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Numerical investigation of bubbles in channel flow
Implementation and analysis of the influence of bubbles injection on the drag of a
ship
RÉMY LE GUEN
Department of Shipping and Marine Technology
Chalmers University of Technology

Abstract
This master’s thesis aims to study the numerical methods that can simulate the
influence of injection of air bubbles under a ship’s hull. The geometry of the hull
is simplified to a flat plate and the analysis is only done in two dimensions. An
emphasis is given into the prediction of the reduction of the viscous resistance that
is observed in experiments. This study is carried out using CFD analysis with the
software OpenFOAM.
Two frameworks, Eulerian-Eulerian and Eulerian-Lagrangian, that allows the simu-
lation of a multiphase flow are set-up and the assumptions behind all the required
models are explained. The simulations predicts a gain of efficiency between 0% and
15% depending on the diameter of the bubbles. Some differences in the results pro-
duced by the two different methods are highlighted and guidance is given on which
solver to use for a given case depending on the diameter and the concentration of
the bubbles below the plate.

Keywords: multiphase simulation, OpenFOAM, drag reduction, Lagrangian Particle
Tracking.
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1
Introduction

Due to environmental concerns and the rising fuel cost, the shipping industry aims
for a better fuel efficiency for their vessels. One of the way to achieve this is to
reduce the resistance of the ships. The frictional resistance – the dominant resistance
component for low-Froude number ships – is difficult to reduce as it strongly depends
on the wetted surface of the ship. Thus, the interest in techniques that reduce the
frictional resistance has increased over the last two decades and several research
projects in the USA, Europe and Asia have investigated the possibility of reducing
frictional drag by using air lubrication. This technique can be divided into three
major categories (Ceccio and Simo, 2011) as illustrated in figure 1.1: Bubble Drag
Reduction (a); Air Layer Drag Reduction (b) and Partial Cavity Drag Reduction
(c). This thesis will only be focused on dispersed bubbles in the flow.

Figure 1.1: The three major categories for air lubrication (extracted from Ceccio
and Simo, 2011, fig. 0.1)

In 2011, the Mitsubishi Air Lubrication System (MALS) was the first bubble drag
reduction system in the world to be applied to a newly built ship, and is said by
the company to have resulted in a substantial reduction in the ship’s resistance.
Likewise, a project about air cavity ships is currently carried out by Chalmers 1

and aims to “study the optimum configuration of a stable air cavity with the least
drag force and air flow rate through experimental investigation in water tunnel and
computational fluid dynamics (CFD) technique”.

In figure 1.1.c, the closure of the air cavity involves the creation and the ejection
of air bubbles. In a way, the presence of bubbles can be beneficial and lead to an

1https://www.chalmers.se/en/projects/Pages/Energy-Efficient-Air-Cavity-Ships.
aspx

1
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1. Introduction

additional reduction of the drag but it can also lead to a loss of efficiency if the
bubbles reduce the thrust of the propeller.

There are uncertainties about the typical gain of efficiency expected from the in-
jection of bubbles along the hull. If some experiments predict a reduction of 50 %
– and sometimes even up to 80 % – in the viscous resistance (Sanders et al., 2006;
Kawabuchi et al., 2011), others researches only find a marginal value (Maritech,
2011). Hence, this technology is still at an early stage of development and numer-
ous experiments and simulations must be carried on.

Experimental measures are not easy to realize: it is difficult to efficiently control the
ejection of bubbles (with a constant flow rate and diameter) and the use of a model
ship can be troublesome as no recognized scaling method has been developed. More-
over, if the final gain of efficiency can easily be deduced, the position and behaviour
of small bubbles are difficult to follow in a basin without disturbing the flow field.
Hence, it is difficult to observe the mechanisms behind the behaviour of the bubbles
just by experiments and the simulations are useful to help for this. The simulation
of multiphase flow in the frame of a ship analysis is still a new field and, if there have
been numerous simulations and experiments carried out for bubble flow in a pipe
and in a vertical water column, very few work has been made in a ship-configuration
(ie. in open water and with a predominant effect of the gravity). However, some
experiments exist for horizontal pipes (Yoshida et al., 1998; Pang et al., 2014) and
can be used as a basis for the comparison of the results.

The prime difficulty of these types of simulation are the large difference of scales: the
flow’s characteristic length can be of the order of meters but are directly influenced
by details of the particle–bubbles interactions, which take place on a millimetre
scale. To describe the hydrodynamics of both the gas and particle phase, two main
type of models have been developed: the Eulerian-Eulerian and Eulerian-Lagrangian
models. The turbulence of the flow will be modelled with the Reynolds-averaged
Navier–Stokes (RANS) equations. The simulation will be realized with the open-
source software OpenFOAM which has numerous advanced solver for multiphase
simulation.

In the first part of the thesis, a framework for the simulation of a multiphase fluid
below a ship is developed. One of the goals is to give a guideline to easily set-up
a multiphase simulation in the frame of a resistance analysis. In a second part,
the numerical implementation of the models in OpenFOAM is discussed and a brief
description of the methods used by the solvers is presented to counteract the lack of
documentation provided by the software. Finally, the simulation of a bubbly-flow in
the boundary layer of a flat-plate is realized in 2-dimensions and for a case as close
as possible of the ejection of bubbles after an air cavity. The behaviour of these
bubbles and their impact on the resistance will be studied and a special emphasis
will be given to the choice of the type of model to use depending on the configuration
of the case.
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2
Mathematical formulation

This section describes the different models and frameworks that need to be used
to set-up a dispersed multiphase flow simulation. First, the possible shapes of the
bubbles are discussed (section 2.1) and the equations that characterize the phases are
written (section 2.2). The modelling of the interactions between the phases (section
2.3) as well as the turbulence of the flow (section 2.4 are also discussed. Finally,
in section 2.5, the models that predict the breakage and coalescence processes are
described.

2.1 Shape of the bubble

In a stagnant flow, a bubble is submitted to a gravity/buoyancy force and its cohe-
sion is maintained by the surface tension σ. In this configuration, the most stable
shape of a bubble is a sphere. However, submitted to a viscous turbulent hydrody-
namic flow, the inertia force cannot be neglected and can modify the form of the
interface of the bubble. Hence, the influence of the surrounding liquid to the shape
of the bubble must be studied.

2.1.1 The bubble’s regimes
The shape of the bubble is closely related to the interaction with the surrounding
liquid and the extent of disturbance in the surrounding flow field. Bhaga and Weber
(1981) listed and classified several possible shapes for a bubble in a Newtonian
liquid. This is displayed in figure 2.1. This classification can be simplified by just
distinguishing three regimes:

• The spherical regime: the bubble is considered to be a perfect sphere and thus
is fully characterized by its diameter D. It corresponds to the sketch (s) in
fig.2.1.

• The ellipsoidal regime: the bubble is considered as an oblate ellipsoid (an
ellipsoid with two equal semi-axes) and is characterized by its diameter and
aspect ratio φ (defined as the ratio of its major axis to its minor axis). It
corresponds to the sketches (oe) and (oed) in fig.2.1.

• The cap regime including all the others regimes. These shapes are usually not
stable and lead easily to breakage in a turbulent flow.

For the conditions studied in the thesis (a turbulent water flow), it can be considered
that the bubbles are never in cap regime.

3



2. Mathematical formulation

Figure 2.1: Sketches of various bubble shapes observed in infinite Newtonian liq-
uids (extracted from Fan and Tsuchiya, 1990, fig.2.1)

2.1.2 Characterization of the regimes
To characterize the shape of the bubbles moving in a surrounding fluid, some di-
mensionless numbers are introduced:

• The bubble Reynolds number, Reb, defined as

Reb = UrD

νf
, (2.1)

with Ur the relative velocity of the bubble with respect to the fluid.
• The Eötvös number, Eo, (sometimes also called the Bond number Bo) which

is the ratio between the gravitational and surface tension forces,

Eo = (ρf − ρb)gD2

σ
, (2.2)

with σ the surface tension of the bubble.

4



2. Mathematical formulation

• The Weber number, We, which measures the relative importance of the fluid’s
inertia compared to its surface tension:

We = ρbU
2
bD

σ
. (2.3)

From these three parameters, another number can be derived: the Morton number
Mo:

Mo = gµ4

ρσ3 = We2Eo
Re4 . (2.4)

Bhaga and Weber (1981) built a diagram showing the different regimes in function
of these three parameters based on experimental observations. This is shown in
figure 2.2.

Figure 2.2: Bubble regimes depending on the dimensionless numbers (extracted
from Bhaga and Weber, 1981, fig.8)

For fluids with a low Morton number (ie. Mo ≤ 10−3), Tadaki and Maeda (1961)
found experimentally that the shape of the bubbles in water can be determined
from the balance among surface tension, inertial and gravity forces. The Tadaki
dimensionless number is introduced:

Ta = RebMo1/4. (2.5)

5



2. Mathematical formulation

From this number:
• the bubble is considered to be spherical if Ta ≤ 1;
• the bubble is considered to be an ellipsoid if 1 ≤ Ta ≤ 40;
• the bubble is considered to be in the cap regime if Ta ≥ 40.

In ellipsoidal regime, the aspect ratio is also experimentally linked to the Tadaki
number. Vakhrushev and Efremov (1970) proposed the relation, valid for Mo ≤
10−3,

φ =

1 if Ta ≤ 1
0.81 + 0.206 tanh [2 (0.8− log10 Ta)] if 1 ≤ Ta ≤ 40

(2.6)

In order to easily derive valid relations for spheric and ellipsoid bubbles, an equiva-
lent Sauter diameter Ds is defined as the diameter of a sphere that would have the
same volume/surface area ratio as the studied particle. Thus:

Ds = 6Vp
Ap

, (2.7)

with Vp and Ap respectively the volume and the surface area of the particle which
means that for a sphere Ds = D. In all the thesis, when a formula is referring to the
bubble’s diameter D, it implicitly refers to the Sauter diameter Ds when the bubble
is an ellipsoid.

2.2 Dispersed multiphase flow model
The studied flow consists of two phases: the air phase and the water phase. The air
phase can be considered as a dispersed phase surrounded by the water phase which is
seen as a continuous phase. In a multiphase flow, each of the phases is considered to
have a separately defined volume fraction and velocity field but a common pressure
field.
In all the thesis, the values referring to the bubbly flow will have the subscript b and
the ones referring to the water flow will have the subscript f .
The void fraction for a phase k is defined as

αk = Vk
V
, (2.8)

where Vk is the volume of the phase k present in the total volume V . Thus, as there
are only two phases:

αb + αf = 1. (2.9)

For a dispersed flow, two types of frameworks are prevalent: the Eulerian-Eulerian
framework (also called two-fluid model) and the Eulerian-Lagrangian framework
(also called Lagrangian Particle Tracking).

2.2.1 Eulerian-Eulerian framework
With the Eulerian-Eulerian framework, the dispersed phase is treated as a second
continuous phase interacting with the principal continuous phase. Thus, both phases

6



2. Mathematical formulation

are computationally treated as a continuum and are governed by the Navier-Stokes
equations.
The Navier-Stokes equations for the bubble phase (characterized by the void fraction
αb and the velocity ~Ub) are:

∂

∂t
(αbρb) +∇ ·

(
αbρb~Ub

)
= 0, (2.10)

∂

∂t

(
αbρb~Ub

)
+ αbρb

(
~Ub · ~∇

)
~Ub = −αb~∇P + αb

(
∇ · νb~∇

)
~Ub + ~Mb + ρbαb~g. (2.11)

And for the fluid phase (characterized by the void fraction αf and the velocity ~Uf ):

∂

∂t
(αfρf ) +∇ ·

(
αfρf ~Uf

)
= 0, (2.12)

∂

∂t

(
αfρf ~Uf

)
+αfρf

(
~Uf · ~∇

)
~Uf = −αf ~∇P+αf

(
∇ · νf ~∇

)
~Uf + ~Mf +ρfαf~g. (2.13)

~Mb is the interfacial momentum transfer term and represents the forces that are
acting at the interface between the two phases (i.e. the forces acting on a bubble that
are caused by the liquid which surrounds it). Therefore according to the Newton’s
third law of motion:

~Mb + ~Mf = 0. (2.14)

The description of the forces acting on the bubble ( ~Mb) is done in section 2.3.

2.2.2 Eulerian-Lagrangian framework
In an Eulerian-Lagrangian framework, the motion of the dispersed phase is evaluated
by following the motion of each bubbles. The water flow is still seen as a continuous
phase and thus is still governed by the Navier-Stokes equations:

∂

∂t
(αfρf ) +∇ ·

(
αfρf ~Uf

)
= 0, (2.15)

∂

∂t

(
αfρf ~Ub

)
+αfρf

(
~Uf · ~∇

)
~Uf = −αf ~∇P +αf

(
∇ · ν ~∇

)
~Uf + ~Mf +ρfαf~g. (2.16)

The motion of each bubble is driven by the Newton’s law:

mb
d~Ub
dt

= ~Mb + ρb~g. (2.17)

~Mb represents the forces exerted by the bubbles on the fluid and is described in
section 2.3 and mp is the mass of a bubble which is (in a spherical regime):

mb = 1
6ρbπD

3. (2.18)

The concentration of particles influences the interaction between the two phases
(Elghobashi, 1991):

7



2. Mathematical formulation

• For a very dilute suspension (αb ≤ 10−6) the particle’s effect on the continuous
phase is negligible. Thus, on a first approximation ~Mf = 0.

• For a denser suspension (αb ≤ 10−3) the particle’s effect on the continuous
phase is not negligible any more. Usually, ~Mf and must be calculated.

• For dense solution (αb ≥ 10−3), the collisions between particles must also be
accounted for. These can be done by looking for possible collisions for each
particles (as explained in section 3.2.2) or by viewing them statistically with
the MPPIC method (as explained in section 2.3.6).

2.2.3 Comparison between the two formulations
The Eulerian-Lagrangian formulation can be considered closer to reality as the bub-
bles are actually existing in the simulation – unlike the Eulerian-Eulerian method
– and therefore would give results closer to reality. This makes also the simulation
more intuitive and less dependant on empirical models. However, the computational
power needed to track thousands and thousands of particles and to simulate collision
between them can be very cumbersome and time consuming.
Thus, the Eulerian-Eulerian method is more suitable for dense solutions as the La-
grangian Particle Tracking would be too computational-intensive. Moreover, for a
dense solution, it is quite likely that interactions between particles will be numerous
and therefore, a time-averaged model for the interactions can be used quite accu-
rately. However, this method relies a lot on empirical models and hence the quality
of the results is strongly dependent on the quality of these models.
It can also be difficult to ensure convergence with the Eulerian-Eulerian method
as it is difficult to solve the mass conservation equation (equation 2.10) keeping
the boundedness of the void fraction. The Eulerian-Eulerian formulation is really
sensitive to the Courant number (Co) and a low number must be ensured (around
0.5). Moreover, a very fine mesh must also be set close to the wall in order to predict
the behaviour of the bubbles close to the wall. Therefore the simulation must be
performed with very small time-step and thus will increase the computation time.

2.3 The closure term

The interfacial momentum term ~Mb can be broken down into different sub-forces
(Nygren, 2014). Some of these forces are usually not included in the Lagrangian
formulation.

~Mb = ~MD + ~MVM + ~ML + ~MWL + ~MTD + ~MC , (2.19)

with:
• ~MD the drag force
• ~MVM the virtual mass force
• ~ML the lift force
• ~MWL the wall lubrication force (usually not included in the Lagrangian for-

mulation)
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2. Mathematical formulation

• ~MTD the turbulent dispersion force when a RANS turbulence model is used
(usually not included in the Lagrangian formulation)

• ~MC the collision force (only included in a MPPIC Lagrangian formulation)
All the individual terms in the interaction force are now described in detail.

2.3.1 Drag force
The drag is the force acting opposite to the bubble motion in the fluid and can be
seen as the resistance between the relative motion of the two phases. This force is
usually predominant. The drag force is expressed as:

~MD = −3
4
Cd
D
ρfαb|~Ur|~Ur, (2.20)

with Cd the drag coefficient, D the diameter of the bubble and ~Ur = ~Ub − ~Uf the
relative velocity between the two phases.
It can be also written with the Reynolds number:

~MD = −3
4
CdReb
D2 νfρfαb~Ur = −3

4
CdRe
D2 νfρfαb~Ur = −K~Ur (2.21)

The expression of CdRe must then be carefully modelled. Two main models have
been developed to model the drag experienced by a bubble in a water flow.
The Schiller and Naumann (1935) model is widely used and quite simple but only
valid for spherical bubbles. The limit for the spherical regime is set to Reb ≤ 1000
even if it has been seen in section 2.1.2 that it is not a really accurate criterion. For
higher Reynolds number, a constant value is set (which does not have any physical
meaning but is just set to ensure continuity):

CdRe =

24.0
(
1.0 + 0.15Re0.687

b

)
if Reb ≤ 1000

0.44Reb if Reb ≥ 1000
(2.22)

The Ishii and Zuber (1979) model has extended the Schiller and Naumann model
to the elliptic and cap regime:

• In spherical regime, the Schiller and Naumann drag expression is used:

CdRe(sphere) = 24.0
(
1.0 + 0.15Re0.687

b

)
. (2.23)

• The ellipse regime is modelled as:

CdRe(ellipse) = 2
3f(αb)Reb

√
Eo. (2.24)

• The cap distorted regime is expressed as:

CdRe(cap) = 8
3(1− αb)2Reb. (2.25)

The choice of the regime is determined based on:

CdRe =

CdRe(sphere) if CdRe(sphere) ≥ CdRe(ellipse)
min (CdRe(ellipse), CdRe(cap)) if CdRe(sphere) ≤ CdRe(ellipse)

(2.26)

9



2. Mathematical formulation

2.3.2 Virtual mass force
The virtual mass effect occurs when the dispersed phase is accelerated relative to the
continuous phase. When this acceleration occurs, part of the surrounding continuous
fluid has to be accelerated as well.
The virtual mass force is expressed as:

~MVM = −ρfαbCVM

Db
~Ub

Dt
− Df

~Uf
Dt

 , (2.27)

with D
Dt

the material derivative defined as:

Dφ

Dt
= ∂

∂t
+ ~Uφ · ∇. (2.28)

There are two main models to express the virtual mass coefficient CVM .
One is a constant virtual force model and derives from the application of the poten-
tial flow theory to flow around spherical bubbles:

CVM = 0.5. (2.29)

This model becomes false for non-spherical bubbles so Lamb (1932) proposed an
extension for these regimes depending on the aspect ratio φ,

CVM =
√

1− φ− φ arccosφ
φ arccosφ−

√
φ− φ2 . (2.30)

2.3.3 Lift Force
The lift force consists of a force acting on bubbles that pushes the bubbles later-
ally. For a spherical bubble, the lift coefficient CL is always positive so that the lift
force acts towards the wall. However, for deformed larger bubbles, more compli-
cated phenomena arise and an inversion of sign for the lift coefficient is observed in
experiments. The force is expressed as:

~ML = −αbρCL
−→
Ur ∧

−→
∇ ∧ ~Ub. (2.31)

For spherical bubbles, a constant coefficient can be derived from the potential theory:

CL = 0.5. (2.32)

If this assumption is not valid, the Tomiyama et al. (2002) model aims to predict
the lift force on larger-scale deformable bubbles in the ellipsoidal regime. Its main
feature is the prediction of the cross-over point in bubble size at which particle
distortion causes a reversal in the sign of the lift force.

CL =


min (0.2888 tanh (0.121Reb) , f(Eo)) if Eo ≤ 4
f(Eo) if 4 ≤ Eo ≤ 10
−0.27 if Eo ≥ 10

(2.33)

with f(Eo) = 0.0010422Eo3 − 0.0159Eo2 − 0.0204Eo + 0.474.

10



2. Mathematical formulation

2.3.4 Wall lubrication force
Experimentally, it was found that the void fraction is often concentrated close to the
wall but not touching it (wall-peaked void fraction distribution). This is mainly due
to the fact that a bubble close to the wall is likely to rebound at the wall. Hence, the
wall lubrication force has been proposed to predict the near wall peak void fraction.
The general form of this force is expressed as:

~MWL = αbρfCWL|~Ur − (~Ur.~n)~n|2~n, (2.34)

with ~n the vector normal to the wall.
Frank et al. (2008) proposed a model for CWL:

CWL =

f(Eo) 1−ỹ
yCW D ỹp−1 if ỹ ≤ 1

0 if ỹ ≥ 1
(2.35)

with ỹ the adimensional value depending on y which is the distance to the wall

ỹ = y

CWCD
(2.36)

and

f(Eo) =


exp (−0.933Eo + 0.179) if 1 ≤ Eo ≤ 5
0.00599Eo− 0.0187 if 5 ≤ Eo ≤ 33
0.179 if Eo ≥ 33

(2.37)

Thus, CWC is the cut-off coefficient and determines the distance relative to the
particle diameter over which the force is active.
The author recommends after extensive testing that CWC = 10, CWD = 6.8 and
p = 1.7. Therefore, this involves a very fine mesh close to the wall (as the force is
acting just around 10D).
This force is not included in the Eulerian-Lagrangian formulation as the bubble-wall
interaction is taken natively into account in the particle tracking.

2.3.5 Turbulent dispersion force
The turbulent dispersion force accounts for the drag force caused by the turbulent
fluctuation of the liquid velocity. Indeed, one can break down the velocity into

U = U + u (2.38)

with U the mean velocity and u the turbulent fluctuation. In a RANS simulation,
only U is simulated while u has also an influence to the closure term. In the La-
grangian formulation, it is usual to model the turbulent velocity based on a stochastic
model (this is described in section 2.4.3). However, in an Eulerian-Eulerian model,
it is preferable to introduce an additional turbulent dispersion force that models
the effect of the turbulent fluctuation of the drag force (which is the predominant
force). This is based on the Favre Averaged Drag Model (Burns et al., 2004) and is
expressed as:
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2. Mathematical formulation

~MTD = −CTD ~∇αb. (2.39)

As this force is proportional to the void-fraction gradient, it can easily generate
unstable results.
Lopez de Bertodano (1998) proposed a very simple model to express D:

CTD = ρfkf . (2.40)

2.3.6 Collision force
The simulation of the collision between particles can lead to long and intensive
calculation in a dense particle suspension. Thus, it can be beneficial to account for
collision with a statistical approach. It is done by introducing an additional force ~MC

in the interfacial term. This approach is also called the MultiPhase Particle-In-Cell
method (MPPIC).
Snider (2001) proposed that:

~Mc = Psαb
β

αcp − αb
. (2.41)

The coefficients are chosen based on the work of Patankar and Joseph (2001) who
chose β = 3, αcp = 0.6 and Ps = 100 Pa. The model only applies to spherical
particles and can become not so accurate for areas where the suspension have a low
void-fraction.

2.4 Turbulence
For a two-phase flow, the turbulence of the fluid is caused by two main effects: the
turbulence that is naturally appearing in the liquid flow at high Reynolds number
but also the disturbance created by the bubbles in the fluid.
The turbulence of the bubble phase is assumed to be dependent on the turbulence
of the liquid phase through a turbulence response coefficient Ct (defined as the ratio
of the root mean square velocity fluctuations of the dispersed phase velocity and of
the continuous phase velocity). However, the effect of the turbulence of the bubble-
phase can be neglected on a first approach (Rusche, 2002, section 1.5.6). Hence, the
bubble phase is considered laminar.
In order to reduce the computation time, wall functions are also used. The region
near a wall is not resolved: the first node is located in the log-law region (30 ≤
y+ ≤ 100) and the flow between the first node is supposed to be as in a single phase
boundary layer.

2.4.1 The fluid phase turbulence (k − ε model)
It is chosen to model the fluid turbulence with a k − ε model. This model is based
on the Reynolds-averaged Navier–Stokes (RANS) equations, meaning only the mean
velocity is described and taken into account into the simulation. This allows to
neglect the fluctuations of small amplitude and periods and save computational
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time. The k − ε model is also an eddy-viscosity model meaning that the turbulent
kinematic viscosity is used to model the effect of the turbulence on the Reynolds
stresses in the momentum conservation equation.
The turbulent viscosity is found with the relation:

νTf = Cµ
k2
f

εf
(2.42)

with kf and εf respectively the turbulent kinetic energy and the turbulent dissipation
of the fluid.
Two differential transport equation are set in order to determine those quantities:

• For turbulent kinetic energy:

∂kf
∂t

+ ∂(kfUi)
∂xi

= ∂

∂xj

[(
νf +

νTf
σk

)
∂kf
∂xj

]
+ νTf S

2 − εf ; (2.43)

• For turbulent dissipation:

∂εf
∂t

+ ∂(εfUi)
∂xi

= ∂

∂xj

[(
νf +

νTf
σε

)
∂εf
∂xj

]
+ εf
kf

(
C1ν

T
f S

2 − C2εf
)

; (2.44)

S is the modulus of the mean rate-of-strain tensor expressed as:

S =
√

2SijSij. (2.45)

The default coefficients of the k − ε model are shown in table 2.1.

Table 2.1: Default coefficients of the k − ε model

Coefficient Cµ C1 C2 σk σε
Default value 0.09 1.44 1.92 1.0 1.3

2.4.2 Influence of the bubbles on the turbulence (Lahey
model)

In a multiphase flow, the bubbles can have some influence on the liquid turbulence
as they disturb the flow by creating additional eddies. To account for this, Lahey
(2005) proposed a modified k− ε model. This model adds a source in the transport
equation Φk and introduces a modified expression for the turbulent viscosity.
The viscosity is expressed as:

νTf = Cµ
k2
f

εf
+ 0.6Dαb|Ur| (2.46)

and the equations 2.43 and 2.44 become:

∂kf
∂t

+ ∂(kfUi)
∂xi

= ∂

∂xj

[(
νf +

νTf
σk

)
∂kf
∂xj

]
+ νTf S

2 − εf + Φk (2.47)
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and

∂εf
∂t

+ ∂(εfUi)
∂xi

= ∂

∂xj

[(
νf +

νTf
σε

)
∂εf
∂xj

]
+ εf
kf

(
C1ν

T
f S

2 − C2 (εf + Φk)
)
. (2.48)

The expression of the source term is:

Φk = Cp
(
1 + C

4/3
d

)
αb
|Ur|
D

. (2.49)

The application of the theory of potential flow around a sphere gives:

Cp = 0.25. (2.50)

The values of the others modifiable parameters are the same as in the classic k − ε
model displayed in table 2.1.

2.4.3 The turbulent fluctuation velocity
The RANS turbulence models all rely on the Reynolds decomposition of the velocity
(already written in equation 2.38):

U = U + u (2.51)

with U the mean velocity and u the turbulent fluctuation. In a RANS simulation,
only U is simulated while it can be necessary to account for the turbulent velocity. It
is possible in a Lagrangian simulation to account for this velocity using a stochastic
tracking model. One of the models is the gradient dispersion model (Vallier, 2011).
In this model, the velocity is perturbed in the direction of −~∇k with a Gaussian
random number distribution of variance σ defined as:

σ =
√

2kf
3 . (2.52)

Thus
u = −X~∇k with X ∼ N (0, σ) (2.53)

with N the gaussian distribution.
This model is very basic and more sophisticated ones exist but the study of stochastic
dispersion model is a very broad field whereas its effect on the solutions is not
predominant in the study. Therefore, it has not been studied in depth.

2.5 Coalescence and breakage processes
The diameter of the bubble is a crucial parameter that strongly influences the in-
teraction between the two phases. The bubble size distribution is not constant but
may change due to bubble-bubble and bubble-turbulent eddies interactions that can
lead to breakage and coalescence. However, the mechanisms that drive this process
are complex and depend on several factors.
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2.5.1 Coalescence and breakage mechanisms
Coalescence

Coalescence is the process by which two bubbles merge during contact to form a
single daughter bubble. The process can be described by different consecutive stages:
the bubbles collide and a thin film is created between the surface of the two bubbles;
this film thickens over a period of time until it reaches a critical thickness and breaks
resulting in a single new bubble (Kocamustafaogullari and Ishii, 1995). An example
of a coalescence process is shown in figure 2.3.

Figure 2.3: Coalescence of two bubbles (extracted from Gharaibah, 2008, fig. 2.10)

Thus this process can be characterized by:
• the frequency of collision f between particles;
• the particle coalescence efficiency η which determines what fraction of fluid

particle collision leads to a coalescence event;
• a minimum particle volume Vmin which is the minimum stable particle size

below which a pair of particle will coalesce almost immediately upon colliding;
The main phenomena that drive the collisions between particles are:

• the turbulent fluctuations due to collisions resulting from the random motion
of bubbles due to the turbulence of the flow;

• the wake entrainment due to the acceleration of a smaller bubble located in
the wake of a bigger preceding bubble;

• the difference of rise velocity between two bubbles with different diameters;
• the shear layer induced velocity difference due to bubbles located in a region of

relatively high velocity that may collide with bubble located in a lower velocity
region;

Breakage

Breakage of bubbles happens when an external stress exceeds the surface tension
stress of the bubbles σ (the force that assures the cohesion of the bubble) (Koca-
mustafaogullari and Ishii, 1995). This creates some daughter particles that will be
more stable as they will have a smaller diameter. Hence, the breakage can also be
seen as the collision between a bubble and a turbulent eddy.
The break-up process can be characterized by:

• the maximum particle volume Vmax which is the maximum stable volume that
a bubble can attain in a stagnant flow;
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• the daughter particle distribution β;
• the number of daughter particle production n;
• the break-up frequency f ;

Usually, only binary break-up are considered: a bubble will break into two daughter
particle that will have the same volume. Thus β = δD/2 and n = 2.
The main phenomena that create an external stress at the surface of the bubble are:

• the fluctuating eddies present in a turbulent flow which create a pressure vari-
ation at the surface of the bubble and hence an additional external stress;

• the viscous shear in the continuous phase in laminar flow;
• the interfacial instability of the bubble (like the Rayleigh-Taylor and Kelvin-

Helmhotz instabilities);

2.5.2 Implementation in a multiphase flow formulation
The coalescence and breakage processes can be implemented in both Eulerian-
Eulerian and Eulerian-Lagrangian formulation. This is done by introducing a new
equation in the two-fluid model (the IAC equation) and by introducing reacting
particles in the Lagrangian Particle Tracking. However, only the Eulerian-Eulerian
implementation will be studied in depth.

Eulerian-Lagrangian framework

In a Lagrangian formulation, the frequency of collision does not need to be modelled
as the occurrence of the collision is natively taken into account by the particle
tracking. The rest of the processes can be compared to a chemical reaction and
reacting model developed for chemical simulation (like diesel injection) can be used
and adapted. This can lead from a simple model (a simple efficiency factor) to a
complex one (with a kinetic model and activation energy for example). However,
coalescence and break-up in a Lagrangian framework will not be studied in this work
and the modelling will only be done in the Eulerian-Eulerian framework.

Eulerian-Eulerian framework

In an Eulerian-Eulerian framework, only the mean diameter of the bubbles can be
computed for every cell. To compute it, the equation of conservation of the mass for
bubbles of same volume is expressed (in a incompressible formulation) (Ishii et al.,
2002)

∂f(V )
∂t

+∇ · (f(V )Ub) = Sc(V ) + Sb(V ), (2.54)

with f(V ) the number of bubbles of volume V, Sc the formation rate of bubbles of
volume V per unit volume and Sb the loss rate of particle per unit volume.
This equation is then integrated between Vmin and Vmax:

∂n

∂t
+∇ · (nUb) = Rc +Rb, (2.55)

with n the total number of particles of all sizes per volume, and Rc and Rb the mean
formation and loss rate of bubbles.
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This equation will be derived to obtain the interfacial area concentration (IAC)
equation. The IAC is defined as:

ai = nAi (2.56)

with Ai the average surface area of fluid particles. This can be directly linked to
the mean diameter of the bubbles:

ai = Ab
V

= αbAb
Vb

= 6αb
D
. (2.57)

From equation 2.55, the IAC equation can be deduced :

∂ai
∂t

+∇ · (aiUb) = φc + φb (2.58)

with φ = AiR = ai

n
R and α = nV , one can find that:

φc + φb = 1
3ψ

(
α

ai

)2
(Rc +Rb) with ψ = 1

36π . (2.59)

The mean diameter can be found for every computational cell by solving equation
2.58. For a better numerical stability at small void fraction, some solvers are solving
instead the interfacial curvature equation κ = ai

α
= 6

D
directly derived from equation

2.58.

2.5.3 Models for the formation and loss rate terms
To model the formation and the loss rate of each bubble as introduced in equation
2.54, two models are usually used: Wu et al. (1998) and Hibiki and Ishii (2002).
Both of them account for coalescence due to random collision; coalescence due to
wake entrainment and bubble breakup rate due to turbulent impact as illustrated
in figure 2.4.
All of these are occurring after a collision between two bubbles or between a bubble
and a turbulent eddy. Therefore, a general expression of the rate of coalescence and
breakage can be defined as:

R = ±f × η × n (2.60)

with f the frequency of the happening of the collision, η its efficiency (ie. the
percentage of collision that actually leads to breakup or coalescence) and n the
bubble number density (n = α

V
).

Bubble Coalescence Due to Random Collisions

The coalescence rate due to Random Collision Rrc is expressed as:

Rrc = −frc × ηrc × n. (2.61)
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Figure 2.4: Major bubble interaction mechanisms in a bubbly flow (extracted from
Ishii et al., 2002, fig.2)

Wu et al. model Wu et al. (1998) proposed to determine frc by assuming that
bubble collision is happening between neighbouring bubbles only. The collision fre-
quency for two bubbles moving toward each other is estimated as well as a correction
factor that characterizes the probability that a bubble moves toward a neighbouring
bubble. Then another modification factor is suggested to account for the situation
when the distance between the bubbles is too large and thus no collision would
happen:

frc = ε1/3D7/3n

α
1/3
max

(
α

1/3
max − α1/3

) [1− exp
(
−C α1/3

maxα
1/3

α
1/3
max − α1/3

)]
. (2.62)

To model the efficiency term of the coalescence, a constant coefficient ηRC is chosen.
Thus,

Rrc = ε1/3α2CRC

D11/3α
1/3
max

(
α

1/3
max − α1/3

) [1− exp
(
−C α1/3

maxα
1/3

α
1/3
max − α1/3

)]
. (2.63)

Chen et al. (2005) proposed after extensive testing to take C = 3, αmax = 0.8 and
CRC = 0.021.

Hibiki and Ishii model Hibiki and Ishii (2002) considered instead that the bub-
bles are behaving like ideal gas molecules. fRC is then expressed as a function of
the surface available for the collision to take place and of the volume available to
the collision:

frc = Crc
αε1/3

D2/3(αmax − α) . (2.64)

The efficiency factor is not a constant anymore but relies on the assumption that
coalescence occurs if the contact time between two bubbles exceeds the time required
for the complete film. Thus:
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ηrc = exp
(
− tc
τc

)
= exp

−Kc

ε1/3ρ
1/2
f D5/6

σ1/2

 . (2.65)

So finally,

Rrc = Crc
α2ε1/3

D11/3(αmax − α) exp
−Kc

ε1/3ρ
1/2
f D5/6

σ1/2

 . (2.66)

The different factor Kc, Crc and αmax are determined experimentally. Taitel et al.
(1980) and Coulaloglou and Tavlarides (1977) proposed thatKc = 1.29, αmax = 0.52
and CRC = 0.005.

Bubble Coalescence due to Wake Entrainment

The coalescence rate due to wake entrainment Rwe is expressed as:

Rwe = −fwe × ηwe × n. (2.67)

This mechanism has only been studied by Wu et al. (1998). fwe is calculated by
determining the number of bubbles present in the effective volume, in which the
following bubbles may collide with the leading one. This volume will depend on the
wake region length Lw which is determined experimentally and is usually seen as a
constant: Lw = 7D (Tsuchiya et al., 1989). Thus:

fwe = 7
8πD

2Urn. (2.68)

where Ur is the bubble velocity relative to the liquid. Rather than the exact ex-
pression of Ur, the relative velocity is roughly estimated from a balance between the
buoyancy and the drag force:

Ur =
(
D (ρf − ρb) g

3CDρf

)1/2

. (2.69)

The expression of the drag coefficient is developed in section 2.3.1.
The efficiency is treated as constant factor. So finally:

Rwe = CweUr
α2

D4 with Cwe = 0.0073. (2.70)

Bubble Breakup due to Turbulent Impact

The bubble breakup rate caused by turbulent impact is expressed as:

Rti = fti × ηti × n. (2.71)
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Wu et al. model Wu et al. (1998) proposed a model depending on a critical
Weber number Wecr. The Weber number is an nondimensional number already
defined in equation 2.3
fTI is expressed as:

fti = exp
(
−Wecr

We

)
. (2.72)

The efficiency ηti is determined by the assumption that bubble breakup caused by
turbulent eddies impact occurs when the turbulent eddies have enough energy to
overcome the surface tension of the bubble. So for We ≤ Wecr, no break-up will
occur. And for We ≥Wecr,

ηti = ut
D

(
1− Wecr

We

)
. (2.73)

So finally:

Rti = Cti
αε1/3

D11/3

(
1− Wecr

We

)
exp

(
−We2

cr

We2

)
. (2.74)

The adjustable parameters, Cti = 0.0945 and Wecr = 2 have been determined
experimentally.

Hibiki and Ishii model Hibiki and Ishii (2002) still consider that the bubbles
behave like perfect gas. They also make the assumption that only eddies with the
same diameter as the bubble will break it, as the larger eddies will transport the
bubbles and the smaller won’t have the sufficient energy to break the bubble.
fti is expressed as:

fti = Cti
αε1/3

D2/3(αmax − α) . (2.75)

The efficiency is expressed as:

ηti = exp
(
−Eb
e

)
= exp

(
−KB

σ

ρfD5/3ε2/3

)
(2.76)

with e the average enery of a single eddy and Eb the average energy to break the
bubble. So finally:

Rti = CTI
α(1− α)ε1/3

D11/3(αmax − α) exp
(
−KB

σ

ρfD5/3ε2/3

)
. (2.77)
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3
Numerical implementation

The OpenFOAM software is used to numerically implement the problem based on
all the models described in section 2. This software is a free and open-source CFD
software package written in C++, object-orientated and incorporates numerous mul-
tiphase solvers. Two suitable solvers are chosen : one Eulerian-Eulerian solver,
twoPhaseEulerFoam, and one Lagrangian solver, DPMFoam. These two solvers are
described in section 3.1 and 3.2. The geometry and boundarty conditions of the
problem are then set-up in section 3.3.

3.1 Eulerian-Eulerian implementation

twoPhaseEulerFoam is chosen to solve the problem with the Eulerian-Eulerian ap-
proach. The solver is described by the OpenFOAM documentation as “a system of
two compressible fluid phases with one phase dispersed including heat-transfer”and
is based on the procedure described by Rusche (2002, section 3.2).
The version used is based on OpenFOAM 3.0, slightly modified to remove the heat
transfer equations.
The solution procedure used by the solver relies on a collocated grid and on the
PIMPLE algorithm. This algorithm is a merge between the PISO algorithm (by the
construction of a pressure correction equation: ∇2P = f(~∇P, ~U)) and the SIMPLE
algorithm (with the idea of the relaxation of the variables).
To implement this algorithm, two variables (nCorrector and nOuterCorrectors)
must be defined and the relaxation factors have also to be set if necessary. For
non orthogonal meshes, an additional correction can also be applied but this is not
developped here. Hence, the procedure can be rewritten in pseudo-code in figure
3.1.
The main parts of this algorithm is now described.

3.1.1 The mass conservation equation
First, the mass conservation equation is solved for the dispersed phase (equation
2.10) and a new αb is found. This is done using a MULES (Multidimensional
Universal Limiter with Explicit Solution) solver. The process behind it specifically
applied to twoPhaseEulerFoam is explicited by Manni (2014). This solving method
is used in order to ensure the boundedness of αb but is a fully explicit solver: the
Courant number must be small to have convergence.
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for N from 1 to NOuterCorrectors do
Solve the mass-conservation equation for the dispersed phase → αnewb ;
Deduce the void fractions from equation 2.9 → αnewf ;
Update the coefficients of the interfacial moments term ;
Construction and discretization of the implicit terms of momentum equation
(equation 3.2);
Relaxation of this equation ;
for N2 from 1 to NCorrectors (Pressure correction loop) do

Prediction of the fluxes from the velocity field → Φnew ;
Solve ∇2P = f(∇P,Φ) → P new ;
Correction of the fluxes with the new pressure gradient ;
Pressure relaxation ;
Reconstruction of the velocities from the corrected fluxes → Unew ;

end
Solve the turbulent equation and update the viscosity term;

end

Figure 3.1: Pseudo code of the solution procedure of twoPhaseEulerFoam

αf is then determined using the equation 2.9:

αf = 1− αb. (3.1)

Then, the diameter of the bubble is reevaluated by solving the IAC equation (section
2.5.2) and the residuals of the two mass equations (Rb and Rf ) are computed.

3.1.2 The momentum equation
The magnitude, linearity and uniformity of the inter-phase momentum transfer term
in the momentum equation are known to affect the stability of the solution proce-
dure. Therefore, special attention is given on how to treat these terms.
Hence:

• The drag term is treated semi-implicitly in both the continuous and dispersed
phase momentum equation. For the dispersed phase, the part dependent on
~Ub is treated implicitly whereas the part dependent on ~Uf is treated explicitly.
The contrary goes for the continuous phase.

• The virtual mass force is treated implicitly.
• Because it is difficult to make an implicit treatment of them, the lift force,

the wall lubrication and the turbulent dispersion force are treated explicitly.
The turbulent dispersion force is also incorporated in the mass conservation
equation as it has a diffusive effect on the phase fraction distribution.

The terms that are treated implicitly correspond to the equation:

∂

∂t

(
αbρb~Ub

)
+ αbρb

(
~Ub · ~∇

)
~Ub = αb

(
∇ · ν ~∇

)
~Ub + ~MVM −K~Ub. (3.2)

These equations are relaxed before the drag is added and can be rewritten as:

22



3. Numerical implementation

Ab~Ub = Hb (3.3)
and

Af ~Uf = Hf . (3.4)
The momentum equations 2.11 and 2.13 are now discretized by interpolating the
velocities at the cell faces. Using the notation of equations 3.4 and 3.3, the volumetric
phase equations are written:

φb = Hb

Ab
+ φMb −

αb
Ab

~∇Pφ + αb
K

Ab
φf (3.5)

and
φf = Hf

Af
+ φMf −

αf
Af

~∇Pφ + αf
K

Af
φb (3.6)

with φM the terms treated explicitly except the drag (ie. wall lubrication, lift,
turbulent dispersion and gravity fluxes) and Pφ the flux of the pressure.
One should note that these equations and the following ones are discrete equations,
therefore the different operators (∇· or ~∇) are only used to indicate that a specific
discretization scheme is used.
These equations are rewritten

φb = Φb − Γb~∇Pφ (3.7)

and
φf = Φf − Γf ~∇Pφ. (3.8)

By combining the equations 3.5 and 3.6, one can note that φr = φb − φf can be
expressed without φb and φf :

φr =

(
φsb +Kd

b φ
s
f

)
−
(
φsf +Kd

fφ
s
b

)
1−Kd

bK
d
f

(3.9)

with Kd
f = αf

K
Af

, Kd
b = αb

K
Ab
, φsb = Hf

Af
+ φMf −

αf

Af

~∇Pφ and φsf = Hf

Af
+ φMb − αb

Ab

~∇Pφ.

3.1.3 The pressure correction equation
In fact, the flux equations are never directly solved. Instead, a pressure correction
equation is derived from the mass-conservation and the momentum equation. Thus
it has been introduced:

U = U∗ + U ′ (3.10)
and

Pφ = P ∗φ + P ′φ (3.11)
with the ∗ subscript referring to the old value and the ′ subscript referring to the
correction term.
By combining the two mass-conservation equations (equations 2.10 and 2.12), one
can find that

∇ · ~U = 0 with ~U = αb~Ub + αf ~Uf . (3.12)
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Therefore:
∇ · ~U ′ = −∇ · ~U∗ = −Rf −Rb. (3.13)

This equation is discretized and as the equations 3.5 and 3.6 are still valid for φ′, it
becomes:

∇ · Φ−∇2
(
ΓP ′φ

)
= −Rf

ρf
+ Rb

ρb
(3.14)

with Φ = αbΦb + αfΦf and Γ = αbΓb + αfΓf .
Then, the fluxes are corrected and a new global flux can be found:

φ = Φ + Γ~∇Pφ. (3.15)

And φb and φf are deduced using φr: (which is recomputed using the new gradient
pressure)

φb = φ+ αfφr (3.16)
and

φf = φ− αbφr. (3.17)
Finally the velocities are reconstructed from the corrected fluxes in order to avoid
oscillations that may occur on collocated grids, the k − ε equations are solved and
the turbulent viscosity is updated.

3.2 Eulerian-Lagrangian implementation
DPMFoam and MPPICFoam are the solvers chosen to solve the problem with the Eulerian-
Lagrangian approach. According to the OpenFOAM documentation, it is “a tran-
sient solver for the coupled transport of a single kinematic particle cloud including
the effect of the volume fraction of particles on the continuous phase and the collision
between particles”. MPPICFoam is based on the same code than DPMFoam but without
the collisions between particles which is taken into account with an additional force
as presented in section 2.3.6.
The version used is based on OpenFOAM 3.0, slightly modified to make it compatible
with a buoyant fluid.The solving process can be rewritten in pseudo-code as shown
in figure 3.2.
One can see that the mass-conservation equation of the continuous phase is not
solved but deduced from the evolution of the cloud. This ensures a better stability
compared to the Eulerian-Eulerian implementation where the mass-conservation
equation is difficult to solve.

3.2.1 Equations in the Eulerian and Lagrangian frame
Equations in the Lagrangian frame

For each particle, equation 2.17 is applied and integrated over an Eulerian timestep
∆t. A new velocity is found from the previous velocities and the forces acting on
the particles:

~U(t+ ∆t) = ∆t
mb

(
~Mb(t) + ρ~g

)
+ ~U(t). (3.18)
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for every particle P do
Look for possible collision;
Divide the Eulerian time-step into sub Lagrangian time-step ;
Derive the new velocities and position of each particle ;
Compute the influence of the particles on the fluid ~M

(P )
f ;

end
Compute the new void fraction αnewb from the position of each particle ;
Deduce the void fractions from equation 2.9 → αnewf ;
for N2 from 1 to NCorrectors (Pressure correction loop) do

Prediction of the fluxes from the velocity field → Φnew ;
Solve ∇2P = f(∇P,Φ) → P new ;
Correction of the fluxes with the new pressure gradient ;
Pressure relaxation ;
Reconstruction of the velocities from the corrected fluxes → Unew ;

end
Solve the turbulent equation and update the viscosity term;

Figure 3.2: Pseudo code of the solution procedure of DPMFoam and MPPICFoam

The new positions of the particles are then easily evaluated. The process to account
for collisions is described in section 3.2.2.
In practice, a particle trajectory can cross several cells during an Eulerian time step
∆t. This is why ∆t is divided into a set of Lagrangian time steps, specific for each
particle to account for the time it enters and/or leaves a computational cell.

Equations in the Eulerian frame

Once the new position of each particle has been determined, the void fraction αb and
αf can be computed. The momentum equation of the continuous phase (equation
2.16) is solved based on the PIMPLE algorithm.
~Mf (which represents the interaction of the particles with the fluid) is evaluated
based on the difference of the particle momentum between the two timesteps. For
example, for a given cell A and a given particle P.

• If the particle is present in the cell A at the instant t and is still there at the
instant t+ ∆t. Its contribution ~M

(P )
f on the cell A is expressed by:

~M
(P )
f = mb

V∆t(
~U(t+ ∆t)− ~U(t)). (3.19)

• If the particle is in the cell A at the instant t but leaves it during the timestep
at the point F, the instant when the particle will leave the cell is estimated (t′)
and a new time step ∆t′ = t′ − t is defined. The contribution of the particle
is:

~M
(P )
f = mb

V∆t′
[
~U(t+ ∆t′)− ~U(t)

]
. (3.20)

By counting for every cell the contribution of all particles present during whole or
part of the timestep, ~Mf can be determined for each computation cell. This term is
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treated implicitly in the Navier-Stokes equations which can thus be written as

Af ~Uf = Hf . (3.21)

As the fluid is considered incompressible, the divergence of the velocity is null and
a pressure correction equation (∇2P = f(∇P,Φ)) can be developped and from that
a new velocity field for the fluid can be found based on the same method than the
one presented in section 3.1.3

3.2.2 Implementation of the collision
The collision between particles are also taken into account in DPMFoam. Let’s consider
a particle Pi (at the position ~xi and with a velocity ~Ui) and its possible collision
with the particle Pj (at the position ~xj and with a velocity ~Uj). A local coordinate
is set centred on the particle with ~ni→j the normal vector which goes from particle
i to particle j and ~ti→j the tangential vector. The velocities can be defined as:

~Ui = UN
i ~ni→j + UT

j
~ti→j (3.22)

and
~Uj = UN

j ~ni→j + UT
j
~ti→j (3.23)

A collision occurs if:
• Their trajectory intersect. That is to say if:

(
UN
i − UN

j

)
~ni→j ≥ 0.

• Their relative displacement is larger than the distance between them (including
their diameter):

(
UN
i − UN

j

)
∆t ≤ |~xi − ~xj| −D.

A hard sphere model is implemented with the introduction of a coefficient of restitu-
tion e (which quantifies the loss of energy during a collision) but a more sophisticated
model can also be implemented (for example a spring-slider model). It is assumed
that the tangential velocity will not change during the collision so the new veloci-
ties UN ′

i and UN ′
j can be deduced with the conservation of the energy and a given

coefficient of restitution:

1
2mb

(
UN ′

i

)2
+ 1

2mb

(
UN ′

j

)2
= 1

2mb

(
UN
i

)2
+ 1

2mb

(
UN
j

)2
(3.24)

and

e =
UN ′
j − UN ′

i

UN
j − UN

i

. (3.25)

The collision with a wall relies on the same type of process.

3.3 Implementation of the problem
A two-phase simulation can then be carried on by the two previous solvers. It
remains now to define the input of these solvers.
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3.3.1 Geometry and physical properties

The dimension of the plate is based on the one used in a similar project ongoing at
the university. The plate has a length of 1.6m and a width of 1m. All the simulations
will be done in 2D and thus the width will not have any influence. The flow is studied
0.2m below the plate: as the bubbles are naturally getting close to the wall, the flow
becomes quickly unaffected by the bubbles with the depth. The physical properties
of the two phases are constant and a given rate flow of air ηQ̇ (with η ∈ [0, 1]) is
injected in the system. The value of these parameters are displayed in table 3.1. The
diameter of the bubbles is not determined and the influence of the diameter on the
solution will be studied in the following but it is considered that the diameter will
be between 0.1mm and 10mm. From the values of the table, the Morton number
can be computed Mo = 2.8× 10−14 and proves that the water is a very low Morton
number fluid.

Table 3.1: Physical properties of the phases

Property Value
ρf 1000 kg.m−3

ρb 1.25 kg.m−3

νf 1× 10−6 m2.s−1

νb 1.3× 10−5 kg.m−3

σ 0.7 N.m−1

Q̇ 0.00132 m3.s−1

D 0.1mm - 10 mm

The location of the ejection of the bubbles outside the air cavity is really difficult to
determine and would require a very long study. Hence, it has been decided to create
a patch measuring 5cm in the vicinity of the wall where the bubbles are injected with
a constant distribution. All the air bubbles are in their final longitudinal velocity
(2m/s). As only the steady state is studied and as the inlet of the bubbles aren’t
right, 1m is added to let the time to the flow to be in steady state. The 2-D geometry
is displayed in figure 3.3

3.3.2 Boundary conditions

The boundary conditions must also be set carefully as it influences the accuracy of
the final results and the stability of the solver. The boundary conditions are the
same for the two formulations (Eulerian-Eulerian and Eulerian-Lagrangian) except
for the quantities αb and Ub which do not exist in the Lagrangian solver. The patch
name are defined as in figure 3.3. The coefficient of restitution are set to e = 0.97
for a particle colliding a wall as well as for a collision between two particles.
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Figure 3.3: 2-D geometry of the problem

Void fraction and number of particles

The void fraction at the inlet(air) is found based on the definition of the volume air
flow Q̇. At the patch inlet (water), the void fraction is, of course, set to αb = 0.

αb = Q̇

UbA
= 10Q̇. (3.26)

In a Lagrangian formulation, the number of particles introduced per second in the
system N is found based on the air flow rate:

Q̇ = NV = N
π

6D
3 (3.27)

However, in the case of a 2D study, the number of particle must be lowered as in
this solver, all the particles are injected in the centre of every mesh. As there is just
one mesh in the width direction in a 2D study, the number of particle injected will
be too high. The domain actually studied has just a width of the diameter of the
bubble. Thus:

N (2D) = 6Q̇
πD2 . (3.28)

Velocities and pressure

The velocities of the fluid and the bubbles are set to 2m/s at the inlet. At the wall,
a slip condition – which sets the normal component to the wall of the gas velocity
equal to zero – is chosen for the bubble phase whereas the velocity of the fluid phase
is set to zero as no-slip is expected. For the outlet an InletOutlet condition is set:
this condition is normally a zeroGradient condition but can switch to a fixedValue
if a back-flow occurs.
Regarding the pressure, the boundary conditions are set for the quantity prgh which
is the pressure without hydrostastic pressure.

prgh = p− ρgh with h the depth of the fluid. (3.29)
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A constant fixed value equal to the atmospheric pressure is set at the outlet whereas
a fixedFluxPressure is set at the inlet so that the flux on the boundary is the one
specified by the velocities boundary condition.

Turbulent quantities

For the wall, wall functions are used as boundaries conditions for both of the tur-
bulent quantities. For the inlet, the turbulent quantities are estimated as:

kf = (0.05U2
f ) = 0.01m2.s−2 (3.30)

and
εf = 0.54 k

3/2

0.1h = 0.027m2.s−3 with h the height of the inlet. (3.31)

The summary of all the boundary conditions is displayed in table 3.2 and 3.3.

Table 3.2: Boundary conditions for the inlets and outlet

Field inlet (air) inlet (water) outlet
Ub fixedValue fixedValue inletOutlet
Uf fixedValue fixedValue inletOutlet
αb fixedValue fixedValue inletOutlet
εf fixedValue fixedValue inletOutlet
kf fixedValue fixedValue inletOutlet
κ (IAC) fixedValue fixedValue zeroGradient
νTf calculated calculated calculated
p calculated calculated calculated
prgh fixedFluxPressure fixedFluxPressure fixedValue (105 Pa)

Table 3.3: Boundary conditions for the wall and stream patches

Field wall stream
Ub slip zeroGradient
Uf fixedValue (0m/s) zeroGradient
αb zeroGradient zeroGradient
εf epsilonWallFunction zeroGradient
kf kqRWallFunction zeroGradient
κ zeroGradient zeroGradient
νTf calculated calculated
p calculated calculated
prgh zeroGradient zeroGradient

3.3.3 Meshing, discretization scheme and closure models
It is assumed that the shape of the bubble will be spherical everywhere. Therefore,
based on section 2.3, the models for the closure terms are selected for spherical
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bubbles and are displayed in table 3.4. After the simulation, it will be check if
Ta ≤ 1 as stated in section 2.1.2.

Table 3.4: Choice of the models for the closure interface

Force Model Solver
Drag Schiller-Neumann Lagrangian & Eulerian
Virtual force Constant (CVM = 0.5) Lagrangian & Eulerian
Lift Constant (CL = 0.5) Lagrangian & Eulerian
Wall lubrication Frank Eulerian
Turbulent diffusion Lopez - De Bortano Eulerian
Collision Snider Lagrangian (MPPIC)
Aspect ratio φ = 1 Lagrangian & Eulerian

The choice of the discretization schemes are based on the proposal from Michta
(2011) and on the schemes used in the tutorial fluidizedBeds provided with Open-
FOAM 3.0. The same schemes are used for LPT and Euler-Euler. The scheme’s
choice is displayed in table 3.5. The relaxation factor applied to the velocity of the
two phases is set to 0.4. The value of nOuterCorrectors is set to 5 and the one of
nCorrectors is set to 2. A residual control for the PIMPLE loop is also introduced
to reduce the computation time if the solution converges quickly.

Table 3.5: Choice of the discretization schemes

Name of the scheme Scheme
ddtSchemes Euler
laplacianSchemes Gauss linear uncorrected
gradSchemes Gauss Linear
divSchemes Gauss upwind
interpolationSchemes Linear
snGradSchemes uncorrected

A simple mesh is used for the problem. The main objectives is to have orthogonal
meshes (twoPhaseEulerFoam being very sensitive to that) and to have a mesh fine
enough to see the void fraction distribution close to the wall but which does not
require a too small timestep (required to ensure a small Courant number). It has
been chosen to use a fine mesh close to the wall (from 0 to 0.05m) with cells of
dimension 1mmx5mm and a coarse mesh for deeper flow with a cells of dimension
10mmx5mm. This gives 21000 cells in total. The mesh is shown in figure 3.4. It is
checked for each simulation that the first node is located in the log-law region (ie.
30 ≤ y+ ≤ 100)

3.3.4 Post-processing of the results
The shear force present because of the friction between the fluid and the plate
creates a resistance force for the body called the viscous resistance. As it can easily
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Figure 3.4: The mesh used for the study

be assumed that only the friction between the water and the body will create this
force (ie. the contribution of the friction between the air and the plate is neglected)
the viscous resistance is expressed as:

F = (1− αb)τw (3.32)

with τw the local shear stress defined as:

τw = µf

(
∂u

∂y

)
y=0

(3.33)

with u the flow velocity parallel to the wall and y the near-wall distance. In order to
easily compare the skin-friction between different geometry or velocity of the flow,
the CF , coefficient skin fraction is used and defined as:

CF = τw
0.5ρU2

∞
. (3.34)

So finally:

CF =
νf + νTf
0.5U2

∞

(
∂u

∂y

)
y=0

. (3.35)

In OpenFOAM, the gradient of U is computed with the utility wallGradU slightly
modified to read and compute the field U.water instead of U. From that the skin
friction coefficient is easily calculated using equation 3.35.
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4
Results and discussions

By using the mathematical formulation and the solvers available in OpenFOAM de-
scribed in sections 2 and 3, the case presented in section 3.3 can finally be simulated.
The major axis of study will be the reduction of the viscous resistance experienced
by the plate (ie. the value of the skin friction factor) and the comparison of the
results given by the solvers between the two main formulations (Euler-Euler and
Euler-Lagrangian).

4.1 General results
The first simulations are done using the Eulerian-Eulerian solver. As for every
other simulations, the consistency of the output of a solver must be checked. If no
experimental datas have been found for this precise case, the shape and behaviour
of the flow can be checked qualitatively with similar experiments. A comparison
with the situation without bubbles is also done to study and estimate the influence
of the bubbles on the flow.

4.1.1 Behaviour of a bubbly flow
A first simulation is done using the twoPhaseEulerFoam solver. The properties of
the simulation are displayed in table 4.1. One can note that the k− ε model is used
and not the Lahey model while this model considers the turbulence created by the
bubbles and hence is said to be more accurate. This is because the Lahey model
is not implemented in the Lagrangian solvers and, as one of the goal is to compare
this output with the other solvers, the more identical the input are, the better it is.

Table 4.1: Properties of the Eulerian-Eulerian simulation

Property Value
Solver twoPhaseEulerFoam
α (inlet) 0.0132
Diameter 1mm
Turbulence model k − ε
Timestep Variable (set so that Co = 0.5)

The distribution of αb is presented in figure 4.1. The bubbles are concentrated very
close to the wall and the influence of the bubbles becomes quickly negligible with the
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Figure 4.1: Distribution of the void fraction over the domain

(a) Void-fraction distribution (b) Velocities distribution

(c) Turbulent kinetic energy k distri-
bution

(d) Turbulent dissipation ε distribu-
tion

Figure 4.2: Distribution of the quantities wrt. the distance to the wall

depth. This bubble pattern may be related to the fact that when the bubble reaches
a steady state, the predominant force over the bubble motion is the buoyant force.
It is noted that after 0.9m, the different quantities are not dependent anymore on
the distance to the inlet. Thus, the flow is steady after 1m, as assumed in figure
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3.3. The flow rate of the air through this section is also computed by integrating
the quantity α×Ub over the section and is equal to Q̇ as expected. To have a better
idea of the behaviour of the flow close to the wall, the lateral profile of the different
quantities (at steady state) are displayed in figure 4.2.
The void fraction (figure 4.2a) has a peak distribution as described in the litterature
and its shape is similar to comparable experiments like the one from Yoshida et al.
(1998, fig.5).
Regarding the velocities (figure 4.2b), one can see that, although the velocity profiles
of the bubble and fluid phase are very similar in the streamwise direction, there are
some slight differences between them. The bubble velocity is higher than the fluid
velocity because the bubbles are free of the restriction of the wall no-slip boundary
condition but becomes very similar far from the wall. The velocity distribution is
very similar to the one found for a similar experiment (Pang et al., 2014, fig. 6a).
The hypothesis that the bubbles are in the spherical regime is checked by plotting
the Ta number (defined in section 2.1.2). This is shown in figure 4.3. It can be seen
that the Tadaki number is largely below 1 everywhere in the domain. So, it can
safely be assumed now that the bubbles are in spherical regime.

Figure 4.3: Spatial distribution of the Tadaki number

4.1.2 Behaviour without injection of bubbles
A simulation of a case without injection of any bubbles is done and its parameters
are shown in table 4.2. This allows to estimate the influence of the bubbles on the
fluid phase.

Table 4.2: Properties of the simulation without injection of bubbles

Property Value
Solver twoPhaseEulerFoam
α (inlet) 0
Diameter 1mm
Turbulence model k − ε
Timestep Variable (set so that Co = 0.5)

The lateral profile of the quantities is shown figure 4.4 and is compared to the results
found in the Eulerian-Eulerian simulation done in section 4.1.1.
Regarding the velocity (figure 4.4a), one can note that the velocity in presence
of bubbles is slightly enhanced in the region away from the wall. Regarding the
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(a) Velocities distribution

(b) Turbulent kinetic energy k distri-
bution

(c) Turbulent dissipation ε distribu-
tion

Figure 4.4: Comparison of the quantities with and without bubbles

turbulent quantities (figure 4.4b and 4.4c), only small differences can be observed
for ε whereas the shape of k is quite different between the two cases even if the
numerical values are still similar.
The skin friction coefficient of the plate is also computed from the results and com-
pared with the one found in section 4.1.1. This is displayed in table 4.3. It can be
seen that the presence of the bubbles causes a reduction of the drag of 10 %. If it
seems to prove that the friction resistance is reduced by the presence of bubbles, the
consistency of this result will be studied more precisely in section 4.3.

Table 4.3: Skin friction coefficient with and without bubbles

With bubbles Without bubbles
CF 2.66× 10−3 3.01× 10−3
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4.1.3 Comparison between the solvers
The results from the Eulerian-Eulerian simulation are then compared to the two
Lagrangian solvers DPMFoam and MPPICFoam. The parameters of the Lagrangian
simulations are displayed in table 4.4 and are set so that the cases are as identical
as possible to the Eulerian one. It can be noted that the time needed to run the
simulation are similar for the three solvers.

Table 4.4: Properties of the LPT simulations

Property Simulation LPT Simulation MPPIC
Solver DPMFoam MPPICFoam
Parcels per second 2521 2521
Diameter 1mm 1mm
Turbulence model k − ε k − ε
Timestep 0.002 Variable (set so that Co = 0.5)

The output of DPMFoam is shown in figure 4.5.

Figure 4.5: Typical output of a Lagrangian solver

The quantities are now compared between every solver and their behaviour close to
the wall is shown in figure 4.6. In overall, it can be seen that both the MPPIC and
LPT give almost exactly the same results for this case.
Regarding the velocity of the water (fig. 4.6a), the velocity field found from the
Lagrangian solvers is slightly smaller than the one found with the Eulerian solver.
This leads to an increase of the rate of the flow of bubbles towards the wall for the
Lagrangian solver and therefore will certainly increase the void fraction at the wall.
This is confirmed by the void fraction distribution (fig. 4.6b) that shows that the
values of void fraction at the wall (which has a strong influence on the friction
resistance) is smaller for the Eulerian-Eulerian solver. However the shape of the two
curves are very similar. The peak is higher in the Lagrangian frame but located at
the same distance to the wall.
Regarding the turbulent quantities (fig. 4.6c and 4.6d), ε is very similar for the
three solvers but the shape of k differs slightly. It can be noted that the shape of
k found with the Lagrangian solvers is very similar to the one found in the case
without bubbles (figure 4.4b).
The skin friction coefficient CF is also computed for the three methods and compared
to see if the differences in the lateral profile have a macroscopic effect. The friction
coefficients are shown in table 4.5.
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(a) Velocities distribution (b) Void-fraction distribution

(c) Turbulent kinetic energy k distri-
bution

(d) Turbulent dissipation ε distribu-
tion

Figure 4.6: Comparison of the quantities between the tree solvers wrt. the distance
to the wall

Table 4.5: Comparison of the friction coefficients

twoPhaseEulerFoam DPMFoam MPPICFoam Without bubbles
CF 2.66× 10−3 2.14× 10−3 2.30× 10−3 3.01× 10−3

It can be seen that the three solvers give quite different results. This is mainly due
to differences in the value of the void fraction at the wall as it can be seen figure
4.6b. Such a difference can be problematic, must be taken into account and studied
more thoroughly and will be done in section 4.3. The Lagrangian Particle Tracking
method is considered to be a simulation at a smaller scale and thus to be more
accurate than the two-fluid model. Therefore, it seems that the Eulerian-Eulerian
method, while faster to run for 3D simulation, is underestimating the result for this
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case.
The simulations done with MPPICFoam have not been satisfying. Indeed the time
needed to track the particles are quite similar for both DPMFoam and MPPICFoam.
However as for twoPhaseEulerFoam, the Euler-Euler part of the MPPIC method
requires a very small Courant number to be stable. Therefore, MPPICFoam is not
really stable and does not gain any computation time: it will not be used in the
following.

4.2 Sensitivity of the results regarding the differ-
ent parameters

The sensitivity of the output of the solver to the choice of some models are then
studied in order to check if some of the assumptions made previously are acceptable.
The influence of the turbulence model will be studied to check if it can be justified
to just use the classic k − ε model for the Lagrangian simulations. Then, it is also
checked if breakage and coalescence happen for this case in order to know if a non-
reacting cloud (which only simulate bubbles with a constant diameter over time)
can be used with the Lagrangian solver.

4.2.1 Influence of the turbulence model
Three Eulerian-Eulerian simulations are launched with the same inputs but with
three different turbulence models. The properties of the three simulation are dis-
played in table 4.6 and the lateral profile is displayed in figure 4.7.

Table 4.6: Properties of the turbulent simulations

Property laminar kEpsilon Lahey
Solver Euler-Euler Euler-Euler Euler-Euler
α(inlet) 0.0132 0.0132 0.0132
Diameter 1mm 1mm 1mm
Turbulence model laminar k − ε Lahey k − ε
Timestep Variable Variable Variable

The laminar and turbulent simulations give very different results. The thickness of
the boundary layer with the turbulent model is ten times higher than the thickness
of the laminar one. The contrary would be surprising as the flow has quite a high
Reynolds number (Re ≈ 106) and therefore is highly turbulent.
It can be seen that the bubbles do not influence so much the turbulence quantities
for this magnitude of bubble diameter. ε is identical for the two turbulence model
but the values of k differ slightly but are almost identical close to the wall. No
apparent change in the velocity field is observed. This leads to an almost identical
value of skin friction coefficient. This is mainly due to the fact that the bubble
concentration is not so high in this case and therefore does not influence so much
the turbulence of the flow.
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(a) Void-fraction distribution (b) Velocities distribution

(c) Turbulent kinetic energy k distri-
bution

(d) Turbulent dissipation ε distribu-
tion

Figure 4.7: Comparison of the different quantities between solvers

Hence, the choice of the turbulence model is quite free for this case. The classic k−ε
model can safely be used with the Lagrangian simulations. However, as the Lahey
model does not cause additional instabilities and that some studies can be done with
a denser flow (where the bubbles are more likely to influence the turbulence), the
Lahey model is preferred for the Eulerian simulations.

4.2.2 Influence of breaking/coalescence process

In order to study the evolution of the diameter of the bubbles along the plate,
an Eulerian-Eulerian simulation is launched where the diameter of the bubble is
governed by the IAC equation presented in section 2.5.2. The Wu et al. (1998)
model is used to model the breakage and coalescence terms. The properties of the
IAC simulation are shown in table 4.7.
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Table 4.7: Properties of the IAC simulation

Property Value
Solver twoPhaseEulerFoam
α (inlet) 0.0132
Diameter variable, 1mm at the inlet
Turbulence model Lahey
Timestep Variable (set so that Co = 0.5)

The diameter of the bubble does not change except very close to the wall. The
diameter of the bubble at the wall is progressively increasing with the length as
seen in figure 4.8a. The lateral profile (figure 4.8b) shows that the diameter quickly
decreases towards its initial value of 1mm with the distance to the wall. One can
just consider the diameter of the bubble at the void-fraction peak (as seen in figure
4.2a). This gives a diameter of 1.04mm which can be easily rounded down to the
initial diameter of 1mm. The skin friction coefficient is exactly the same than the
one found without the IAC equation. Therefore, it can be fairly considered to use
a constant diameter and to not solve the IAC equation or implement collision and
coalescence in Lagrangian Particle Tracking. If the result is not sensitive to the
coalescence and breakage for this case, this hypothesis must be checked again if the
geometry is changed to a longer plate, a more turbulent flow (higher velocity for
example) or a denser solution.

(a) Diameter of the bubbles at the
wall

(b) Lateral distribution of the diame-
ter wrt. the distance to the wall

Figure 4.8: Average diameter of the bubble
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4.3 Influence of the diameter of the bubble on the
solution

The diameter of the bubble is a crucial parameter that influences the solution as
it influences almost every forces that affects the bubbles. Therefore the gain of
efficiency must be studied with respect to the diameter of the bubble.

4.3.1 Influence of the diameter in a Lagrangian formulation
Numerous simulations are launched with bubbles’ diameter ranging from 0.1mm to
10mm. The study is made using the Lagrangian solver as it is said to give more
accurate results than the Eulerian one. The comparison with the Eulerian solver
will be done in section 4.3.2.
The duration of the calculation is really dependant on the diameter: for 10mm, only
25 particles are injected per second whereas for 0.1mm, 252 100 particles need to be
injected to keep the same air rate of flow. Moreover, when the number of particles
increases, the occurrence of collisions is following the same trend which increases the
number of Lagrangian timesteps for each eulerian timestep. Especially, the 0.1mm
and 0.2mm cases have been really long to compute. For 5.0 and 10.0mm, the small
number of particles makes more difficult to render time-averaged curve, the problem
is thus simulated for 12s instead of 8s and more timesteps are written. For every
simulation, the skin friction coefficient is computed (as described in section 3.3.4.
The gain of efficiency is computed as the relative error between the skin friction
coefficient of the simulation and the one found without bubbles (presented in table
4.3). The results are displayed in figure 4.9

Figure 4.9: Gain of efficiency wrt. diameter with the LPT solver

The skin friction coefficient changes a lot with the diameter of the bubbles. It is
observed that the velocity and turbulence fields are almost the same for all diameter
(as seen in figure 4.11): this terms are not sensitive to the diameter. The difference
in skin friction coefficient is caused by the void fraction’s value at the wall as the
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void fraction α is really sensitive to the diameter. Three main regimes have been
distinguished that have a distinctive shape of void fraction distribution and is shown
figure 4.10

Figure 4.10: Void fraction distribution for different diameters

These regimes are:
• A collision-driven distribution for low diameter’s bubbles (D ≤ 0.5mm). To

keep the same air rate flow with a small bubble diameter, numerous particle are
present and collisions occur very frequently. Therefore, the position becomes
really dependent on the collision history (interaction bubbles-bubbles) and less
on the forces caused by the bubble-fluid interactions. This leads to a bigger
variety of position of the bubbles related to the wall. The peak observed in
figure 4.1 no longer exists. Thus, the void fraction at the wall remains small,
the gain of efficiency is small (5 %) and is not too dependant on the diameter
(slow increase with the diameter).

• A "fluid velocity"-driven distribution for medium diameter’s bubble (0.5mm≤
D ≤ 3mm). In this regime, the void fraction is not driven so much by the
collisions anymore. A peak distribution is found with almost all the bubbles
located very close to the wall. This is explained because the bubble still have
a quite small diameter and therefore a small inertia. When the bubble, is
approaching the wall (driven by the gravity and lift forces) and rebound at
the wall, the bubble will be quickly affected by low-velocity region of the water
and therefore will stagnate there. This lead to a peak distribution and to an
important bubble concentration at the wall that will improve a lot the gain
of efficiency. That is why the best efficiency is found for this regime for a
diameter where both the effect of the collision and the inertia are negligible.

• An inertia-driven regime for bubbles with a big diameter (D ≥ 3mm). As the
bubble will have a bigger volume and therefore a bigger inertia, the bubbles
will not react immediately to the low-velocity field of the water close to the
wall. Hence, depending on the velocity and direction of the bubble before the
collision with the wall, the bubble stays in the low-velocity zone or comes back
to a zone closer to the wall. Therefore, the distribution is not a peak anymore
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but have a plateau which is dependant on the inertia of the bubble. Therefore,
the void fraction at the wall decreases slowly with the diameter and so does
the gain of efficiency.

(a) Velocities distribution (b) Turbulent dissipation ε distribu-
tion

(c) Turbulent kinetic energy k distribution

Figure 4.11: Comparison of the quantities wrt. the diametre of the bubbles

One can note that the limit between the collision and the fluid-velocity driven regime
is only function of the concentration of particles whereas the limit between the fluid-
velocity and inertia regimes are just a function of the mass of the particles (and hence
its diameter).

4.3.2 Comparison with the Eulerian formulation
A series of simulations is also launched with the Eulerian-Eulerian solver to com-
pare the results of efficiency with the one found in section 4.3.1. Unlike with the
Lagrangian solver, the computation time is not really dependent on the diameter of
the bubble as the discrete phase is considered as a continuous one. For an undeter-
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mined reason, the solver becomes highly unstable for bubbles with a 3mm diameter
so that the simulation for this diameter has not been successfully simulated. The
reason of that remains unknown.

Figure 4.12: Comparison of the skin friction computed by the two solvers

The results are shown in figure 4.12. It can be seen that the results differ greatly
from the ones found with the Lagrangian solver. Depending on the diameter, the
relative error between the two solvers is between 0 % and 25 %. The reason of these
discreptancies are studied considering the regimes defined in section 4.3.1 and by
comparing the void fraction distribution.

• For small diameters (the "collision regime"), the results given by the two solvers
are similar. The comparison of the void fraction distribution shows an identical
shape but the result slightly diverges when close to the wall. This still give
a satisfying results as the relative error between the two solvers is lower than
5%. Counting that the computation-time is very long for the 2D problem
(and hence even more for a 3D problem), it can be really interesting to use
the Eulerian solver for this range of diameter.

• For medium diameter (the "velocity driven regime"), the error is around 15%.
The comparison already made in figure 4.6b shows that the height of the
peak is underestimated. This may be improved by adjusting the parameters
of the wall-lubrication force. For example, the damping parameter could be
decreased to have a result closer to the Lagrangian framework.

• For big diameter, a strange behaviour appears as there is a sudden jump in
the results at 5mm. The two frameworks give the same results with an error
less than 5% but a closer look at the void fraction distribution and the other
quantities shows that the lateral profiles given by the two solvers are really
different. The similarity may hence be just a coincidence and the Eulerian
solver should not be used for this region. This conclusion is understandable,
the number of particles for these diameter is so low that having time-averaged
curve takes long with the Lagrangian solver. It is therefore difficult to consider
the air phase as a continuum for such small concentrations.
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(a) Small diameter (D=0.1mm) (b) Big diameter (D=10mm)

Figure 4.13: Lateral void-fraction for different diameters

4.3.3 Influence of the rate flow
The evolution of the skin friction coefficient with respect to the air rate flow is also
studied. All the results are presented in percentage as function of the initial air flow
Q̇ = 0.00132m3s−1.
For 1mm diameter bubbles, the rate flow shows a linear curve for both the methods
between 0 % and 100% rate of flow for bubbles. This is shown in figure 4.14. How-
ever, the gain of efficiency for higher rates of flow will certainly attain an asymptote
when it will enter the collision-driven regime.

Figure 4.14: Skin friction coefficient wrt. rate flow for 1mm bubbles

Thus, a study for bubble with 0.2mm is also done to study the behaviour of bubbles
that are in the collision regime. This is shown in figure 4.15. In this regime, the
efficiency curve is almost constant: the rate flow does not influence the gain of
efficiency (indeed, more particles would just extend the distribution laterally but
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would not increase the void fraction at the wall). One can see that for small rates
of flow (from 0 to 10%) a linear curve can be observed which shows that for this
range of rates of flow, the bubbles are in the "fluid-velocity regime".

Figure 4.15: Skin friction coefficient wrt. rate flow for different diameter of bubbles
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5
Conclusion

This master’s thesis gave a first approach on the analysis of a bubble flow under
a semi-infinite plate and gave some guidance and recommendations to set-up an
efficient method to simulate this flow.

The main result of this study is that an Eulerian-Eulerian solver must be used
carefully for this type of analysis as it can lead to very different results than from
the Lagrangian solvers. However, for a very dense concentration of bubbles in the
boundary layer – when a Lagrangian simulation becomes very computational in-
tensive – the Euler-Euler method can give correct results and save a lot of time
compared to the Lagrangian method. For a less dense solution, the Laplacian Par-
ticle Tracking solver should always be preferred.

The Eulerian method is not so accurate because it involves a contradiction about
the choice of a correct mesh grid: the mesh’s size must be big enough to incorporate
numerous particles in order to solve average equations but must be small enough
to render the behaviour close to the wall (necessary to compute the shear stress at
the wall). Moreover, the wall lubrication component’s model does not seem suitable
for ship simulations: this model has originally been developed empirically to com-
ply with experimental results in a vertical pipe and its generalization to all type of
geometry is not convincing. A parametric study or even a new formulation of the
wall-lubrication force should be developed to better comply with the reality and can
allow the use of an Eulerian-Eulerian solver for a wider range of situations.

It has also been shown that the bubbles are spherical and not subjected to coa-
lescence and breakage. The turbulence model does not influence so much the results
and no particular effort should be invested in the choice of it. A first attempt to
classify the behaviour of the air flow depending on the concentration of the particles
and their volume has been developed.

A three-dimensional study should be done as it would facilitate the comparison
with the experimental results and also lead to a better prediction of the real gain of
efficiency. In particular, numerous bubbles can escape the area below the plate by
the sides and therefore would reduce the expected resistance reduction.
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A
Definition of the geometry and the

boundary conditions

A.1 Files used by the two solvers

A.1.1 system/blockMeshDict

1 FoamFile
2 {
3 version 2.0;
4 format ascii ;
5 class dictionary ;
6 object blockMeshDict ;
7 }
8 convertToMeters 1;
9

10 vertices
11 (
12 (0 0.5 0)
13 (2.6 0.5 0)
14 (2.6 -0.5 0)
15 (0 -0.5 0)
16

17 (0 0.5 -0.05)
18 (2.6 0.5 -0.05)
19 (2.6 -0.5 -0.05)
20 (0 -0.5 -0.05)
21

22 (0 0.5 -0.20)
23 (2.6 0.5 -0.20)
24 (2.6 -0.5 -0.20)
25 (0 -0.5 -0.20)
26 );
27

28 blocks
29 (
30 hex (0 1 2 3 4 5 6 7) (520 1 50)

simpleGrading (1 1 1)
31 hex (4 5 6 7 8 9 10 11) (520 1 15)

simpleGrading (1 1 1)
32 );
33

34 edges

35 (
36 );
37

38 patches
39 (
40 patch inlet
41 (
42 (0 3 7 4)
43 )
44

45 patch inlet_water
46 (
47 (4 7 11 8)
48 )
49

50 patch outlet
51 (
52 (2 1 5 6)
53 (6 5 9 10)
54 )
55

56 wall walls
57 (
58 (3 2 1 0)
59 )
60

61 patch stream
62 (
63 (11 10 9 8)
64 )
65 );
66

67 mergePatchPairs
68 (
69 );
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A. Definition of the geometry and the boundary conditions

A.1.2 0/epsilon.water

1 FoamFile
2 {
3 version 2.0;
4 format ascii ;
5 class volScalarField ;
6 object epsilon . water ;
7 }
8

9 dimensions [0 2 -3 0 0 0 0];
10

11 internalField uniform 0.027;
12

13 boundaryField
14 {
15 inlet
16 {
17 type fixedValue ;
18 value uniform 0.027;
19 }
20

21 inlet_water
22 {
23 type fixedValue ;

24 value uniform 0.027;
25 }
26

27 outlet
28 {
29 type inletOutlet ;
30 phi phi. water ;
31 inletValue $internalField ;
32 value $internalField ;
33 }
34

35 walls
36 {
37 type

epsilonWallFunction ;
38 value $internalField ;
39 }
40

41 stream
42 {
43 type zeroGradient ;
44 }
45 }

A.1.3 0/k.water

1 FoamFile
2 {
3 version 2.0;
4 format ascii ;
5 class volScalarField ;
6 object k. water ;
7 }
8

9 dimensions [0 2 -2 0 0 0 0];
10

11 internalField uniform 0.01;
12

13 boundaryField
14 {
15 inlet
16 {
17 type fixedValue ;
18 value $internalField ;
19 }
20

21 inlet_water
22 {
23 type fixedValue ;

24 value $internalField ;
25 }
26

27 outlet
28 {
29 type inletOutlet ;
30 phi phi. water ;
31 inletValue $internalField ;
32 value $internalField ;
33 }
34

35 walls
36 {
37 type kqRWallFunction ;
38 value $internalField ;
39 }
40

41 stream
42 {
43 type zeroGradient ;
44 }
45 }

A.1.4 0/nut.water

II
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1 FoamFile
2 {
3 version 2.0;
4 format ascii ;
5 class volScalarField ;
6 object nut. water ;
7 }
8

9 dimensions [0 2 -1 0 0 0 0];
10

11 internalField uniform 1e -8;
12

13 boundaryField
14 {
15 inlet_water
16 {
17 type calculated ;
18 value $internalField ;
19 }
20

21 inlet
22 {

23 type calculated ;
24 value $internalField ;
25 }
26

27 outlet
28 {
29 type calculated ;
30 value $internalField ;
31 }
32

33 walls
34 {
35 type nutkWallFunction ;
36 value $internalField ;
37 }
38

39 stream
40 {
41 type calculated ;
42 value $internalField ;
43 }
44 }

A.1.5 0/U.water

1 FoamFile
2 {
3 version 2.0;
4 format binary ;
5 class volVectorField ;
6 object U. water ;
7 }
8 dimensions [0 1 -1 0 0 0 0];
9

10 internalField uniform (2 0 0);
11

12 boundaryField
13 {
14 inlet
15 {
16 type fixedValue ;
17 value uniform (2 0 0);
18 }
19

20 inlet_water
21 {
22 type fixedValue ;

23 value uniform (2 0 0);
24 }
25

26 outlet
27 {
28 type inletOutlet ;
29 phi phi. water ;
30 inletValue uniform (0 0 0);
31 value uniform (0 0 0);
32 }
33

34 walls
35 {
36 type fixedValue ;
37 value uniform (0 0 0);
38 }
39

40 stream
41 {
42 type zeroGradient ;
43 }
44 }

A.1.6 constant/g

1 FoamFile
2 {
3 version 2.0;
4 format ascii ;

5 class
uniformDimensionedVectorField ;

6 location " constant ";
7 object g;
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8 }
9

10 dimensions [0 1 -2 0 0 0 0];
11 value (0 0 -9.81);

A.2 Specific files for twoPhaseEulerFoam

A.2.1 0/alpha.air

1 FoamFile
2 {
3 version 2.0;
4 format ascii ;
5 class volScalarField ;
6 location "0";
7 object alpha .air;
8 }
9

10 dimensions [0 0 0 0 0 0 0];
11

12 internalField uniform 0;
13

14 boundaryField
15 {
16 inlet
17 {
18 type fixedValue ;
19 value uniform 0.0132;
20 }
21

22 inlet_water
23 {

24 type fixedValue ;
25 value uniform 0;
26 }
27

28 outlet
29 {
30 type inletOutlet ;
31 phi phi.air;
32 inletValue uniform 1;
33 value uniform 1;
34 }
35

36 walls
37 {
38 type zeroGradient ;
39 }
40

41 stream
42 {
43 type zeroGradient ;
44 }
45 }

A.2.2 0/p

1 FoamFile
2 {
3 version 2.0;
4 format ascii ;
5 class volScalarField ;
6 object p;
7 }
8

9 dimensions [1 -1 -2 0 0 0 0];
10

11 internalField uniform 1e5;
12

13 boundaryField
14 {
15 inlet
16 {
17 type calculated ;
18 value $internalField ;
19 }
20

21 inlet_water

22 {
23 type calculated ;
24 value $internalField ;
25 }
26

27 outlet
28 {
29 type calculated ;
30 value $internalField ;
31 }
32

33 walls
34 {
35 type calculated ;
36 value $internalField ;
37 }
38

39 stream
40 {
41 type calculated ;
42 value $internalField ;
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43 } 44 }

A.2.3 0/p_rgh

1 FoamFile
2 {
3 version 2.0;
4 format ascii ;
5 class volScalarField ;
6 object p_rgh ;
7 }
8 dimensions [1 -1 -2 0 0 0 0];
9

10 internalField uniform 1e5;
11

12 boundaryField
13 {
14 inlet
15 {
16 type fixedFluxPressure ;
17 value $internalField ;
18 }
19

20 inlet_water
21 {

22 type fixedFluxPressure ;
23 value $internalField ;
24 }
25

26 outlet
27 {
28 type fixedValue ;
29 value uniform 1e5;
30 }
31

32 walls
33 {
34 type zeroGradient ;
35 }
36

37 stream
38 {
39 type zeroGradient ;
40 }
41 }

A.2.4 0/U.air

1 FoamFile
2 {
3 version 2.0;
4 format binary ;
5 class volVectorField ;
6 object U.air;
7 }
8

9 dimensions [0 1 -1 0 0 0 0];
10

11 internalField uniform (2 0 0);
12

13 boundaryField
14 {
15 inlet
16 {
17 type fixedValue ;
18 value uniform (2 0 0);
19 }
20

21 inlet_water
22 {

23 type fixedValue ;
24 value uniform (0 0 0);
25 }
26

27 outlet
28 {
29 type inletOutlet ;
30 value $internalField ;
31 inletValue uniform (0 0 0);
32 }
33

34 walls
35 {
36 type slip;
37 value uniform (0 0 0);

}
38

39 stream
40 {
41 type zeroGradient ;
42 }
43 }
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A.3 Specific files for DPMFoam

A.3.1 0/p

1 FoamFile
2 {
3 version 2.0;
4 format ascii ;
5 class volScalarField ;
6 object p;
7 }
8

9 dimensions [0 2 -2 0 0 0 0];
10

11 internalField uniform 1e5;
12

13 boundaryField
14 {
15 inlet
16 {
17 type

fixedFluxPressure ;
18 value $internalField ;
19 }
20

21 inlet_water

22 {
23 type

fixedFluxPressure ;
24 value $internalField ;
25 }
26

27 outlet
28 {
29 type fixedValue ;
30 value 1e5;
31 }
32

33 walls
34 {
35 type zeroGradient ;
36 }
37

38 stream
39 {
40 type zeroGradient ;
41 }
42 }
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B
twoPhaseEulerFoam configuration

files

B.1 constant/phaseProperties

1 FoamFile
2 {
3 version 2.0;
4 format ascii ;
5 class dictionary ;
6 location " constant ";
7 object phaseProperties ;
8 }
9 phases (air water );

10

11 air
12 {
13

14 /* Comment to enable IAC equation */
15 diameterModel constant ;
16 constantCoeffs
17 {
18 d 1e -3;
19 }
20

21 residualAlpha 1e -6;
22

23 /* Uncomment to enable IAC equation */
24

25 // diameterModel IATE;
26 // IATECoeffs
27 // {
28 // dMax 1e -1;
29 // dMin 1e -5;
30 // residualAlpha 1e -6;
31 //
32 // sources
33 // (
34 // wakeEntrainmentCoalescence
35 // {
36 // Cwe 0.0073;
37 // }
38 //
39 // randomCoalescence
40 // {
41 // Crc 0.021;

42 // C 3;
43 // alphaMax 0.8;
44 // }
45 //
46 // turbulentBreakUp
47 // {
48 // Cti 0.0945;
49 // WeCr 2;
50 // }
51 // );
52 // }
53 //
54 // residualAlpha 1e -6;
55 }
56

57 /* Just here for compatibility , not used
*/

58 water
59 {
60 diameterModel constant ;
61 constantCoeffs
62 {
63 d 1e -4;
64 }
65

66 residualAlpha 1e -6;
67 }
68

69 blending
70 {
71 default
72 {
73 type none;
74 continuousPhase water ;
75 }
76 }
77

78 sigma
79 (
80 (air and water ) 0.07
81 );
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82

83 aspectRatio
84 (
85 (air in water )
86 {
87 type constant ;
88 E0 1.0;
89 }
90 );
91

92 drag
93 (
94 (air in water )
95 {
96 type SchillerNaumann ;
97 residualRe 1e -3;
98 swarmCorrection
99 {

100 type none;
101 }
102 }
103 );
104

105 virtualMass
106 (
107 (air in water )
108 {
109 type

constantCoefficient ;
110 Cvm 0.5;
111 }
112 );
113

114 heatTransfer
115 (
116 (air in water )
117 {

118 type RanzMarshall ;
119 residualAlpha 1e -4;
120 }
121 );
122

123 lift
124 (
125 (air in water )
126 {
127 type

constantCoefficient ;
128 Cl 0.5;
129 }
130 );
131

132 wallLubrication
133 (
134 (air in water )
135 {
136 type Frank ;
137 Cwd 6.8;
138 Cwc 10;
139 p 1.7;
140 }
141 );
142

143 turbulentDispersion
144 (
145 (air in water )
146 {
147 type LopezDeBertodano ;
148 Ctd 1;
149 }
150 );
151

152 // Minimum allowable pressure
153 pMin 10000;

B.2 constant/thermophysicalProperties.air

1 FoamFile
2 {
3 version 2.0;
4 format ascii ;
5 class dictionary ;
6 location " constant ";
7 object thermophysicalProperties

.air;
8 }
9

10 thermoType
11 {
12 type heRhoThermo ;
13 mixture pureMixture ;
14 transport const ;
15 thermo hConst ;
16 equationOfState rhoConst ;

17 specie specie ;
18 energy

sensibleInternalEnergy ;
19 }
20

21 mixture
22 {
23 specie
24 {
25 nMoles 1;
26 molWeight 28.9;
27 }
28 equationOfState
29 {
30 rho 1.269;
31 }
32 thermodynamics
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33 {
34 Cp 1007;
35 Hf 0;
36 }
37 transport

38 {
39 mu 1.725e -05;
40 Pr 0.7;
41 }
42 }

B.3 constant/thermophysicalProperties.water

1 FoamFile
2 {
3 version 2.0;
4 format ascii ;
5 class dictionary ;
6 location " constant ";
7 object thermophysicalProperties

. water ;
8 }
9

10 thermoType
11 {
12 type heRhoThermo ;
13 mixture pureMixture ;
14 transport const ;
15 thermo hConst ;
16 equationOfState rhoConst ;
17 specie specie ;
18 energy

sensibleInternalEnergy ;
19 }
20

21 mixture
22 {
23 specie
24 {
25 nMoles 1;
26 molWeight 18;
27 }
28 equationOfState
29 {
30 rho 1000;
31 }
32 thermodynamics
33 {
34 Cp 4195;
35 Hf 0;
36 }
37 transport
38 {
39 mu 1e -3;
40 Pr 2.289;
41 }
42 }

B.4 constant/turbulenceProperties.water

1 FoamFile
2 {
3 version 2.0;
4 format ascii ;
5 class dictionary ;
6 location " constant ";
7 object turbulenceProperties .

water ;
8 }
9

10 simulationType RAS;
11

12 RAS
13 {
14 RASModel kEpsilon ; // LaheyKEpsilon ;
15

16 turbulence on;
17 printCoeffs on;
18 }

B.5 constant/turbulenceProperties.air

1 FoamFile
2 {
3 version 2.0;

4 format ascii ;
5 class dictionary ;
6 location " constant ";
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7 object turbulenceProperties .air
;

8 }
9

10 simulationType RAS;
11

12 RAS

13 {
14 RASModel continuousGasKEpsilon ; //

continuousGasKEpsilon ;
15

16 turbulence off;
17 printCoeffs on;
18 }

B.6 system/controlDict

1 FoamFile
2 {
3 version 2.0;
4 format ascii ;
5 class dictionary ;
6 location " system ";
7 object controlDict ;
8 }
9

10 application twoPhaseEulerFoam ;
11

12 startFrom startTime ;
13

14 startTime 0;
15

16 stopAt endTime ;
17

18 endTime 5;
19

20 deltaT 0.0005;
21

22 writeControl runTime ;

23

24 writeInterval 0.1;
25

26 purgeWrite 0;
27

28 writeFormat ascii ;
29

30 writePrecision 6;
31

32 writeCompression uncompressed ;
33

34 timeFormat general ;
35

36 timePrecision 6;
37

38 runTimeModifiable yes;
39

40 adjustTimeStep yes;
41

42 maxCo 0.5;
43 maxDeltaT 0.2;

B.7 system/fvSchemes

1 FoamFile
2 {
3 version 2.0;
4 format ascii ;
5 class dictionary ;
6 location " system ";
7 object fvSchemes ;
8 }
9 ddtSchemes

10 {
11 default Euler ;
12 }
13

14 gradSchemes
15 {
16 default Gauss linear ;
17 }
18

19 wallDist

20 {
21 method meshWave ;
22 nRequired false ;
23 }
24

25 divSchemes
26 {
27 default none;
28

29 div(phi , alpha .air) Gauss vanLeer ;
30 div(phir , alpha .air) Gauss vanLeer ;
31

32 "div \( alphaRhoPhi .*,U.*\)" Gauss
limitedLinearV 1;

33 "div \( phi .*,U.*\)" Gauss
limitedLinearV 1;

34 div(phi.air , kappai .air) Gauss
vanLeer ;

35 "div \( alphaRhoPhi .* ,(h|e).*\)" Gauss
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limitedLinear 1;
36 "div \( alphaRhoPhi .*,K.*\)" Gauss

limitedLinear 1;
37 "div \( alphaPhi .*,p\)" Gauss

limitedLinear 1;
38 "div \( alphaRhoPhi .* ,(k| epsilon ).*\)"

Gauss limitedLinear 1;
39 "div \( phim ,(k| epsilon )m\)" Gauss

limitedLinear 1;
40 "div \(\(\(\( alpha .*\* thermo :rho .*\)*

nuEff .*\) \* dev2 \(T\( grad \(U.*\) \)
\) \) \)" Gauss linear ;

41 }
42

43 laplacianSchemes

44 {
45 default Gauss linear

uncorrected ;
46 }
47

48 interpolationSchemes
49 {
50 default linear ;
51 }
52

53 snGradSchemes
54 {
55 default uncorrected ;
56 }

B.8 system/fvSolution

1 FoamFile
2 {
3 version 2.0;
4 format ascii ;
5 class dictionary ;
6 location " system ";
7 object fvSolution ;
8 }
9

10 solvers
11 {
12 alpha .air
13 {
14 nAlphaCorr 1;
15 nAlphaSubCycles 2;
16 MULESCorr yes;
17 nLimiterIter 8;
18 }
19

20 p_rgh
21 {
22 solver GAMG;
23 smoother DIC;
24 nPreSweeps 0;
25 nPostSweeps 2;
26 nFinestSweeps 2;
27 cacheAgglomeration true;
28 nCellsInCoarsestLevel 10;
29 agglomerator faceAreaPair ;
30 mergeLevels 1;
31 tolerance 1e -8;
32 relTol 0;
33 }
34

35 p_rghFinal
36 {
37 $p_rgh ;
38 relTol 0;
39 }
40

41 "(U| kappai ).*"

42 {
43 solver smoothSolver ;
44 smoother symGaussSeidel ;
45 tolerance 1e -5;
46 relTol 0;
47 minIter 1;
48 }
49 "(k| epsilon | Theta ).*"
50 {
51 solver smoothSolver ;
52 smoother symGaussSeidel ;
53 tolerance 1e -7;
54 relTol 0;
55 minIter 1;
56 }
57 }
58

59 PIMPLE
60 {
61 nOuterCorrectors 5;
62 nCorrectors 2;
63 nNonOrthogonalCorrectors 0;
64 residualControl
65 {
66 p_rgh
67 {
68 tolerance 1e -3;
69 relTol 0;
70 }
71 }
72 }
73

74 relaxationFactors
75 {
76 equations
77 {
78 "U.*" 0.4;
79 " kappai .*" 0.4;
80 }
81 }
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C.1 constant/kinematicCloudProperties

1 FoamFile
2 {
3 version 2.0;
4 format ascii ;
5 class dictionary ;
6 location " constant ";
7 object particleProperties ;
8 }
9

10

11 solution
12 {
13 active true;
14 coupled true;
15 transient yes;
16 cellValueSourceCorrection off;
17

18 interpolationSchemes
19 {
20 rho. water cell;
21 U. water cellPoint ;
22 mu. water cell;
23 curlUcDt cell;
24 DUcDt cell;
25 }
26

27 integrationSchemes
28 {
29 U Euler ;
30 }
31

32 sourceTerms
33 {
34 schemes
35 {
36 U semiImplicit 1;
37 }
38 }
39 }
40

41 constantProperties
42 {
43 parcelTypeId 1;
44

45 rhoMin 1e -15;
46 minParcelMass 1e -15;
47

48 rho0 1.2;
49 youngsModulus 1e -3;
50 poissonsRatio 0.5;
51

52 constantVolume false ;
53

54 alphaMax 0.99;
55 }
56

57 subModels
58 {
59 particleForces
60 {
61 sphereDrag
62 {
63 alphac alpha . water ;
64 }
65 gravity ;
66 ConstantLift { U U. water ;}
67 virtualMass { Cvm 0.5; U U. water ;}
68 }
69

70 injectionModels
71 {
72 model1
73 {
74 type

patchInjection ;
75 parcelBasisType fixed ;
76 patchName inlet ;
77 U0 (2 0 0);
78 nParticle 1;
79 parcelsPerSecond 2521;
80 sizeDistribution
81 {
82 type fixedValue ;
83 fixedValueDistribution
84 {
85 value 1e -3;
86 }
87 }
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88 flowRateProfile constant
0.00132;

89 massTotal 0;
90 SOI 0;
91 duration 60;
92 }
93 }
94

95 dispersionModel
gradientDispersionRAS ;

96

97 patchInteractionModel
localInteraction ;

98

99 localInteractionCoeffs
100 {
101 patches
102 (
103 walls
104 {
105 type rebound ;
106 e 0.97;
107 mu 0.09;
108 }
109

110 " inlet | inlet_water | outlet |
stream "

111 {
112 type escape ;
113 }
114 );
115 }
116

117 StandardWallInteractionCoeffs
118 {
119 type rebound ;
120 e 0.97;
121 mu 0.09;
122 }
123

124 heatTransferModel none;
125

126 surfaceFilmModel none;
127

128 collisionModel pairCollision ;
129

130 pairCollisionCoeffs
131 {
132 maxInteractionDistance 5e -4;
133

134 writeReferredParticleCloud no;
135

136 pairModel
pairSpringSliderDashpot ;

137

138 pairSpringSliderDashpotCoeffs
139 {
140 useEquivalentSize no;
141 alpha 1;
142 b 1;
143 mu 0;
144 cohesionEnergyDensity 0;
145 collisionResolutionSteps 12;
146 };
147

148 wallModel
wallSpringSliderDashpot ;

149

150 wallSpringSliderDashpotCoeffs
151 {
152 useEquivalentSize no;
153 collisionResolutionSteps 12;
154 youngsModulus 1e -3;
155 poissonsRatio 0.50;
156 alpha 1;
157 b 1;
158 mu 0;
159 cohesionEnergyDensity 0;
160 };
161

162 UName U. water ;
163 }
164

165 stochasticCollisionModel none;
166

167 radiation off;
168 }
169

170

171 cloudFunctions
172 {}

C.2 constant/transportProperties

1 FoamFile
2 {
3 version 2.0;
4 format ascii ;
5 class dictionary ;
6 location " constant ";
7 object transportProperties ;
8 }

9

10 continuousPhaseName water ;
11

12 rho. water 1000;
13

14 transportModel Newtonian ;
15 nu 1e -06;
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C.3 constant/turbulenceProperties.water

1 FoamFile
2 {
3 version 2.0;
4 format ascii ;
5 class dictionary ;
6 location " constant ";
7 object turbulenceProperties .

water ;
8 }
9

10 simulationType RAS;
11

12 RAS
13 {
14 RASModel kEpsilon ;
15

16 turbulence on;
17 printCoeffs on;
18 }

C.4 system/controlDict

1 FoamFile
2 {
3 version 2.0;
4 format ascii ;
5 class dictionary ;
6 location " system ";
7 object controlDict ;
8 }
9

10 application DPMFoam ;
11

12 startFrom startTime ;
13

14 startTime 0;
15

16 stopAt endTime ;
17

18 endTime 8;
19

20 deltaT 2e -3;
21

22 writeControl runTime ;

23

24 writeInterval 0.05;
25

26 purgeWrite 0;
27

28 writeFormat ascii ;
29

30 writePrecision 6;
31

32 writeCompression uncompressed ;
33

34 timeFormat general ;
35

36 timePrecision 6;
37

38 runTimeModifiable yes;
39

40 adjustTimeStep no;
41

42 maxCo 0.9;
43 maxDeltaT 0.2;

C.5 system/fvSchemes

1 FoamFile
2 {
3 version 2.0;
4 format ascii ;
5 class dictionary ;
6 object fvSchemes ;
7 }
8

9 ddtSchemes
10 {
11 default Euler ;
12 }
13

14 gradSchemes
15 {
16 default Gauss linear ;
17 }
18

19 divSchemes
20 {
21 default none;
22

23 div(alphaPhic ,U. water ) Gauss
linearUpwindV unlimited ;

24 div(alphaPhic , epsilon . water ) Gauss
limitedLinear 1;
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25 div(alphaPhic ,k. water ) Gauss
limitedLinear 1;

26 div ((( alpha . water * nuEff . water )*dev2(
T(grad(U. water ))))) Gauss linear
;

27 }
28

29 laplacianSchemes
30 {
31 default Gauss linear

corrected ;

32 }
33

34 interpolationSchemes
35 {
36 default linear ;
37 }
38

39 snGradSchemes
40 {
41 default corrected ;
42 }

C.6 system/fvSolution

1 FoamFile
2 {
3 version 2.0;
4 format ascii ;
5 class dictionary ;
6 location " system ";
7 object fvSolution ;
8 }
9

10 solvers
11 {
12 p
13 {
14 solver GAMG;
15 tolerance 1e -06;
16 relTol 0.01;
17 smoother GaussSeidel ;
18 cacheAgglomeration true;
19 nCellsInCoarsestLevel 10;
20 agglomerator faceAreaPair ;
21 mergeLevels 1;
22 }
23

24 pFinal
25 {
26 solver GAMG;
27 tolerance 1e -06;
28 relTol 0;
29 smoother GaussSeidel ;
30 cacheAgglomeration true;
31 nCellsInCoarsestLevel 10;
32 agglomerator faceAreaPair ;
33 mergeLevels 1;
34 }
35

36 "(U|k| epsilon ).*"
37 {
38 solver smoothSolver ;
39 smoother symGaussSeidel ;

40 tolerance 1e -05;
41 relTol 0.1;
42 }
43

44 "(U|k| epsilon ).* Final "
45 {
46 $U;
47 tolerance 1e -05;
48 relTol 0;
49 }
50 }
51

52 PIMPLE
53 {
54 pRefPoint (0 0 0);
55 pRefValue 0;
56 nOuterCorrectors 5;
57 nCorrectors 2;
58 nNonOrthogonalCorrectors 0;
59 residualControl
60 {
61 p
62 {
63 tolerance 1e -3;
64 relTol 0;
65 }
66 }
67 }
68

69 relaxationFactors
70 {
71 equations
72 {
73 "U.*" 0.4;
74 " kappai .*" 0.4;
75

76

77 }
78 }
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