This is an open access article published under an ACS AuthorChoice License, which permits
copying and redistribution of the article or any adaptations for non-commercial purposes.

©

ACS AuthorChoice

pubs.acs.org/JPCC

THE JOURNAL OF

PHYSICAL CHEMISTRY

Nonlinear Optical Properties of Polyynes: An Experimental Prediction
for Carbyne

Nisha R. Agarwal,*’_l_’” Andrea Lucotti,” Matteo Tommasini," Wesley A. Chalifoux,” and Rik R. Tykwinski§

TDipartimento di Chimica, Materiali e Ingegneria Chimica “Giulio Natta”, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133

Milano, Italy

T'Department of Chemistry, University of Nevada, Reno, Nevada 89557, United States

SDepartment of Chemistry and Pharmacy & Interdisciplinary Center of Molecular Materials (ICMM), University of

Erlangen-Nuremberg, Henkestrasse 42, 91054 Erlangen, Germany

© Supporting Information

ABSTRACT: We present the experimental determination of
the vibrational contribution to molecular second hyper-
polarizability (y,s,) of very long polyynes that have been
recently made available thanks to progress in chemical
synthesis. Based on a simple theoretical model, the available
experimental data allow estimating the asymptotic behavior of
the vibrational contribution to molecular hyperpolarizability for
increasing chain length.

B INTRODUCTION

Since the early 1990s, when fullerenes became accessible in
macroscopic quantities thanks to Kritchmer and Huffman’s
synthetic protocol,' the carbon allotropes have become
increasingly more prominent contributors in materials
For example, diamond nanowires can now be
formed from the bottom up’ or the top down approach,’
fullerenes continue to function as the primary acceptor in solar
cells,” carbon nanotubes inch closer to realistic use semi-
conductor devices,'” and graphene is arguably the prominent
candidate to replace indium tin oxide (ITO) in transparent
electrodes."’ New and yet undiscovered synthetic carbon
allotropes are also targets of study, such as graphyne, which
could show properties that rival or even surpass those of
graphene.'” Also in this category of “emerging” allotropes is
carbyne, a material composed of sp-hybridized carbon
atoms.”'* While there have been claims of carbyne formation
over the years,'*™"” definitive characterization of carbyne is yet
to be achieved, at least in the opinion of the authors. While
carbyne may not yet exist, chemists, physicists, and materials
scientists have worked hard to explore its potential properties,
often through the construction of model compounds, ie.,
oligomers with defined structure and length.'® With a series of
structurally related compounds in hand, changes observed for
properties as a function of length can then be extrapolated to
infinite length, offering a glimpse of what constitutes carbyne.'”

The formation of sp-hybridized carbon chains has been
achieved in solution through numerous chemical and physical
methods,"*™'7?°"** and they have been embedded in the
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interior of carbon nanotubes and trapped in an inert gas
matrix at low temperature.”””” The effectiveness of such
methods is, however, severely limited by the thermodynamic
instability of sp-hybridized carbon chains in the condensed
state.”®* This reactivity can readily lead to cross-linking and
the formation of sp>- and sp*-carbon linkages, which hinders
more extensive investigations of physical, optoelectronic, and
spectroscopic proper‘cies.28’30

In order to stabilize polyynes and facilitate the study of their
properties, we’' ™" and others®*™** have focused on the
incorporation of sterically bulky groups at the two termini of
the polyyne chain. This strategy has achieved varying levels of
success over the years, and recently culminated in the formation
of the “super trityl” series of polyynes (Tr*[n], Figure 1),
which incorporate up to 44 contiguous sp-hybridized carbon
atoms (Tr¥[22])."" This same study also provided unsym-
metrical polyynes with up to 11 consecutive carbon—carbon
triple bonds, namely Tr*TIPS[11] (Figure 1).

The realization of the Tr*[n] and Tr*TIPS[n] series of
molecules offered opportunities to explore the cubic nonlinear
optical (NLO) properties of very long symmetrical and
unsymmetrical polyynes, as well as the unprecedented chance
to predict the NLO characteristics of carbyne. Several studies
have suggested that polyynes and carbyne have great potential
as NLO materials, due to their linear structure and s-electron
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Figure 1. Molecular structures of polyynes discussed (or cited) in this
work: supertrityl (Tr*[n]), supertrityl—triisopropylsilyl (Tr*TIPS-
[n]), adamantyl (Ad[n]), triisopropylsilyl (TIPS[n]), phenyl (Ph[n]),
and platinum (Pt[n]) end-capped (where n is the number of repeat
units, i.e, — C=C— units).

delocalization, which is independent of bond rotation.””*~>*

For example, it has been recently reported that the vibrational
component to the second hyperpolarizability y,;, values for the
Ad[n] polyynes™ (measured by quantitative Raman spectro-
scopic analysis) are of the same order of magnitude as y,.
values found for TIPS[n] polyynes®”* (measured by the
differential optical Kerr effect (DOKE) technique®). These
works have also suggested that the y..-values for TIPS[n]
polyynes approach the theoretical limit discussed by Kuzyk
based on a power law analysis.”*

In the work reported herein, we outline trends in the
molecular second hyperpolarizability for the symmetrical
supertrityl (Tr*[n]) polyynes and the unsymmetrical super-
trityl—triisopropylsilyl (Tr*TIPS[n]) polyynes, as measured by
quantitative Raman spectroscopic analysis. The influence of a
polarized structure in the unsymmetrical Tr*TIPS[n] polyynes
is described by a comparison of the two series. Furthermore, we
attempt to describe a global perspective of molecular second
hyperpolarizability as a function of molecular length, using the
NLO data available. Finally, we give an experiment-based
prediction for the allotrope carbyne.

B EXPERIMENTAL SECTION

Tr*[n] and Tr*TIPS[n] polyynes were synthesized as reported
in ref 19. Raman spectra were recorded using a Nicolet NXR
9650 FT-Raman equipped with a Nd-VO, laser providing a
1064 nm excitation line, an InGaAs detector, and a liquid
nitrogen cooled germanium detector. In order to provide a
good signal-to-noise ratio in the Raman spectra, solution
measurements were done in reasonably concentrated solutions
of the polyyne sample dissolved in toluene, in the range of

0.17—7.6 mM. Raman spectra were recorded using unpolarized
light in the backscattering geometry, and the resolution is 4
cm™" for all spectra described in this report. The infrared
excitation wavelength was 1064 nm, this ensured that there was
not resonance enhancement of the vibrational contributions to
the second hyperpolarizabilities; i.e., all values reported can be
considered nonresonant since the electronic absorptions of
polyynes (A,,.,) are found in the violet-ultraviolet region of the
spectrum, far from the 1064 nm excitation line (see Table 1).

Table 1. Summary of Second Hyperpolarizabilities (1073
esu) and A, Values (nm, in Parentheses) for Polyynes
Tr*[n], Tr*TIPS[n], Ad[n], and TIPS[n]

" }/Tr*TIPS‘J;n] . b
n V1r¢(n) (esu) esu) YAd(n] (esu) Y1IPS[n] (esu)
2 - - 2.87 — 2.75 —
3 - 48.5 14.6 7.02 (234 nm)
(<250 nm) (<250 nm)

4 474 (268 nm) 106 (264 nm)  43.0 (247 nm)  12.5 (260 nm)
5 - 261 (288 nm)  83.4 (272 nm)  34.5 (284 nm)
6 190 (310 nm) 393 (310 nm) 116 (295 nm)  64.5 (304 nm)
7 - 914 (324 nm) - -
8 547 (347 nm) 1520 (343 nm) 505 (335 nm) 238 (339 nm)
9 - 1710 (359 nm) - -
10 1600 (376 nm) 5420 (373 nm) 935 (367 nm) 646 (369 nm)
12 2940 (400 nm) - - -
14 4360 (419 nm) - - -
16 7980 (432 nm) . - -

18 10 500 - - -
(443 nm)

20 11 500 - - -
(451 nm)

“As measured in the present study by absolute Raman 1ntens1ty
measurements in toluene; UV—vis spectra measured in hexanes. “As
measured by absolute Raman intensity measurements in THF; UV—
vis spectra measured in hexanes, ref 52. “As measured by the
differential optical Kerr effect (DOKE) at 800 nm in THF; UV—vis
spectra measured in hexanes, ref 37.

For the spectra reported in Figure 2, power at the sample was
on the order of 0.6 W for n < 5 and 0.3 W for longer polyynes
on a laser spot diameter of approximately 150 ym; 2048 scans
were accumulated for each spectrum, for a total measurement
time of about 1 h. The approach adopted here for the
experimental determination of NLO properties proceeds
through the measurement of Raman intensities, following the
procedure illustrated in ref 52. Full experimental details, which
also apply to the present work, are reported in the Supporting
Information of ref 52.

B RESULTS AND DISCUSSION

Nonlinear Optical Determination. The second hyper-
polarizability y is related to the cubic contribution to the
molecular dipole change with respect to the applied electric

field:
”_”+ZabE+_Azﬂabcbc+—z}/abc hECEd

* bed
(1)
In addition to the importance of electronic contributions to ¥, it
has been determined for many z-conjugated materials that
contributions due to changes of molecular geometry upon

applied fields also play a leading role (i.e., relaxation). The latter
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Figure 2. FT-Raman spectra of Tr*[n] (left panel) and Tr*TIPS[n]
(right panel) end-capped polyynes as measured in toluene in the range
of 2300—1850 cm™. Spectra have been normalized to the 5-peak that
dominates each spectrum and provides the most significant
contribution to the second hyperpolarizability (see Experimental
Section for measurement conditions).

effect has been named vibrational hyperpolarizability (y,;) and
has been found®” to be directly related to intensities in Raman
spectra (see below). The FT-Raman spectra of Tr*[n] and
Tr*TIPS[n], as measured in toluene, are shown in Figure 2.
These spectra clearly show that the strong Raman absorption
associated with the 5-line of polyynes is the dominating feature
in the range of 2300—1850 cm™". This vibration is defined as
the collective in-phase stretching of triple bonds and the
shrinking of single bonds (and vice versa), as shown
schematically in Figure 3.~ —60

> » — > [ [ >
« . « -« - -« o <

R—C=C—C=C—C=C—C=C—C=C—C=C—C=C—C=C—C=C—C=C—R

Figure 3. Schematic representation of the Sl-mode for polyynes,
resulting from the collective, in-phase stretching and shrinking of triple
and single bonds (adapted from TOC graphic of ref 36).

An empirical examination of the Raman spectra shows that
the S-mode has a distinct dispersion to lower wavenumbers as
a function of chain length. This feature has been recentlgr
described in detail for the Tr*[n] and Tr*TIPS[n g Zynes, !
as well as other polyynes and z-conjugated systems. ©
dispersion trend versus length has been explained within the

framework of the Effective Conjugation Coordinate (ECC)
theory. 52~

It has been well established that for nonpolar z-conjugated
systems, the vibrational contribution (i.e., nuclear relaxation

contribution) to the second hyperpolarizability can be written
52,55
as

) = ——5 3 2

15422kvk @)

where I, is the unpolarized absolute intensity of a Raman line
found at v, wavenumbers. Thus, analysis of the vibrational
contribution to the second hyperpolarizability, .y, simply
reduces to the measurement of absolute Raman intensities in
comparison to a standard, which is typically a selected Raman
line of the solvent (see Supporting Information, Figure SL1).
Values of 7,4, derived from analysis of the spectra Tr*[n] and
Tr*TIPS[n] polyynes using eq 2 are listed in Table 1. The
increase in y,, as a function of polyyne length is documented
for Tr*[n] and Tr*TIPS[n] in Figure 4, and a comparison is
also added for the Ad[n] polyynes that have been previously
measured under analogous conditions.”> The use of a
semilogarithmic scale highlights the dramatic increase in
nonlinear response as a function of length. While y,;, could
not be obtained for Tr*[2] because it was not synthetically
available, extrapolating from the value of Ad[2] shows that y;-
values increase by well over 3 orders of magnitude from the
shortest polyynes (e.g,, Ad[2]) to the longest Tr*[20]. In cases
where symmetrical molecules of analogous length have been
measured, a comparison of y,;-values between the Ad[n] and
Tr*[n] series suggests that the influence of end groups is
minimal, as has also been suggested based on UV-—vis
spectroscopy.” It has been established for other systems,*~**
including polyynes,”” that vibrational hyperpolarizability values
(Y4iy as measured here) are comparable to electronic
hyperpolarizability values (7., see for example TIPS[n] in
Table 1) in terms of both absolute value and trends when
molecules within a homologous series are considered. This
premise is upheld reasonably well in the case of Tr*[n] in
comparison to TIPS[n] polyynes, although the values of the
Tr*[n] series are consistently somewhat higher.

It is clear from the measured data that the y,-values of the
unsymmetrical Tr*TIPS[n] polyynes are higher than those of
the symmetrical Tr*[n] polyynes. This is not surprising, since
polarization of a conjugated framework has been tradltlonally
the easiest means to increase nonlinear optical response. 0970 1t
is interesting to note, as well, that the increased values for the

Tr*TIPS[n] series come with no red-shift in A, values, thus
avoiding the transparency nonhneanty trade-off that typically
plagues organic materials.”"”*

Discussion of Power Laws. It is well-known that y-values
for a series of structurally analogous ollgomers will increase in a
superlinear fashion as a function of length.”” The relationship
between y and the number of repeat units, n, can often be
modeled by a power law dependence of y ~ n‘, where ¢ is the
power law exponent. This trend should continue until the
saturation len; 7§th or effective conjugation length (ECL), is
reached,””>™”> at which point the increase in y becomes
monotonic versus length and exponent ¢ tends to unity.”® It has
been noted by many authors that comparing the absolute y-
values for organic molecules is dangerous because the values are
obtained by diverse methods, different research groups, and
under various levels of resonance enhancement.”” Comparison
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Figure 4. Vibrational contribution to the second hyperpolarizability (,;) versus polyyne length for Tr*[n] and Tr*TIPS[n] polyynes i

comparison to Ad[n] polyynes based on eq 1, presented in a semilog format (inset shows same date in a log—log format).
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for small n-values (7,3,(n) ~ 7o ~ #>°) and a linear fit at long chain length. (b) Plot of length independent y,;,(1)/n values versus chain length, as
obtained from Hiickel theory; data normalized to the specific 7,y value of carbyne, defined as y, = lim,_ o [7yip(1)/n]; attempted fits with both a

power law and the Meier function.*

of power law exponents, on the other hand, is more
straightforward, since the magnitude of power law exponent
is not as susceptible to experimental differences. Thus, power
law relationships are commonly used for the comparison of
third-order optical nonlinearities between different series of
oligomers.”””>7*

The y,y,-values for both the Tr*[n] and Tr*TIPS[n] polyyne
series measured through the absolute Raman method show a
power law relationship with approximately equal values of ¢ =
3.6, which is identical to that of the Ad[n] series. These values
are fully in line with the power law behavior for y described
experimentally for other polyyne series (see Figure 1 for
structures), although studies are rare. The first reported study
of polyynes determined that ,, for TIPS[n] polyynes shows an
exponent ¢ = 4.28,”” while analysis of ,.-values for phenyl end-
capped polyynes Ph[n] gives ¢ = 3.79.°° A series of platinum
end-capped polyynes synthesized by Gladysz and co-workers,
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on the other hand, suggests a slightly smaller exponent ¢ = 2.9
(as determined by the Z-scan technique)."”

In general, the power law relationships determined for
polyynes Tr*[n] and Tr*TIPS[n], as well as Ad[n] and
TIPS[n], also compare quite favorably with those determined
for other conjugated organic oligomers. For example, y,.-values
of polytriacetylenes show a power law behavior with exponent ¢
= 2.5 when determined by third harmonic generation (THG)
and ¢ = 2.6 when measured by degenerate four wave mixing
(DFWM).”” THG measurements of y for oligo(1,4-
phenyleneethynylene)s thin films give ¢ = 3.3 for shorter
chains,® while power law exponents of up to ¢ = 3.6 have been
reported for polyenes (measured by electric field induced
second harmonic generation, EFISH).””*'~* Polydiacetylenes
have a more intense increase versus length as measured by
DFWM, in the same range as that of the polyynes with ¢ = 4 +
0.5,% and similarly stronger power law relationship, has been

DOI: 10.1021/acs.jpcc.6b03071
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Figure 6. Plot of NLO data for Ad[n], Tr*[n], and Tr*[n] TIPS polyynes versus length n and fitting of the function y, f(n) obtained from a Hiickel
model (see text); values of unsymmetrical, polarized Tr*TIPS[n] polyynes clearly fall away from the fit.

rep0r8t4ed for polythiophenes evaluated by DFWM, with ¢ =
4.0S.

Extrapolation to Carbyne. One of the most interesting
aspects of the present analysis of NLO properties of Tr*[n]
polyynes is the possibility to predict a value of the second
hyperpolarizability of the allotrope carbyne. This analysis could
provide an answer to the question of whether or not carbyne
might be a useful NLO material. A similar analysis has been
done to estimate the expected band gap of carbyne (ca. 2.6 eV),
using experimental data for the Tr*[n] series,'” using the
estimation method reported by Meier.*> Before addressing a fit
of experimental data to propose an extrapolation to carbyne,
however, the y,4, of polyynes is considered using the theoretical
model developed previously for the description of the Raman
scattering of polyynes within a Hiickel treatment,””*® and this
theoretical approximation is shown in Figure S (see also
Supporting Information SI 3 for details). It is clear from Figure
S that the initial increase of the predicted y,y-values versus
chain length follows a power law behavior for smaller values of
n. It is interesting to note that the power law behavior has a
calculated exponent of ¢ = 3.55, which is quite consistent with
the experimental data for Tr*[n], Tr*TIPS[n], and Ad[n]
polyynes. For longer polyyne chains, the increase of .,
becomes linear (i.e., ¢ = 1). This linear behavior is consistent
with achieving the ECL, as expected for the properties of a
polymer,” at the point in which the physical characteristic
under consideration becomes proportional to the size of the
system. With this in mind, it is thus more effective to consider
the intensive counterpart (length independent) of the non-
linearity y,,(n)/n, which is achieved simply by dividing the
extensive property by a quantity proportional to the size of the
system (Figure Sb).

In order to extrapolate to the carbyne limit for the set of
measured NLO data, it is necessary to use a fitting function that
can correctly approximate the trend of y,;(n) over the entire
range of n values. It is clear from inspection of Figure S,
however, that neither the power law nor the Meier function™
are able to account for the correct behavior of 7,4, (1) over the
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complete range of experimental values. This issue has been
explored using the y,4,(n) data obtained from a simple Hiickel
model (see Supporting Information SI 3) to develop an
alternative fit function that matches the asymptotic behavior at
both zero and infinity. At large n, the function must behave
linearly, while at small n it should follow a power law
relationship of y,, ~ 1>, as determined experimentally for
Tr*[n]. A rational function in the form of the Padé
approximant eq 3,°” is a good choice to satisfy these
requirements since it can be matched with the data
approximation for both small and large values of n:

4 3 2
en’ + en” +en +en + e

i’ + i’ + fin+ 1 3)

y(n) =

where ¢, and f; are coeficients. Indeed, at large n-values, eq 3
behaves linearly, as e,/f5 n + e3/f5. On the other hand, for small
n, the Padé approximant should agree with the known power
law behavior, n>%, so one can impose this condition on the
Padé approximant at n = 0 by using the same derivatives of the
power law n**° (which are zero). Therefore, the value of Padé
approximant at n = 0, together with its first, second, and third
derivatives, must vanish. This leads to the conditions:

7(0) =0= ¢, =0
7(0)=0=¢=0

7(0)=0=¢,=0

7"(0) =0 = e,

0 (4)

With these requirements at hand, a convenient mathematical
form of a fitting law is given by a simpler Padé function of the
form:

4
en

i+ fn + fn+ 1 (s)

y(n) =
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where ey, f}, f», f3 are numerical constants to be determined. In
Figure SI.2, we report the plot of y,4,(n) values determined with
the Hiickel model and their fitting with the Padé approximant
given by eq S. The fitting procedure provides the following set
of coeflicients:

e, = 6.052 x 107° (6)
f=-1724%x107"
f, = 2640 x 107

f, = 1757 X 1074

With the function given by eq 5 and the associated coeflicients
in eq 6 one can introduce a normalized fit to the quantity
Yun(n)/n = g(n), such that it lies between the limiting values of
0 and 1. The function f(n) is obtained by dividing eq S by n and
then by its asymptotic limit (y., = e4/f3). This leads to

_r(m)/n _

A eyn
P 2
Yo 64]371 +f2n +f1n+1 (7)

Now we can use the product y, f(n) = g(n) to fit the
experimental NLO data to eq 7, which have been normalized by
dividing by the number of triple bonds, i.e., 7,,(n)/n. The only
parameter that must be fit in this procedure is the asymptotic
Yo-value since the entire f(n) function is now considered to be
known as derived from the Hiickel model. The fitting
procedure just described results in the plot reported in Figure
6, which shows that the function f(n) effectively describes the
behavior of the NLO data y(n)/n for both series of polyynes
Tr*[n] and Ad[n]. The function f(n) in eq 7 cannot, however,
be used at present to fit the NLO data for unsymmetrical
polyynes Tr*TIPS[n], due to the polarization effect induced by
the presence of end groups with different chemical nature (and
the associated changes in bond length alternation expected
from symmetrically substitution).’" This is evident in the plot
of Tr*TIPS[n] y-values in Figure 6, where the values for
Tr*TIPS[n] consistently fall above the fit.

The fit described by eq 7 predicts the specific optical
nonlinearity for carbyne of ca. 7, = 1.3 X 107> esu (7o =
lim,, o [7v(n)/n]). That corresponds to a measured
maximum molecular hyperpolarizability of ca. y = 1.2 X 1073
esu (Tr*[n], n = 20). This places the expect value of carbyne
within the same order of magnitude as that reported for many
of the best organic materials measured under nonresonant
conditions,™ such as polyenes (y ~ 2 X 107! esu, for n =
25),%” thiacyanines (y = —6.8 X 107 esu, for n = 5),” and
azathiacyanines (y = —9 X 107> esu, for n = 4).”” Heflin et al.
predicted that as the chains get longer, the y-values must
deviate from power law dependence and will begin to
saturate.”” Our work confirms this statement with the help of
calculations and long chain polyynes, which were synthesized
for experimental evidence.

3

f(n)

B CONCLUSIONS

The carbon allotrope carbyne has arguably been te last of the
allotropes to be explored experimentally in terms of third-order
NLO properties. Thus, the most important conclusion that the
present work provides is the ability to offer a prediction of the
second hyperpolarizability for carbyne based on experimental
data for model compound with defined length. With a

prediction for y-values of carbyne in hand, it is worth
empbhasizing three additional points.

(1) Even at the saturation length of carbyne (i.e., the effective
conjugation length), 7., would be nonresonant under
many experimental conditions, since the band gap for
carbyne has been estimated to be rather high, at >2.5 eV
(ie., Ay < 500 nm)."”

(2) The current prediction for carbyne is modeled on an
apolar series of molecules (i.e., Tr*[n]), and it thus likely
represents a lower limit of what might be achieved using
polyynes as building blocks, ie., polarized derivatives,
through the addition of donor and acceptor groups,
would almost certainly afford significantly enhanced y-
values, as has been established for polyenes.”’ This
premise is strongly supported by the present study,
which shows that, while the Tr*[n] and Tr*TIPS[n]
series show analogous power law behavior, polarization
gives higher absolute y,;-values for the unsymmetrical
Tr¥*TIPS[n] series.

(3) The origin of the NLO response for the Tr*[n] polyynes
derives almost exclusively from the sp-carbon framework,
i.e., the S-mode with a minimal contribution from the
end groups. Thus, reducing the size of the end-capping
groups should not affect y,, for carbyne, while the bulk
nonlinearity would increase substantially as the overall
molecular size decreases. This approach to increasing the
bulk nonlinearity of polyynes, however, requires an
alternative means to stabilize the polyyne framework, as
the steric shielding influence of smaller end groups is
reduced. This might be accomplished through the use of
mechanical bonds, which provide polyyne rotaxanes in
which the sp-carbon framework is shielded by a
macrocycle, without covalent modifications to the
polyyne framework. Such systems are now under
study.”>”
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