrolysis

the correlations deviate from being linear. When this

in which FTIR has been used. In Fig. 5, a spectrum

happens, the true concentrations are always higher from an experiment with bark pellets at 900 af-

than the calculated ones, if the linear correlations are
used. Hence, there is a possibility that some of the
[HNCO] derived from the experimental spectra are
underestimates of the true values.

For transient events, it is known that measured
[NH3] are delayed in time, since ammonia adsorbs
on the walls of gas sampling lines and other sur-
faces [26]. To avoid adsorbance of ammonia, the gas
lines were heated to 165 and 190, respectively
(Fig. 3). The filters and the pump located between
the reactor and the FTIR were also heated to prevent
ammonia adsorption. The NHconcentrations as a
function of time look very different for whey, soya,
and pea for concentrations down to 10 ppm. However,
the concentration—time curves look the same for all of

ter subtraction of C@and CO is shown. It reveals a
structure very close to that of HNCO, but the signal
is very low and is of the same height as the ampli-
tude of the subtraction residual for GONeverthe-
less, the signal indicates the presence of HNCO in the
pyrolysis gases from bark. This is an expected result
since all protein sources used so far, in this study as
well as in the previous study with polyHeucine and
poly-L-proline [6], did produce HNCO. The spectral
residual for CO is large in Fig. 5, because the CO con-
centration was much higher than the concentration of
the calibration spectrum used in the subtraction. The
residual also reveals a structure in the range 2200—
2100 cmfl; this is not an effect of poor subtraction
but comes from the presence of another species. The

these fuels as soon as the concentrations have droppedpresence of this other species is more apparent at

to values lower than 10 ppm. This is probably an ef-
fect of the fact that, when the Nf-toncentrations are

high, the surfaces are saturated with adsorbed ammo-

nia, which gradually desorbs when the flow of BiH

lower pyrolysis temperatures. Fig. 6 shows a spectrum
of pyrolysate from bark at 700C and the same spec-
trum after subtraction of CO and GQA strong signal
remains in the range 2200-2100 th This species

from the reactor ceases. The peak concentrations for is probably ketene, C}CO, which is known to ab-

all gases, except Ngiwere found to coincide in time.
For NHs the peak concentration was slightly delayed

sorb IR light in that region [27]. Especially the peak
at the band center at 2150 crhis typical for ketene.
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Fig. 4. Examples of spectra from pyrolysis experiments at°@@or (A) whey, (C) soya bean, (E) yellow pea, and (G) shea.
Also depicted are the same spectra after spectral subtraction pRE®OCO for (B) whey (black dotted line), (D) soya bean,

(F) yellow pea, and (H) shea. In (B), the calibration spectrum of 1247 ppm HNCO from the second FTIR, multiplied by 1.52, is
also shown (thick gray line).

The presence of HNCO from bark is also more appar- tion method may give underestimates of the concen-
ent in the spectrum taken at 700 (Fig. 6) than in trations). The HNCO/HCN ratios were found to de-
that at 900°C (Fig. 5). crease with increasing temperature for both whey and
HNCO was quantified for all the experiments with  soya beans (Fig. 7). Whey has a higher HNCO/HCN
whey, soya beans, and peas (note that the quantifica- ratio than soya beans at all temperatures used in this
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Fig. 6. (A) An example of spectra from pyrolysis of bark at 7@and (B) the residue after spectral subtraction of CO angd.CO

study. For peas pyrolyzed at 990G, the HNCO/HCN
ratio is the same as for soya beans pyrolyzed af@0
(Fig. 7).

The HCN/NH; ratio has a significant temperature
dependence for all materials studied (Fig. 8). Whey
has a higher HCN/NHl ratio than soya beans and
bark at all temperatures. The HCN/NHatio could
not be measured with any accuracy at 700 and°&D0
for bark due to low concentrations of HCN. At 900
and 1000 C, the concentrations of HCN were higher,
which made quantification more reliable. In this tem-
perature range the HCN/NHratio decreased with
decreasing temperature. It was also established that
the HCN/NH; ratio continued to decrease with de-
creasing temperature for bark also in the temperature
range in which exact quantification of HCN was not
possible. In fact, the temperature dependence of the
HCN/NH3 ratio for bark is the same as for whey and
soya beans (Fig. 8). At each temperature at which
the ratio could be estimated with any accuracy, the
HCN/NH3 ratio for bark was slightly higher than for
soya beans and lower than for whey. The HCNA\NH
ratio for shea pyrolyzed at 90@ was lower than for
any of the other fuels at this temperature, while the
ratio for yellow peas was approximately the same as
for bark and soya beans (Fig. 8). The small size of the
whey particles makes the experiments with whey al-
most isothermal. For the other fuels, the size of the

0.5
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0.4 1 O Soya bean
x + Yellow pea
=
503
L
o
Q0.2
=
I
0.1
0 T T T T
600 700 800 900 1000 1100

Temperature (°C)

Fig. 7. Molar ratios of HNCO and HCN yields for whey pro-
tein, soya beans, and yellow peas. Trend line for soya beans.

particles leads to a slower heating of the particles’ in-
terior. Consequently, a larger part of the pyrolysis for
these fuels will proceed at temperatures below that of
the reactor. This is probably the reason whey protein
has a higher HCN/NKliratio than any of the other fu-
els (Fig. 8).

The G instrument confirmed that the reactor was
free from oxygen in every experiment. However,
some oxidation of the volatile nitrogenous species
can occur, since the pyrolysis gases contain high con-
centrations of oxygen-containing species, particularly
H,0 and CQ. The NO concentrations were low in
every experiment. The yields of NO increased with
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Fig. 9. The ratio between volatile nitrogen and volatile car-
bon normalized to the fuel N/C ratio as a function of reactor
temperature for whey protein, soya beans, yellow peas, shea,
and bark.

decreasing nitrogen content of the fuel. For bark, as
much as 2.5% of the volatile nitrogen was identified
as NO, while the NO never exceeded 0.3% of the
volatile nitrogen for whey.

Usually the nitrogen concentration is more en-
riched in the char than is the carbon concentration
when wood is pyrolyzed, and this trend is generally
validated in this work. A higher portion of the fuel
carbon than the fuel nitrogen was found in the gas
phase after pyrolysis, especially at low temperatures
(Fig. 9). The carbon in the gas phase is the sum of
CO, CQ, THC, and HNCO, and the nitrogen in the
gas phase is the sum of HCN, NHHNCO, and NO
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of the fuel original weight OM ratio (see Table 4; note the
logarithmic scale). Reactor temperature: 9G0

4. Discussion

The HCN/NH; ratio under pyrolysis conditions
was found to be a function of the fuel's O/N ratio in
a study involving the bark from three different kinds
of wood, four kinds of peat, one German brown coal,
and one Colombian bituminous coal [8]. In a follow-
up study with different model compounds of pyridine
type, pyrrole type, and amino type, no such correla-
tion could be found [28]. Neither could the results
in this study establish any correlation between the
HCN/NH3 ratio and the O/N ratio of the model com-
pounds and bark, at least if the whey particles were
excluded (Fig. 10). The whey particles were much
smaller than the other particles and would there-
fore experience higher heating rates and consequently
have a higher HCN/NHl ratio than the other com-
pounds. The reason the HCN/NHatio is not signif-
icantly correlated with the fuel's O/N ratio is proba-
bly that the secondary gas-phase reactions in which
HCN is converted into NHl are of less importance
than suggested. Instead, the fuel-nitrogen functional-
ity dictates the HCN/NH split. In this study, proteins
are the main nitrogen functionalities in every fuel, and
though the amino acid composition may vary between
the fuels used, the variations in amino acid compo-
sition between natural proteins are normally not too
profound, and therefore the HCN/NHatio is not
greatly affected by this. In the previous study [8], in
which the correlation between HCN/NHatio and
fuel O/N ratio was established, the fuel O/N ratio was
thought not to have any strong correlation with fuel

for whey, soya bean, and pea. For bark and shea, the N functionality. However, biomass has mainly protein

carbon in the gas phase is the sum of COCahd
THC, and the nitrogen in the gas phase is the sum
of HCN, NHgz, and NO. A trend noticed for the ex-
periments at 900C was that the higher the yield
of volatile nitrogen, the higher the ratio of HCN to
NH3.

nitrogen (believed to be pyrrolic nitrogen in [8]), and
peat has high proportions of fuel nitrogen in protein
and amino functionalities [29]. Consequently, these
fuels produce high yields of ammonia. For coals, the
form of volatile nitrogen depends on the nitrogen
functionalities in the coal. The nitrogen in pyrrolic
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and pyridinic forms releases HCN, amine/quaternary
nitrogen releases N§{30], and pyridone nitrogen re-
leases HCN and HNCO [21]. The coal's O/N ratio
is usually correlated with the rank of the coal, which
in turn is correlated with the nitrogen functionality.
From an XANES study [31], the pyridone fraction
(producing HNCO, usually mistaken for NHvhen
wet methods are used to analyze Nbk in [8]) of
the coal nitrogen was found to increase with the fu-
el’'s oxygen concentration as with the fuel’s O/N ra-
tio [31]. The amine fraction did not correlate with
the O/N ratio in that study [31]. However, in an XPS
study [30], the coal O/N ratio was found to corre-
late with the quaternary fraction of the fuel nitrogen.
From a compilation of XPS data it was found that
the fraction of quaternary nitrogen decreases with in-
creasing rank for coals with a carbon concentration
below 75%, while for coals with higher carbon con-
centrations, this correlation is weak [21]. Hence, the
formation of HCN, NH;, and HNCO seems to be
correlated with the fuel nitrogen functionality. Low-
rank coals have larger fractions of coal nitrogen in
amine/quaternary and pyridone structures and thus
produce higher yields of Ngland HNCO than high-
rank coals. For coals, one would therefore expect the
HCN/NHg ratio, and particularly the HCNHNCO-+
NH3) ratio (which is what was actually measured in
[8]), to increase with increasing rank, not because of
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ial or from species that do not produce HCN when
cracked, but produce mainly NHIn the latter case,
the gas-phase cracking must be much faster than the
cracking of tar species that leads to HCN. In either
case, the competition between the formation of HCN
and that of NH seems to take place in the solid phase.
The hypothesis that N&lis mainly formed in the
solid phase in reactions that simultaneously lead to
char formation, in competition with the formation of
cyclic amides, could also explain why the paly-
leucine and poly--proline used previously produced
HCN/NHj3 ratios so much higher [6] than any of the
proteins in this study, since neither palyleucine
nor poly-L-proline produced any char [6], which all
of the proteins used in this study did. Of the fuels
used in this study, the smallest particles showed the
highest HCN/NH ratios at all temperatures, which
most probably is an effect of the fact that the av-
erage temperature in the particles’ interior is higher
for smaller particles than for larger particles. The
HNCO/HCN ratio deviates less than the HCN/jH
ratio for whey particles compared to the other fuels,
and this is probably because the split between HNCO
and HCN mainly takes place in the gas phase. Of the
four fuels with comparable particle sizes, and there-
fore with similar heating rates, the yield of volatile
nitrogen at 900 C was positively correlated with the
HCN/NHgz ratio, which favors the idea that the forma-

different secondary gas-phase reactions, but becausetions of NH; and char nitrogen are linked.

of differences in nitrogen functionality.

The HNCO/HCN ratio decreases with increasing
reactor temperature (Fig. 7). This is in accordance
with the idea that HNCO and HCN are mainly formed
from cracking of cyclic amides and that the selectiv-
ity toward formation of HCN over the formation of
HNCO for cyclic amides is increased with increasing
temperature [6].

The HCN/NH; ratio increases with increasing re-
actor temperature (Fig. 8). The formation of jli$
suggested to take place mainly in the solid phase in
reactions that simultaneously form char. This hypoth-
esis is in line with the results for the polyamide nylon
6,6 [19]: when pyrolyzed at 800C, the HCN yield in-
creased by a factor of 7 when the gas residence time
was increased from 0.33 to 1.70 s. However, thesNH
yield was independent of the gas residence time in the
investigated range. At 1000, more HCN and less
NH3 were formed than at 800C [19]. This implies
that HCN and NH are formed through competing
reactions. Since the formation of HCN depended on
gas residence time at 80C, while the NH; forma-
tion did not, one can conclude that the competition
between NH and HCN is not taking place in the gas
phase for nylon 6,6. The HCN must mainly come
from gas-phase cracking of larger fragments. 3\NH
can be formed either directly from the solid mater-

5. Conclusions

The distribution of nitrogenous species in the py-
rolysate of model substances and bark does not de-
pend significantly on the O/N ratio, but rather on the
fuel's nitrogen functionalities. For biomass, most of
the nitrogen is in the form of proteins, and proteins
are therefore the most suitable model compounds for
nitrogen in biomass. Pyrolysis of biomass fuels pro-
duces HCN, NH, and HNCO. For bark and shea,
HNCO could be observed but not quantified. How-
ever, the use of model compounds gives reliable es-
timates of how much HNCO is formed at different
temperatures. Experiments with whey, soya beans,
and yellow peas revealed that the HNCO/HCN ratio
is only slightly dependent on the kind of model sub-
stance. However, the temperature dependence of the
HNCO/HCN ratio is strong. The ratio decreases with
increasing temperature. At low temperatures, a high
portion of the nitrogen is retained in the char, and
ammonia is the main gaseous nitrogenous species.
At high temperatures, more nitrogen is released and
HCN is the main nitrogen-containing species. Two
main reaction routes for protein nitrogen are sug-
gested: one leading to Nd-and char nitrogen and the
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other leading to volatile cyclic amides. Cracking of
the cyclic amides is suggested to be the main reaction
leading to HCN and HNCO. Since the experiments
were performed in an inert atmosphere, low yields of
NO were observed and no® was found.
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