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Abstract
In this work, a new library for training deep neural networks for image classification was im-
plemented from the ground up, with the purpose of supporting GPU acceleration through
OpenCL™, an open framework for heterogeneous parallel computing. The library intro-
duced here is the first attempt at creating a C# deep learning toolbox, and can thus be
more easily integrated with other projects under the .NET framework. The availability
of cross-platform tools, covering as many developing environments as possible, can in fact
accelerate the deployment of deep learning algorithms into a wide range of industrial ap-
plications, including advanced driver assistance systems and autonomous vehicles.

The library was tested on the German Traffic Sign Recognition Benchmark (GTSRB)
data set, containing 51839 labelled images of real-world traffic signs. The performance of
a classic deep convolutional architecture (LeNet) was compared to that of a deeper one
(VGGNet), when trained with different regularisation methods. Dropout was observed
to be particularly effective in counteracting overfitting for both models. Interestingly, the
VGGNet model was observed to be more prone to overfitting, despite having a significantly
lower number of parameters (∼462k) compared to the LeNet model (∼827k). This led to
argue that architectural depth plays a crucial role in determining the capacity of a model,
in accordance with some recent theoretical findings.

The best classification accuracy (96.9%) on the test GTSRB data was obtained using
an ensemble of four deep convolutional neural networks, including both architectures and
trained using both images converted to greyscale and the original RGB raw images.

Keywords: deep learning, convolutional neural networks, computer vision, machine
learning, GPGPU, OpenCL.
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1
Introduction

The last few decades have seen a tremendous acceleration in the adoption of machine
learning algorithms across an increasingly broad range of applications, many of which assist
and simplify our everyday tasks. Spam filtering, speech understanding, face recognition,
and e-commerce recommendations are only a few examples of applications in which machine
learning methods are currently deployed.

In particular, with recent developments of general-purpose computing on graphics pro-
cessing units (GPGPU) and the availability of large open data sets, training artificial
neural networks (ANNs or NNs) with many hidden layers has become feasible. This ap-
proach to machine learning, now known as deep learning, has revolutionized research in
computer vision, speech recognition and natural language processing, and is now rapidly
being adopted in a large number of applications across a wide range of industrial sectors.
Major technology companies such as Google, Microsoft, Facebook, Yahoo!, and IBM are
currently re-thinking some of their core products and services to include deep learning-
based solutions. At the same time, hardware producers such as Nvidia, Mobileye, Altera,
Qualcomm, and Samsung have started research and development projects with the aim of
efficiently implementing deep neural networks on chips or field-programmable gate arrays
(FPGAs), in order to deploy state-of-the-art vision systems in smartphones, autonomous
vehicles, and robots.

In the automotive industry, machine learning algorithms are playing an important role
in the development of advanced driver assistance systems (ADAS) for improving the driver’s
safety and comfort. Deep learning is now considered by many automotive companies as
one of the most promising emerging technologies, not only in the improvement of ADAS,
but also in the broader context of autonomous vehicles, bound to revolutionize the entire
automotive sector in the near future.

In particular, systems for automatic traffic sign recognition, such as Volvo’s Road Sign
Information (RSI), or Toyota’s Road Sign Assist (RSA), have already been on the market
for a few years and are key components of modern ADASs. Improving the accuracy of both
the detection and classification of traffic sign would increase the effectiveness of current
systems, and potentially play an important role in the development of future auto-pilot
computer systems. There is therefore a strong interest among vehicle manufacturers to
leverage recent developments in deep learning, namely deep Convolutional Neural Networks
(CNNs, or ConvNets), which have achieved state-of-the-art performance in a wide range
of computer vision tasks such as image classification, localisation, and detection [1–3].
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1. Introduction

1.1 Project goals

At the time of writing, GPGPU acceleration in all major deep learning libraries is sup-
ported through Nvidia’s proprietary CUDA® platform and programming model, which
makes these toolboxes heavily hardware-constrained. For this reason, the first goal of
this project was to build a new .NET library for training convolutional networks from
the ground up, using the OpenCL™ framework for GPGPU acceleration. As opposed
to CUDA®, OpenCL™ is an open standard parallel programming framework for heteroge-
neous systems enabling the development of cross-platform, cross-vendor GPGPU solutions,
and it is supported by major vendors, including Intel, IBM, AMD, and Nvidia.

The second goal of the project was then to train CNNs for traffic sign classification,
using the German Traffic Sign Recognition Benchmark (GTSRB) data set [4], a publicly
available data set for single-image, multi-class classification of traffic sign images. Building
on previous works on this data set [5, 6], used as a source of inspiration for creating a
baseline model, the project aimed at exploring different CNN architectures inspired by more
recent works (e.g. [2, 3]), and at assessing the effect of new techniques and regularisation
methods such as dropout [7] and batch normalisation [8].

1.2 Thesis outline

In this introductory chapter, the background and objectives of this thesis work were briefly
outlined. The rest of the thesis is organized as follows:

• Chapter 2 introduces deep learning methods and discusses recent advancements in
image classification using CNNs, with a focus on traffic sign recognition.

• In Chapter 3, the Conv.NET libary for training convolutional neural networks in
C# is presented. Rather than on implementation details, the description focuses on
how the different available building blocks, optimisation and regularisation methods
work.

• Chapter 4 describes the GTSRB data set, two CNN architectures analysed in this
work and other aspects of model selection.

• In Chapter 5, the results of training the two CNN architectures on the GTSRB
data set are presented and discussed. In particular, the analysis focuses on the effect
of using different regularisation methods and on how the two architectures differently
benefit from using RGB over greyscale images for training.

• Chapter 6 concludes this work with a discussion of its findings and contributions,
points out limitations, and outlines directions for future research.
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2
Deep learning

The design and development of algorithms allowing a machine to learn from large amounts
of data and make predictions about the future is critically dependent on the process of
extracting the most informative and non-redundant information from such data in their
raw form. This process of feature extraction is traditionally carried out by humans and
requires in general a great deal of expertise and labour, often including trial and error
approaches. Increasingly, this process is being replaced by representation learning, a set
of methods to automatically learn and discover new representations of the raw data, often
outperforming traditional hand-crafted feature extraction [9]. In this chapter, a family of
representation learning methods known as deep learning will be introduced.

2.1 Deep neural networks

Deep learning, a set of machine learning methods based on artificial neural networks
(ANNs), is proving extremely successful in a wide range of tasks, particularly in the con-
text of supervised learning, i.e. in inferring a function mapping given input data to desired
given output values, in order to map new, unseen examples. Deep neural networks differ
from other machine learning algorithms in that the representation of features is organized
over multiple layers of nonlinear processing units, which transform the representation at
one level into a slightly more abstract representation at a higher level. Typically, the first
layers of a deep NN discover very simple features of the data (e.g. edges or colour gradients,
if the data has the form of an image). More and more abstract and complex features are
then automatically learned downstream in the network, by sequentially building them out
of lower level ones, creating a hierarchy of representations.

Schmidhuber et al. [10] have recently reviewed deep learning methods extensively, while
a more compact review, focused on recent advancements, can be found in LeCun et al. [11].
An excellent textbook on deep learning, written by Goodfellow et al. [12] is currently being
published.

One key idea behind the strength of neural networks is that these hierarchically arranged
features can to some extent be learned independently of one another, in a distributed
fashion. A distributed representation of features is a highly desirable property in machine
learning when dealing with high-dimensional data. In the case of a d-dimensional input
space (e.g. Rd), a distributed representation of n features can divide the space into O(nd)
regions, corresponding to intersection of half-spaces. If such regions represent concepts,
then exponentially many concepts can be distinguished using such a representation, since
the different attributes of these concepts are shared [12].

It is worth mentioning that models of artificial neural networks have been known and
used for decades. Pioneering work in neural computation dates back to 1943, with the in-
troduction of McCulloch-Pitts neurons [13], simple threshold units with binary input and
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2. Deep learning

output. The first feedforward neural network (FFNN) with adjustable synaptic weights,
known as the perceptron, was introduced by Rosenblatt [14] in 1958 and used to build
linear classifier machines with simple adaptive capabilities. A major breakthrough was
the discovery that multilayer FFNNs can be trained using an algorithm known as back-
propagation to compute the gradient of some objective function with respect to all model
parameters, and then simply applying gradient descent to update such parameters (see
Aside 2.1.1). This discovery is now attributed to Werbos [15] (PhD thesis, 1974), although
several other researchers independently re-discovered it in the following years.

In 1989, Hornik et al. [16] showed that an FFNN with as few as a single hidden layer
can approximate any function to any desired degree of accuracy. In light of this funda-
mental theoretical result, known as the universal approximation theorem, the whole idea of
training neural networks with a large number of hidden layers may not sound as the opti-
mal approach, as it arguably increases the complexity of the model. However, it was later
discovered, mainly empirically, that approximating complex functions using deeper models
can be much more efficient in terms of the total number of hidden units (and thereby of pa-
rameters) in the model. Intuitively, compositionality, i.e. the possibility of creating higher
level features by combining lower level features, adds another exponential advantage to the
statistical efficiency of a neural network, on top of the exponential advantage given by the
distributed nature of the represented features. This insight is increasingly supported by
theoretical results. For example, Delalleau and Bengio [17] have shown that functions in
a certain class of polynomials in n variables can be represented by sum-product networks
of depth O(k) using O(nk) hidden units, but require O((n − 1)k) units in the case of a
1-hidden layer network.

2.2 Convolutional neural networks

Convolutional neural networks (CNNs, or ConvNets) are a type of feedforward neural
networks designed to handle data organized in the form of arrays with some degree of
spatial structure (i.e. locally correlated). A typical example is a color (RGB) image, which
is essentially a stack of three 2D arrays, and can be seen as a 3D tensor, with the third
dimension being the colour channel. The architecture of CNNs was born in the 1980s, with
Fukushima’s neocognitron [18], inspired by a neurophysiological model of mammals’ visual
primary cortex introduced by Hubel and Wiesel [19] in the 1960s. Many fundamental
aspects of this early model are still used by modern CNNs.

At its core, a convolutional neural network is a stack of layers transforming a 3D
input tensor to a 3D output tensor in a feedforward fashion. These layers perform linear
or nonlinear transformation of their input, and these operations may or may not involve
additional parameters and hyperparameters. Although this description may arguably apply
to any form of FFNN, convolutional neural networks are different in that the extraction
of features in the first layers, as well as the composition of such features into higher-level
features, is performed through mathematical operations called discrete convolutions. The
operating principles of CNNs are described in detail in Section 3.1.2.

Convolutional neural networks were first trained with backpropagation and gradient
descent by LeCun et al. [20] in 1989, for the purpose of classifying handwritten digits. In
the 1990s, CNNs-based algorithms were already used in commercial applications, such as
reading cheques [21] (the CNN architecture known as “LeNet-5” used in this work is shown
in Figure 2.1). However, at that time the computational power needed to train larger and
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2. Deep learning

The backpropagation algorithm
The backpropagation algorithm is essentially an application of the chain rule of
derivatives to the computation of the gradient of some loss or cost function L with
respect to the parameters θ(l) of any layer l of a feedforward neural network in
an inductive fashion. This makes it possible to use simple gradient descent (or its
variants) to train a multilayer neural network.
Let

∇y(l) := ∇y(l)L :=
( ∂L

∂y
(l)
1

, . . . ,
∂L

∂y
(l)

N
(l)
out

)T
be the gradient of the loss function L with respect to output activations y(l) in layer l.
Assuming this gradient is known, the gradient with respect to the layer’s parameters
θ(l), i.e.

∇θ(l) := ∇θ(l)L :=
( ∂L

∂θ
(l)
1

, . . . ,
∂L

∂θ
(l)

N
(l)
θ

)T
can be computed as

∂L

∂θ
(l)
j

=

N
(l)
out∑
i=1

∂L

∂y
(l)
i

∂y
(l)
i

∂θ
(l)
j

, for j = 1, . . . , N
(l)
θ . (2.1)

As long as y(l)i = f(y(l−1),θ(l)) is differentiable with respect to θ(l)j for all i, j, the
gradient can be computed and used to update the parameters as

θ(l) ← θ(l) − η∇θ(l) , (2.2)

where η is a hyperparameter called the learning rate.
So far, ∇y(l) was assumed to be known. Now, let us consider two cases:

• If l is the output layer of the network, the gradient can simply be computed
by taking the derivative of the loss function (as long as this is differentiable).

• If instead l is a hidden layer, then ∇y(l) can be computed from the gradient
∇y(l+1) of the layer above, again by applying the chain rule:

∂L

∂y
(l)
k

=

N
(l+1)
out∑
i=1

∂L

∂y
(l+1)
i

∂y
(l+1)
i

∂y
(l)
k

, for k = 1, . . . , N
(l)
out , (2.3)

as long as y(l+1)
i = g(y

(l)
k ) is differentiable for all i, k.

By computing expressions 2.1 and 2.3 backwards, from the output layer to the input
(hence the name backpropagation), all gradients can be computed, and the parame-
ters of the network can be updated using expression 2.2 (or variants, as we shall see)
so as to minimize the loss L.

Aside 2.1.1: A brief explanation of the backpropagation algorithm.
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2. Deep learning

Figure 2.1: The architecture of LeNet-5, a CNN used by LeCun et al. [21] for document reading.
Each plane is a feature map. Image reproduced with permission.

deeper models to solve more complex tasks was simply too large. This aspect, together
with the rapid progress made in other areas of machine learning, hindered the diffusion of
neural networks in the computer vision community for almost two decades.

A breakthrough result, published in 2006 by Hinton et al. [22], introduced an algorithm
for greedy layer-wise pre-training algorithm to efficiently train particular kinds of deep
NNs, and largely contributed in reviving the interest in deep learning. However, its recent
success would have not been possible without two other essential ingredients. First, the
appearance of large, open, and labelled data sets, such as the popular CIFAR10, CIFAR100,
and ImageNet data sets of natural images. Secondly, the diffusion of cheap, massively
parallel computing power in the form of GPUs (Graphics Processing Units) for general
purpose computing, starting from the late 2000s.

Human-level performance in handwritten digit recognition on the benchmark MNIST
database was achieved for the first time in 2011 by Cireşan et al. [23] by using a GPU-
trained deep CNN. In the last 5 years, the popularity of CNNs in supervised image classi-
fication tasks has increased steadily, supported by an impressive series of successes. Most
famously, in 2012 the ImageNet (ILSVRC) challenge, the largest contest in object recog-
nition, with 1.2 million high-resolution images in 1000 classes, was won by Krizhevsky et
al. [1] using a deep CNN (now known as “AlexNet”). To put this result into perspective,
they achieved a top-5 classification error1 of 15.3% on the test data, almost halving the
second-best entry in the same competition (26.2%).

2.3 State-of-the-art in image classification

Since ILSVRC 2012, image classification competitions have consistently been won by teams
employing CNNs with depth increasing over the years, as shown in Figure 2.2. AlexNet’s
architecture was similar to the basic LeNet architecture from the 1990s [21] (Figure 2.1),
but deeper (5 convolutional layers and 3 fully-connected layers, with decreasing filter size)
and larger (about 60 million parameters in total). In order to improve the network gener-
alisation performance, Krizhevsky et al. employed two main techniques, nowadays widely
used. First, they artificially augmented the training set by generating image translations
and reflections along the horizontal axis, as well as jittering the RGB pixel intensities, to

1When measuring the top-5 classification score of an algorithm, the classification is considered correct
if the target label is among the 5 best predictions of the algorithm, i.e. the 5 labels that the algorithm
assigns the highest probability.
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2. Deep learning

increase the robustness to noise of the learned features. Furthermore, they used a new
powerful regularisation technique called dropout [7], described in detail in Section 3.2.2.

More recently, researchers have started exploring new architectures, with important
differences from early models like LeNet. An example worth mentioning is the work of
Szegedy et al. [24], a team based at Google, who engineered a particular kind of module
(codenamed Inception) composed of several convolutional and pooling layers with filters
of different size, running in parallel. Interestingly, they replaced the conventional fully-
connected layers preceding the final classifier with a layer performing average pooling across
the spatial dimensions, thus significantly reducing the number of parameters in the model
(about 4 million in total). One of their architectures, a 22-layer CNN based on Inception
modules and known as GoogLeNet, won the ILSVRC 2014 classification contest, achieving
a top-5 ensamble error of 6.67% on the test data.

The second-best entry in the same challenge was a CNN by a team based at the Visual
Geometry Group at Oxford University, and thus known as VGGNet (Simonyan and Zisser-
man [2]). The features learned by VGGNet models have proved to be extremely effective
not only in classification (e.g. ImageNet), but also to transfer very well to other tasks, such
as object localisation, image segmentation, and caption generation [2]. For this reason (and
in part for the simplicity and homogeneity of this architecture, described in Section 4.2),
VGGNet-inspired networks are currently among the preferred choice for image recognition
tasks in the computer vision community. The drawback is that VGGNet-like architec-
tures may have a large number of parameters (138 million, in the case of the ILSVRC
2014 runner-up entry) and are therefore computationally expensive to train and use for
inference.

A recently developed technique called batch normalisation, introduced by Ioffe and
Szegedy [8] in 2015, has proved very effective in making deep networks more robust to
improper initialisation, thus speeding up the training. More generally, batch normalisation
addresses a problem known as internal covariate shift, i.e. the change in the distribution
of the input activations to each layer during the training process, due to model parameters
being updated. As the name says, the method explicitly normalises the inputs to each
layer over a training mini-batch (see Section 3.2.1), and it integrates this operation in
the model architecture in a differentiable way, allowing gradient backpropagation. The
downside of batch normalisation is that it is in general a slow operation, more difficult to
execute in parallel than convolutions and matrix multiplications. However, this is greatly
compensated by the increased robustness to initialisation, and also by the possibility of
using considerably higher learning rates, thus requiring fewer iterations in order to train a
model.

Even more recently, He et al. [3] (Microsoft Research Asia) showed that improving
the performance of deep CNNs is not “as easy as stacking more layers” on top of each
other. In fact, using ImageNet data they empirically showed that as the network depth
increases, classification accuracy saturates and then starts degrading. Since the observed
degradation also affects classification accuracy on the training set, the authors conjectured
that the problem is not related to overfitting, but rather to exponentially low convergence
rates. Hence, they proposed an interesting architecture with skip-connections performing
identity mappings, in the hope that learning residual functions with respect to the identity
function would successfully address the degradation problem. Their extremely deep residual
networks (or “ResNets”), stacking up to 152 layers, have improved on the state-of-the-art
in multiple benchmark data sets, not only in classification (1st place in ILSVRC 2015),
but also in localisation, detection and segmentation challenges. [3]

7



2. Deep learning

Figure 2.2: ImageNet Classification top-5 test error (in %) in the last six years. Image repro-
duced with permission by Kaiming He (Microsoft Research Asia).

2.4 Traffic sign recognition

Until the beginning of the decade, research in machine learning applied to the problem of
traffic sign recognition has focused on the extraction of hand-crafted features for both the
detection of a traffic sign instance and the subsequent classification into one of multiple
classes. To this latter aim, extracted features were used to train classifiers, such as Bayes
classifiers, logistic regression models, support vector machines (SVMs), or shallow NNs (see
e.g. [25]).

Convolutional neural networks were first applied to this problem in the beginning of this
decade, along with the appearance of large publicly available data sets of labelled traffic
sign images. The first traffic sign classification challenge was held at the 2011 International
Joint Conference on Neural Networks (IJCNN), using the GTSRB data set [4] (described
in Chapter 4). The challenge was won by a team based at the IDSIA institute (Lugano,
Switzerland) with an ensemble of 25 ConvNets (named by the authors multi-column deep
neural network, or MCDNN), which achieved a classification rate of 99.46% on the test data
(Cireşan et al., 2012 [6]). This result surpassed human classification accuracy, estimated
to be 98.84% on the same data.

Training several neural networks and using the resulting ensemble for inference is a com-
mon technique to obtain a higher classification accuracy than that of individual networks,
and has thus become a common practice during challenges and competitions (see Sec-
tion 3.2.2 for a more detailed discussion of the method of model averaging). Cireşan et al.
used five different data preprocessing methods, and trained five networks in each case [6].
Apart from these techniques, the architecture of their CNNs, summarized in Table 2.1 (left
column), is similar to that of LeNet-5 (Fig. 2.1), but features three convolutional layers
with decreasing filter size.

Sermanet and LeCun [5] achieved the second place in the GTSRB challenge (98.31% ac-
curacy) with a multi-scale convolutional neural network. Their architecture (see Table 2.1,
middle column) was also similar to LeNet-5, featuring two convolutional layers (each fol-
lowed by a max-pooling stage) and ending with two fully-connected layers. However, in
their best performing networks, the output of the first pooling stage is directly fed into
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2. Deep learning

the fully-connected classifier, in addition to that of the second stage. The claim of the
authors was that such skip-connections would help combining global features extracted by
the second stage with local and more detailed features learned by the first one.

More recently, Jin et al. [26] have obtained a new state-of-the-art classification accuracy
of 99.65% on the GTSRB data, using an ensemble of 20 CNNs with a deeper architecture
(Table 2.1, right column) and performing a thorough optimisation of the networks’ hy-
perparameters. Finally, Haloi [27] has recently pushed the state-of-the-art on GTSRB to
99.81% using a very deep and complex architecture inspired to GoogLeNet [24]. How-
ever, no validation set nor cross-validation was used in this work (still unpublished), and
therefore this result will not be taken into account in this study.

Layer Cireşan et al. [6] Sermanet & LeCun [5] Jin et al. [26]

0 Input (48×48, RGB) Input (32×32, grayscale) Input (47×47, RGB)
1 Conv (7×7, 100 maps) Conv (5×5, 108 maps) Conv (5×5, 70 maps)
2 Nonlinearity (not specified) Nonlinearity (rectified tanh) Max-pooling (3×3, stride 2)
3 Max-pooling (2×2) Max-pooling∗ (2×2) Nonlinearity (ReLU)
4 Conv (4×4, 150 maps) Conv (5×5, 108 maps) Local normalisation
5 Nonlinearity (not specified) Nonlinearity (rectified tanh) Conv (3×3, 110 maps)
6 Max-pooling (2×2) Max-pooling (2×2) Max-pooling (3×3, stride 2)
7 Conv (4×4, 250 maps) Fully-conn.∗ (100 units) Nonlinearity (ReLU)
8 Nonlinearity (not specified) Nonlinearity (rectified tanh) Local normalisation
9 Max-pooling (2×2) Fully-conn. (100 units) Conv (3×3, 180 maps)
10 Fully-conn. (300 units) Nonlinearity (rectified tanh) Max-pooling (3×3, stride 2)
11 Nonlinearity (not specified) Fully-conn. (43 units) Nonlinearity (ReLU)
12 Fully-conn. (43 units) Softmax Local normalisation
13 Softmax Fully-conn. (200 units)
14 Nonlinearity (ReLU)
15 Fully-conn. (43 units)
16 Softmax

Table 2.1: CNN architectures used in previous traffic sign classification works. In the architec-
ture used by Sermanet and Lecun (middle column), layers marked by an asterisk are linked by a
skip-connection.

2.4.1 A note on terminologies and conventions

There is currently no agreement on a common terminology for describing the arcihtecture
of a CNN. For historical reasons, the first layers of a CNN, called convolutional layers,
are sometimes regarded as composed of several different sub-stages performing multiple
operations. A different scheme, called the simple layer terminology, considers every step
of tensor processing as a layer in its own right, and thus the network as composed of a
relatively large number of layers performing simple operations [12].

In this thesis (see e.g. Table 2.1), the latter approach is adopted, the reason being
that a simpler terminology allows more modularity and flexibility in the construction of a
model. Each simple layer can be used as a building block, regardless of what precedes and
follows it. In fact, as previously discussed, the trend in the recent literature (e.g. [3, 24])
is towards going beyond the original CNN architectures used since the 1980s, and a more
flexible terminology can be beneficial in this regard. The Conv.NET library, described in
the next chapter, was thus implemented with this goal in mind.
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3
The Conv.NET library

Several deep learning toolboxes have been released in recent years, thanks to a joint effort of
academic departments (e.g. University of Montreal, UC Berkeley) and IT companies (e.g.
Google, Microsoft, Facebook). However, while almost all of these toolboxes support GPU
acceleration using Nvidia’s proprietary CUDA® platform, none of them fully supports the
OpenCL™ framework at the time of writing. For this reason, in this project a new deep
learning library, named Conv.NET, was implemented from the ground up in C#, using
the OpenCL™ framework for GPU acceleration through the open source OpenCL.NET
bindings [28]. The reason behind the choice of C# as programming language is twofold.
First, no C# deep learning library exist yet to the best of the writer’s knowledge. Secondly,
such a library could be more easily integrated with other projects written under the .NET
framework, including ongoing projects in the Adaptive Systems research group at Chalmers
University of Technology.

This chapter provides the reader with a brief description of the library: how to create a
CNN for image classification, how the different building blocks work, and how the network
can be trained and regularised.

3.1 Creating a network
As shown in code Listing 3.1, a NeuralNetwork object can be easily instantiated and added
new building blocks using the AddLayer() method.

Each building block is implemented in its own class, derived from the base Layer class.
In accordance to the simple layer notation, the base Layer class has two fields of class
Neurons, called inputNeurons and outputNeurons, where the input and output activa-
tions of the layer are stored. Each derived class then implements different methods to
transform input activations into output activations (forward pass), and to backpropagate
error signals (also stored in dedicated fields of the Neurons class) backwards (backward
pass), giving rise to different types of layers. As shown in Listing 3.1, each layer’s pa-
rameters can be passed directly as arguments to the layer’s constructor (see the XML
documentation in the code).

When a layer is connected to an existing one, its inputNeurons field is pointed to the
previous layer’s outputNeurons object. In other words, denoting the input activations of
layer l by X(l) and its output activations by Y(l) = F (X(l);θ(l)), where θ(l) are the layer’s
parameters (if any), then X(l) ≡ Y(l−1) for l = 1, . . . , L, where L is the number of layers in
the network. In this notation, Y(0) is the input tensor of the CNN, representing an image,
and Y(L) is the output tensor, representing a probability mass function over C possible
classes, inferred by the network.

Similarly, denoting the gradient of the loss function L computed with respect to the
input and output activations of layer l by∇X(l) .= ∇XL

(l) and∇Y(l) .= ∇YL
(l), respectively,

then ∇Y(l−1) ≡ ∇X(l) for l = 1, . . . , L.

10



3. The Conv.NET library

using Conv.NET;

/*
* Creating a neural network with an input layer , 9 hidden layers ,
* and a 10-way output (softmax) layer
*/

NeuralNetwork network = new NeuralNetwork("NetworkName");

network.AddLayer(new InputLayer (1, 32, 32));
network.AddLayer(new ConvolutionalLayer (5, 32, 1, 0));
network.AddLayer(new ReLU());
network.AddLayer(new MaxPooling (2, 2));
network.AddLayer(new ConvolutionalLayer (5, 64, 1, 0));
network.AddLayer(new ReLU());
network.AddLayer(new MaxPooling (2, 2));
network.AddLayer(new FullyConnectedLayer (128));
network.AddLayer(new ReLU());
network.AddLayer(new FullyConnectedLayer (10));
network.AddLayer(new SoftMax ());

/* Loading training and validation data (10 classes) */

DataSet trainingSet = new DataSet (10);
trainingSet.ReadData("PathToTrainingData");
trainingSet.ReadLabels("PathToTrainingLabels");

DataSet validationSet = new DataSet (10);
validationSet.ReadData("PathToValidationData");
validationSet.ReadLabels("PathToValidationLabels");

/* Setting training hyperparameters and training the network */

NetworkTrainer.LearningRate = 1e-5;
NetworkTrainer.MomentumCoefficient = 0.9;
NetworkTrainer.MiniBatchSize = 64;
NetworkTrainer.WeightDecayCoeff = 1e-4;
NetworkTrainer.EpochsBetweenEvaluations = 1;
NetworkTrainer.DropoutFullyConnected = 0.5;

NetworkTrainer.Train(network , trainingSet , validationSet);

Listing 3.1: Code snippet showing how to create and train a simple convolutional neural network
using the Conv.NET library.

The notations X and ∇X denote 4-dimensional tensors of size M × Kin × Hin ×Win,
whereM is the size of the mini-batch used (i.e. the number of training examples passed into
the network at each iteration - see Section 3.2.1), Kin is the input tensor depth, or number
of channels (e.g. 3 in the case of a tensor representing a RGB image), and Hin and Win

are the input tensor’s spatial dimensions (height and width of the image). Element Xm,k,i,j
then denotes the input activation in spatial position (i, j), channel k, and example m in the
mini-batch, whereas element ∇Xm,k,i,j denotes its associated error value, to be computed
with backpropagation. Similarly, Y and ∇Y are tensors of size M ×Kout ×Hout ×Wout,
with self-explanatory notation. Only spatially square tensors are currently supported in
the Conv.NET library, i.e. Hin = Win and Hout = Wout. Note that, as shown in Listing 3.1,
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3. The Conv.NET library

all these tensor dimensions need not be specified (apart from that of the input layer). In
fact, they are automatically inferred during the network construction based on the layer
parameters.

In the forward pass of the network, each layer transforms its input tensor X in a linear or
nonlinear way, and with or without additional parameters θ, depending on the layer type.
In the backward pass, the gradients with respect to both the input activations ∇X and the
parameters ∇θ (if any) are computed from ∇Y using the backpropagation algorithm (see
Aside 2.1.1). This can be mathematically summarised as follows:

Forward pass: Y(l) = F (X(l);θ(l)) .

Backward pass: ∇X(l) = G(∇Y(l);θ(l)) ,

∇θ(l) = H(∇Y(l);X(l)) . (3.1)

Functions F,G,H depend on the type of layer l. In the rest of this section, the op-
erations performed by each type of layer implemented in the library will be described in
detail.

3.1.1 Input layer

The first layer of a neural network object must always be of type InputLayer. This is an
auxiliary class performing the identity function in the forward pass (the backward pass has
no meaning, and is thus not implemented), used to pass a mini-batch of examples into the
network, through the method FeedData().

In adding an InputLayer instance to an empty NeuralNetwork, the input tensor depth
and spatial dimensions must be passed as arguments in the constructor. The mini-batch
size (i.e. the first dimension of the tensor of activations) is instead set using a property of
the static class NetworkTrainer, reflecting the fact that it is not a property of the neural
network, but rather of the training procedure.

3.1.2 Convolutional layer

The convolutional layer, as the name implies, is the core component of a CNN, and its
operating principles are inspired by those of hypercomplex processing cells in mammals’
visual cortex (Hubel and Wiesel, 1962 [19]).

As shown in Figure 3.1, the output tensor Y of a convolutional layer can be seen as
a stack of 2-dimensional arrays called feature maps, whose number determines the depth
Kout of the output tensor and is one of the layer’s hyperparameters.

Each unit Ym,k,i,j in the k-th feature map is connected to units in a limited, local region
of the input tensor X, called the receptive field of the output unit (in grey in Figure 3.1).
The receptive field is a sub-tensor of the input tensor, and its spatial dimensions are
given by a hyperparameter F called the filter size or kernel size, whereas its depth always
matches the input tensor depth Hin. Neighbouring output unit Ym,k,i+1,j+1 has a receptive
field that is shifted by a certain stride length S (another hyperparameter) with respect to
the previous one.

Commonly, the input tensor is framed with a border of zeros (zero padding), whose
width P is another hyperparameter of the layer, in order to control the size of the output
tensor Y. In fact, its spatial dimensions are given by

Hout =
Hin − F + 2P

S
+ 1 . (3.2)
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3. The Conv.NET library

Figure 3.1: Graphical depiction of a convolutional layer.

Each connection between unit Ym,k,i,j and the units in its receptive field is associated
with a synaptic weight. However, all units in the same feature maps share the same set
of KinF

2 weights (plus one bias), known as a filter. The total number of parameters in a
convolutional layer is therefore Kout(KinF

2+1), i.e. it does not depend on the input tensor
spatial dimensions. This makes convolutional layers scalable to handle high-resolution
images and intrinsically resistant to overfitting [29].

Besides keeping the number of parameters small, weight sharing is a fundamental prop-
erty of convolutional layers, because it allows the network to detect the same feature in
different positions of the input. This is clearly useful in the context of image classification,
as the same edges, motifs, and parts can be present in different locations of an image. The
operating principles of a convolutional layer therefore serves a two-fold purpose. First,
the local nature of receptive fields is equivalent to introducing an infinitely strong prior
over the parameters, explicitly saying that the layer should learn to capture only local
spatial correlations in the input data. Secondly, as just discussed, weight sharing makes
the detection of features translation-equivariant [12].

Mathematically, the operation performed in a convolutional layer is equivalent to a
discrete convolution. Let W denote the 4-dimensional kernel tensor of the layer, where
element Wk,l,i,j is the connection strength between a unit in channel k of the output and
channel l of the input, with an offset of i rows and j columns between the two units. This
tensor has size Kout ×Kin × F × F , where again F is the filter or kernel size.

The output tensor Y is then obtained by convolving the (padded) input tensor X and
the kernel tensor W, i.e.1

Ym,k,a,b =

Kin−1∑
l=0

F−1∑
i=0

a+i<Hin

F−1∑
j=0

b+j<Hin

Xm,l,a+i,b+j Wk,l,i,j + bk , (3.3)

where bk is the bias parameter of feature map k. This operation is equivalent to a local
dot product, and is represented graphically in Figure 3.2.

1It is worth mentioning that it would be more precise to refer to the operation performed in Equation 3.3
as cross-correlation, instead of convolution. The two operations, however, are equivalent, in that they only
differ by how the input tensor is accessed, and they return exactly the same result if the kernel tensor
is flipped across its spatial dimensions. Usually, the cross-correlation operation is preferred in terms of
implementation, as it simplifies the validity check of indices i and j.
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Using the backpropagation algorithm, it is straightforward to compute the gradient
∇θ := ∇θL with respect to the layer’s parameters (weights and biases):

∇Wr,s,t,v :=
∂L

∂Wr,s,t,v

=
∑
m,k,a,b

∂L

∂Ym,k,a,b

∂Ym,k,a,b
∂Wr,s,t,v

=
∑
m,k,a,b

∇Ym,k,a,b
∂

∂Wr,s,t,v

(∑
lij

Xm,l,a+i,b+j Wk,l,i,j + bk

)
=
∑
m,a,b

∇Ym,r,a,b Xm,s,a+t,b+v , (3.4)

∇br :=
∂L

∂br
=
∑
m,k,a,b

∂L

∂Ym,k,a,b

∂Ym,k,a,b
∂br

=
∑
m,k,a,b

∇Ym,k,a,b
∂

∂br

(∑
lij

Xm,l,a+i,b+j Wk,l,i,j + bk

)
=
∑
m,a,b

∇Ym,r,a,b . (3.5)

The gradient with respect to the input activations (to be propagated backwards into
the network in order to adjust parameters upstream) is instead:

∇Xm,r,s,t :=
∂L

∂Xm,r,s,t
=
∑

m′,k,a,b

∂L

∂Ym′,k,a,b

∂Ym′,k,a,b

∂Xm,r,s,t

=
∑

m′,k,a,b

∇Ym′,k,a,b
∂

∂Xm,r,s,t

(∑
lij

Xm′,l,a+i,b+j Wk,l,i,j + bk

)
=
∑
a,b

∇Ym,k,a,b Wk,r,s−a,t−b , (3.6)

where again one must be careful to check the validity of the tensor indexing operations,
i.e. 0 ≤ a < Hout, 0 ≤ b < Hout, 0 ≤ s− a < F , and 0 ≤ t− b < F .

One can note that Equation 3.4 is also a convolution, computed between the input
tensor Y and the output tensor of error signals ∇Y (known). Similarly, Equation 3.6 can
be interpreted as a convolution between ∇Y and the tensor Wflipped, obtained by flipping
all elements of the kernel tensor W across the spatial dimensions. To sum up, denoting the
convolution operation with the symbol “∗”, the convolutional layer forward and backward
passes can be written in the following compact form:

Y = X ∗W
∇W = ∇Y ∗ X
∇X = ∇Y ∗Wflipped ,

(3.7a)
(3.7b)
(3.7c)

where the biases have been incorporated in the kernel tensor.
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Convolution as a matrix multiplication

The convolution operation between two tensors A and B (Eq. 3.3 and Figure 3.2) es-
sentially computes local dot products between sub-tensors of A and tensor B. Efficient
implementations of CNN libraries take advantage of this fact, reformulating both forward
and backward pass operations of a convolutional layer as matrix multiplications. This can
be done as follows (also see Figure 3.3 for a graphical representation):

1. First, each receptive field of size Kin × F × F in the input tensor X is unrolled
to a one-dimensional array of length KinF

2. Since the number of receptive fields
is H2

out (where Hout is given by Equation 3.2), placing all such arrays side by side
as columns yields a KinF

2-by-H2
out matrix. Let X denote this matrix of stretched

receptive fields. This can be done for each example in the mini-batch, giving a set2
of matrices {X (m)}m=0,...,M−1.

2. The kernel tensor W is similarly unrolled into a matrix, whose rows correspond to a
stretched out filter. This results in a Kout-by-KinF

2 matrix, denoted by W .
3. Convolving the input tensor X with the kernel tensor W is now equivalent to multi-

plying the kernel matrix W and each receptive field matrix X (m), and subsequently
reshaping the resulting set ofM matrices Y(m) (each of size Kout×H2

out), into a tensor
of size M ×Kout ×Hout ×Hout (indeed the correct size of the output tensor Y).

4. The backward pass becomes easier than using Equations 3.4-3.6: First, tensor ∇Y
must be reshaped into a set ofM matrices of size Kout×H2

out, each denoted by ∇Y(m)

(following the same notation). Multiplying matrices ∇Y(m) and (X (m))T yields the
contribution of the mth example to the gradient ∇W . The total gradient can be then
computed by summing all these contributions.

5. Finally, multiplying matrix ∇WT and each matrix ∇Y(m) results in M matrices
∇X (m) of size KinF

2 ×H2
out, which must then be reshaped into a tensor of the same

size as ∇X (i.e. M × Kin × Hin × Hin) using the inverse of the unrolling operation
used in point 1.

To summarise, the operations described in Equations 3.7(a,b,c) can be replaced by the
following ones:

X
unroll−−−→ {X (m)}m=0,...,M−1

Y(m) =WX (m) for m = 0, . . . ,M − 1

{Y(m)}m=0,...,M−1
reshape−−−−→ Y

∇W =
∑

m ∇Y(m) (X (m))T

∇X (m) = ∇WT ∇Y(m) for m = 0, . . . ,M − 1

{∇X (m)}m=0,...,M−1
roll−up−−−−→ ∇X

(3.8a)

(3.8b)

(3.8c)
(3.8d)

(3.8e)

(3.8f)

Note that the unrolling and rolling-up operations on the kernel tensor W are not included
in the above equations, for the simple reason that in practice they need not be performed.
Since the filters are never used in their tensor form, it is more convenient to store them
directly in the matrix form W .

The advantage of this approach lies in that implementing GPU-parallelised matrix mul-
tiplication routines, or using existing BLAS (Basic Linear Algebra Subprograms) libraries,
is much easier than implementing convolutions efficiently. For this reason, in the Conv.NET

2The set of matrices {X (m)}m=0,...,M−1 can be conveniently stored in memory as one big matrix.
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3. The Conv.NET library

Figure 3.2: Graphical representation of the convolution operation between an input tensor (size
M ×Kin × 5× 5) and a kernel tensor (size Kout ×Kin × 3× 3), stride of 1 and no padding.

Figure 3.3: Reformulation of the convolution in Figure 3.2 as M matrix multiplications, where
Kout has been assumed equal to 1, for better visualisation.

library all convolution operations are implemented as matrix multiplications. Although this
requires several unrolling and reshaping operations, these are computationally very cheap
and their impact is negligible compared to that of matrix multiplications [30].

The drawbacks of this approach is that in general it requires more memory, as each entry
Xm,l,i,j appears in F 2 receptive fields, and thus each receptive field matrix X (m) contains in
principle F 2 copies of each entry of X. Instead of creating and updating each X (m) at each
training iteration, the library creates a mapping table GX from X to {X (m)} when the layer
is initialised. Then, instead of accessing each X (m) (which effectively does not exist), the
matrix multiplication subroutine directly accesses X through the mapping table GX . The
advantage of doing this is twofold. Firstly, it efficiently replaces both unrolling and rolling-
up operations 3.8a and 3.8f. Secondly, it saves memory, as GX is actually smaller than X
by a factor M because the mapping is the same for every example in the mini-batch.

Zero-padding operations are sources of additional memory waste. In the Conv.NET li-
brary, the input tensor X is padded with zeros (when needed) into a new tensor Xpad before
step 3.8(a), so that the above-mentioned mapping table GX already takes padding into ac-
count. Part of this memory waste is recovered in the backward pass, by re-using the same
memory buffer used for Xpad to store the tensor∇Xpad, which is then un-padded into tensor
∇X. Furthermore, both padding and un-padding operations are performed by using a map-
ping table, created when the layer is initialised (similarly to the unrolling of receptive fields).
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3.1.3 Nonlinearities

The output of a convolutional (or fully-connected) layer is usually passed through a non-
linear function f :

Ym,k,a,b = f(Xm,k,a,b) .

Nonlinearity layers do not have parameters, and the backward pass simply consists in

∇Xm,k,a,b = ∇Ym,k,a,b f ′(Xm,k,a,b) .

Several options for f are available in the Conv.NET library, summarised in Table 3.1.

Activation function Function form Derivative Conv.NET constructor

Hyperbolic tangent f(x) = tanh(βx) f ′(x) = β(1− (f(x))2) Tanh(double beta)

Rectifier f(x) = max(0, x) f ′(x) =

{
1 if x ≥ 0

0 if x < 0
ReLU()

Exponential-rectifier f(x) =

{
x if x > 0

α(ex − 1) if x ≤ 0
f ′(x) =

{
1 if x > 0

αex if x ≤ 0
ELU(double alpha)

Table 3.1: Activation funtions available in the Conv.NET library

The hyperbolic tangent is a sigmoidal activation function, used since the earliest days of
neural networks. Despite being still widely employed in shallow NNs, it is nowadays seldom
used in the context of deep networks. In fact, a large input (both positive and negative)
cause a sigmoidal unit to saturate, and thus to backpropagate a very small gradient signal,
as the derivative f ′(x) is very close to zero in the saturation regime. This problem, known
as vanishing gradient, can greatly slow down the training process in the case of very deep
networks.

Replacing sigmoidal units with rectified linear units (ReLUs) has been empirically
shown to accelerate the training of deep networks [1]. In fact, the rectifier function does not
saturate for positive input, which may partially address the vanishing gradient problem.
Furthermore, ReLUs are computationally very cheap, and promote sparse activations. For
these reasons, they have been a very popular choice in recent years.

Finally, the exponential-rectifying function, introduced by Clevert et al. [31] in 2016,
has also been shown to address the vanishing gradient problem, and to possess additional
desirable properties. In fact, by saturating smoothly to −1 for negative values, it pushes
the mean unit activation closer to zero, reducing the bias shift effect (similarly to batch
normalisation, see Section 2.3) thereby speeding up the training process and acting as a
regulariser.

3.1.4 Pooling layers

Pooling layers are used to downsample input spatial information, and they have been
traditionally added between stages of convolutions. Each pooling unit in channel k of
the output tensor computes a summary statistic of a patch of units in channel k of the
input tensor. As a result, only spatial dimensions of the input tensor X are downsampled,
whereas the depth is always preserved. The most important effect of pooling is that it
makes the feature representation invariant to small translations and distortions, allowing
to detect the presence of a feature regardless of its exact location in the input image. Two
kinds of pooling layers are supported in the library, here briefly described.
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Max-pooling

In this case, the downsampling consists in computing the maximum activation of a small
patch of units in the input tensor. Mathematically:

Ym,k,a,b = max
(
{Xm,k,Sa+i,Sb+j}i=0,...,P−1, j=0,...,P−1

)
,

where P is the pooling width and S the stride. A common choice is performing 2×2 pooling
with a stride of 2, so that each spatial dimension is halved. Currently, only P = S = 2 are
supported in the Conv.NET library. In the backward pass, since each output activation
only depends (linearly) on one input activation (i.e. the maximum one within the pooling
patch), its corresponding gradient ∇Y is simply redirected to that input location.

Global average pooling

This downsampling operation collapses an input tensor X of size M ×K ×H ×H into an
output tensor Y of size M × K × 1 × 1, by taking the average of each feature map and
collapsing spatial dimensions into a single unit. Mathematically:

Ym,k,0,0 =
1

H2

H−1∑
i,j=0

Xm,k,i,j .

The gradient can be simply backpropagated to the input as follows:

∇Xm,k,i,j =
1

H2
∇Ym,k,0,0 ,

i.e. by distributing the error signal equally among the units of each input channel.
Global average pooling is a rather aggressive downsampling step, and it is sometimes

performed at the end of all convolutional stages of a CNN and before the classifier (or
sometimes even instead of the fully-connected layer preceeding the final softmax layer).
This approach was popularized by Szegedy et al. [24], who employed global average pooling
before the final 1000-way fully-connected layer with softmax activation in their GoogLeNet
network winning ILSVRC 2014.

3.1.5 Fully-connected layer

Fully-connected layers are usually employed at the end of CNNs as classifiers. Their task is
to process higher-level features learned by the underlying convolutional modules and learn
to classify the input example based on such features.

In a fully-connected layer, every input unit is connected to every output unit, there-
fore the notion of spatial structure is lost and the multi-dimensional tensor notation is no
longer meaningful. When a 4D tensor X is passed as input to a fully-connected layer, it is
reshaped into a set of M one-dimensional arrays x(i) containing all unrolled input activa-
tions corresponding to the i-th example of the mini-batch in X (see also Figure 2.1). The
operations performed by the layer can then be written in terms of matrix multiplications.
The forward pass takes the form

y(i) = W x(i) + b , for i = 0, . . . ,M − 1 . (3.9)
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Matrix W and vector b above are respectively a N -by-KinH
2 weight matrix and a N -by-1

vector of biases, where N is the number of output units (the only hyperparameter of the
layer).

The gradients with respect to these parameters are computed as

∇W =
∑
i

∇y(i) (x(i))T and ∇b =
∑
i

∇y(i) , (3.10)

whereas the gradients with respect to each input vector x(i) are computed as

∇x(i) = W T ∇y(i) , for i = 0, . . . ,M − 1 . (3.11)

In case of a classification problem with C classes, the network should end with a fully
connected layer with N = C output units, acting as the final classifier. Alternatively,
a C-way fully-connected layer can be replaced by a convolutional layer with a filter size
matching the spatial dimension of its input tensor and C feature maps. In fact, one can
show that these two layers perform exactly the same operations, and can thus be used
interchangeably.

3.1.6 Output layer: softmax

A feedforward neural network for classification into C classes typically ends with a softmax
activation layer. Using the same notation as in the previous paragraph, let the input to
this layer be a set of M one-dimensional vectors x(i) of length C. Each entry x(i)c of these
vectors is then passed through the following squashing function:

y(i)c = σ(x(i)c ) =
exp(x

(i)
c )∑C−1

c′=0 exp(x
(i)
c′ )

.

Each output vector y(i) then contains C values in [0, 1] which add up to 1, and can be
thus interpreted as a vector of probabilities over the C different classes. The index c(i)max

corresponding to the maximum entry in y(i) is the class inferred by the networks for the
i-th image of the mini-batch.

3.2 Training a model

Training a neural network for classification means adjusting its internal parameters to
increase its classification performance on the input data. The problem of training a neural
network can thus be naturally formulated as an optimisation problem, given a suitable
objective function.

3.2.1 Optimisation

Cross-entropy and mini-batch stochastic gradient descent

The classification performance of a deep NN can be measured in several ways, the most
obvious of which is perhaps the classification accuracy, i.e. the number of correctly classified
examples divided by the total number N of examples. Letting c̃ (i) denote the ground truth
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label of example i, and c
(i)
max denote the class inferred by the network, the classification

accuracy can be computed as 1−E, where E is the classification error of the network, i.e.

E =
1

N

N−1∑
i=0

{
0 if c(i)max = c̃ (i)

1 otherwise .

This performance measure, however, is unsuitable for gradient-based methods, as it is
not differentiable. Furthermore, it is a binary measure: an inferred classification is either
correct or incorrect, without any notion of degree of inference goodness. For these reasons,
a differentiable cost or loss function is used instead.

The preferred cost function for classification problems is the log-likelihood or cross-
entropy loss function, returning a smooth measure of the similarity between the output
probability vector y(i) (inferred by the network for the i-th example), and the one-hot
probability vector t(i) assigning probability 1 to the ground truth class c̃ (i), and 0 to all
others. The cost function is as follows:

L = −
N−1∑
i=0

C−1∑
c=0

t(i)c log y(i)c =
N−1∑
i=0

C−1∑
c=0

{
log y

(i)
c if c = c̃ (i)

0 otherwise.
(3.12)

A nice property of the cross-entropy cost function is that its gradient with respect to
each input vector x(i) of the softmax activation layer takes a very easy and interpretable
form. Namely, for the c-th entry δx(i)c of the j-th gradient vector, we have

δx(i)c
.
=

∂L

∂x
(i)
c

=
∂

∂x
(i)
c

(C−1∑
c=0

t(i)c log y(i)c

)
= . . . =

{
y
(i)
c − 1 if c = c̃

y
(i)
c otherwise.

(3.13)

This is a neat expression with an intuitive meaning: for each example i in the mini-batch,
the derivative of L with respect to the c-th input activation of the softmax is simply equal
to the error of the predicted probability for class c with respect to the c-th entry of the
ground truth probability mass function (1 if c is the correct label, 0 otherwise).

By propagating these derivatives backwards into the network, we can compute the
gradient of the loss function with respect to all parameters θ(l) of all layers l = 1, . . . , L−1,
and then update all such parameters in the direction of descending gradient:

θ(l) ← θ(l) − η∇θ(l). (3.14)

This is the mini-batch version of Stochastic Gradient Descent (SGD). The hyperpa-
rameter η, known as the learning rate, controls the size of the steps taken in the direction
specified by the gradients. Choosing a suitable value for η is of fundamental importance
in training neural networks, because an excessively large learning rate can cause the loss
function to diverge, whereas a very small learning rate yields a very slow learning.

Clearly, by using a mini-batch of sizeM = 1, mini-batch gradient descent reduces to the
standard SGD (sometimes also called online update). Using a mini-batch size M > 1 has
a twofold effect. First, it controls the degree of stochasticity in the update, as the gradient
computed over a large mini-batch yields a better approximation of the “true” gradient (i.e.
computed over the entire data set), whereas a small mini-batch leads to rather random
steps in the loss function landscape. Second, it has a computational impact, because it
corresponds to performing operations on large arrays less frequently, rather than more

20



3. The Conv.NET library

frequent operations of smaller arrays, and therefore parallelised implementations can take
advantage of massively parallel processing hardware (such as GPUs).

Typical values of the mini-batch size M are between one (online SGD update) and a
few hundreds, with default values such as 32 or 64 usually working best. Using very large
mini-batches, in fact, has the detrimental effect of requiring much more training iterations
to reach the same error, since there are fewer parameter updates per epoch3.

Parameter initialisation

Usually, parameters of a deep NN are initialised to small values, making sure to enforce
symmetry breaking among units in the same layer [29]. In the Conv.NET library, parame-
ters are initialised by following the practice introduced by He et al. [32]:

• The input weights to each unit in the network are initialised by sampling values
from a Gaussian distribution with mean µ = 0 and variance σ2 = 2/Nin, where Nin

is the number of inward connections of that unit. In the case of a fully-connected
layers, this number equals the size of each input vector x(i), whereas in the case of a
convolutional layer N equals the size of the unit’s receptive field, i.e. KinF

2.
• All biases are initialised to zero.

Momentum update

Several variants of SGD have been proposed in the last few years, in the attempt to accel-
erate the optimisation process. The Conv.NET library implements one of such methods,
called momentum update, which has been empirically shown to (almost always) yield a
faster convergence rate than vanilla SGD [33]. The update rule is as follows:

v(l) ← µv(l) − η∇θ(l) ,
θ(l) ← θ(l) + v(l) . (3.15)

This update rule can be motivated by viewing the optimisation problem from a physical
perspective and seeing the gradient ∇θ as the acceleration of the parameter update (rather
than the speed, as in vanilla SGD). This acceleration is used to integrate the update speed v,
which, in turn, is used to integrate the position θ of the point determined by the parameter
configuration in the hilly landscape of the cost function. The hyperparameter µ, known
as momentum coefficient, controls the amount of momentum that the point can build up
while rolling on the landscape. Typical values are in (0.5, 0.99). For µ = 0, momentum
update obviously reduces to the vanilla SGD update rule.

3.2.2 Regularisation

Usually, achieving a high classification performance on the training data is not sufficient,
as in general there can be no guarantee that the same performance will be obtained with
new, unseen data. Provided that the capacity of a model (i.e. the complexity of the
functions that it can learn to approximate) is sufficiently high, near-perfect performance
can be obtained on the training set, by learning very fine-grained idiosyncrasies of the
data. However, such idiosyncrasies may be (likely) due to noise and may not reflect the

3A training epoch is defined as the number of iterations needed to use each example in the training set
exactly once.
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true underlying structure of the data, thereby leading to very poor predictive performance,
once learned. This is the problem of overfitting as opposed to generalisation, perhaps the
most fundamental concept in machine learning.

Deep neural networks usually have very high capacity and are therefore particularly
prone to overfitting. Several methods, collectively known as regularisation methods, can
be used to prevent overfitting when training high-capacity models.

Early stopping

One simple way of preventing overfitting is monitoring the network’s classification perfor-
mance (namely the cross-entropy loss) on a validation data set. A validation set is a set of
examples which are neither used for training nor for the final evaluation of the model, and
are considered to be representative of future test examples.

In the Conv.NET library, the state of the network, with all its weights, is saved to a
binary file4 every time the loss function, evaluated on the validation set, decreases with
respect to the previous evaluation. When the cost function on the validation data stops
decreasing, or even start increasing, overfitting is likely to be occurring, and further opti-
misation on the training set may be detrimental in terms of predictive performance.

Due to the stochasticity of the training process, however, the validation loss can remain
almost constant or increase slightly for a few epochs before starting to decrease again.
Therefore, it is usually a good idea not to interrupt the training as soon as the validation
loss stops decreasing, but rather allowing it to continue for a certain number of epochs
(denoted by patience in the library).

L2 penalty

Another common regularisation method available in the Conv.NET library is L2 penalty
regularisation. The idea behind this method is to limit the capacity of the model by
penalising large synaptic weights. This is achieved by adding to the loss function a penalty
term consisting of the sum of the squared L2 norm of each weight vector in the network.
Denoting the cross-entropy loss function (Eq. 3.12) by L0, the L2 regularised loss function
takes the following form:

L = L0 +
λ

2

∑
k

w2
k , (3.16)

where the sum is over all weights in all layers of the network, and λ is a hyperparameter.
In the parameter update rule, the L2 penalty term translates into a linear term, as follows:

wk → wk − η
(∂L0

∂wk
+ λwk

)
,

i.e. each weight decays towards zero with rate ηλ, and for this reason L2 penalty is also
referred to as weight decay. It can be shown that L2 regularisation is equivalent to placing
a Gaussian prior N (0, 1/λ) on all weights of the network.

4The model can then be reloaded later, in order to resume training or evaluate it on different data.
Furthermore, the number of training epochs between two consecutive evaluations can be specified by the
user, as shown in Listing 3.1.
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Model averaging

Model averaging is a general technique in machine learning that consists in training several
models separately, either on the same data set or on different parts of the same data set,
and then averaging their predictions at test time. The idea behind this method is that
different models usually make slightly different errors (i.e. they overfit the training data in
slightly different ways), and thus the predictive performance of their ensemble is usually
superior to that of each individual model.

This technique works really well with neural networks. It is immediate to show that
in the ideal case of uncorrelated errors, the expected squared error of an ensemble of k
neural networks is smaller than the average error of the k models by a factor 1/k [12],
although errors are never perfectly uncorreated in reality. The obvious drawback of model
ensembling is that it can be very demanding in terms of memory and computation. This
applies to both the training and, more importantly, to the inference process, where often
runtime performance is crucial.

Dropout

Dropout is a recently published regularisation method (Srivastava et al., 2014 [7]) that at-
tempts to emulate model averaging with very large ensembles, with minimal computational
impact. This is achieved by de-activating (dropping out) each unit in a hidden layer of a
network at each training iteration, with some probability p (usually 0.5), as illustrated in
Figure 3.4. This simple procedure is equivalent to training an exponentially large ensemble
of thinned sub-networks (namely 2NH models, where NH is the number of hidden units).
At test time, dropout is not applied, so that its predictions approximate the averaged
predictions of the ensemble of its sub-networks.

Dropout is not exactly equivalent to model averaging, as thinned sub-networks share
parameters and as such are not independent. Moreover, dropout generally slows down the
training process, as a large fraction (typically 1/2) of the parameters are effectively frozen
at each itaration. However, dropout is still computationally much cheaper than training
several models to average over, and it can be applied to virtually any type of model and
with any training algorithm.

Figure 3.4: Graphical representation of dropout, from [7]. Reproduced with permission.
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4.1 The GTSRB data set

The German Traffic Sign Recognition Benchmark (GTSRB) is a publicly available data set
containing 51839 images of German road signs, divided into 43 classes [4]. A representative
image for each class is shown in Figure 4.1. The data set was published during a competition
held at the 2011 International Joint Conference on Neural Networks (IJCNN).

Images in the data set exhibit wide variations in terms of shape and colour among some
classes, as well as strong similarities among others (e.g. different speed limit signs). The
data pose several challenges to classification, including varying lighting and weather con-
ditions, motion-blur, viewpoint variations, partial occlusions, physical damage and other
real-world variabilities (some samples considered difficult to classify are shown in Fig-
ure 4.2). Furthermore, resolution is not homogeneous and as low as 15×15 pixels for some
images (Figure 4.3, left panel). For these reasons, human performance on this data set is
not perfect, and estimated at around 98.84% on average [4].

An additional challenge in training classification algorithms on the GTSRB data is that
the 43 classes are not equally represented. The relative frequency of classes 0, 19, and 37,
for example, is only 0.56%, significantly lower than the mean 1/43 = 2.33% (Figure 4.3,
right panel). Moreover, since the data set was created by extracting images from video
footage, it contains a track of 30 images for each unique physical real-world traffic sign
instance. As a result, images from the same track are heavily correlated.

Figure 4.1: A representative image for each of the 43 classes in the GTSRB data set. Repro-
duced with permission from Stallkamp et al. [4].
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Figure 4.2: Some difficult samples in the GTSRB data.
.

Figure 4.3: Left panel: distribution of the resolution of GTSRB test images. Right panel:
relative class frequency in the training data. Both images reproduced with permission from
Stallkamp et al. [4]

4.1.1 Data preprocessing

In accordance with the idea behind representation learning, GTSRB images were minimally
preprocessed, and used to train CNNs almost in their raw form. The preprocessing steps
descrbed in this section follow the approach used by Sermanet and LeCun [5] as closely as
possible, for a better comparison.

First of all, a validation set was extracted from the training set by randomly picking
one track (30 images) for each class, for a total of 1290 images. The remaining training set
thus contains 37919 images1. This step was repeated twice, in order to perform holdout
(2-fold) cross-validation (although with data sets of different size).

In each image, the provided region of interest (ROI) containing the traffic sign was
cropped and then rescaled to 32×32 pixels. The resulting images were then either converted
to greyscale (GS), following Sermanet and LeCun [5], or kept as raw RGB images.

Finally, each feature (i.e. pixel) of each image in the training set was normalised to
zero mean and unit variance across the data set. Images were not normalised individually
(across the image), but only across the data set. The same normalisation used on the
training data was then applied to the validation and test data.

At the end of this procedure, we obtain 4 data sets, henceforth denoted by GS1, GS2,
RGB1, RGB2 (with obvious notation).

1One image is missing from a track, in the original data
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4.2 Model selection

4.2.1 CNN architectures

Two CNN architectures were designed, trained and compared in this work. The base-
line model (left column) is a classic CNN architecture, whose core structure is essen-
tially the same as that of the LeNet architectures introduced in the late 1980s by LeCun
et al. [20]. Henceforth, this model will be referred to as the LeNet-like model, or simply
LeNet. The network has 10 hidden layers, 6 of which contain parameters, for a total of
about 822k ∼ 827k parameters (depending on whether GS or RGB images are used). The
architectural details (number of feature maps, hidden units, etc.), outlined in Table 4.1,
reflect those of the best model in the 2011 paper by Sermanet and LeCun [5] (see Table 2.1
in Chapter 2), apart from the use of skip connections.

Layer LeNet (baseline) model Tensor size Parameters

0 Input (GS or RGB) 1 or 3× 32× 32 -
1 Conv (5×5, 108 maps) 108× 28× 28 2.8k (GS) or 8.2k (RGB)
2 Nonlinearity 108× 28× 28 -
3 Max-pooling (2×2, stride 2) 108× 14× 14 -
4 Conv (5×5, 108 maps) 108× 10× 10 534.7k
5 Nonlinearity 108× 10× 10 -
6 Max-pooling (2×2, stride 2) 108× 5× 5 -
7 Fully-conn. (100 units) 100× 1× 1 270.1k
8 Nonlinearity 100× 1× 1 -
9 Fully-conn. (100 units) 100× 1× 1 10.1k
10 Nonlinearity 100× 1× 1 -
11 Fully-conn. (43 units) + softmax 43× 1× 1 4.3k

Total parameters: 822k (GS) / 827k (RGB)

Table 4.1: Detailed architecture of the LeNet (baseline) model. The tensor size does not account
for the mini-batch size, independent on the architecture. Unless stated otherwise, stride is 1 and
padding 0.

This baseline model was then compared to a different architecture, inspired by the
VGGNet by Simonyan and Zisserman [2] and thus referred to as VGGNet-like, or simply
VGGNet. There are several important differences between this second model, described
in detail in Table 4.2, and the baseline LeNet architecture. First, the VGGNet is a much
deeper model, with 19 hidden layers, 9 of which contain parameters.

Notably, however, it has 461k ∼ 462k parameters in total, i.e. significantly fewer than
the LeNet network, due to the use of smaller (3 × 3) filters in all convolutional layers.
The combination of small filters with stacks of convolutional layers (without subsampling
layers in between) is in fact one of the peculiarities of VGG-inspired architectures, enabling
larger effective receptive fields with the use of fewer parameters. Another difference is that
the spatial dimensions of the tensor of activations are preserved by convolutions (with the
use of zero-padding), and only reduced by pooling, while the number of feature maps is
doubled at the same time.
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Layer VGGNet model Tensor size Parameters

0 Input (GS or RGB) 1 or 3× 32× 32 -
1 Conv (3×3, 32 maps, padding 1) 32× 32× 32 0.3k (GS) or 0.9k (RGB)
2 Nonlinearity 32× 32× 32 -
3 Conv (3×3, 32 maps, padding 1) 32× 32× 32 9.2k
4 Nonlinearity 32× 32× 32 -
5 Max-pooling (2×2, stride 2) 32× 16× 16 -
6 Conv (3×3, 64 maps, padding 1) 64× 16× 16 18.5k
7 Nonlinearity 64× 16× 16 -
8 Conv (3×3, 64 maps, padding 1) 64× 16× 16 36.9k
9 Nonlinearity 64× 16× 16 -
10 Max-pooling (2×2, stride 2) 64× 8× 8 -
11 Conv (3×3, 128 maps, padding 1) 128× 8× 8 73.9k
12 Nonlinearity 128× 8× 8 -
13 Conv (3×3, 128 maps, padding 1) 128× 8× 8 148k
14 Nonlinearity 128× 8× 8 -
15 Max-pooling (2×2, stride 2) 128× 4× 4 -
16 Fully-conn. (100 units) 100× 1× 1 160k
17 Nonlinearity 100× 1× 1 -
18 Fully-conn. (100 units) 100× 1× 1 10.1k
19 Nonlinearity 100× 1× 1 -
20 Fully-conn. (43 units) + softmax 43× 1× 1 4.3k

Total parameters: 461k (GS) / 462k (RGB)

Table 4.2: Detailed architecture of the VGGNet model. The tensor size does not account for
the mini-batch size, independent on the architecture. Unless stated otherwise, stride is 1 and
padding 0.

LeNet model VGGNet model
(parameters GS/RGB) (parameters GS/RGB)

Feature extractor 537k / 542k 287k / 288k
Classifier 285k 174k

Table 4.3: Comparison between the two architectures in terms of the number of parameters in
the feature-extraction stage and in the classification stage.

4.2.2 Choice of activation function

In Tables 4.1 and 4.2 the particular type of nonlinear activation function used after convo-
lutional and fully-connected layers is not specified. Although the rectifying-linear function
(ReLU) has been the preferred choice in the past few years, the effect of replacing it with
the recently introduced exponential-linear function (ELU) in terms of training speed was
investigated by evaluating the cross-entropy cost after one training epoch. Results are
shown in Section 5.1.
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5.1 Hyperparameter selection

Training neural networks, and in particular deep NNs, requires setting several hyperpa-
rameters that affect both the optimisation and the regularisation aspect of the training
process.

5.1.1 Optimisation

The hyperparameters affecting optimisation are the learning rate η, the momentum coef-
ficient µ, and the mini-batch size M . The standard value of µ = 0.9 has been repeatedly
observed to work well in practice [1, 2, 24], and was thus kept fixed throughout all experi-
ments.

The effects of the mini-batch size M have been discussed in Section 3.2.1. This hy-
perparameter was chosen with the aim of obtaining the best computational efficiency, by
measuring the number of images processed per second during training of the LeNet architec-
ture for different values of M . Specifically, a grid search on the logarithmic scale between
M = 1 and M = 128 was carried out, using different devices supporting OpenCL™, as
shown in Figure 5.1. Using a NVIDIA® GeForce GTX 980Ti graphics card (the device to
be used for training), the computational efficiency was observed to increase steadily as a
function of M , but saturated for M > 64. Therefore, the value M = 64 was chosen and
kept fixed throughout all training runs.
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Figure 5.1: Images processed per second during training as a function of the mini-batch size
M . Different curves correspond to different devices supporting OpenCL™.
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It is important to fix the mini-batch size before optimising the learning rate η, as these
two parameters are strongly interdependent. Let ‖∇θ(l)L‖ be the norm of the gradient
with respect to the parameters in a given layer l, when using a mini-batch size of M . If
the mini-batch size is doubled, then the expected norm of the same gradient would be
2‖∇θ(l)L‖ (see Eq. 3.1), and we would need to reduce the learning rate by a half in order
to make update steps of the same length.

Having fixed M = 64, the learning rate space was explored by carrying out a grid
search in the logarithmic scale between η = 10−7 and η = 10−2. In Figure 5.2, the value
of the cost function after one training epoch is plotted as a function of the learning rate,
for both the LeNet model (left panel) and the VGGNet model (right panel). These exper-
iments were repeated using both ReLUs (blue dots) and ELUs (red squares) throughout
the architecture, for both models.
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Figure 5.2: Cost function after one training epoch as a function of the learning rate η, with
ReLUs (blue dots) or ELUs (red squares). (a): LeNet model. (b): VGGNet model.

In both plots, three regimes can be clearly distinguished. For very small learning
rates (η . 10−5), loss decrease is minimal and learning is expected to be very slow. For
intermediate values (10−5 . η . 3 · 10−4), learning speed accelerates sharply. Finally,
for η & 3 · 10−4, the gradient descent method becomes unstable, until the cost function
eventually diverges in just one training epoch. This last regime, for obvious reasons, has
to be avoided, although it has been suggested [33] that the optimal η may lie close to the
divergence point. In practice, if learning speed is not a major problem, it is usually better
to select a learning rate yielding a training speed that is neither too slow, nor too fast.
This choice reduces the importance of designing a sophisticated strategy for annealing the
learning rate, and essentially allows to keep η fixed (although fine-tuning the network with
a smaller η can sometimes lead to slight improvements). For these reasons, a learning rate
of η = 10−5 was selected and kept fixed for both architectures.

Another aspect worth noting in Figure 5.2 is that ELUs consistently outperform ReLUs
in terms of learning speed, in both the slow and fast learning regimes. In other experiments
(here not displayed) using ReLUs, units were found to learn to always output zero (i.e.
never activate) after only a few training epochs. This was indeed found to be a known
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problem (the “dying ReLUs” problem), usually caused by a large magnitude gradient flow-
ing backwards through the ReLU and producing a large negative bias shift. After this has
happened, the input to the unit is likely to be negative, and as a result the ReLU seldom
activates in the forward pass. Since the gradient of an inactive ReLU is zero, it is very
unlikely that the unit will be able to update its input parameters and thus recover. This
problem does not affect ELUs, as their gradient is non-zero for negative input, and the
units can thus slowly recover with time, if needed. For these two reasons, the exponential-
linear activation function was chosen as the nonlinearity to use in both models, and all
results henceforth showed are obtained using ELUs.

5.1.2 Regularisation

Regularisation methods implemented in the Conv.NET library have been discussed in
Section 3.2. A combination of methods was used to regularise the two models under
investigation. In particular, early stopping was always used. When using this method,
one does not have to worry about setting the right number of training epochs, as training
will stop if overfitting starts (after the patience buffer has run out), and it can always be
resumed if needed. For all runs in the following sections, a patience of 25 epochs was used.

Choosing a good value for the L2 penalty strength λ can be more tricky. After carrying
out a grid search over the interval (10−6, 10−3) (albeit with no cross-validation), the value
λ = 10−5 was found to yield the best performance on the validation set, for the LeNet
model. To allow a fair comparison, the same value of λ was then used for the VGGNet
architecture as well.

Finally, dropout probability was set to the recommended value of 0.5, whose optimality
in almost all cases is both empirically and theoretically supported [7, 12]. In the results
presented in this chapter, dropout is only applied to the fully-connected layers of the CNNs,
following the most common practice.

5.2 Training the networks

As discussed in Section 3.2.2, when training a neural network it is important to monitor
the cost function evaluated on both the training and the evaluation data. Figure 5.3a
shows a clear example of overfitting: While the training cost (red diamonds) smoothly
decreases, the validation cost (blue circles) stops decreasing after 20 ∼ 25 epochs, and
eventually starts increasing. Monitoring the classification accuracy (or, equivalently, the
error, shown in Figure 5.3b), can also be useful, although early stopping should be based
on the cost function, as it is the objective function that the gradient descent method is
directly minimising. In Figure 5.3b, the LeNet architecture was trained on data set GS1
with no regularisation, which causes it to overfit the training set.

5.2.1 Comparison of regularisation methods

The two models were trained using the different regularisation methods described in Sec-
tion 3.2.2 and data sets GS1 and GS2, as Sermanet and LeCun [5] reported better results
when converting GTSRB images to greyscale. The cross-entropy cost evaluated on the val-
idation set when training the LeNet model with different regularisation methods is shown
in Figure 5.4. The same runs were repeated using the VGGNet model, and the resulting
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Figure 5.3: A training run of the LeNet model on data set GS1. Hyperparameters: η =
10−5, µ = 0.9,M = 64, no regularisation. (a): Cross-entropy cost function. (b): Classification
error. The black dotted lines represent chance-level performance.

curves are shown in Figure 5.5. All training runs shown here were obtained using data set
GS1 (curves obtained with data set GS2 are very similar, and therefore not shown). In
both plots, the y-axis is in logarithmic scale for better visualisation.

These curves allow a first qualitative analysis of the effect of the two different regularis-
ers. In particular, both models exhibited strong overfitting without regularisation (blue
circles). This problem was partially addressed by using L2 penalty (red curves), which ap-
peared to be slightly more effective in the case of the VGGNet model. Dropout, however,
had a much greater impact (green crosses) for both architectures. With dropout, the net-
works learned more slowly, since parameters in the fully-connected layers are updated less
frequently (by a factor of 2, on average) and parameters in the convolutional layers receive
smaller gradients. However, both networks reached significantly lower validation cost after
just ∼20 training epochs, and this keept decreasing for much longer1. As shown in the next
section, this translated into a much better generalisation performance. Interestingly, the
two regularisation methods did not appear to work well together (purple curves), compared
to the case where only dropout was used, particularly in the case of the deeper model.

It is worth noting that the amplitude of the oscillations in the curves appears amplified
in these plots because of the use of logarithmic scale on the y-axis. The curve with blue
circles in Figure 5.4, for example, looks more noisy than that in Figure 5.3a, although they
are actually the same curve. By taking the scale into account, it can be noted that the
cost function exhibited significantly smaller oscillations when using dropout.

1Here only the first 100 epochs are displayed, for clarity, but networks were trained for at least 200
epochs, when using dropout.
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Figure 5.4: Cost function on the validation set when training the LeNet model with different
regularisation methods and data set GS1. The cost on the training set is not shown. Hyperpa-
rameters used: η = 10−5, µ = 0.9, M = 64.
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Figure 5.5: Cost function on the validation set when training the VGGNet model with different
regularisation methods and data set GS1. The cost on the training set is not shown. Hyperpa-
rameters used: η = 10−5, µ = 0.9, M = 64.
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5.3 Generalisation performance

In order to assess the predictive performance of a classification algorithm, it must be eval-
uated on a test set, i.e. a separate data set containing examples that have neither been
used for training the algorithm, nor for choosing hyperparameters, nor for determining
when to stop training. After training the LeNet and the VGGNet models with different
regularisation methods, the networks were finally evaluated on the official GTSRB test set,
obtaining the classification accuracies displayed in Table 5.1.

LeNet VGGNet

No regularisation 93.2± 0.5 90.4± 1.5
L2 penalty 92.6± 0.1 91.7± 0.1
Dropout 95.7± 0.1 94.8± 0.4
L2 penalty + Dropout 94.8± 0.3 93.3± 0.3

Table 5.1: Classification accuracy (in %) on the test greyscale data for the two models trained
with different regularisation methods. Displayed values are 2-fold averages (data sets GS1 and
GS2).

Several remarks can be made about these results. First, as was qualitatively observed
in the previous section, dropout outperformed L2 penalty in terms of model regularisation,
and the best accuracy for both architectures was obtained by only using dropout, with-
out weight decay. Only the VGGNet architecture was observed to benefit from L2 penalty,
whereas the LeNet classification performance on test data decreased slightly when this reg-
ulariser was used. The reason for this behaviour is not entirely clear, and probably a more
robust strategy for selecting the hyperparameter λ, such as k-fold cross-validation carried
out for both architectures, would shed light on this phenomenon. The same argument
applies as to why the two regularisation methods do not appear to work well in synergy.
It has been recently argued [33] that L2 regularisation could be dropped altogether when
using early stopping, as they essentially play the same role, with the latter allowing a much
easier hyperparameter selection. Since early stopping was always used in this work, our
results seem to confirm the validity of this recommendation.

In general, regularisation appears to be much more important for the VGGNet than
for the LeNet model. The former, in fact, performed significantly worse than the latter
without regularisation (−2.8% accuracy on average), but the performance gap shrinked
when dropout was used (−0.9% on average). This result was rather surprising. Since
the LeNet contains almost 80% more parameters than the VGGNet, one would expect its
capacity to be larger, making it more prone to overfitting. However, the obtained results
suggest that the opposite may be true.

The natural explanation of this phenomenon is that the capacity of a CNN does not only
depend on the number of its parameters, but also on its depth. Although the final stage of
the two models is exactly the same (two hidden fully-connected layers with 100 units each,
followed by a 43-way fully-connected layer with softmax activation), the feature extraction
stage of the VGGNet is more than twice as deep (15 layers, including 6 nonlinearities)
as that of the LeNet model (6 layers, 2 of which nonlinearities). In light of the above, it
appears plausible that regularisation is more important for the VGGNet architecture.
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5.3.1 Using colour information

In order to find strategies for improving the accuracy of a classification algorithm, it can
be useful to go back to the original data and understand the characteristics of the exam-
ples that the algorithm is classifying incorrectly. This was done for the best performing
networks (i.e. those trained with dropout only) and revealed that a large fraction of the
misclassified images were indeed very hard to classify even for humans, mostly due to ex-
tremely poor resolution. However, some misclassified examples exhibiting motion-blur or
partial occlusions were instead easily recognisable to the human eye.

This motivated us to re-train the networks using colour (RGB) images instead of
greyscale (GS) images, in the hope that, when properly regularised, they would learn how
to effectively use the additional information contained in the three colour channels, thereby
improving their classification performance. Both the LeNet and the VGGNet models were
then re-trained using data sets RGB1 and RGB2, with dropout applied to fully-connected
layers and no L2 penalty. The cross-entropy cost curves obtained when training the two
architectures are shown in Figures 5.6a and 5.6b, respectively, whereas the classification
accuracy evaluated on the test set in the different cases is displayed in Table 5.2.
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Figure 5.6: Cross-entropy validation cost during training on either GS or RGB images. (a):
LeNet model. (b): VGGNet model. Hyperparameters: η = 10−5, µ = 0.9,M = 64 in both cases.
Only the first 100 training epochs are shown (200 in total).

Interestingly, using colour information yielded a better performance for both architec-
tures. A random selection of 16 images that were correctly classified by the LeNet model
trained with colour images, but misclassified when ignoring colour information, is shown
in Figure 5.7a. Qualitatively, it appears that when colour information was made available,
the CNN learned to exploit the presence of peculiar features such as the yellow blob in the
middle of “priority road” traffic signs and the coloured circles in the “traffic lights ahead”
danger signs.

This result is in contrast to that of Sermanet and LeCun [5], who reported better
classification accuracies when training their models with greyscale images, although not
consistently. It is worth noting that Sermanet and LeCun converted images to the YUV
colour scheme, whereas in this work the raw RGB images were used. Furthermore, they
connected different filters in the first convolutional layer to different channels (namely 100
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LeNet VGGNet

Greyscale + dropout 95.7± 0.1 94.8± 0.4
RGB + dropout 96.2± 0.1 95.7± 0.5

Ensemble of 2 CNNs (GS + RGB) 96.6± 0.1 96.2± 0.1
Ensemble of 4 CNNs (GS + RGB, LeNet + VGGNet) 96.9± 0.2

Table 5.2: First and second rows: Classification accuracy (in %) on the test data for the two
models trained with dropout and either GS or RGB images. Third row: Ensembles of two models
with the same architectures, one trained with GS images and the other with RGB images. Fourth
row: Ensemble of four models, combining GS and RGB images and the two architectures. All
values are 2-fold averages.

to the Y channel, and 8 to the U and V colour channels), whereas here all filters were
connected to all channels, according to current recommendations [12]. Finally, while in
this work no form of data augmentation was used to regularise the networks, Sermanet and
LeCun made heavy use of synthetic data, obtained by adding various forms of perturbations
including translation, rescaling, and rotation of the original images.

(a) (b)

Figure 5.7: (a): A sample of 16 GTSRB test images randomly selected among those correctly
classified by the LeNet model trained with RGB images, but misclassified by the same network
trained with GS images. (b): A random selection of 16 images incorrectly classified by an ensemble
of two LeNet CNNs trained on both GS and RGB images.

5.3.2 Model ensembles

Finally, the classification accuracy of ensembles of CNNs was evaluated. As shown in the
third row of Table 5.2, the performance of the ensemble of two networks with the same
architecture, trained with either greyscale or colour images, was found to be superior to
that of individual networks, regardless of the architecture. This result is not surprising, as it
confirms the effectiveness of model averaging as a regularisation method [12]. However, it is
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interesting to note that the performance gap between the two architectures reduced further
(if compared to the results in Table 5.1), reinforcing the idea that the deeper model has
a larger capacity (despite using fewer parameters) and as a results it benefits more from
regularisation. As an experiment, the two ensembles {LeNet(GS) + LeNet(RGB)} and
{VGGNet(GS) + VGGNet(RGB)} were merged into a 4-network ensemble, obtaining a
classification accuracy of 96.9%, as shown in the last row of Table 5.2.

A random selection of 16 images incorrectly classified by the {LeNet(GS) + LeNet(RGB)}
ensemble are shown in Figure 5.7b. Interestingly, one of the major remaining challenges
is classifying very dark images, or more generally images exhibiting very poor contrast
(see e.g. the “priority road” sign in the third row of Figure 5.7b). Simple preprocessing
techniques for contrast adjustment such as histogram equalisation (used on this data set by
e.g. Cireşan et al. [6]) could help addressing this problem. An alternative idea could be to
artificially augment the training data not only by translating, scaling, and rotating images,
but also by applying random darkening and overexposure. This could potentially help
the network to learn contrast-invariant features, increasing the classification robustness of
underexposed or overexposed images.
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6
Conclusions and future work

Research in deep learning is moving at extremely fast pace, in both academia and industry,
and while some commercial applications based on deep learning methods have already
appeared on the market in the past few years, their number and impact is predicted to
grow enormously in the near future. For these reasons, it is important to provide researchers
and engineers with the tools needed to quickly develop deep learning solutions, by covering
as many platforms and developing environments as possible.

The Conv.NET class library, implemented in this project from the ground up, is the
first attempt, to the best of the writer’s knowledge, at creating a lightweight toolbox for
deep learning under the .NET framework. Using this library, deep convolutional neural
networks for image classification can be easily created and trained within C# projects,
and quickly integrated with other .NET applications. Furthermore, both the training and
inference processes can be greatly accelerated using a GPU or any other computational
device supporting OpenCL™, an open framework for heterogeneous parallel computing.

In order to bench-test the Conv.NET library, in the second part of this work different
CNNs were trained for the task of classifying traffic signs, using the German Traffic Sign
Recognition Benchmark data set. Specifically, the attention was focused on two network
architectures, respectively denoted by LeNet and VGGNet. The best single-model classifi-
cation accuracy (96.2%) on the official GTSRB test data was obtained by training a LeNet
architecture with dropout and early stopping on RGB images. By averaging the prediction
of an ensemble of 4 CNNs, including two LeNet and two VGGNet architectures, trained
on both greyscale and colour images, the classification accuracy on the test set increased
to 96.9%.

These results are still quite far from state-of-the-art performance (99.65% [26]) on this
data set . However, they were obtained with relatively little effort in terms of fine-tuning
and hyperparameter optimisation and, importantly, without any form of artificial data
augmentation. In fact, improving over the state-of-the-art was out of the scope of this
project, and perhaps not particularly meaningful per se. Instead, the data set was used
for benchmarking the impact of different features implemented in the Conv.NET library
throughout the project, and in particular of different regularisation methods.

In general, dropout [7] was observed to consistently outperform L2 penalty at regularis-
ing both types of architecture. In fact, results seem to suggest that L2 penalty has seldom
beneficial effects in terms of classification performance, provided that early stopping is used
(see Figures 5.4 and 5.4). This agrees with recommendations in Bengio, 2012 [33], although
weight decay remains nowadays widely used in training CNNs for image classification. Un-
derstanding when L2 penalty is beneficial and how to tune the decay hyperparameter λ
without resorting to computationally expensive methods such as cross-validation remains
an active area of research [12].

Remarkably, the VGGNet architecture (∼462k parameters) was found to be more prone
to overfitting than the LeNet model (∼827k parameters), with the latter consistently ob-
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taining a slightly higher classification accuracy than the former on the test data. Inter-
estingly, the performance gap between the two models, relatively large (2.8%) in the case
of no regularisation, was observed to shrink as more and more powerful regularisation
methods were used and more information was made available to the network (0.4% in the
case of single-architecture ensembles). This led to argue that the VGGNet model, despite
the lower number of parameters, may have a significantly larger capacity than that of the
LeNet.

The proposed, natural explanation for this behaviour is that the representational ca-
pacity of a CNN does not only depend on the number of parameters in the model, but also
on the model’s depth. In other words, estimating the complexity of the functions that a
network can learn to approximate by only considering the number of parameters it contains
is misleading, because it does not take into account the effect of feature compositionality,
crucially dependent on the model’s depth. Theoretical studies have just started to shed
light on this key idea behind the success of deep learning [12], and further developments
are certainly needed in order to fully understand it. In retrospective, since the VGGNet
architecture is about twice as deep as that of LeNet (19 vs 10 hidden layers, using the
simple layer nomenclature), it should not be surprising that it is more severely affected by
overfitting and benefits more from regularisation.

On the one hand, it could be argued that the capacity of the LeNet model may simply be
better suited for the complexity of the GTSRB data set. On the other hand, developments
in deep learning over the recent years have moved in the direction of using increasingly
deep and complex architectures, while devising and using better strategies for regulari-
sation at the same time [2, 3, 8, 26]. In light of the results obtained in this study with
increasingly powerful regularisation methods, we can expect the VGGNet to eventually
perform better than the LeNet, once properly regularised. To this aim, several strategies
can be experimented and combined, including:

• Artificial data set augmentation. This may include standard methods for generating
synthetic images during training, such as applying translations, rotations, horizontal
flipping, and colour jittering to the original images. However, given the wide varia-
tions of lighting conditions in the GTSRB data set, it would be interesting to assess
the effect of brightness and/or contrast perturbation of images as a novel form of
data augmentation method.

• Using batch normalisation (Ioffe and Szegedy, 2015 [8]), a very promising technique to
address multiple problems affecting the training of deep architectures. This method
has empirically proved not only to greatly accelerate the learning speed, but also to
improve the predictive performance of deep CNNs by acting as a regulariser.

• A more thorough exploration of the hyperparameter space. This applies in particular
to the regularisation strength λ in the L2 penalty term, usually selected using k-fold
cross validation or through random search [12].

• Applying dropout to the entire network (potentially including the input layer), rather
than to the final (fully-connected) stage only. The effectiveness of this approach is
controversial [7], and seems to depend on the data to be classified.

All of the above strategies can lead to incremental improvements in terms of classification
accuracy and apply to both CNN models investigated in this work, although, as discussed,
their effect would arguably be more important for the deeper model (VGGNet).

An alternative approach would be to explore a completely different kind of architecture,
perhaps inspired by the recently introduced residual network framework [3], featuring skip-
connections throughout the network and making heavy use of batch normalisation.
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Clearly, traffic sign classification with deep convolutional neural networks is just one
example of the successful application of deep learning methods to a real-world problem.
The Conv.NET library was implemented to be flexible and potentially be used for solving
other classification tasks with deep neural networks. Most components needed to train
CNNs for image classification are available and fully functioning, but several additional
features are under development (such as batch normalisation, residual networks and a
graphical user interface), in the hope that the library may serve as a starting point for
future projects, both in the open source community and at the Adaptive Systems research
group at Chalmers University of Technology.
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