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Abstract

There is compelling evidence that dark matter constitutes 85 % of the
universe’s total matter content. So far, this distinctly different type of
particle is observed only in terms of its gravitational effects, but vari-
ous detection experiments are conducted and underway. One method
is indirect detection of neutrinos coming from the Sun. Under the
assumption that dark matter consists of Weakly Interacting Massive
Particles (WIMPs), one of the most studied dark matter particle can-
didates, these WIMPs would interact with atomic nuclei within the
Sun and be trapped in its gravitational field. After a large enough
concentration of trapped WIMPs has been amassed, they would begin
annihilating with each other, producing a high-energy neutrino signal.
In this thesis I study the possibility that WIMP self-interaction has a
significant effect on the total capture rate and resulting neutrino signal.
Potentially, an amassed concentration of WIMPs inside the Sun can it-
self constitute a scattering target and contribute to further captures
from the galactic dark matter halo. In order to describe the kine-
matics of particle interaction and WIMP capture I utilize an effective
field theory in the non-relativistic limit. This allows me to explore,
in a model-independent way, the parameter space of interaction and
the possibility for WIMP capture enhancement due to self-interaction.
Upper limits to the strength of these interactions come from direct de-
tection experiments and galaxy cluster observation and simulation. It
is found that self-interaction could play a significant role in amplifying
the neutrino signal; even an amplification of several orders of magni-
tude is not ruled out by current limits.

Keywords: dark matter theory, dark matter indirect detection, dark
matter self-interaction, WIMP annihilation
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1
Introduction

For many decades now, dark matter has been one of the main concerns of as-
tronomy, particle physics, and cosmology. There is convincing evidence for an
abundant and very weakly interacting particle that constitutes about 85 % of all
matter and is of paramount importance to the expansion and structure formation
of the universe. This elusive particle is hitherto undiscovered and only seen in
terms of its gravitational effects, which is why the scientific community calls it
dark matter. There are a number of competing theories about what this dark
matter could be and what phenomenological attributes it might have.

The search for dark matter is an ambitious and extensive world-wide enterprise,
relevant for many different fields of physics. The search is conducted with particle
collider experiments, ground-based telescopes and satellites, operating by either
direct and indirect detection, all of which are continually pushing the envelope
towards next-generation experiments.

One method of indirect detection is the search for a neutrino signal that bears
the signature of dark matter annihilation, potentially detectable with a neutrino
telescope such as IceCube. The are a number of possible origins for this signal,
but the focus of this thesis is on such a signal emanating from the Sun.

Assuming that dark matter can interact via the weak force or some other
hitherto unknown force of nature, it would collide with atomic nuclei within the
Sun. If dark matter particles lose enough kinetic energy in such a collision they
would be bound in orbit. With further collisions, they would eventually thermalize
and settle in the Sun’s core. As the concentration of trapped dark matter particles
builds up, they would start annihilating with eachother and eventually reach an
equilibrium state where the rate of capture is equal to the rate of annihilation.
The annihilation process would produce decay particles, such as neutrinos. These
neutrinos would have an energy that is a fraction of the total dark matter particle
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CHAPTER 1. INTRODUCTION 2

mass, meaning they would be discernible from the less energetic neutrino flux
created in the Sun’s fusion process.

What I am exploring specifically is whether or not it is possible that dark
matter self-interaction has a significant effect on the total rate of capture and
the resulting neutrino signal. Potentially, an amassed concentration of trapped
WIMPs in the Sun’s core would itself constitute a scattering target for further
capture, hence amplifying the capture rate. This is a topic that has not been very
well explored in the literature. One article by Zentner [1] suggests that such an
amplification is improbable.

In order to model the relevant interactions, I utilize an effective field theory ap-
proach in the non-relativistic limit. There are a total number of 14 non-relativistic
leading order quantum operators that govern two-body interaction. This descrip-
tion allows for a model-independent analysis of parameter space; in this manner I
remain fairly agnostic about the exact nature of dark matter and only adhere to
the limits provided directly from observation.

The total capture and annihilation rates are calculated numerically. The an-
nihilation rate is provided by cosmological arguments for dark matter as a relic
from the early universe. The limits to the various interaction coefficients are given
by direct detection experiments, and observation and simulation of galaxy clus-
ters. The limits for dark matter self-interaction are far less stringent than for dark
matter interaction with atomic nuclei, by around ten orders of magnitude. Dark
matter particle models that predict such phenomenology are not very prevalent
and only a few articles exist on the subject [2]. It remains a field of research that
is yet to be explored.

In this thesis, it is found that dark matter self-interaction can have a significant
effect on the neutrino signal coming from dark matter annihilation in the Sun. An
amplification to the signal due to dark matter self-interaction can be as high as
four orders of magnitude, given current limits.

The thesis is structured as follows. In chapter 2, I briefly present the evidence
for dark matter, a selection of dark matter candidate particles, and a list of dark
matter detection experiments. In chapter 3, I present the theory relevant for this
thesis, which includes analytical derivations of dark matter capture by the Sun,
effective field theory, and interaction coefficient limits. In chapter 4, I present the
evaluations and results, the different capture and annihilation rates and possible
factors of amplification due to dark matter self-interaction. In chapter 5, I discuss
the results and compare with previous work on the subject.



2
Dark Matter

In this chapter I present a general overview of dark matter: the evidence supporting
its existence, a selection of viable candidate particles, and possible methods of
detection. I conclude the chapter with the detection technique that is of relevance
for this Master’s Thesis.

For more information on the subject of dark matter, see the review by Bertone,
Hooper and Silk [3].

2.1 Evidence for dark matter

Ever since the publication of Isaac Newton’s Philosophiae Naturalis Principia
Mathematica in 1687, the properties of gravity has been paramount in under-
standing, describing and predicting the behaviour of astrophysical objects. The
first prediction of a hitherto unseen massive body was made by the astronomers
Urbain Le Verrier and John Couch Adams, who studied the orbit of Uranus. Its
anomalous orbit led them to believe that there was another massive body in the
solar system. They were correct, and 1846 the planet of Neptune was observed.

In modern astronomy and cosmology, the study of astrophysical objects and
their motion, as well as the study of gravitational lenses, indicate a more exotic
type of matter, which is called dark matter due to its elusive qualities.

A first observation of dark matter was made by the Swiss astronomer Fritz
Zwicky in 1933 [4]. He studied the Coma galaxy cluster by means of the virial
theorem, which relates a cluster’s radius and velocity dispersion to its mass. He
found the cluster to be much heavier than expected, with a mass-to-light ratio
that was two orders of magnitude higher than that of the solar neighbourhood.
He called this elusive unseen mass dunkle Materie. Although this discovery was
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Figure 2.1: The rotational velocity of spiral galaxy NGC6503 [6]. The black dots
represent the measured data. The lines correspond to the contributions from gas,
disk, and dark matter.

puzzling, it would take many decades before the issue became a prime concern of
the scientific community.

Evidence for dark matter has been observed in a vast span of distance scales,
ranging from the galactic to the cosmological scale. While an observational anamoly
at some scale of distance could be explained in a variety of ways, for example by
modifying the force of gravity, all these different observations has not been ex-
plained conclusively by any other singular phenomena. This makes the case for
the existance of dark matter very convincing.

2.1.1 Galactic scale

In the 1970’s the American astronomer Vera Rubin made observations of rotational
velocities in spiral galaxies [5]. In a spiral galaxy, the visible baryonic matter
density (stars, gas and dust) decreases the further you get from the galactic center,
which would infer a decreasing rotational velocity. What Rubin found was that
the rotational velocity does not decrease with radius, but rather stays more or less
constant in the outer rims of the galaxy, as illustrated in figure 2.1. This came to
be called the galaxy rotation problem, one of the most convincing pieces of evidence
of an unseen, very heavy and fundamentally different type of matter.

The rotational velocity of a spiral galaxy holds information about the dark
matter halo density and shape. While there is not much discussion about the halo



5 2.1. EVIDENCE FOR DARK MATTER

distribution at large radii, its shape at short radii is still under debate. N-body
simulations of collisionless dark matter exhibit a very steep halo shape, with high
halo density in the galactic core [7]. Observations, on the other hand, point in
the other direction, of a more shallow or even flat halo profile [8]. This is highly
relevant for this Master’s Thesis, as it could suggest that dark matter particles are
in fact not collisionless, but interact with sufficient strength to affect the shape
of galactic dark matter halos [9][10]. However, it is under debate if this could
instead be explained by energy dissipation through supernova explosions [11], so
no consesus has been reached so far. See section 3.3 for further discussion and
estimates of the strength of dark matter self-interaction.

There is yet other evidence for dark matter coming from kinematic arguments,
from the velocity dispersion of stars in spheroidal dwarf galaxies [12], or the motion
of spiral galaxy satellites [13].

Gravitational lensing is another useful tool for providing proof of dark matter.
In fact, it is the only way to make direct mass measurements of a galaxy (as
opposed to the kinematic methods previously mentioned). Gravity manifests itself
as a curvature of space-time, as described by Einstein’s general relativity, so that
light is bent in a strong gravitational field. This phenomena is most dramatic when
two galaxies are in the same line-of-sight, what is known as strong gravitational
lensing. The foreground galaxy will act as lens with respect to the light coming
from the background galaxy, whose image will be bent into an arc, as can be seen
in figure 2.2. The size and curvature of this arc, and the distances involved, are
directly linked to the mass of the lensing foreground galaxy. While this provides a
very direct tool of analysis, less dramatic effects can also be analyzed by statistical
means. The image of a background galaxy under weak gravitational lensing will
only be slight thwarted, but a large enough data set of thwarted images will still
be indicative of the foreground mass distribution. This principle is applied to deep
and wide galaxy surveys, which provides evidence for the large-scale structure of
matter in the universe and constraints on cosmological parameters [14].

2.1.2 Galaxy cluster scale

As mentioned in the beginning of this section, the very first observation of dark
matter is on the scale of galaxy clusters, coming from Fritz Zwicky’s study of the
Coma cluster. This is the same type of kinematic method used on the galactic
scale. In the same vein, the mass measurement method of gravitational lensing
used on the galactic scale are also applied to galaxy clusters.

A technique that is unique for galaxy clusters, however, is the study of X-ray
emission from intergalactic gas [15]. Galaxy clusters are enormous structures and
that attract large amounts of material. Intergalactic gas, mainly hydrogen, falls
towards the gravitational center of these clusters and create a superheated plasma
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Figure 2.2: A case of strong gravitional lensing, from the Hubble Space Tele-
scope. The yellow foreground galaxy acts as a lens, distorting the image of the blue
background galaxy almost into a full circle. The image is taken from Wikimedia
Commons.

in the temperature range of 107–108 K. This gas emits X-rays, from which it is
possible to estimate the gravitational strength and total mass of a cluster. This
technique shows that there must be significantly more matter in between galaxies
than in the galaxies themselves, matter that is not visible.

A very compelling piece of evidence for dark matter is the notorious Bullet
Cluster [16]. It is visible in figure 2.3. It consists of two galaxy cluster that have
passed through each other, so that the gas constituent of the clusters have collided
and been trapped in between the clusters, while the stars and dark matter has
continued in their respective path without being hindered by the collision. This
observation very convincingly shows that the mass of the clusters largely consists
of some very weakly interacting mass distribution in a halo-like configuration. The
Bullet Cluster is of great relevance for this thesis, as it places upper limits on the
strength of dark matter self-interaction, which will be discussed further in section
3.3.

2.1.3 Cosmological scale

In order to account for the cosmological arguments and evidence for dark matter,
I first give a very brief overview of the key concepts of mainstream cosmology, of
a Big Bang and ΛCDM universe, often referred to as Standard Cosmology.

The fundament of cosmology comes from Einstein’s equations,
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Figure 2.3: The Bullet Cluster, in a composite image with optical light from Mag-
ellan and Hubble Space Telescope and X-ray light from Chandra X-ray Observatory.
The X-ray emission is represented in pink. The clusters’ mass distribution is rep-
resented in blue, calculated by means of weak gravitational lensing. The image is
taken from Wikimedia Commons.

Rµν −
1

2
gµνR = −8πG

c4
Tµν + Λgµν , (2.1.1)

where Rµν and R are the Ricci tensor and scalar that describe the curvature of
spacetime, gµν is the spacetime metric, Tµν is the stress tensor, which accounts for
energy and mass densities, Λ is the cosmological constant, G is the gravitational
constant, and c is the speed of light. The left-hand side of the equation represent
the geometry of the universe, the curvature of spacetime, while the right-hand
side represents the energy content of the universe. The mysterious cosmological
constant, Λ, represents a vacuum energy, an energy of space itself. It was first
introduced by Einstein in an attempt to model a steady-state universe, but he
subsequently abondoned the idea when it became clear from observation that the
universe is in fact expanding. The story does not end there, however, as it was
discovered that the universe is not only expanding but also expanding faster and
faster. This observation prompted the cosmological constant to be reintroduced.
Today, the vacuum energy represented by Λ in Einstein’s equations is commonly
referred to as dark energy.

Under assumptions of a homogenous and isotropic universe, which is well sup-
ported by observation at scales larger than ∼ 100 Mpc, Einstein’s equations take a
rather simple form. This leads to what is known as the Friedmann equations, that
describe the expansion of the universe. The two independent Friedmann equations
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a
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ä

a
= −4πG

3
(ρ+
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c2
) +

Λ

3
, (2.1.3)

where a is the scale factor or “radius” of the universe, ȧ refers to its derivative in
time, ρ is the matter density, p is pressure, and k is the spatial curvature of the
universe. The quantity k can take values -1, 0, or 1, which corresponds to an open,
flat, or closed geometry.

The quantity ȧ/a is more commonly known as the Hubble parameter, denoted
H. The Hubble constant, H0, is the Hubble parameter at present time and the
current rate of expansion in the universe. It has value H0 = 67.8 ± 0.9 km s−1

Mpc−1 [17][18].
The different energy densities of the universe are differently affected, or thinned

out, by its expansion. For example, the matter density is inversely proportional to
the volume of the universe, while the vacuum energy density does not scale at all
but remains constant. Thereby the expansion of the universe is contingent on the
distribution between species of energy; which type of energy density that is the
dominant driving force of expansion can change over time. A canonical definition
is that of abundances,

Ωi ≡
ρi
ρc
, (2.1.4)

where the subindex i can represent matter, radiation, vacuum energy, or spatial
curvature. The quantity ρc is the critical density, the total current energy density
(including vacuum energy) that with observational value for H0 would infer a
geometrically flat universe. Expressed in terms of redshift, z, the expansion rate
can be written

H2(z)

H2
0

= ΩΛ + Ωk(1 + z)2 + ΩM(1 + z)3 + Ω2
R(1 + z)4. (2.1.5)

The second term on the right-hand side, with abundance Ωk, comes from the
spatial curvature and is zero in a flat universe.

The universe used to be hotter and denser and particles that today are not
interacting very strongly was once in thermal equilibrium. The governing equation
is the Boltzmann equation,

dn

dt
+ 3Hn = −〈σAv〉(n2 − n2

eq), (2.1.6)
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Figure 2.4: A map of CMB temperature fluctuations on the sky, from the WMAP
survey. The image is taken from Wikimedia Commons.

where n is the number density, neq is the number density at thermal equilibrium,
and 〈σAv〉 is the thermally averaged annihilation cross section. At some point
in time, the expansion rate of the universe became dominant with respect to the
interaction rate of the particle. In other words, the term proportional to the
Hubble parameter grew larger than the interaction term on the right-hand side,
and the equilibrium state was lost. The particle species is said to be decoupled or
experience a freeze-out, which is hypothesized to have happened to dark matter
(at least for most dark matter particle candidates).

A similar, although not completely analogous, example of a decoupling is the
cosmic microwave background (CMB). This decoupling was due to a drastic change
in the density of charged scattering targets. As the universe cooled enough for neu-
tral atoms to form, space became permeable for light, resulting in the decoupling
of photons. The CMB is the last scattering surface of the plasma state of the
universe, a remnant from around 370,000 years after the Big Bang.

While the CMB is direct evidence of the Big Bang theory, it also provides
constraints for cosmological parameters and determines the total amount of dark
matter in the universe. The CMB is a black body spectrum of temperature 2.726 K,
to an accuracy of 10−5 in all directions. Below this level of accuracy, however, there
are temperature fluctuations, which have been measured in surveys like Cosmic
Background Explorer (COBE), Wilkinson Microwave Anisotropy Probe (WMAP),
and Planck Satellite. A map of these fluctuations can be seen in figure 2.4.

Expanding the CMB into spherical harmonics gives a power spectrum, which
charts the angular scale of the fluctuations, see figure 2.5. This power spectrum
sets strong limitations on the underlying cosmological parameters. Coupled with
power spectrums of visible matter, these constraints can be made even stronger.
Estimates of the cosmological parameters in the Standard Cosmology framework,
using data from the Planck Satellite, suggest a present energy distribution of ∼ 69
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Figure 2.5: CMB power spectrum, with data from various surveys. The lower
horizontal axis shows the multipole moment, l, of the spherical harmonics functions.
The image is taken from Wikimedia Commons.

% dark energy, ∼ 26 % dark matter, and ∼ 5 % ordinary baryonic matter [17][18].

2.2 Dark matter candidates

There are a great number of dark matter candidate particles, some of which are
considered more promising than others. In this section I present a select few of the
most prominent candidates, including the subset of particular relevance for this
thesis. Note that there is no requirement for dark matter to consist of a single
particle species.

Sterile neutrino

At first glance, Standard Model neutrinos fulfill a lot of the qualifications of a
dark matter candidate; they have mass and are weakly interacting. However,
given their relic density, they are not massive enough to significantly contribute to
the total amount of dark matter in the universe. Furthermore, their low rate of
interaction and low mass correspond to a long free streaming length [19], meaning
that they could not account for the structure formation on scales below ∼ 40 Mpc.
Therefore Standard Model neutrinos are excluded. However, neutrinos that are
sterile, meaning that they do not interact via the weak force, with mass of at least
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Figure 2.6: Loop diagrams to illustrates the hierarchy problem. The top diagram
represents the first-order loop correction to the Higgs mass, coming from the top
quark. The bottom diagram represents the loop correction coming from the top
quark’s superpartner, the stop quark. The image is taken from Wikimedia Com-
mons.

∼ 10 keV, have been proposed as a candidate [20].

Axion

The axion was introduced in an attempt to solve the CP-problem of particle
physics. The CP-problem is the puzzling question about why it is that quan-
tum chromodynamics seems to uphold CP-symmetry. There is not a priori reason
as to why it should, but the existance of the axion would explain it. Constraints
coming from laboratory detection attempts and astrophysical arguments tells us
that the axion must be very light, in the range of 0.01 eV or lower. The calculation
of the axion relic is uncertain, but it possible to find a set of parameters that are
in accordance with present-day cosmological constraints [21].

Supersymmetric candidates

Supersymmetry (SUSY) is an extension of the Standard Model of particle physics
[3][22][23]. It relates the fermionic fields (also known as matter fields) to the bosonic
fields (force-carrying fields). In SUSY theory, the particles of the Standard Model
have supersymmetric partner particles, sharing all quantum numbers except spin
that differs by a half-integer.

While the symmetry itself has an appealing quality of unification between mat-
ter and interaction, it also presents a solution to a very significant conundrum
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known as the hierarchy problem. The hierarchy problem concerns a remarkable
fine-tuning of natural parameters, arising from the radiative corrections to the
mass of the Higgs boson. This mass correction comes from a loop diagram, as seen
in figure 2.6. In the top diagram of the figure, a top quark loop affects the free
propagation of the Higgs boson, giving it a quadratic mass correction of order

δm2
H ∼ Λ2

UV , (2.2.1)

where ΛUV is the ultraviolet cutoff, the energy scale at which new physics comes
into play and the Standard Model breaks down. If this cutoff happens at Planck
scale, then the natural expectation would be for the Higgs mass to have a value
close to this cutoff scale, something like ∼ 1018 GeV. However, the Higgs boson
mass is measured to be 125 GeV. These numbers are of vastly different order of
magnitude, which suggests a remarkably improbable fine-tuning of parameters,
such that the intrinsic mass of the Higgs boson cancels to an extreme precision
with the radiative mass corrections. This is the essence of the hierarchy problem.

A possible solution comes from SUSY, which postulates the existance of su-
perpartner particles. The top quark would have a superpartner called the stop
quark. The stop quark would in turn give rise to its own loop correction, as seen
as the bottom diagram in figure 2.6. The top and stop quark corrections would
have different signs, and so their combined mass correction would be

δm2
H ∼ (mt

2 −mt̃
2). (2.2.2)

In this case, the mass of the Higgs boson and its loop diagram correction would
be of roughly the same order of magnitude, which would nullify the issue of fine-
tuning.

Various superpartner particles have been proposed as dark matter candidates.
The type of particle called neutralino is one of the most studied of all dark matter
particle candidates. In SUSY, there are neutral superpartners to the B and W3

gauge boson, called bino and wino, and to the H0
1 and H0

2 Higgs bosons, called
higgsinos. Together, these superpartner states mix into four fermionic neutralino
mass states. It is hypothesized that these neutralinos would adhere to a so-called
R-symmetry, meaning that any creating or annihilation event involves an even
number of superparticles. This symmetry is necessary in order for the theory to
exclude events like proton decay. In effect, only the lightest neutralino is stable
and the production of a heavier neutralino would result in a cascade of decays into
the stable state.

There are other, perhaps less favored, superpartner particles that are considered
to be dark matter candidates. The sneutrino is the superpartner to the neutrino,
speculated as a viable dark matter particle in the TeV mass range. The gravitino,
superpartner to the graviton, is backed by strong theoretical motivations. However,
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it would be very difficult to detect, as it only interacts via gravitational force. The
axino, superpartner to the hypothesized axion mentioned above, is plausible, even
as a cold dark matter candidate if generated through some process outside thermal
equilibrium.

Kaluza-Klein states

There are exotic dark matter candidates that arise in models of extra dimen-
sions. Although we see a 4-dimensional spacetime, the universe could potentially
be higher dimensional, with additional dimensions visible at high energy or short
distance. This has some interesting theoretical ramifications such as the unification
of forces, introduced as a concept by Kaluza in 1921 when he unified electromag-
netism and gravity in a 5-dimensional theory. It could also explain the discrepancy
of strength between the weak force and gravity. Furthermore, a higher-dimensional
spacetime is hypothesized in string theory and M-theory, with a total number of
10 or 11 dimensions. These theories could constitute a description of quantum
gravity and a unified theory of all interaction.

As it happens this theory also give rise to a potential dark matter candidate.
The additional spatial dimensions could be compactified, meaning that they are
finite and probably very small. The simplest case would be that a compactified
dimension is in the shape of a circle. In such a circle, the momentum travelling
through it would be quantized. While Standard Model physics would exist the
lowest state, with no momentum going in the direction of the compactified di-
mension, there would exist a possibility of excitations, holding a ladder of excited
Kaluza-Klein states. This would correspond to additional particles outside the
Standard Model, and potentially a dark matter particle [24].

Wimpzilla

There are theories of superheavy dark matter candidates, often referred to as
wimpzillas. While most candidate are in the range of a hundred or a thousand
GeV, wimpzillas are hypothesized to have a mass larger than 1010 GeV. Dark
matter particles of high mass can be ruled out as thermal relics from the early
universe, as the freeze-out from thermal equilibrium for such a particle is not
in accordance with constraints from the CMB. (See section 2.1.3 for the theory
behind such considerations.) Superheavy wimpzillas, however, need not have been
in thermal equilibrium at all during freeze-out, so their relic abundance does not
depend on their annihilation cross-section.

An argument for the existance of wimpzillas is the observation of ultra-high
energy cosmic rays, well above the GZK cutoff at ∼ 5 · 1010 GeV. This cutoff is
the energy at which cosmic rays can scatter against the CMB, thus hindering the
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propagation of such a cosmic ray [25]. The astrophysical origin of such cosmic rays
is unclear, but perhaps it comes from the annihilation of superheavy particles such
as the wimpzilla [26].

Miscellaneous candidates

There are a number of various candidate particles, far too many to account for in
detail. A scalar particle have been proposed in different contexts as a dark matter
candidate, for example in what is called the Little Higgs model. There is also
Q-balls, charged massive particles (CHAMPs), mirror particles, fourth generation
neutrinos, etcetera [3].

2.2.1 WIMP

The term Weakly Interacting Massive Particle, WIMP, refers to all candidate par-
ticles that are just that, weakly interacting and massive, typically around 100 GeV.
For example, the SUSY candidates discussed above would fit into this category, as
well as the Kaluza-Klein particles or heavier neutrinos.

The WIMP density would be a thermal relic from the early universe. The
WIMPs would have experienced a freeze-out when the universe expanded and
cooled, such that the weak force interaction could no longer keep the WIMPs in
thermal equilibrium with other particle species. (See the discussion in section
2.1.3 for the theory behind these statements.) Given the present abundance of
dark matter, these considerations predict a WIMP self-annihilation cross-section
of 〈σAv〉 ' 2 · 10−26 cm3s−1 in the relevant mass regime [27].

In this thesis, the dominant dark matter constituent will be assumed to be
WIMPs, and referred to as such. Other than that I assume for the WIMPs to be
in the mass range of 10–1000 GeV, and with spin 1/2.

2.3 Dark matter detection

In this section I present the various strategies of dark matter detection. I will
conclude this section and chapter with the detection strategy that is in focus for
this thesis, namely that of a neutrino signal produced by an annihilation of WIMPs
in the Sun’s core.

2.3.1 Collider searches

If the dark matter particle mass is of an energy scale reachable for a particle
collider, that dark matter particle could potentially be produced inside the collider.
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Because dark matter interactions with baryonic matter are so weak, the produced
dark matter particle would simply escape the collider without being detected, much
like neutrinos do. This would leave a signature trace of lost energy and momentum.

Such searches have provided strong constraints on the dark matter candidate
particles, but are often model dependent. A majority of such searches focus on a
SUSY model and the production of some type of neutralino, a candidate particle
presented in section 2.2. In such a model, only the lightest neutralino is stable. The
production of heavier neutralinos would result in a cascade of decays, producing
lepton and/or quark jets that could be detected. Such a signal has been looked
for at the Large Hadron Collider (LHC) at CERN.

Conversely, model-independent analysis is also performed, by means of effective
field theory (EFT), which will be discussed thoroughly in section 3.2. The EFT
approach analyses the parameter space of all possible interaction operators in the
limit of low momentum transfer, without model-dependent bias towards what the
interaction should look like. Collider data, for example from the LHC, provide
constraints on this parameter space. However, applying this low-energy or low-
momentum limit analysis for collider experiments can be problematic, as dark
matter interactions with Standard Model particles might be dominated by behavior
outside the parameter region of the EFT [28].

For further information on collider searches for dark matter, see reviews by
Bertone et al. [3] and Klasen, Pohl and Sigl [29].

2.3.2 Direct detection

Direct detection of dark matter is very straight forward, at least conceptually. If
the galaxy contains a distribution of WIMPs that our solar system travels through,
then WIMPs would sporadically interact with the baryonic matter of the Earth. A
detector could measure the effects of such interactions happening inside it, typically
by recording the recoil energy of atomic nuclei as produced by a WIMP-nucleus
collisions.

In the past few years, direct detection sensetivity has improved tremendously.
Even so, no direct detection has been recorded, or at least not conclusively proven.
On the other hand, direct detection experiments have provided strong limits for
WIMP-nuclei elastic scattering cross-sections.

A WIMP detector faces a number of challanges. It must be sensitive to very
small energies imparted by the interaction of a WIMP, while at the same time
minimizing the background signal. It must also have a large enough detector
mass, thus constituting a large target volume for passing WIMPs. In the same
vein, the detector must have acceptable performace over a long time, preferably
a few years, for detection to be statistically feasable. Below I present the various
direct detection techniques being utilized.
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For a more extensive review on the subject of dark matter direct detection, see
review by Undagoitia and Rauch [30].

Noble-gas detector

This type of detector, constructed as a container with liquid noble-gas, constitutes
a large and homogenous target. The most common detector media are xenon and
argon. A deposit of recoil energy in the noble gas causes excitation or ionisation.
This can lead to formation of excimers, which are short-lived molecular structures
between ionised noble-gases. A recombination into ground-state emits ultraviolet
photons which can be detected. Free electrons that are produced in ionisation
can be extracted by applying an external electric field to the detector, enabling
analysis of this additional signal. The sought after signal can be distinguished
from the background signal, coming mainly from electron and gamma ray recoils,
by measuring and comparing the emitted ultraviolet light and the rate of ionisation.

Examples of such experiments are the series of ZEPLIN detectors [31] in the UK
or the XENON detectors [32] at Gran Sasso, Italy. An experiment called LUX [33],
installed at the Sanford Underground Laboratory, started collecting data in 2013.
Since then, it has improved on previous limits for the WIMP-nuclei interaction
strength. These are the limits used in this thesis. For further information, see
section 3.3.

Scintillator crystal

Scintillators are among the most common detection devices in particle physics.
A scintillator material has the property of luminescence, meaning that it emits
light when excited. A WIMP collision inside the crystal would deposit energy,
subsequently emitted as photons that can be measured. The most common dark
matter detector materials are NaI and CsI crystals. An advantage of this technique
is its simplicity and sturdiness, enabling a detector to operate for several years.

An example of a NaI crystal detector is the DAMA expreriment [34] at the
LNGS underground laboratory in Gran Sasso, Italy. The DAMA experiment has
shown some controversial results. It has measured a signal with annual modulation
in the energy range of 2–6 keV, over a total of 14 years [35]. An interpretation
is that the signal comes from WIMP-nuclei collisions, with an annual modulation
due to that the Earth moves through the dark matter halo medium with different
speeds at different times of year. However, this modulation signal could be due
to other effects, like atmospheric muons, which could follow a pattern of annual
modulation. Other experiments, like KIMs at the Yangyang laboratory in Korea,
does not support the results of DAMA [36].
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Germanium detector

A germanium detector is a semi-conductor that measures a deposit of energy by
the resulting electron-hole pairs that are formed. These free charges are carried by
an electric field to their corresponding electrodes and detected. The rise-time of
such an electrical signal can be used to exclude background events. The noise level
is reduced sufficiently by cooling the device to the temperature of liquid nitrogen,
77 K, which bypasses the need for expensive cooling techniques. The threshold for
a detectable energy deposit is very low, down to ∼ 0.5 keV, allowing searches for
WIMPs with mass of only a few GeV.

The CoGeNT experiment [37] at the Soudan Underground Laboratory in the
United States is an example of such a detector. It has been collecting data since
2009.

Cryogenic bolometer

A cryogenic bolometer is a crystal detector sensitive to phonons (vibrations of
the crystal lattice). In order to reduce the background noise, the crystal must
be cooled to a temperature of 10–100 mK. The set-up allows for distinctions be-
tween a minimal but measurable rise in temperature and more long-lived athermal
phonons. The latter can be used to directly measure both location and magni-
tude of a deposited recoil energy from a WIMP-nuclei or even a WIMP-electron
collision. Combined measurements of different types of signal can be used to ex-
clude background events. By applying an external electrical field to the crystal, a
formed electron-hole pair can be caused to drift, producing more phonons. With
this technique, the energy sensitivity threshold can be lowered.

Examples of such detectors are SuperCDMS [38] in the United States or EDEL-
WEISS [39] in France.

Superheated fluid

This type of detectors consist of a superheated fluid, meaning that the fluid is
kept in a temperature that is above its boiling point. A deposit of energy in
this medium induces a phase transition and creates a bubble. The size of such
bubbles reveals the magnitude and localization of the energy deposited. After
such a bubble is formed, the fluid is compressed and decompressed in order to
recover the superheated state. A major advantage of this technology is that its
low sensitive to ionisation backgrounds, which dominates the background signal of
other dark matter detectors.

Examples of such experiments are COUPP [40] in the US, PICO [41] in Canada,
and SIMPLE [42] in France.
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Directional detector

A directional detector exploits the direction of the recoil momentum, to see if
there is an over-representation in accordance with the expected flow of WIMPs
relative to the Earth. An assymmetry in the scattering events could be caused by
this “wind” of the dark matter halo. Current directional detectors utilizes a gas
container and measures the drift of charged particles in it.

DRIFT-II [43] is currently the largest directional detector, operated at the
Boulby Underground Laboratory in the UK.

2.3.3 Indirect detection

Indirect detection of dark matter seeks to measure radiation or particles that are
products of dark matter annihilation and decay, typically with a signature energy
level that is some fraction of the dark matter particle mass.

For a more extensive review on the subject, see review by Gaskins [44].

Gamma ray detection

Highly energetic photons would be an excellent signal coming from WIMP anni-
hilation. A gamma ray signal permits very exact analysis, both of its energy and
its direction of origin.

Because high-energy photons interact in the atmosphere to form electron-
positron pairs, direct detection of gamma rays is only possible from space. Traces
of gamma rays are still visible from Earth by studying the rest products of gamma
rays entering the atmophere. A highly energetic muon or electron can be detected
by measuring the Cherenkov light, which is a sort of “sonic burst” but for light,
created when a charged particle travels through a medium faster than the speed of
light propagation in that medium. Such a detector is the High Energy Stereoscopic
System (HESS) [45] in Namibia, which has been running since 2003. Another is
the High-Altitude Water Cherenkov Observatory (HAWC) [46] in Mexico, which
has been collecting data since 2014. It is sensitive to high-energy gamma rays
above 100 GeV.

An example of a gamma ray detector in space is the Fermi Large Area Telescope
(LAT) [47] on the Fermi Gamma-ray Space Telescope, launched in 2008. The LAT
is a pair production detector, with a calorimeter that detects a pair production
event induced by a gamma ray, determining the arrival direction and energy. It is
sensisitive to gamma rays in the range of 20 MeV–300 GeV.
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Cosmic ray detection

Searches for other types of highly energetic particles, categorised under the general
term of cosmic rays, has advantages and disadvantages as compared to that of
gamma rays. An advantage in some cases is the weakness of the background signal,
as examplified by antimatter particles which are not produced very much by other
astrophysical processes. On the other hand, a drawback can be the difficulty in
determining the direction of origin of these particles, due to galactic diffusion.

Several current and future projects seek to detect antimatter cosmic rays.
PAMELA [48] is a such detector, mounted on a russian satellite, launched in
2006. Another is The Alpha Magnetic Spectrometer (AMS) [49], installed on the
International Space Station. Both of these detectors measure the charge (and sign)
of a cosmic ray particle.

Neutrino detection

Another type of particle that deserves its own caption is the neutrino. Although
they are very difficult to measure and require very large detectors, this very quality
is also what makes them useful. Because they pass through matter practically
unhindered, they preserve their original energy and direction of motion.

Most neutrino detectors are Cheronkov light detectors. When a neutrino in-
teracts, it can produce a highly energetic muon or electron, much like in the case
of gamma rays. While most of the Cherenkov light events come from atmopheric
gamma rays, the direction of origin of the signal can be used to exclude this atmo-
spheric background. If the signal is coming from below, it implies that something
has travelled through the whole Earth and an atmospheric event can be excluded.
A neutrino, however, can travel through the Earth unhindered, and by chance
interact in close viscinity to the Cherenkov detector. However, there is a small
chance that this neutrino was in fact produced in the atmosphere at the other side
of the Earth by some highly energetic cosmic ray. Such a background needs to be
excluded.

An example of such a detector is the IceCube neutrino observatory [50], which
is a cubic kilometer of photomultiplier buried in the ice cap of the South Pole.
With an infill within IceCube called DeepCore [51], its energy therhold is about
∼ 10 GeV. A planned upgrade called PINGU will further reduce it to a few GeV.
Other famous Cherenkov detectors are ANTARES [52] in the Mediterranean Sea,
and Super-Kamiokande [53] in Japan.

Signal sources

An indirect dark matter signal could come from anywhere that the dark matter
concentration is significantly dense. Examples are the galactic core, Milky Way
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satellite dwarf galaxies, or even external galaxies like Andromeda. A signal from
black holes could also be relevant, as well as a cosmological signal such as a small
peak detracting from the black body spectrum of the CMB.

The source of primary interest for this thesis, however, is that of our own
Sun. WIMP annihilation in the Sun would produce a number of highly energetic
particles, most of which would not escape the Sun. Neutrinos, however, would
escape. Possibly, this flux of high-energy neutrinos from the Sun can be detected.
The theory of this phenomena is explored in detail in the next chapter.



3
WIMP Capture by the Sun

In this chapter, I present the theory that has been used and developed during the
course of this project: the analytical derivations of WIMP capture by a massive
body, an overview of effective field theory and its application in this project, the
interaction coefficients limits as given by observational data, and the differential
equations that govern the capture and annihilation process.

From here on, it is assumed that the main constituent of the dark matter halo
is WIMPs. They are particles that can interact with atomic nuclei via a weak
force. WIMPs of the galactic halo would collide with atomic nuclei in the Sun. A
fraction of those WIMPs would lose enough kinetic energy to be trapped in orbit.
With further collisions with atomic nuclei, they would eventually thermalize and
settle in the Sun’s core. At some point in time, the concentration of WIMPs within
the Sun would be high enough for the them to begin annihilating with each other.
This process of decay would produce a flux of high-energy neutrinos.

While the neutrinos produced in the Sun’s nuclear fusion process have energy in
the MeV range, the neutrinos from annihilated WIMPs would be distinctly differ-
ent, as their energy would be some fraction of the WIMP mass, in the GeV range.
This flux of high-energy neutrinos could then be detected in a neutrino telescope
like IceCube. So far no signal has been seen, but larger neutrino telescopes could
in a near future be capable of detecting such a signal.

The specific focus of this theses is how the rate of WIMP capture by the Sun and
its resulting neutrino flux are affected by also incorporating WIMP self-interaction
in the description. A concentration of WIMPs trapped in the Sun’s core could itself
constitute a scattering target for WIMPs of the galactic halo, given that the self-
interaction is strong enough. The goal of this thesis is to find out how large of an
amplification to the neutrino flux is possible in the non-excluded parameter space
of WIMP-nuclei interaction and WIMP self-interaction. The subject of how self-

21
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interaction affects the capture rate is not very well explored in the literature. There
is one paper by Zentner [1] which discusses the effects of WIMP self-interaction
under the assumption of constant cross-sections.

3.1 WIMP capture rate of a massive body

I begin this discussion by presenting the analytical grounds for dark matter cap-
ture. These derivations follow very closely to a of paper by Gould [54], although
I abandon the analytical reasoning and proceed with numerical methods at an
earlier stage than he does. At first, I have a look at the simplest possible case,
which is a massive body at rest, with a constant cross-section. I then generalize
these results for a body that is moving with respect to the dark matter halo and
for cross-sections that vary with collisional velocity and transferred momentum.

3.1.1 Massive body at rest, constant cross-section

In this section I calculate the total capture rate of a massive body like the Sun,
while using some simplifying assumptions. To begin with, I consider a massive
body at rest with respect to the dark matter halo. I also assume the cross-section
to be constant (independent of relative velocity and transferred momentum).

In order to calculate the total amount of WIMPs passing the massive body,
consider the in-flux through an imagined sphere of large radius R, so that the grav-
ity of the massive body is negligible. Let the WIMPs have a velocity distribution
f(u), where u is the velocity far away from the massive body. The in-flux through
this imagined sphere is then the flux per unit angular area, times angular area,
times an angle of inclination factor, which gives

f(u)u du

4π
· 2π sin θ dθ · cos θ =

1

4
f(u)u du d cos2 θ. (3.1.1)

The sign is omitted, as it is a matter of ordering the integration bounds.
The angular momentum per unit mass, J = Ru sin θ, can be used to rewrite

the expression in equation (3.1.1), such that

dJ2 = R2u2 d sin2 θ

= R2u2 d(1− cos2 θ)

= −R2u2 d cos2 θ.

(3.1.2)

Again, the sign change can be accounted for by choosing the integration bounds,
so that J2 goes from 0 (lower bound) to R2u2 (upper bound). Integrating over the
sphere’s surface at radius R gives the in-going flux,
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4πR2 1

4
f(u)u du

dJ2

R2u2
= π

f(u) du

u
dJ2. (3.1.3)

Consider the capture rate of one thin spherical shell of matter, of radius r
and thickness dr. Let v be the escape velocity at that shell. The velocity of a
WIMP that reaches that shell is w =

√
u2 + v2. To reach the shell at all, there

is a condition that J < rw. The shell surface is hit with an inclination angle θ′,
meaning that the WIMP travels a distance within the shell of

2dr(cos θ′)−1 = {J = rw sin θ′} = 2dr

[
1− (

J

rw
)2

]−1/2

. (3.1.4)

The factor 2 comes from the particle going through the shell twice, as the particle
also goes out.

To be captured, a WIMP has to scatter to less than escape velocity, v. Define
Ω−v (w) to be the probability per unit time that this scattering occurs, which divided
by velocity becomes the probability per unit length. The probability of a WIMP
being trapped by scattering in the thin shell of radius r is then

Ω−v (w)

w
2dr

[
1− (

J

rw
)2

]−1/2

θ(rw − J). (3.1.5)

Multiplying this quantity by the total in-flux from equation (3.1.3) and inte-
grating over all angular momenta gives

∫ J2=(rw)2

J2=0

π
f(u) du

u
dJ2 Ω−v (w)

w
2dr

[
1− (

J

rw
)2

]−1/2

=

= 2π
f(u) du

u

Ω−v (w)

w
dr

∫ J2=(rw)2

J2=0

[
1− (

J

rw
)2

]−1/2

dJ2 =

= {Substitute:
J2

r2w2
= s} =

= 2π
f(u) du

u

Ω−v (w)

w
dr

∫ s=1

s=0

r2w2 ds√
1− s

=

= 2π
f(u) du

u

Ω−v (w)

w
dr r2w2[−2

√
1− s]10 =

= 4πr2dr
f(u) du

u
wΩ−v (w). (3.1.6)

This is the number of WIMPs captured by the shell per unit time per unit velocity.
The factor 4πr2dr is precisely the volume of the shell. Thus, the total capture rate
per unit volume is
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dC

dV
=

∫ ∞
0

f(u)

u
wΩ−v (w)du. (3.1.7)

Here it is implicit that w (WIMP velocity at the shell) is a function of u (WIMP
velocity at infinite radius) and v (escape velocity at the shell), where v varies with
radius.

Given the velocity distribution f(u) and the escape velocity at the shell’s radius,
all that remains is to write out the quantity Ω−v (w), the probability per unit time to
scatter to less than escape velocity. In the simplest case of constant cross-section,
we have a total scattering probability of σnw, where σ is the cross-section and n is
the target number density in the shell. What is sought, however, is not the total
cross-section, but the cross-section times the probability that a scattering event
results in a velocity lower than escape velocity.

In the case of a constant cross-section, this is fairly straight forward. Consider
a inertial frame where the target nucleus is at rest. The maximum kinetic energy
transferred to the nucleus occurs in a head-on collision. The kinematics of an
elastic collision in one dimension gives that

∆E

E

∣∣∣∣
max

=
4MχmN

(Mχ +mN)2
, (3.1.8)

where mN is the mass of the target nucleus and Mχ is the mass of the incoming
WIMP. On the other hand, if the WIMP is barely grazing the target nucleus
then the transferred kinetic energy can be arbitrarily small, so that the minimum
transferred energy in a collision is zero. Furthermore, the probability density for
the collision is evenly distributed with respect to ∆E, which can be realized by
looking at the phase-space of the target nucleus after the collision, for which all
collisional angles are equally probable.

Because the loss of energy must be such that the particle scatters to below
escape velocity, there is a requirement that

∆E

E
≥ w2 − v2

w2
=
u2

w2
. (3.1.9)

Thus the probability that a scattering event lead to capture is simply

Pcapt. = 1−
(

4MχmN

(Mχ +mN)2

)−1
u2

w2
. (3.1.10)

There is a condition for this quantity to be positive, as otherwise capture is not
kinematically possible.

The rate of scattering that results in capture is thus the total rate of scattering,
σnw, times the above probability and condition, which gives
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Ω−v = σnw

(
1− (Mχ +mN)2

4MχmN

u2

w2

)
θ

(
1− (Mχ +mN)2

4MχmN

u2

w2

)
, (3.1.11)

where θ(...) is the Heaviside step function.

To simplify the integral in equation (3.1.7), I rewrite this expression so that
the integrand has no w dependence, like

Ω−v =
σn

w

(
v2 − (Mχ −mN)2

4MχmN

u2

)
θ

(
v2 − (Mχ −mN)2

4MχmN

u2

)
. (3.1.12)

Now the factor w−1 cancels against the factor w in the integral of equation (3.1.7).

For the sake of simplicity I assume the WIMP velocity distribution to be
Maxwellian and that the massive body is stationary with respect to the WIMP
halo rest frame. The velocity distribution is

f(u)du = nχ
4√
π
x2e−x

2

dx, (3.1.13)

where nχ is the WIMP number density and x2 = 3(u/v̄)2/2 is the dimensionless
velocity, where v̄ is the velocity dispersion.

To further simplify the integrand expression in equation (3.1.12), I define a
quantity

A2 =
3

2

v2

v̄2

4MχmN

(Mχ −mN)2
, (3.1.14)

which through the Heaviside-function in Ω−v constitutes the upper limit of the
integral. The integral is now
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dC

dV
=

∫ x=A

0

nχ
4√
π
x2e−x

2 σn

u

(
v2 − (Mχ −mN)2

4MχmN

u2

)
dx =

=

∫ A

0

nχ
4√
π
x2e−x

2

√
3

2

σn

v̄x

(
v2 − (Mχ −mN)2

4MχmN

2

3
v̄2x2

)
dx =

=

∫ A

0

nχ

√
24

π
e−x

2 σn

v̄

(
v2x− (Mχ −mN)2

4MχmN

2

3
v̄2x3

)
dx =

=

∫ A

0

nχ

√
24

π
e−x

2 σn

v̄
v2
(
x− A−2x3

)
dx =

=

{∫ A

0

xe−x
2

dx =
1

2
(1− e−A2

)∫ A

0

x3e−x
2

dx =
1

2

(
1− (A2 + 1)e−A

2
)}

=

=nχ

√
6

π

σn

v̄
v2

(
1− 1− e−A2

A2

)
.

(3.1.15)

Finding the total capture rate is now a matter of integrating over the total
volume of the Sun, like

C =

∫ R�

0

4πr2 dC

dV
dr

= 4πnχ

√
6

π

σ

v̄

∫ R�

0

r2nv2

(
1− 1− e−A2

A2

)
dr. (3.1.16)

The nucleon density n, the escape velocity v and the dimensionless quantity A
(directly proportional to v) in the integrand are the only quantities that depend
on the radius. With these quantities at hand, the integral can be evaluated nu-
merically. The different isotopes in the Sun would be integrated over separately,
as they have different densities, particle masses, and cross-sections.

3.1.2 Massive body in motion

An added complication to the result presented above is if the massive body is
moving with respect to the WIMP halo. If we stay in the rest frame of the massive
body, then the velocity distribution of the WIMP halo must be translated by their
relative velocities. To translate the Maxwellian distribution, I can rewrite it as an
integral over spherical angles, like
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f(u)du = nχ
4√
π
x2e−x

2

dx =

= nχ
4√
π

∫
e−x

2

x2dx
d(cos θ)dφ

4π
. (3.1.17)

The part x2dx is the Jacobian in spherical coordinates and should not be affected
by the change of inertial frame. Rather, it is only the term e−x

2
that is changed,

for which x2 → x2
x + x2

y + (xz + η)2 = x2 + 2ηx cos θ + η2. The quantity η has the
same normalization as x, such that η2 = 3(v�/v̄)2/2, where v� is the velocity of
the massive body as seen from the rest frame of the WIMP halo. The result is

f(u)du→ nχ
4√
π

∫
e−x

2

e−η
2

e−2ηx cos θx2dx
d(cos θ)dφ

4π
=

=nχ
4√
π
e−x

2

e−η
2

x2dx
1

2

[
− 1

2xη
e−2xη cos θ

]cos θ=1

cos θ=−1

=

=nχ
4√
π
e−x

2

e−η
2

x2dx
e2xη − e−2xη

4xη
=

=nχ
4√
π
e−x

2

x2dx e−η
2 sinh 2xη

2xη
. (3.1.18)

This is the new velocity distribution that must be used. It makes the integral
of equation (3.1.7), the capture rate per unit volume, more lengthy to calculate
analytically. I do not present these results here, however, as in this project these
integrals are evaluated numerically anyway.

3.1.3 Capture rates with varying cross-section

In this section I will generalize the expression of the Sun’s total capture rate, from
the case of a constant cross-section to a cross-section that varies with collisional
velocity and transferred momentum. In the case of a constant cross-section, the
total rate of scattering is σnw. Multiplying this quantity by the fraction of trans-
ferred kinetic energy that results in capture gives the total probability of capture
per unit time, Ω−v , as seen in equation (3.1.11).

In the generalized case, the cross-section varies with collisional velocity and
transferred kinetic energy (or equally well with transferred momentum or angle of
scattering). This necessitates a description by means of differential cross-section,
dσ/dEr, which can be integrated over to retain the total cross-section or the total
rate of scattering that results in capture.
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With these considerations, in analogy with equation (3.1.11), the rate of scat-
tering from a velocity w to a velocity less than escape velocity v per unit time
becomes

Ω−v (w) = nw θ

(
1− (Mχ +mN)2

4MχmN

u2

w2

)∫ 2M2
χmNw

2

(Mχ+mN )2

Mχu2/2

dEr
dσ

dEr
(w,Er). (3.1.19)

The lower limit of the integral is the minimal energy that the WIMP must lose
in order to be captured; the upper limit is the highest energy transfer that is
kinematically possible in an elastic collision.

In analogy with the case of the constant cross-section, the capture rate per unit
volume is

dC

dV
=

∫ ∞
0

du
f(u)

u
wΩ−v (w), (3.1.20)

where the upper limit of the integral in effect is given by the Heaviside-function in
Ω−v . The total capture rate is, just like before,

C =

∫ R�

0

4πr2 dC

dV
dr. (3.1.21)

These integrals are performed numerically for each isotope species of target nuclei.
The differential cross-sections are calculated by means of effective field theory.
Further information on effective field theory and differential cross-sections is found
in section 3.2.

3.1.4 Solar densities and cold static body approximation

When calculating the capture rates in this thesis, I account for the 16 most abun-
dant elements of the Sun, as seen in table 3.1 with their respective mass fractions.
The solar densities for the different isotopes, with radial dependence, are taken
from the standard solar model [55], also used in the DarkSUSY package [56]. I
approximate the Sun as being static, meaning that I do not account for the fact
that these densities have changed over time. The total helium mass fraction has
changed only slightly during its lifetime, from ∼ 27 % to ∼ 30 %. The relative
change in metallicity is even smaller. This justifies the approximation of the Sun
as static, using current isotope densities.

In the evaluation of the capture rate, I also approximate the massive body as
being cold. The target particle is assumed to be stationary, so that its thermal
movement within the massive body is neglected. Thus the collisional velocity is
solely determined by the velocity of the in-falling WIMP. Comparing the general
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Isotope Mass fraction Isotope Mass fraction

H 0.684 24Mg 7.30 · 10−4

4He 0.298 27Al 6.38 · 10−5

3He 3.75 · 10−4 28Si 7.95 · 10−4

12C 2.53 · 10−3 32S 5.48 · 10−4

14N 1.56 · 10−3 40Ar 8.04 · 10−5

16O 8.50 · 10−3 40Ca 7.33 · 10−5

20Ne 1.92 · 10−3 56Fe 1.42 · 10−3

23Na 3.94 · 10−5 59Ni 8.40 · 10−5

Table 3.1: The 16 most abundant isotopes of the Sun and their total mass fractions.

magnitude of these velocities shows that the thermal movement is completely neg-
ligable in most cases and a fair approximation in others. The escape velocity of
the Sun is about 620 km/s at the surface and 1380 km/s at the core, which consti-
tutes the minimum impact velocity of an in-falling WIMP at that radius. The core
temperature of the Sun is 1.57 ·107 K, meaning that the lightest nuclei would have
a velocity dispersion of a few hundred km/s in the core, which can be considered a
relatively small correction factor to the overall picture. In the most extreme case,
which is for hydrogen, the correction is at most a few percent. This accuracy is
still more exact than for many other parameters, such as the WIMP halo density,
which is why I proceed under a cold body approximation.

3.1.5 Self-capture rate

The self-capture rate is calculated much like in the previous section 3.1.3. However,
there are minor differences to be accounted for.

It is assumed that a WIMP that scatters to less than escape velocity will soon
scatter again and quickly thermalize, settling in the core of the Sun. The use of
the term “quickly” is meant in relation to the billion year time-scale of building up
a concentration of trapped WIMPs within the Sun. A rough order-of-magnitude
estimate is enough to justify this assumption. A WIMP that loses only 10 % of
its total kinetic energy in a collision in the Sun’s core will be bound in orbit such
that it travels through the Sun more than two thousand times per year. There
is a one-in-a-billion probability to scatter off of hydrogen when going through the
Sun’s core, assuming a cross-section of 10−45 cm2. This gives an average of half
a million years before its second scattering event, after which the process will be
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even quicker. Therefore, it is safe to say that only very improbable and rare events
will take billions of years to thermalize.

It is assumed that the trapped WIMPs thermilize to the Sun’s core tempera-
ture. Even with strong WIMP self-interaction, the rate of in-flowing kinetic energy
by WIMPs would be lower than the rate of energy they lose in the thermalization
process. Therefore, I use a thermal profile for the captured WIMPs,

ε(r) ∝ exp

[
−Mχφ(r)

Tcore

]
, (3.1.22)

where ε is the WIMP density as a function of radius, given by the WIMP mass, the
gravitational potential, and the Sun’s core temperature. Even for a very light dark
matter particle of mass 10 GeV, captured and thermalized WIMPs are confined
to about one percent of the Sun’s radius.

If self-interaction is present and significant there could potentially be a degree
of evaporation. There is a possibility that an in-falling WIMP could collide with
a target WIMP and distribute the kinetic energy such that they both escape the
gravitational well of the massive body. It turns out for the case of the Sun that
this is a very insignificant factor, many orders of magnitude smaller than the total
capture by self-interaction. This is due to the Sun’s large escape velocity. However,
for a less massive body, such as the Earth, this effect could be very important.

What is more significant than evaporation is the case where the in-falling
WIMP is captured but the target WIMP escapes. This would happen, for exam-
ple, in a head-on collision where the two WIMPs simply exchange kinetic energy.
Such an event results in a status quo: no net gain or loss of captured WIMPs. This
effect is accounted for by setting an upper limit in the integral, Mχv

2/2, which is
the energy needed in order to escape.

Because the in-falling particle and the target particle are identical and have the
same mass, the expression becomes somewhat tidier compared to WIMP capture
by nuclei. The integral, analogous to equation (3.1.19), becomes

Ω−v (w) = ε(r)w θ(v2 − u2)

∫ Mχv2/2

Mχu2/2

dEr
dσχχ
dEr

(w,Er), (3.1.23)

where ε(r) is the WIMP number density of equation (3.1.22) and σχχ is the WIMP
self-interaction cross-section.

3.1.6 Annihilation rate

Annihilation of captured WIMPs within the Sun will come into effect when the
concentration has become sufficiently high. The annihilation cross-section of a non-
relativistic relic dark matter particle comes from cosmological arguments. This



31 3.1. WIMP CAPTURE RATE OF A MASSIVE BODY

Figure 3.1: The thermal annihilation cross-section as a function of WIMP mass.
The result is fairly constant in the mass range of 10–1000 GeV, and somewhat lower
than the canonical value. The analytical and numerical evaluations differ by less
than 3 %. The figure is from an article by Steigman, Dasgupta, and Beacom [27].

quantity multiplied by the number density squared, ε2, becomes the annihilation
rate per unit volume.

A canonical value for the thermally averaged annihilation cross-section is 〈σAv〉 '
3 · 10−26 cm3s−1. However, recent studies have made more precise evaluations of
this value [27], as can be seen in figure 3.1. Following these results, the value used
in this thesis is 〈σAv〉 ' 2 · 10−26 cm3s−1.

Thus the total annihilation rate of the Sun is proportional to an annihilation
factor, Ca, and the total number of captured WIMPs squared, N2. The annihila-
tion factor is

Ca =
4π〈σAv〉
N2

∫ R�

0

ε2(r)r2dr, (3.1.24)

with unit s−1.
Because the WIMP distribution is so localized in the solar interior and the

core of the Sun has more or less a constant density, the annihilation factor follows
closely the analytical form

Ca = 2.8 · 10−57

(
Mχ

GeV

)3/2

s−1. (3.1.25)

The total amount of annihilation events in the Sun is CaN
2/2, where the fac-
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tor 1/2 is due to that WIMPs annihilate in pairs. The differential neutrino flux
produced by these annihilation events is [22]

dΦν

dEν
=

1

4πD2

CaN
2

2

∑
f

Bf
χ

dN f
ν

dEν
, (3.1.26)

where Eν is the neutrino energy, D is the distance from the Sun, Bf
χ is the branching

ratio for WIMP pair annihilation, and dN f
ν /dEν is the neutrino energy spectrum

produced by decay channel f .
Neutrinos coming from WIMP annihilation in the Sun can be detected in a

neutrino telescope on Earth. Such a detector measures an upward muon flux
induced by neutrinos interacting with nuclei in the surrounding material. The
differential muon flux is [57]

dΦµ

dEµ
= NT

∫ ∞
Eth
µ

dEν

∫ ∞
0

dλ

∫ Eµ

Eµ

dE ′µ P(Eµ,E
′
µ;λ)

dσCC(Eν ,E
′
µ)

dE ′µ

dΦν

dEν
, (3.1.27)

where NT is the nucleon number density in the material surrounding the detector,
Eth
µ is the detector energy threshold, λ is the muon range, P(Eµ,E

′
µ;λ) is the

probability of a muon of initial energy E ′µ to have final energy Eµ after traveling
a distance λ inside the detector, and dσCC(Eν ,E

′
µ)/dE ′µ is the weak differential

cross-section for production of a muon with energy E ′µ.
These expressions are not a prime concern of this thesis, as only a relative

amplification to the neutrino signal is sought.

3.2 Effective field theory

An effective field theory (EFT) is an approximate description of a physical system
or field theory, viable in restricted volume of its parameter space, typically in a low-
energy limit. An EFT description is made possible in a system of widely separated
scales, for example when high energy effects can be regarded as perturbations with
respect to the dominating low energy behavior. This is an indispensable tool and
standard procedure for a lot of applications in field theory. It is widely believed
that the Standard Model itself is an effective theory, in that it operates in a low-
energy limit of some higher and unknown, possibly unified, physics.

The EFT approach can be used both when the full theory is known and when
it is unknown. In the case that the full theory is known, it is possible to integrate
out the heavy modes and treat their influence perturbatively. Consider a simple
example of a field theory of one very heavy field, Φ, and one very light field, φ,
described by a functional S[φ,Φ]. The heavy field can be integrated out,
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eiSeff [φ] =

∫
eiS[φ,Φ]DΦ, (3.2.1)

to produce a local effective functional for the low energy field. This effective
functional can be expressed as a series of interaction operators,

Seff [φ] =
∑
i

ci

∫
dx4Oi(x). (3.2.2)

The coefficients ci are infinitely many, but they scale as increasing factors of the
ratio between energy scales. This is what allows for a perturbative treatment. An
example of such a procedure would be to reduce the full electroweak field theory
to a electromagnetic EFT with weak-force interaction operators. This is possible
due to the operating energy scale of the system being much lower than the mass
of the weak-force W and Z bosons.

Even if the physics of the full theory and its behavior at high energy is un-
known, EFT can be applied. By writing down all operators that respect the
symmetries of the physical system at low energy, it is possible to construct a com-
pletely general and model-independent description of the theory. This is also the
approach that is used in this thesis, as the theory of WIMP interactions is not
known (although there are various models). For WIMPs captured by the Sun, the
relevant interactions are the in non-relativistic regime. Hence, an EFT in the limit
of Newtonian physics, with operators respecting Galilean symmetry, allows for a
model-independent exploration of parameter space.

3.2.1 Non-relativistic interaction operators

The possible quantum operators that dictate the interaction between particles are
restricted by physical symmetries. Elastic collisions in the non-relativistic limit
must conserve energy and momentum, and adhere to the symmetries of Galilean
invariance (a Galilean transformation is a shift of all particles by some three di-
mensional spatial velocity). This restriction leads to a finite number of possible
leading order interaction operators.

Any such interaction term is constructed from these five Hermitian quantum
operators,

1χN iq̂ v̂⊥ Ŝχ ŜN . (3.2.3)

For the sake of clarity, the two particles involved in the collision are assumed to be
a WIMP and a nucleon, denoted with indices χ and N , although they could really
be of any type. Later on, self-interaction between two WIMPs is also considered.
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These five operators are invariant with respect to Galilean transformation. The
first, fourth and fifth are trivially invariant, as a Galilean transformation leaves
the spin unaffected. The second operator is the transferred momentum of the
collision, q ≡ k − k′, where k is the momentum of a particle before collision and
k′ is that same particle’s momentum after collision. Quantum mechanically the
operator yields

〈p′,jχ; k′,jN |iq̂|p,jχ; k,jN〉 = iqe−iq·r(2π)3δ(k′ + p′ − k− p). (3.2.4)

The third operator is the transverse velocity and perhaps less obviously a Galilean
invariant quantity. More intuitively realized is that the relative velocity before
collision, v ≡ p/mχ − k/mN , is invariant. The transverse velocity is formed to
be invariant, v⊥ ≡ v + q/(2µ), where µ is the reduced mass of the two-particle
system. The quantum operator yields

〈p′,jχ; k′,jN |v̂⊥|p,jχ; k,jN〉 =

(
v +

q

2µ

)
qe−iq·r(2π)3δ(k′ + p′ − k− p). (3.2.5)

These five quantum operators can be combined in different ways to form Galilean
invariant interaction operators. There is a demand for them to be of leading or-
der, and to be at most linear in Ŝχ, ŜN , and v̂⊥. The restriction on the spin
and transverse momentum comes from the mediating particle of the full theory,
which is assumed to have spin 1 or lower. The complete list of such operators is
visible in table 3.2, where the mass mN has been utilized to make the operators
dimensionless. The indices follow the convention of Haxton et al. [58] and Catena
and Schwabe [59], such that the operator Ô2 = v̂⊥ · v̂⊥ is excluded from the list.
The 14 operators all correspond to a linear combination of operators in the rel-
ativistic theory. For example, the operator Ô10 is obtained from the interaction
term iχ̄χN̄γ5N in its non-relativistic limit.

The total Hamiltonian density in the effective field theory is thus

Ĥ(r) =
15∑
k=1

ckÔk(r). (3.2.6)

The coefficients ck are coupling constants and have dimension mass−2. The end
goal of this chapter is to obtain the differential cross-section, dσ/dER, as a function
of this linear combination of operators. This is done by squaring the scattering
amplitude,M, and integrating over all free variables. This is complicated enough
in its own right, but made even more so for the case of atomic nuclei made up of
several nucleons. The inner structure of the nucleus and the resulting scattering
resonances must be accounted for. By describing this inner structure by means of
form factors, a nucleus can still be treated as a single particle.
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Ô1 = 1χN Ô9 = iŜχ ·
(
ŜN × q̂

mN

)
Ô3 = iŜN ·

(
q̂
mN
× v̂⊥

)
Ô10 = iŜN · q̂

mN

Ô4 = Ŝχ · ŜN Ô11 = iŜχ · q̂
mN

Ô5 = iŜχ ·
(

q̂
mN
× v̂⊥

)
Ô12 = Ŝχ ·

(
ŜN × v̂⊥

)
Ô6 =

(
Ŝχ · q̂

mN

)(
ŜN · q̂

mN

)
Ô13 = i

(
Ŝχ · v̂⊥

)(
ŜN · q̂

mN

)
Ô7 = ŜN · v̂⊥ Ô14 = i

(
Ŝχ · q̂

mN

)(
ŜN · v̂⊥

)
Ô8 = Ŝχ · v̂⊥ Ô15 = −

(
Ŝχ · q̂

mN

) [(
ŜN × v̂⊥

)
· q̂
mN

]
Table 3.2: All leading order non-relativistic interaction operators.

3.2.2 WIMP-nuclei interaction

For interactions between WIMPs and nuclei, the parameter space of possible in-
teraction coefficients is doubled, as there are two types of nucleons: protons and
neutrons. The WIMP-nucleon Hamiltonian density can be written in a basis of
isospin, represented by an upper index τ , which is 0 for isoscalar and 1 for isovec-
tor coupling constant. By labeling each of nucleons with an index i, the total
Hamiltonian density for the nucleus of mass number A can be written

Ĥ(r) =
A∑
i=1

∑
τ=0,1

15∑
k=1

cτkÔ
(i)
k (r)tτ(i). (3.2.7)

The quantity tτ(i) is a matrix that projects a nucleon state onto a isospin or isoscalar
state. If changing to a basis of proton and neutron couplings, the coupling coeffi-
cients are related like cpk = (c0

k + c1
k)/2 and cnk = (c0

k − c1
k)/2.

To account for the inner structure of a nucleus, it is convenient to separate its
position, denoted x, to the relative position of a target nucleon inside it, r. Let
y represent the position of a WIMP. The quantum mechanical operators can be
rewritten like

q̂ = −i
←−
∇xδ(x− y + r)− iδ(x− y + r)

−→
∇x (3.2.8)

v̂⊥ = v̂⊥T + v̂⊥N , (3.2.9)

where
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v̂⊥T = δ(x− y + r)

(
i

−→
∇x

mT

− i
−→
∇y

mχ

)
+

1

2µT
q̂ (3.2.10)

v̂⊥N =
1

2mN

(
i
←−
∇rδ(r− ri)− iδ(r− ri)

−→
∇r

)
. (3.2.11)

Here, mT is the target nucleus mass and µT is the WIMP-nucleus reduced mass.
The operator ∇r acts on the constituent target nucleon. This separation is useful
as r is the only operator that depends on the position of the individual nucleon,
r. Any interaction operator not containing v̂⊥N acts like identity on quantity r,
meaning that it is not coupled to the internal structure of the nucleus.

Using this, it is possible to rewrite equation (3.2.7) to the form

Ĥ(r) =
∑
τ=0,1

{
A∑
i=1

l̂τ0δ(r− ri)

+
A∑
i=1

l̂τ0A
1

2mN

(
i
←−
∇r · ~σ(i)δ(r− ri)− iδ(r− ri)~σ(i) ·

−→
∇r

)
+

A∑
i=1

l̂τ5 · ~σ(i)δ(r− ri) (3.2.12)

+
A∑
i=1

l̂τM
1

2mN

(
i
←−
∇rδ(r− ri)− iδ(r− ri)

−→
∇r

)
+

A∑
i=1

l̂τE
1

2mN

(←−
∇r × ~σ(i)δ(r− ri) + δ(r− ri)~σ(i)×

−→
∇r

)}
tτ(i),

where ~σ(i) refers to the set of three Pauli matrices, acting as spin operators on the
ith nucleon, and



37 3.2. EFFECTIVE FIELD THEORY

l̂τ0 = cτ1 + iŜχ ·
(

q̂

mN

× v̂⊥T

)
cτ5 + Ŝχ · v̂⊥T cτ8 + iŜχ ·

q̂

mN

cτ11

l̂τ0A = −1

2

(
cτ7 + iŜχ ·

q̂

mN

cτ14

)
l̂τ5 =

1

2

(
i

q̂

mN

× v̂⊥T c
τ
3 + Ŝχ c

τ
4 +

q̂

mN

Ŝχ ·
q̂

mN

cτ6 + v̂⊥T c
τ
7 + i

q̂

mN

× Ŝχ c
τ
9 + i

q̂

mN

cτ10

+ v̂⊥T × Ŝχ c
τ
12 + i

q̂

mN

Ŝχ · v̂⊥T cτ13 + iv̂⊥T Ŝχ ·
q̂

mN

cτ14 +
q̂

mN

× v̂⊥Ŝχ ·
q̂

mN

cτ15

)
l̂τM = i

q̂

mN

× Ŝχ c
τ
5 − Ŝχ c

τ
8

l̂τE =
1

2

(
q̂

mN

cτ3 + iŜχ c
τ
12 −

q̂

mN

× Ŝχ c
τ
13 − i

q̂

mN

Ŝχ ·
q̂

mN

cτ15

)
. (3.2.13)

Integrating the Hamiltonian density over all space gives the full Hamiltonian, HT ,
which eliminates the delta functions. The scattering amplitude is given by relation

〈f |HT |i〉 = iM(2π)3δ(k′T + p′ − kT − p). (3.2.14)

The initial state is defined by the momentum and quantum numbers of the nucleus,
including spin, isospin and their associated magnetic momenta, as well as the
momentum, spin and magnetic moment of the WIMP, like

|i〉 = |kT ,J,MJ ,T,MT 〉 ⊗ |p,jχ,Mχ〉. (3.2.15)

An analogous expression applies for the final state, 〈f |.

In order to evaluate the differential cross section, we must square the scattering
amplitude and integrate over all free variables. This is a lengthy task and not
presented in detail. The end result can be presented like
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dσ

dER
(w2,q2) =

1

2jχ + 1

1

2J + 1

mT

2πw2

∑
spins

|M|2 =

=
1

2J + 1

2mT

w2

∑
τ

∑
τ ′

{
Rττ ′

M

(
v⊥2
T ,

q2

m2
N

)
W ττ ′

M (y)

+Rττ ′

Σ′′

(
v⊥2
T ,

q2

m2
N

)
W ττ ′

Σ′′ (y) +Rττ ′

Σ′

(
v⊥2
T ,

q2

m2
N

)
W ττ ′

Σ′ (y)

+
q2

m2
N

[
Rττ ′

Φ′′

(
v⊥2
T ,

q2

m2
N

)
W ττ ′

Φ′′ (y) +Rττ ′

Φ′′M

(
v⊥2
T ,

q2

m2
N

)
W ττ ′

Φ′′M(y)

+Rττ ′

Φ̃′

(
v⊥2
T ,

q2

m2
N

)
W ττ ′

Φ̃′
(y) +Rττ ′

∆

(
v⊥2
T ,

q2

m2
N

)
W ττ ′

∆ (y)

+Rττ ′

∆Σ′

(
v⊥2
T ,

q2

m2
N

)
W ττ ′

∆Σ′(y)

]}
. (3.2.16)

The quantities denoted Rττ ′ are the WIMP response functions, quadratic combi-
nations of the various l quantities from equation (3.2.13). The full expressions
for the WIMP response functions can be found in table 3.3. The quantities
denoted W ττ ′ are the nuclear response function, which is different for each nu-
clear isotope. They are polynomial functions times an exponential suppression
factor containing quantity y = (bq/2)2. Here q is the transferred momentum
and b is the harmonic oscillator length of the nucleus, which is assumed to be
b =

√
41.647/(45A−1/3 − 25A−2/3).

The nuclear response functions are taken from a paper by Catena and Schwabe
[59], which in turn built on Mathematica package for WIMP direct detection [58].
The nuclear response functions were calculated numerically using one-body density
matrix elements (OBDME). The OBDMEs are from the Nushell@MSU program,
which is based on a nuclear shell model. For the calculations in this thesis, a
modified version of the Mathematica package for WIMP direct detection has been
used. The program provides the differential cross-section, described in equation
(3.2.16), as a function of nuclear isotope, WIMP mass and spin, and chosen inter-
action coefficient values. The package is user friendly and does not necessitate an
in-depth understanding of how to derive the response functions. Neither is that
the primary focus of this thesis. For further information on the subject, the reader
is encouraged to look at the references mentioned above.
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Rττ ′
M = cτ1c

τ ′
1 + jχ(jχ+1)

3

(
q2

m2
N
v⊥2
T cτ5c

τ ′
5 + v⊥2

T cτ8c
τ ′
8 + q2

m2
N
cτ11c

τ ′
11

)
Rττ ′

Φ′′ = q2

4m2
N
cτ3c

τ ′
3 + jχ(jχ+1)

12

(
cτ12 −

q2

m2
N
cτ15

)(
cτ
′

12 −
q2

m2
N
cτ
′

15

)
Rττ ′

Φ′′M = cτ3c
τ ′
1 + jχ(jχ+1)

3

(
cτ12 −

q2

m2
N
cτ15

)
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′

11

Rττ ′

Φ̃′
= jχ(jχ+1)

12

(
cτ12c

τ ′
12 + q2

m2
N
cτ13c

τ ′
13
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Rττ ′
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4m2
N
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τ ′
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12
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cτ4c

τ ′
4 + q2
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N
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τ ′
6 + cτ6c
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4 )+

+ q4
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N
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τ ′
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τ ′
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N
v⊥2
T cτ14c

τ ′
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]
Rττ ′
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T cτ3c

τ ′
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T cτ7c
τ ′
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)
+ jχ(jχ+1)

12

[
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N
cτ9c
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9 +

+
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q2

m2
N
cτ
′

15 + q2

2m2
N
v⊥2
T cτ14c

τ ′
14

) ]
Rττ ′

∆ = jχ(jχ+1)

3

(
q2

m2
N
cτ5c

τ ′
5 + cτ8c

τ ′
8

)
Rττ ′

∆Σ′ = jχ(jχ+1)

3

(
cτ5c

τ ′
4 − cτ8cτ

′
9

)
Table 3.3: WIMP response functions.

3.2.3 WIMP self-interaction

In the case of WIMP self-interaction, everything works in complete analogy with
WIMP-proton interaction. The WIMPs are assumed to have spin 1/2, as hydrogen
does. The nuclear response functions in the expression for the differential cross-
section, equation (3.2.16), simply uses the values for hydrogen,

WWIMP
M =

1

8π

WWIMP
Σ′′ =

1

8π
(3.2.17)

WWIMP
Σ′ =

1

4π
.

The other W ’s are zero, as they account for a nucleus’ sub-structure. The total
differential cross-section for WIMP self-interaction becomes

dσχχ
dER

(w2,q2) = (3.2.18)

mT

w2

[
RM

(
v⊥2
T ,

q2

m2
N

)
1

8π
+RΣ′′

(
v⊥2
T ,

q2

m2
N

)
1

8π
+RΣ′

(
v⊥2
T ,

q2

m2
N

)
1

4π

]
.



CHAPTER 3. WIMP CAPTURE BY THE SUN 40

The indices τ and τ ′, representing isoscalar and isovector couplings, are of course
dropped. Apart from that the WIMP response functions, denoted R, remain the
same, as in table 3.3.

3.3 Interaction coefficient limits

The aim of this thesis is to find out whether the WIMP self-interaction can make
a significant contribution to the number of WIMPs captured by the Sun and the
resulting flux of neutrinos. This is done by exploring the parameter space that gov-
erns WIMP-nuclei interaction and WIMP self-interaction. Apart from the mass,
spin and annihilation coefficient of the hypothesized WIMP, the degrees of free-
dom lie in the interaction coupling constants, ci. As described in section 3.2, the
coupling constants determine the strength of 14 different interaction operators, Ôi.
In the case of WIMP-nuclei interaction the degrees of freedom is doubled due to
isoscalar/isovector (or proton/neutron) couplings. This gives 28 degrees of free-
dom for the WIMP-nuclei interaction, and 14 degrees of freedom for the WIMP
self-interaction.

This parameter space is limited by experiment, theoretical argument, obser-
vation, and simulation. The WIMP-nuclei interaction coupling constants have
upper bounds, for which the strongest limits come from direct detection exper-
iments. The WIMP self-interaction coupling constants have approximate upper
limits coming from galaxy clusters, as well as some astronomical arguments for a
lower limit.

3.3.1 Limits for WIMP-nuclei interaction

The limits used for the WIMP-nuclei isoscalar and isovector coupling constants,
c0
i and c1

i , are taken directly from an article by Catena [57]. Figure 3.2 shows the
limits for coupling constant c0

1. As seen in the figure, the strongest limit on the
coupling constant is for a mass of ∼ 50 GeV. This is due to the particle mass of
the LUX detector medium, which is xenon with mass number 54.

The LUX experiment provides the strongest limit over the whole mass range
(10–1000 GeV) for almost all 28 coupling constants. The most notable exception
is the case of c0

7, for which the limit provided by IceCUBE is actually one order of
magnitude stronger. However, these limits are derived from the hypothesized but
not yet detected neutrino signal from the Sun, produced by WIMP annihilation
(without including self-interaction in the description). The limits are set under
the assumption of certain annihilation channels. For what is called the soft case
in figure 3.2, represented by a dashed line, the WIMPs are assumed to annihilate
into a bb̄ quark pair. For the hard case, represented by a solid line, the annihilation
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Figure 3.2: An image from an article by Catena [57], showing the limits on coupling
constant c0

1. The strongest limit comes from the LUX detector, represented in yellow.
The vertical axis scale is with respect to the Higgs field vacuum expectation value,
mv = 246.2 GeV.

product is assumed to a W+W− pair. For the calculations and analysis in this
thesis, only the limits provided by the LUX direct detection experiment are used.

3.3.2 Limits for WIMP self-interaction

The strength of dark matter self-interaction is a hot topic of debate. While non-
collisional cold dark matter has been proved very successful in explaining large-
scale cosmological behavior, some smaller-scale phenomena are more problematic
in such a theory. Simulations of collisionless cold dark matter at galaxy to galaxy
cluster scales predict more centrally concentrated halo densities [7] and more halo
substructure [60] than what is observed. This is known as the cuspy halo problem.

Various solutions to this problem has been proposed. For example, violent as-
trophysical processes such as supernovae could affect the halo structure by heat
dissipation, caused by rapid fluctuations of the gravitational potential [11]. An-
other solution could be that dark matter is not cold, but has a higher velocity. The
idea relevant to this thesis is that dark matter is self-interacting [8]. Estimates of
the strength of such self-interaction vary, and consensus on the issue has not been
reached.

A recent study of halo substructure in galaxy to galaxy cluster scales [9] found
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that a constant total cross-section of σχχ ' 0.1 Mχ

g
cm2 is capable of reproducing

the observed density distribution shapes. Their simulations also suggests that
no velocity dependence in the total cross-section is necessary, at least not in the
regime of the typical collisional velocity at these scales, in the approximative range
of 20–1000 km/s. The lower value comes from dwarf galaxies and the higher value
from galaxy clusters. A similar study on dwarf spheroidals around the Milky Way
[10] reaches a similar result in the approximate range of 0.1–1 Mχ

g
cm2.

However, there is some tension with other results. A recent study of a galaxy
falling into the core of a galaxy cluster [61] has produced a higher estimate of
σχχ ' 1.5 Mχ

g
cm2. In this case, the merger velocity is ∼ 1500 km/s. Conversely,

an somewhat older study [62] examined the ellipticity properties of a galaxy cluster
and found a significantly lower total cross-section of ∼ 0.02 Mχ

g
cm2.

In this thesis, the limit I use for the WIMP self-interaction cross-section used
is

σχχ < 0.1
Mχ

g
cm2 = 1.78 · 10−25 Mχ

GeV
cm2. (3.3.1)

For the operators that have a dependence on collisional velocity, I assume that the
cross-section is evaluated for v = 1000 km/s. This is the conservative choice, as it
sets the strictest limit for cross-sections of higher collisional velocity (recall that
the escape velocity from the Sun’s core is 1380 km/s).

Another upper limit for WIMP self-interactions, that is perhaps more credible
and definite, is provided by the Bullet Cluster, previously discussed in section
2.1. With combined information from X-ray and optical observation, strong and
weak gravitational lensing and numerical simulation, the merging galaxy cluster
has placed an upper limit (68 % confidence) of

σχχ < 1.25
Mχ

g
cm2 = 2.23 · 10−24 Mχ

GeV
cm2. (3.3.2)

If it is assumed that the two merging clusters had equal mass-to-light ratios prior to
collision, the constraint can be made stronger, to 0.7 Mχ

g
cm2. The less restrictive

limit, not dependent on this assumption, is used in this thesis.
On a side note, a similar but more extensive study has provided a stronger

limit to the constant cross-section [63] than what was set by the Bullet Cluster.
A total of 72 cluster collisions was used in the analysis. The limit found was
0.47 · 10−24 Mχ

g
cm2 (95 % confidence). This limit is not used in this thesis,

however. Most of the cluster collisions have roughly the same collisional velocity
as the limit in equation (3.3.1), which is more stringent. The Bullet Cluster, on the
other hand, is a case of exceptionally high collisional velocity compared to other
merging clusters, which is why it still provides a stronger limit for the operators
with a quadratic or cubic dependence on transferred momentum.
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The constant cross-section corresponds to operator Ô1 = 1χχ or Ô4 = Ŝχ · ŜN .
Thus the upper limit for coupling constants c1 and c4 are trivially found. The other
coupling constants have a dependence on transferred momentum, which makes
the cross-section vary with collisional velocity. In order to find the limits to their
corresponding coupling constants, I calculate the total cross-sections for the typical
collisional velocity of the limit in question. For the limit provided by cluster
simulations I use a collisional velocity of 1000 km/s and for the Bullet Cluster the
merger velocity is 4700 km/s. Which one of these two limits that is the strongest
depends on the operator.

It has been considered that the calculations of total cross-section for the dif-
ferent operators should have some integrand weight. For example, interactions for
which the momentum transfer is very low could be given less significance, as they
have a weaker and less visible effect on a cluster merger. The total cross-section,
written like an integral over scattering angle with an added integrand weight,
W (cos θ), looks like

σχχ =

∫ 1

0

dσχχ
dEr

(v,Er(cos θ))
dEr

d(cos θ)
W (cos θ)d(cos θ). (3.3.3)

A weight that was considered was W ∝ cos θ(1 − cos θ): one factor cos θ because
it is proportional to the transferred momentum and one factor (1− cos θ) because
scattering to the side is what causes dissipation of the colliding halos. The most
dramatic effect is on operator Ô15, whose coupling constant limit coming from
the Bullet Cluster is made less restrictive by a factor 1.7 relative to the case
without integrand weight. In the end, using such a weight was decided against.
Exactly how the analysis of the Bullet Cluster [64] was made is not known which
makes it difficult to choose the correct weight; furthermore, this is an order-of-
magnitude argument and the conclusions drawn in this thesis are not contingent
on this specific numerical adjustments.

3.4 Capture rate differential equations

In this section I present and discuss the differential equations that describe the
WIMP capture and annihilation processes and how the concentration of trapped
WIMPs within the Sun changes over time. I also define a quantity β, which is the
relative amplification of the neutrino flux, due to WIMP self-interaction.

I begin with the case of no WIMP self-interaction, for which the differential
equation looks like

dN

dt
= Cc − CaN2. (3.4.1)
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Here, N is the number of captured WIMPs, Cc is the rate of capture by nuclei and
Ca is the annihilation rate. The term that accounts for annihilation contains N2,
as it is proportional to the number of possible pairs of captured WIMPs. Solving
this equation gives

dN

dt
= Cc

(
1− Ca

Cc
N2

)
(

1− Ca
Cc
N2

)−1
dN

dt
= Cc√

Cc
Ca

d

dt

[
tanh−1(

√
Ca
Cc
N)

]
= Cc

d

dt

[
tanh−1(

√
Ca
Cc
N)

]
=
√
CcCa

tanh−1(

√
Ca
Cc
N) =

√
CcCat+ const.

N =

√
Cc
Ca

tanh
(√

CcCat+ const.
)
.

(3.4.2)

Choosing an initial condition, N(t = 0) = 0, determines the value of the constant
in the above expression, such that

N =

√
Cc
Ca

tanh
(√

CcCat
)
. (3.4.3)

In the limit where t→∞, the number of captured WIMPs reaches an equilibrium,
Neq =

√
Cc/Ca.

In the case of also including WIMP self-interaction, the differential equation
gets an additional term, like

dN

dt
= Cc + CsN − CaN2, (3.4.4)

where Cs is the capture rate via self-interaction.
For shorthand I use a definition from an article by Zentner [1],

ζ =
1√

CcCa + C2
s/4

. (3.4.5)
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The differential equation (3.4.4) can be solved like

dN

dt
=

(
Cc +

C2
s

4Ca

)(
1− Ca

Cc + C2
s

4Ca

(
N − Cs

2Ca

)2

)
dN

dt
=

1

Caζ2

(
1− C2

aζ
2
(
N − Cs

2Ca

)2
)

1

1− C2
aζ

2
(
N − Cs

2Ca

)2

dN

dt
=

1

Caζ2

1

Caζ

d

dt

[
tanh−1

(
Caζ

(
N − Cs

2Ca

))]
=

1

Caζ2

tanh−1
(
Caζ

(
N − Cs

2Ca

))
= t/ζ + const.

N =
1

Caζ
tanh (t/ζ + const.) +

Cs
2Ca

. (3.4.6)

The initial condition N(t = 0) = 0 sets

const. = tanh−1

(
−Csζ

2

)
. (3.4.7)

To rewrite the solution further, I use identity

tanh(a+ b) =
tanh a+ tanh b

1 + tanh a tanh b
, (3.4.8)

which gives me

N =
tanh(t/ζ)− Csζ/2

Caζ(1− Csζ tanh(t/ζ)/2)
+

Cs
2Ca

=

=
tanh(t/ζ)− Csζ/2 + Csζ/2− C2

s ζ
2 tanh(t/ζ)/4

Caζ(1− Csζ tanh(t/ζ)/2)
=

=
(1− C2

s ζ
2/4) tanh(t/ζ)

Caζ(1− Csζ tanh(t/ζ)/2)
=

=
1− C2

s ζ
2/4

Caζ

tanh(t/ζ)

ζ−1 − Cs tanh(t/ζ)/2
=

=
Cc tanh(t/ζ)

ζ−1 − Cs tanh(t/ζ)/2
. (3.4.9)
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Figure 3.3: An example of how the total amount of trapped WIMPs, N , changes
over time, t. Both axes are normalized and in logarithmic scale. The solid line
represents the case of no self-interaction, Cs = 0. The dashed line represents the
case of strong self-interaction, such that Cs = 10

√
CcCa.

In the limit t→∞, this approaches an equilibrium,

Neq =
Cc

ζ−1 − Cs/2
=

Cs
2Ca

+

√
Cc
Ca

+
C2
s

4C2
a

. (3.4.10)

If C2
s > CcCa, self-capture becomes the dominant capture process at the equi-

librium steady state. Visible in figure 3.3 is an illustration of how the amount of
trapped WIMPs changes over time and how the resulting equilibrium state depend
on the relative strength of self-interaction.

The annihilation rate, the number of annihiliation events per unit time, at
equilibrium is

Γa =
1

2
CaN

2
eq, (3.4.11)

where the factor 1/2 is due to one event annihilating two WIMPs. From this I
can define a quantity β, which is the relative amplification of the annihilation rate
and of the produced neutrino flux, for the case of having or not having a WIMP
self-interaction,

β =

(
NCs 6=0(t)

NCs=0(t)

)2

=

(√
CcCa coth(

√
CcCat) tanh(t/ζ)

ζ−1 − Cs tanh(t/ζ)/2

)2

. (3.4.12)
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We can note in this expression that the parameters Cc and Ca only occur as a
product (also in quantity ζ). This means that the relative amplification is unaf-
fected if Cc is increased and Ca is decreased by the same factor. In the equilibrium
case, as t→∞, the amplification factor becomes

βeq =
C2
s

2CcCa
+

√(
C2
s

2CcCa

)2

+ 1. (3.4.13)

In the case of WIMP self-capture being the dominant process, the amplification
factor becomes β ' C2

s/(CcCa). In the other limit, where self-capture is weak, the
amplification tends to β ' 1 + C2

s/(2CcCa), where the last term of the expression
is small relative to 1.

A final thing worth discussing is the behaviour very early in time, when the
solution is far from being equilibrized. In this case the concentration of captured
WIMPs is not yet high enough for annihilation to have significant effect. By
neglecting annihilation, Ca, the differential equation looks like

dN

dt
= Cc + CsN. (3.4.14)

Given the initial condition N(t = 0) = 0, this has solution

N =
Cc
Cs

(eCst − 1). (3.4.15)

In the case where Cs = 0, the solution is simply N = Cct. The amplification factor
in the non-equilibrized region becomes

β =

(
eCst − 1

Cst

)2

. (3.4.16)

Here, the relative amplification factor has no depedence on Cc at all, and will
not until significant annihilation comes into effect. Keep in mind that while Cc
does not affect the relative amplification in the unequilibrized region, it very much
affects the absolute rate of capture, the absolute flux of neutrinos and the point in
time when equilibration happens.
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4
Results

In this chapter, I present the results for the total capture rate and the potential
amplification of the neutrino signal. The term amplification refers to the relative
enhancement of the neutrino signal that comes from including self-interaction in
the description, as described in section 3.4.

For the galactic WIMP halo in the solar neighbourhood, I use the following
values. The Sun moves with speed v� = 220 km/s through the halo. The halo
has density 0.4 GeV/cm3 and velocity dispersion v̄ = 270 km/s. The WIMPs are
assumed to have spin 1/2 and mass in the range of 10–1000 GeV.

4.1 Capture rates by nuclei

The WIMP capture rate by nuclei, what is written Cc in section 3.4, is calculated
numerically with equations (3.1.19), (3.1.20), (3.1.21). The 16 most abundant
isotopes in the Sun are considered, as presented in table 3.1. The differential cross-
sections are taken from a modified version of the direct detection Mathematica
package [58], with nuclear response functions from Catena and Schwabe [59].

The capture rates of the 28 WIMP-nuclei interaction operators are visible in
figures 4.1–4.5. In these figures, following the convention of Catena and Schwabe
[59], the non-zero coupling constant takes on the reference value cτi = 10−3 m−2

v ,
where mv = 246.2 GeV is the Higgs field vacuum expectation value.

See table 4.1 for the total capture rates of the 28 WIMP-nuclei interaction
operators, evaluated at the interaction strength limit provided by LUX [57] and
assuming a WIMP mass of 100 GeV. The total capture rates, Cc, are in the range
of 1018–1025 s−1. In the low end of the mass spectrum, ∼ 10 GeV, Cc is around
three orders of magnitude larger. In the high end of the mass spectrum, ∼ 1000

49
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Operator Isoscalar capture rate Isovector capture rate

1 1.52 · 1020 s−1 1.64 · 1019 s−1

3 1.27 · 1021 s−1 6.30 · 1020 s−1

4 7.54 · 1022 s−1 7.91 · 1022 s−1

5 1.85 · 1021 s−1 1.14 · 1021 s−1

6 1.33 · 1022 s−1 3.18 · 1021 s−1

7 7.54 · 1024 s−1 4.05 · 1023 s−1

8 1.43 · 1021 s−1 2.29 · 1020 s−1

9 6.00 · 1021 s−1 1.69 · 1021 s−1

10 5.89 · 1021 s−1 1.43 · 1021 s−1

11 2.45 · 1020 s−1 4.71 · 1018 s−1

12 4.29 · 1020 s−1 1.77 · 1020 s−1

13 7.76 · 1020 s−1 5.60 · 1020 s−1

14 4.61 · 1022 s−1 6.67 · 1021 s−1

15 4.60 · 1021 s−1 3.05 · 1021 s−1

Table 4.1: Maximum total capture rates, Cc, for the 14 operators Ôi under isoscalar
and isovector coupling, under assumption of Mχ = 100 GeV. The capture rates are
calculated for coupling constants, cτi , at values at the upper limit provided by LUX
(see section 3.3.1).

GeV, Cc is around one order of magnitude smaller. This mass dependence of Cc is
due to the following: the amount of WIMPs in the halo is inversely proportional
to the WIMP mass; the lighter WIMPs have resonance effects when colliding with
nuclei of similar mass and cross-section decreases like M−2

χ for very mismatched
masses; the LUX limit differs somewhat for different masses (see figure 3.2).

The isotope that contributes the most to the total WIMP capture varies with
interaction operator and, to a lesser extent, with WIMP mass. Depending on
the choice of parameters, the dominant isotope is H, 4He, 14N, 16O, 27Al, 56Fe, or
59Ni. For some operators the heavier nuclei are the most important, especially for
operators with a quadratic or cubic dependence on transferred momentum.
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Figure 4.1: Capture rates for WIMP-nuclei interaction, operators Ô1, Ô3 and Ô4,
isovector and isoscalar. The coupling constant takes reference value cτi = 10−3 m−2

v ,
where mv = 246.2 GeV.
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Figure 4.2: Capture rates for WIMP-nuclei interaction, operators Ô5, Ô6 and Ô7,
isovector and isoscalar. The coupling constant takes reference value cτi = 10−3 m−2

v ,
where mv = 246.2 GeV.
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Figure 4.3: Capture rates for WIMP-nuclei interaction, operators Ô8, Ô9 and Ô10,
isovector and isoscalar. The coupling constant takes reference value cτi = 10−3 m−2

v ,
where mv = 246.2 GeV.
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Figure 4.4: Capture rates for WIMP-nuclei interaction, operators Ô11, Ô12 and
Ô13, isovector and isoscalar. The coupling constant takes reference value cτi = 10−3

m−2
v , where mv = 246.2 GeV.
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Figure 4.5: Capture rates for WIMP-nuclei interaction, operators Ô14 and Ô15,
isovector and isoscalar. The coupling constant takes reference value cτi = 10−3 m−2

v ,
where mv = 246.2 GeV.

4.2 Capture rates by self-interaction

This section is about the WIMP capture rate due to WIMP self-interaction, what
is written Cs in section 3.4. This capture rate is calculated very much like for
WIMP-nuclei interactions, but with differences described in section 3.1.5.

In figure 4.6 the self-capture rates for the 14 different types of WIMP self-
interaction are visible. In the figure, the coupling constants are set such that the
total cross-section is precisely on the limit provided by galaxy cluster simulations
[9]: σ(v = 1000km/s) = 1.78 · 10−25 Mχ

GeV
cm2. They fall into four very distinct

groups, depending on the power of transferred momentum in the interaction op-
erator. The reason for this splitting is that the trapped WIMPs are localized in
the core of the Sun, where the escape velocity is ∼ 1380 km/s. This velocity is
higher than the typical collisional velocity of the cross-section limit, which is 1000
km/s. Hence the operators that have a higher power of transferred momentum
have higher capture rates. The reason why the capture rates are smaller in the
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Figure 4.6: Self-capture rates, Cs, for the different operators, Oi. The coupling
constants are set such that they fulfill that σ(v = 1000km/s) = 1.78 ·10−25 Mχ

GeV . The
operators represented by the same graph line differ in Cs by less than 3 %.

low mass range is that low mass WIMPs are less localized in the Sun’s core, which
lowers the average collisional velocity.

While this is the case for the limit provided at collisional velocity 1000 km/s,
the opposite is true for the limit provided by the Bullet Cluster [64], as described
in section 3.3.2. The typical collisional velocity for this event was 4700 km/s,
which is significantly higher than the collisional velocity for WIMP capture by
the Sun. This limit is the most restrictive for the operators with a high power of
transferred momentum. This gives the effect that the stronger limit is provided by
different sources. For the operators with no dependence on transferred momentum,
the strongest limit comes from the one with collisional velocity 1000 km/s; for
operators with a linear dependence on transferred momentum, the two limits are
about equal; for the operators with quadratic or cubic depedence on transferred
momentum, the strongest limit comes from the source with collisonal velocity 4700
km/s.

4.3 Signal amplification

At last, I present the final and most significant result of this thesis: the possi-
ble amplification factor to the high-energy neutrino signal coming from WIMPs
trapped within the Sun. The amplification factor, β, as described in section 3.4, is
defined as the total flux of neutrinos relative to the same quantity when completely
neglecting self-interaction.

Visualizations of parameter space with lines of constant β, for different WIMP
masses and self-interaction operators, can be seen in figures 4.7–4.10. The horizon-
tal axis is the WIMP-nuclei interaction strength, represented in terms of WIMP-
nucleon (individual proton or neutron) constant cross-section, σχN . The WIMP-
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nucleon operator Ô1 with isoscalar coupling is used for all figures and subfigures.
The vertical axis is the WIMP self-interaction total cross-section, σχχ. As most of
the operators have a dependence on collisional velocity, the axis values are calcu-
lated under the assumption that this velocity is 1000 km/s.

The self-interaction operators that are represented in figures 4.7–4.10 are Ô1,
Ô7, Ô3, Ô15, in that specific order. This way, they are presented in order of
constant, linear, quadratic, and cubic dependence on transferred momentum. As
demonstrated in figure 4.6, operators with the same dependence on transferred
momentum have practically identical self-capture rates.

The excluded regions of the parameter space are represented by colour regions.
The red colour region represent exclusions of the WIMP-nuclei cross-section, with
limits provided by LUX [59]. The blue and green colour regions represent exclu-
sions of the WIMP self-interaction strength, with limits from the Bullet Cluster [64]
and dark matter halo simulations [9][10]. The origin of these limits are described
in detail in section 3.3.

The light blue colour region represents the area of non-equilibration. It is the
region of parameter space that does not produce a close-to-equilibrium amount of
trapped WIMPs for the current age of the Sun, t� ' 4.5 · 109 years. The non-
equilibrized region is defined to have neutrino signal strength that is less than 58
% of what if would be at equilibrium. The number 58 % is related to the fact that
tanh2(1) ' 0.58. In the case of negligible self-interaction, the non-equilibrized
region fulfills

√
CsCa > t�.

The behaviour of the lines of constant β are very different in the equilibrium
and non-equilibrium parts of parameter space. In the equilibrized region, the lines
of constant β follow relation σχN ∝ σ2

χχ. This is in good accordance with the
equilibrium solution presented in equation (3.4.13). In the non-equilibrized area,
the lines of constant β are independent of the WIMP-nucleon cross-section, σχN .
This is in good accordance with the non-equilibrium solution presented in equation
(3.4.16). In this case the annihilation rate, Ca, can be neglected and it turns out
that the capture rate by nuclei, Cc, does not affect the relative signal amplification
at all. However, it does affect the absolute signal and is still crucial for whether
or not that signal is detectable.

All figures 4.7–4.10 assume the WIMP-nuclei interaction operator Ô1 with
isoscalar coupling, with its subsequent LUX limit for the different masses. The
other WIMP-nuclei interaction operators have different capture rates at that limit,
as illustrated by table 4.1. Because the total cross-section (evaluated at some col-
lisional velocity) is directly proportional to the capture rate by nuclei, Cc, the
lines of constant β and the equilibrium region have exactly the same shape. The
only thing that differs between the different WIMP-nuclei operators is how much
of the allowed parameter space is equilibrized. For the operator with the lowest
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maximum capture rate, Ô11 with isovector coupling, the LUX limit completely ex-
cludes an equilibrized signal. For the operator with the highest maximum capture
rate, Ô7 with isoscalar coupling, the equilibrized part of the allowed parameter
space is much wider. Other WIMP-nuclei operator do not allow for a higher signal
amplification, since the highest β is found in the non-equilibrized region, where
the capture rate by nuclei, Cc, is low.

For operators with no dependence on transferred momentum, Ô1 and Ô4, a
signal amplification of several orders of magnitude is allowed, as is visible in figure
4.7. This is true also for operators with linear dependence on transferred momen-
tum (i = 7,8,9,10,11,12), as visible in figure 4.8. In these cases it could be possible
that self-interaction completely dominates the total capture of WIMPs by the Sun.

For the operators with quadratic dependence on transferred momentum (i =
3,5,6,13,14), the Bullet Cluster limit permits a smaller signal amplification, as
visible in figure 4.9. In this case, WIMP capture by nuclei would be the dominant
process.

For operator Ô15, that has a cubic dependence on transferred momentum, the
Bullet Cluster limit excludes any signal amplification larger than a few percent, as
visible in figure 4.10. In this case, WIMP self-interaction has a negligable effect
on the total capture rate.
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Figure 4.7: Lines of constant amplification, β, in the parameter space of WIMP-
nucleon constant cross-section, σχN , and WIMP self-interaction cross-section, σχχ,

for self-interaction operator Ô1 and different WIMP masses. The coloured regions
represent parameter limits and area of non-equilibration.
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Figure 4.8: Lines of constant amplification, β, in the parameter space of WIMP-
nucleon constant cross-section, σχN , and WIMP self-interaction cross-section, σχχ,

for self-interaction operator Ô7 and different WIMP masses. The coloured regions
represent parameter limits and area of non-equilibration.
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Figure 4.9: Lines of constant amplification, β, in the parameter space of WIMP-
nucleon constant cross-section, σχN , and WIMP self-interaction cross-section, σχχ,

for self-interaction operator Ô3 and different WIMP masses. The coloured regions
represent parameter limits and area of non-equilibration.
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Figure 4.10: Lines of constant amplification, β, in the parameter space of WIMP-
nucleon constant cross-section, σχN , and WIMP self-interaction cross-section, σχχ,

for self-interaction operator Ô15 and different WIMP masses. The coloured regions
represent parameter limits and area of non-equilibration.



5
Discussion

In this thesis I have explored the possibility that dark matter self-interaction has
significant effect on the total dark matter capture rate of the Sun and, subsequently,
that it also amplifies the neutrino signal coming from annihilation of captured
dark matter particles in the Sun’s core. By assuming that dark matter consists
of Weakly Interacting Massive Particles (WIMPs) and utilizing an effective field
theory in the non-relativistic regime, I have derived the capture rates and neutrino
signal amplification factors. This has been done in the region of allowed parameter
space, with exclusion limits from direct detection experiments [57] and galaxy
cluster observation and simulation [9][10][64].

It has been found that a significant amplification to the neutrino signal at
present time is possible; even an amplification of four orders of magnitude is
not conclusively excluded. The largest amplifications are possible for WIMP self-
interaction operators with constant or linear dependence on transferred momen-
tum, as illustrated in figures 4.7 and 4.8. For WIMP self-interaction operators with
quadratic dependence on transferred momentum, only an amplification less than
a factor two is allowed, as illustrated in figure 4.9. In the case of cubic dependence
on transferred momentum, amplifications of only a few percent is allowed, as illus-
trated in figure 4.10. The largest amplifications are found in the non-equilibrium
region, which is the part of parameter space for which WIMP annihilation has not
yet come into full effect at present time. Incidentally, this is also the region that
gives off the weaker signal, so in terms of actual detection this is not preferred.
However, even well into the equilibrium region, where the neutrino signal is strong,
an amplification of at least one order of magnitude is possible within the current
limits.

These results are contingent on some assumptions and approximations, some
of which break down for very strong WIMP self-interaction and very weak WIMP-
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nuclei interaction. The assumptions that WIMPs quickly slow down and settle in
the Sun’s core and that they thermalize to core temperature are both compromised
for the combination of very strong WIMP self-interaction and very weak WIMP-
nuclei interaction. Exactly where this issue arises is not explored in detail in this
thesis but the precise nature of the very high amplification factors (β > 103)
should be taken with a grain of salt, especially far into the non-equilibrium region
of parameter space. It is never-the-less valid that capture by self-interaction is the
dominant process in those regions of parameter space.

The results of this thesis are novel and significant. The subject of WIMP
capture by the Sun via self-interaction has previously only been explored in one
article by Zentner [1]. In this article, a constant self-interaction cross-section is
assumed, with roughly the same limit used in this thesis. It is found that significant
amplification is only possible when the annihilation coefficient, 〈σAv〉, is at least
one order of magnitude smaller than its expected value. This is in tension with the
results of this thesis, as I find large amplification values for the expected value for
the annihilation coefficient. Values in other regions of parameter space are in quite
good accordance, as well the individual values for Cc, Cs, and Ca (capture rate by
nuclei, capture rate by self-interaction, and annihilation rate). As seen in equation
(3.4.12), that describes the amplification, the parameters Cc and Ca only occur as
a product. This means that in terms of the signal amplification parameter, β, the
effect of increasing the annihilation factor by one order of magnitude is nullified
by decreasing the WIMP-nucleon cross-section by one order of magnitude. The
results presented in the article by Zentner does not respect this analytical fact, as
seen in the article’s figure 2, panels (c) and (f).

The main result of this thesis is that self-interaction could significantly amplify
the neutrino signal coming from WIMP annihilation within the Sun, even with
the canonical value for WIMP annihilation and with current limits for WIMP
interaction strengths. There are high hopes to finally detect these particles in the
near future. Experiments are getting progressively bigger and more sensitive, both
in the area of direct detection, such as the new XENON1T detector, and indirect
detection, such as the PINGU extension to the IceCube detector. Perhaps a high-
energy neutrino signal emanating from the Sun could be the “smoking gun” of dark
matter particle detection. In this case dark matter self-interaction would be an
important factor to consider.
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