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Modelling and Feed-Forward Control of Robot Arms with Flexible Joints and Flex-
ible Links
MAZIN HAMAD
Department of Signals and Systems
Chalmers University of Technology

Abstract

Reducing the weight of robotic manipulators has been identified as one of the im-
portant factors that can reduce the production and installation cost and allow for
safe physical human-robot interaction but it results to flexible robotic manipulators.
Motion control of flexible manipulators is a challenging task, particularly when the
flexibility is arising not only because of flexible joints but also due to flexible links.
To address this problem, more advanced real-time control strategies that effectively
use more accurate mathematical models are required.
This thesis deals with the various aspects of modelling, design, simulation and con-
trol of robotic manipulators that have both flexible joints and flexible links. For
a manipulator with long-reach elastic arms (links), the simulations show that a
lumped mass-spring-damper model with enough number of elements can adequately
capture the critical modes of the distributed link flexibility of a robot arm. The
main contributions of this work is the use of lumped inverse dynamic models to gen-
erate the required actuator references in addition to feedforward computed torque
for high performance end-effector’s trajectory tracking. To pursue this target, the
dynamic differences between lumped models and elastic links are compensated both
in the frequency- and time-domain. The compensation in frequency-domain relies
on frequency response matching of zeros and poles between lumped models and
models of the manipulator arms and joints. By using lumped model in the inverse
dynamic models for feedforward control, real-time implementation will be possible
in robot controllers used today. The compensation in the time-domain is based on
feed-forward compensation of estimated link position errors obtained from measure-
ments or FEM model simulations. Trajectory tracking results using different model
implementations are presented and analysed and they show that the performance of
the proposed modelling and control methodologies is promising.

Keywords: Flexible robotic manipulators, light-weight robotics, safe robotics, tra-
jectory tracking, PID control, inverse dynamic models, feed-forward compensation.
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1
Introduction

1.1 Introduction

Nowadays, robotic manipulators are widely used to efficiently carry out differ-
ent tasks in dangerous, monotonous and/or tedious jobs. They are being utilised
extensively in various industrial applications such as painting, welding, assembling,
laser cutting, etc. Those tasks naturally have different performance requirements.
Most of industrial robotic manipulators are designed for high performance and long
lifetime and are implemented with high stiffness links. The main flexibility is then
usually located in the gearboxes and joint bearings. The control schemes are de-
signed in order to obtain good position tracking accuracy in case of these flexibilities
are influential. With the growing demand for “cheap” mass-production and robot
safety, lighter robot structures are needed, which means experiencing performance
limitations because of the excitation of elastic modes in the arm system. With also
more requirements on higher speed and acceleration to obtain shorter manufacturing
cycle times, the effects of elastic dynamics of the arm structures cannot be neglected
anymore.
A robotic manipulator with only flexibilities in gears and bearings can only have
a finite number of degrees of motion freedom (DOFs), that are usually described
by ordinary differential equations (ODEs). On the contrary, a manipulator with
flexible links has an infinite number of DOFs, which are preferably specified by
partial differential equations (PDEs) [4]. However, the flexible links will usually have
a geometry such that only one vibration mode is excited for each link during the
manipulator motion and it is therefore sufficient to use models with finite number of
degrees of freedom when controlling a manipulator with flexible links. The problem
is not to model the vibration modes but is to do so while simultaneously taking
care of the change in the kinematic structure of the manipulator with dynamically
bending and twisting links.
When the motion programming of the manipulator is made, the dynamic defor-
mation of the links during the programmed movements is not known. Hence, it is
not possible to compensate for the link deflections without running the robot or a
model of the robot at first. One possibility to solve this problem when the program
can be run in advance is to simultaneously calculate the differential equations and
the kinematics of the robot by solving a system of Differential Algebraic Equations
(DAE) [66]. The problems with this solution are that the whole trajectory must
be known in advance and that the calculations are too heavy to be possible to run
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in real time for manipulator control. The requirement to know the trajectory in
advance makes it impossible to use, for example, sensor-based control.
A new alternative method to solve the problem with the influence of link deflections
on the kinematics of a manipulator is presented in this thesis. The basic idea is
to use a model of the dependence of the so called fake angle of a bending and/or
twisting link on the deflection of a rigid link with a local flexibility and with the
same frequency response. The compensation is then made in real time from the
calculated inverse model used for feed-forward control.
The suggested inverse dynamics control and compensation schemes are tested and
verified in a co-simulation environment comprising both Finite Element Method’s
(FEM) models including the flexible links in ADAMS/View and Matlab/Simulink.
The results of the tracking performance are then compared to the reference case
without using feed-forward control or compensation of link deflections.

1.2 Motivation and Problem Justification

Lightweight manipulators with flexible links offer several advantages in comparison
to their traditional rigid and bulky counterparts. The advantages include the re-
quirements of relatively smaller actuators, lower overall mass, lower energy consump-
tion and lower overall cost in general. Due to these characteristics, this class of high-
productivity manipulators are especially suitable for a number of non-conventional
robotic applications such as: space exploration missions robotic manipulators (for
example NASA Remote Manipulator System), fence-less robots for physical human-
robot interaction, mobile robotics, robots on tracks, etc. Besides, link flexibility
study is enforced also for heavy manipulators such as robotic excavators used in
mining operations, robotic crane systems used in construction applications, tunnel
inspection robots, oil/gas platforms robots, big robots in unstructured environments
and the like. In either case, size, mass, speed payload, environmental or task-related
constraint factors will motivate the use of more or less flexible link systems. It should
also be pointed out that traditional industrial robots with relatively rigid links are
used in high precision and high speed applications as laser cutting, plasma cutting,
water jet cutting and deburring. To increase the performance of industrial robots in
such applications compensation of small link deflections could be necessary. In such
a case, it should be emphasised that the elastodynamics of the robotic manipulator
system must be considered and incorporated at the early design stages to obtain
resonant link modes and link deflections that will be well adapted to the control re-
quirements with respect to, for example feed-forward control using inverse dynamic
models including flexible links.
During the latest 20 years, subtle design, exact modelling, critical analysis and
precise control and effective and efficient operation of flexible manipulators are hot
topics in both the robotics and control research communities. The investigation
of dynamics properties of a robotic manipulator with flexible links is sometimes
carried out using absolutely rigid mechanical models for both the links and the
joints. This simplification, however, leads to intolerable problems in the execution
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of operational tasks (for example bad accuracy of a laser-cutting tool mounted at
the end-effector of a high-speed robotic arm). Thus, in many cases the elasticity of
the manipulator with flexible links needs to be taken into account when analysing
its dynamics, especially when the task’s precision is largely influenced. For a wide
range of industrial manipulators with flexible links, the structural elastic compliance
is concentrated in its joint, gears and (harmonic) drives, and that is why most of
today’s manipulators with flexible links can only handle the flexibility in the joints
but not in the links. To be able to fully exploit the advantages of this class of
mechatronic systems and generalise them to cover other application areas, very
accurate models that can also capture the elastic behaviours of compliant links,
together with effective control strategies are needed [5].

1.3 Literature Review

Substantial work has been done on both the modelling and the control of flexible
robotic manipulators, and hence plenty of relevant publications in both areas are
available. Benosman and Vey [11] presented a survey that covers the control of
flexible manipulators in the period from 1990 to 2002, citing mostly those dealing
with the multi-link manipulators. Additionally, S. K. Dwivedy and P. Eberhard [12]
compiled a more recent and richer review work of literature around dynamic analysis
of flexible manipulators, with many other publications ranging from 1974 to 2005
and classifications based mainly on the number of flexible links used in the study
together with the control methods.

1.3.1 Earlier Studies in the Field of Flexible Robotic Ma-
nipulators

In this section, a survey of the literature related primarily to dynamical analysis
and control design of flexible robotic manipulators is carried out, considering both
joint and link flexibility.

Pioneering research in the area of modelling and control of flexible link manipula-
tors was driven by the interest in utilising flexible manipulators for space exploration
missions in the late 1970s. The motive behind this was the fact that a space robotic
manipulator should be the lightest possible in order to reduce costs attributed to/as-
sociated with launching process. Many researchers had studied various aspects
(Modelling, Control, Simulation, Experimental Testing and Mechatronic Design)
of flexible manipulators used for space applications. In 1979, Book [13] analysed
massless elastic chains with servo controlled joints by using the lumping approxima-
tion to account for the deflection of elastic elements under load, and later in 1984,
Book [14] investigated flexible manipulator dynamics using a recursive Lagrangian
formulation. At around the same time (in 1984), Cannon and Schmitz published one
of the first papers on the flexible manipulators control [15]. The problem of feedback
control innate in flexible links was considered by Sakawa et al. [16] in 1985. Yang
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and Donath [17] developed a dynamic model of a flexible arm with joints flexibility
integrated in 1988.
The period from the late 1980s to 1990s saw a great number of publications on
control models of flexible manipulators. For example, De Luca and Siciliano [18]
addressed the trajectory control of nonlinear single-link flexible arm by considering
the additional gravity factor in their control model. In 1990, a complete study of
different equations of flexible manipulators with various boundary conditions was
conducted by Bellezze et al. [19]. Asada et al. [20] have used a finite-element model
to study the optimal design problem of flexible arm by increasing its fundamental
vibration frequency through optimal beam tapering.
Most of the research work until the 1990s beginnings was focused primarily on the
optimisation control of flexible manipulators without any practical consideration for
the problem from structural dynamics or shape optimisation perspective. However,
some researchers such as Belvin and Park [21] used structural tailoring, and Asada
Park and and Rai [20] included shape design integrally in the overall control scheme.
In 1991, Wang et al. [22] formulated an optimisation model for a flexible manipulator.
They then produced its first optimum mode shapes and modal frequencies using a
modified iteration algorithm they developed. In 1994, an excellent paper treating
different models of flexible manipulators while examining the effect of load tip-masses
on their fundamental frequencies was published by Wang and Guan [23]. They
demonstrated how both shear deformation and rotary inertia will not affect so much
the fundamental vibration frequency. Wang and Russel, based on Euler-Bernoulli
model of flexible manipulators with tip loads, generated diverse examples of tip load
design vectors [24]. They continued investigating the matter and extending their
work by applying optimality of shape design [24] in their mechatronic approach [25],
where they presented an innovative new segmentised flexible manipulator model
opening the problem of design optimality to numerous techniques and algorithms of
mathematical programming.

1.3.2 Recent and Relevant Work on Flexible Manipulators

In this part of the literature review, recent research work, that has inspired the
author in some way or another is cited. It represents a focused overview to help in
systematically building the required theoretical concepts and also serve as a practical
guideline to facilitate following the rest of the thesis.
Numerous researchers have addressed the control problem associated with flexible
manipulators. Initial work was focusing on state-space model. For example, Cannon
and Schmitz [15] first studied the possibility of using the linear quadratic Gaussian
(LQG) controller with states reconstructed via estimation. Kalman filtering was
used for estimation of both rigid and flexible systems needed for control by Lin
and Lewis [20]. Geniele et al. [26] used two loops controller with the inner one for
stabilisation and the outer one for tracking of joint angle and some point on the
link, using input-output inversion method. Madhavan and Sing [27] used the same
approach, in addition to a sliding mode control for a robust controller design that
can handle wide range of uncertainties.
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The transfer function approach is adopted in other studies. For instance, Wang and
Vidyasagar [28] used the tip deflection as output and then educed a passivity-based
output feedback of the model’s transfer function. Siciliano and Book separated
the flexible manipulator into two time constants yielding a slow system and a fast
system, with the help of perturbation theory. They argued that the slow system is
nonlinear and the fast one controller is linear. Besides, they successfully designed
both a nonlinear controller and linear state-feedback controller for the two systems
respectively. Aoustin et al. [29] did similar work, and revised slow and fast systems
were utilised by Moallem et al. (1997).
A novel lumped-parameter dynamic model is presented for a distributed flexible ma-
nipulator system by S.S. Ge et al [67]. The suggested lumping method is motivated
by the Finite Element Method (FEM) and associated with the modal analysis, where
the distributed system is lumped to a cascade system of weightless linear angular
springs and concentrated point masses. It was shown that increasing the number
of lumped basic elements, equivalent springs and concentrated masses, improves
the accuracy of the lumped dynamic model in reflecting the dominant dynamic be-
haviour of the original flexible manipulator system. A comparison, for both time and
frequency-domain responses, between the newly introduced model and the generally
used Assumed Modes Model (AMM) is provided based on open-loop simulations,
which serve as a verification for the resulting model.
Some computational intelligence control approaches have been also used for the
purpose of flexible manipulators control. Guiterrez et al. [30] suggested a control
scheme that uses a neural network (NN) for tracking. A robust H∞ controller for
a flexible beam that is subject to perturbations and delay is proposed by Lenz
et al. [31]. Similar concept is used by Tchernychev et al. [32] with constraints
added and treated directly in the time-domain. In the same year (1997), a back-
stepping technique using lumped mass-spring system to model the beam for the
purpose of tip tracking is examined by Zhu et al. [33] in an attempt to develop a
robust controller that can tolerate the system uncertainties/disturbances. Jnifene
and Fahim [34] introduced active damping into the flexible manipulator system to
tackle its nonminimum phase characteristics, and proposed a delayed deflection/-
computed torque approach depending on the deflection sensing point. In 1998, Liang
et al. [35] discussed the free-floating space manipulator problem and represented it
as a conventional manipulator with a fixed-base. This mapping opened the doors
toward using well-understood methods in building manipulator systems, especially
after Ghanekar et al. [36] have produced the large robotic manipulator scaling laws
for linear controllers, which resulted in allowing the use of small-scale prototypes to
perform the design task.
Concerning simulation work, Tang and Lu [37] utilised a video system to predict
the model shapes and states of vibration. Hastings and Book [38] and Fukuda [39]
used strain gauges to measure the amount of deflection. An accelerometer is used to
measure the beam vibration by Chalhoub et al. [40]. Additionally, external photo-
sensors are used to assist detecting the displacement.
Simplifying modelling of a flexible link by using a port-Hamiltonian-based approach
has also been proposed by A. Machelli et al. [41] in 2007. In such a case that is very
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different from classical modelling approaches that are based on either Euler-Bernoulli
or Timoshenko beam theories, the suggested model has the ability to describe large
deflection in 3D space without relying on any finite dimensional (e.g. modal) ap-
proximation. By combining rigid bodies, springs, dampers, joints and flexible links
at the end, modelling and mathematical description of whatever complex mechanical
structure formed by the beams is possible.
A vision-based controller for a flexible beam tip point with two-time-scale is used
by Xu and Ritz [42] to track a desired tip point reference while mitigating its vi-
bration. The controller showed better performance than other tested controllers. A
very similar study, but using visual servoing of eye-in-hand flexible manipulators is
also presented by L.Bascetta et al. [43]. In this work, both rigid and flexible motion
modes of the manipulator are fully considered in the control solution to the two-
time sale problem. The visual information from the sensor was used for task-space
-oriented control law computation in the “slow” part, where the relatively more
computationally expensive operations, such as inversing the Jacobian or taking its
time derivative, are avoided. A constructive Lyapunov-based stability proof is also
given, and the controller effectiveness in supported by means of numerical simula-
tion for the trajectory tracking problem. Furthermore, some experimental test are
demonstrated with their results presenting the precision improvement upon using
the suggested algorithm for flexible single-link manipulator.
An adaptive controller for flexible single-link manipulators is constructed by Becedas
et al. [44]. A generalised proportional integral(GP)-type output feedback controller
combined with a fast online closed-loop identification method is designed o control an
uncertain flexible robotic arm with unknown tip mass load, integrating a Coulomb
friction model in the motor dynamics. M. Hosaka and T. Murakami [45] carried
out simulation studies and experiments on the vibration control of flexible arm by
multiple observer structure; using the acceleration feedback, and a multiple -observer
structure for disturbance rejection.
An augmented stable fuzzy control for a flexible robotic arm using a neuro-fuzzy
state-space modelling and a linear matrix inequality (LMI) approach is proposed by
Chatterjee et al. [46]. Issues related to nonlinear controller design for flexible robotic
manipulators with an adaptive model are discussed by Dogan and Istefanopulos [47].
They used a dynamics state-feedback controller to robustly regulate the rigid modes
as well as suppress elastic vibrations. Since highly nonlinear flexible multi-link arms
are largely uncertain, due to backlash, variable payload and external disturbances,
the internal model have to be tuned up adaptively for unknown disturbances, in
parallel with a robust stabiliser., which is optimised with a new revolutionary al-
gorithm. C. A Monje et al. [48] developed a fractional order controller to control
a lightweight flexible manipulator’s tip position. Some of the interesting features
of this work are: the controlled system overshoot is not dependent on the tip mass
load allowing a constant safety zone to be delimited always (advantage in planning
collision avoidance), noise and motor saturation considerations.
W. J. O’Connor [49] provided a foundation for wave-based analysis and control of
lump-modelled flexible robots, by exploring the nature and validity of wave concepts
in lumped flexible robotic systems. A novel exact, but not unique, wave-based model
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of uniform mass-spring systems is proposed and verified, leading to simple, powerful,
robust and generic control strategies for flexible robotic systems.
Causal inversion-based output tracking control of flexible one-link manipulator, a
non-minimum phase system, is investigated in [50]. The suggested new controller
achieves stable real-time reference trajectory profile tracking via causal inversion
approach. The simulation results of controller testing on tip trajectory tracking of
a flexible one-link manipulator demonstrated the effectiveness in output tracking.
Active control of flexible manipulators using a nonlinear “conventional” motor with
gearbox actuators is studied by Gomez et al [51], where a friction compensation
using neural networks is used to solve the problem of existence of dead-zone in the
torque caused by the nonlinear friction inside the actuator.
After the initial studies in optimal shape design by Wang [24, 25, 52–56], no much
progress has been noticed in the research area of optimal structures of flexible ma-
nipulators. A new method for computing optimal mass and rigidity distributions
has been presented by Wang et al. [22] for a flexible manipulator with tip-mass
load. The goal is to consider robustness with respect to design specifications and
known constraints (focused on open-loop design), hence other practical aspects can
be treated. He concluded that following a proper design guideline for the flexible
beam shape can reduce the vibration. But, in reality, all manipulators are operated
in a closed-loop fashion to achieve high performance, and unfortunately answering
the question of “how to design a flexible beam shape from a control perspective?”
is still a challenging task!
A very recent work on inverse dynamics of flexible manipulator is carried out by Stig
Moberg and Sven Hanssen [66]. They have investigated different methods for the
inverse dynamics of the extended flexible joint model (a general manipulator model
that includes joint flexibility), whereas they have used the inverse dynamics to obtain
the required feed-forward control action, that is often used for high-precision control
of robotic manipulators. The inverse dynamics solution was computed by solving
the a high-index differential algebraic equation (DAE) using a constant step-size
constant-order backwards differentiation formula (BDF), while it is also concluded
that scaling of the algebraic equations and their derivatives is important. The in-
verse dynamics can be treated as an initial-value problem in case of minimum phase
systems (stable systems with stable zero dynamics). On the other hand, an op-
timisation approach based on the discretised DAE is suggested for unstable zero
dynamics. Also, another optimisation method, using a continuous DAE formula-
tion, is suggested and evaluated. The solvers are illustrated by simulation, using a
manipulator with two actuators and five degrees-of-freedom.

1.4 Objectives

The objective of this Master’s thesis research is to study one promising possibility
for modelling, angular position tracking control and simulation of the end-effector’s
tip of a flexible multi-link robotic manipulator system, in order to obtain an effi-
cient controller that can be implemented in real-time settings for industrial robotics
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1. Introduction

applications. Because of the overall problem complexity, a modular work scheme is
adopted, whereas the modelling and control of flexible single-link manipulators are
studied thoroughly serving as a starting point and a basis that can later be extended
to the multiple links case.
Utilising feedback from sensors on the arm system for control purposes of a ma-
nipulator (non-collocated control) may give rise to performance problems, due to
the non-minimum phase nature of the resulting close-loop system. To avoid such
problems, this thesis work targets only the case with joint-motor sensor feedback.
Thus, the work is based on feed-forward control using the inverse dynamics of the
robot arm including the gearbox. Frequency response matching was made for the
tip-position tracking of the flexible link and implemented in a co-simulation environ-
ment including ADAMS and Matlab/Simulink. Therefore, this research is composed
of two main parts/objectives: (1) the frequency-based inverse dynamics collocated
tracking control of minimum phase systems, and (2) modelling and control of flexible
single-link manipulators.

1.5 Thesis Layout

The rest of this thesis is organised as follows:
Chapter 2 (Theory): This chapter describes the sources of flexibility in robotic
manipulators, the application areas of flexible robotic arms, and theoretical back-
ground of the suggested modelling and control techniques used, including all as-
sumptions and considerations for the system’s operation.
Chapter 3 (Problem Statement, Control System Design and Compensa-
tion Techniques): This chapter details the objectives of the project, and focuses
on how those objectives were achieved at each step in a modular way to allow testing,
modifications and correction after simulating the controlled planar robotic manip-
ulator (benchmark) system in real-time settings. Also, it presents the proposed
control and compensation schemes are implemented within the complete controlled
(close-loop) system.
Chapter 4 (Simulation Results and Discussion): This chapter discusses the
results obtained after implementing the system, the evaluation of the system ac-
cording to the results obtained and the discussion of those results.
Chapter 5 (Conclusions and Future Work): The project is summarised in this
chapter, discussing the achieved objectives. In addition to the further developments
that can be studied to improve the resulting system.
Appendix A (ADAMS-MATLAB/Simulink Interface and Performing Co-
Simulations) describes the detailed steps for carrying out a co-simulation between
ADAMS and MATLAB environments.
Appendix B (Frequency Responses of Additional 2-Mass Models Used in
Simulations) presents the frequency responses for additional 2-mass plant models
that are generated during simulations work throughout the thesis work.
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1. Introduction

Appendix C (Frequency Responses of Additional 3-Mass Models Used in
Simulations) presents the frequency responses for additional 3-mass plant models
that are generated during simulations work throughout the thesis work.
Appendix D (Frequency Responses of Additional Multi-Mass (3-Mass)
Models Used in Simulations) presents the frequency responses for additional
multi-mass plants (3-mass models) that are generated during simulations work
throughout the thesis work.
Appendix E (Steps for Mode/Anti-Mode Matching in the Frequency
Plane Using Inverse Dynamics Models) illustrates the recipes followed to tune
the 2-mass and 3-mass inverse dynamic models frequency responses to match those
of the plant models controlled.
Appendix F (Detailed Results and Comparisons) shows additional results
and comparative charts that are generated during the simulation work throughout
the thesis studies, but not included in the main text of the thesis.
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2
Modelling of Flexible Robotic

Manipulators

In this chapter, various aspects related to the models used for simulating the be-
haviour of a flexible robotic arm are discussed. First, different sources of both joint
and link flexibilities in a robotic manipulator are presented highlighting the benefits
and problems associated with the introduction of those flexibilities in the manipu-
lator system. After that, the dynamical models needed to study the flexible robotic
arms are presented. To facilitate understanding of the flexible manipulator models
used for the (inverse dynamics) control and compensation design at a later stage of
the thesis work, the simplest 2-mass and 3-mass models are first introduced and the
model complexity is then gradually increased. This is done by approximating the
flexible link by a series lumped mass-spring-damper elements that can adequately
capture the interesting flexibility phenomena of a FEM model of the real flexible link
with the coupled gearbox inertia. This FEM model is developed in ADAMS/View
with the help of ADAMS/Flex, in addition to gearbox flexibility part modelled in
Matlab/Simulink. It represents our best approximation for the real flexible manip-
ulator plant. At each step, the transfer function, state-space representation and
frequency response of the manipulator model under study are presented. At the end
of the chapter, the possibility for matching the resonant and ant-resonant frequencies
is investigated, with the results of the matching process for different plant/inverse
dynamic models combinations shown.

2.1 Sources of Flexibility

2.1.1 Joint Flexibility

Effective modelling, real-time simulation and control of flexible manipulators is
presently still an open problem. Most of the contemporary scientific research and
experimentation in academia or industry has only considered flexibility at joints.
This seems acceptable for the majority of the manipulators available nowadays, es-
pecially in application where the joints flexibility effects dominate those of the links
flexibility. To elaborate more on this, one can notice that lots of today’s indus-
trial robotic manipulators are driven by harmonic drive gears. Such kind of gears
are used frequently because of their low weight, compactness and ability for large
torque transmission with almost negligible backlash. Nonetheless, flexibility present
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2. Modelling of Flexible Robotic Manipulators

in the gears and joint bearings of the drive can dramatically affect the manipulator
behaviour. It has been well established both theoretically and experimentally (for
example in [57–59]) that, for a large class of manipulators, including joint flexibil-
ity in the modelling and control steps has a great impact on the resulting tracking
performance. Figure 2.2 shows a schematic representation of flexible joint of a ma-
nipulator.
Joint flexibility (or, in a more precise term, drive elasticity) stems from several
sources, such as various deformations in gears, belts, shafts, hydraulic lines, bearings,
transmissions, ... etc (see Subigure 2.1a). Among flexible gears, compact gears
as the Harmonic Drive gears (see Subfigure 2.1b) are commonly used elements in
robotics because they allow obtaining high reduction ratios at low backlash levels.
The Harmonic Drive gears utilise a deformable component (called “flexspline”) that
forms the basis of its operating principle.

(a) Actuator with cable transmission
(CEA)

(b) Harmonic Drive gear

Figure 2.1: Flexible transmission elements [1].

Neglecting joint flexibilities in control laws leads to degraded accuracy of the track-
ing and may even cause instability if applied to real manipulators. For this reason,
the flexibility in joints should be integrated when designing controllers for fast ma-
nipulators. Including joint flexibility in the manipulator model alters the dynamical
equations of motions of the manipulator in addition to increasing their number (more
DOFs, and hence more dynamical constraints to be satisfied than in a rigid model).
In many cases, flexibility at a joint can be modelled by a linear, torsional spring
with some inherent damping. As a consequence of the increase in the number of de-
grees of freedoms, flexible-joint manipulators control is more complicated. Though,
tackling joint flexibility is much easier than handling the distributed flexibility of a
link. One interesting practical aspect to be noted here is that link flexibility can ap-
proximately be modelled using a chain of rigid sub-links that are connected together
by intermediate flexible joints. Thus tackling the distributed link flexibility problem
can be made easier by such incorporation of joint flexibility as a first step [2].
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2. Modelling of Flexible Robotic Manipulators

Figure 2.2: A schematic representation of a manipulator model with a motor, a
flexible gearbox and rigid link [2].

2.1.2 Link Flexibility

The downsides and shortcomings encountered upon using a stiff (and hence rela-
tively heavy) manipulator can be circumvented, to some degree, if lightweight links
and drives are used instead. As a consequence of such a choice, the ratio between
payload and manipulator weight is relatively larger in comparison to the stiff, bulky
manipulator. Additionally, motor power is reduced and the resulting light weight
manipulator may have shorter response time (i.e. faster). Out of the numerous ad-
vantages are: improved mobility, safer operation and lower construction costs. On
the other hand, usually lightweight manipulators suffer from large link deformations,
imposing lots of constraints and introducing very challenging modelling and control
tasks, if accurate trajectory tracking is needed, which often is the case.
It turns out that the design of controllers for such lightweight systems is very com-
plicated, since their resulting dynamical models are highly nonlinear with (far) more
degrees of freedom than the usually available number of actuator inputs. Theoreti-
cally, to describe the motion of a flexible link, infinite number of degrees of freedom
is needed [60].
Different type of flexibilities that can occur in a beam-like manipulator arm are de-
picted in Figure 2.3. Subfigure 2.3a shows twisting around the vertical z-axis, Sub-
figure 2.3b shows bending around the y-axis, Subfigure 2.3c shows twisting around
a z-axis + bending around the y-axis, and Subfigure 2.3d shows bending around
both the x- and the y-axis. In all these plots, the z-axis is going through the beams,
and the beams are located on the (xy)-plane. Furthermore, it is important to note
that since the workspace of the manipulator test-bench model adopted for this study
(shown later in Figure 3.1) is defined in R2, its motion must also be evaluated in this
two-dimensional Euclidean space only (i.e. only planar motions are possible), the
link oscillations can only occur around one axis. Therefore, only bending as shown
by Subfigure 2.3b is dominantly possible [68].
Figure 2.3 shows different types of beam-like arm flexibilities in three dimensions.
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Figure 2.3: Different types of beam-like arm flexibilities in three dimensions (twist-
ing and bending) [68].

Figure 2.4 shows a schematic representation of flexible link of a manipulator.

Figure 2.4: A schematic representation of a manipulator model with a motor, a
rigid gearbox and flexible link [2].

Using finite element methods (FEMS) or boundary integral methods (for example
in [61–64]), flexible links can be approximately modelled by finite dimensional sys-
tems, which adequately meets the necessities of a model from a control perspective.
Otherwise, some model reduction techniques have to be used, for example the Guyan
reduction method [65].

2.1.3 Manipulators with both Joint and Link Flexibilities

The dynamical equations that governs that motion of multi-link manipulators un-
der consideration of both joint and link flexibilities are unduly complex, and the
number of actuators available for control purposes is much smaller than the number
of degrees of freedom. In addition, the associated solution of kinematical prob-
lems to determine the desired reference motor trajectory corresponding to a given
end-effector trajectory is not unique. Further demanding is the fact that the usual
control objective of such manipulators is to track a prescribed end-effector’s trajec-
tory, while limiting the vibrations as much as possible. The problem of trajectory
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2. Modelling of Flexible Robotic Manipulators

tracking in manipulators with the combined flexibility of both joints and links is
rarely tackled in literature. Therefore the thesis contribution presented here is an
attempt to enrich the research around the topic in both industry and academia.

2.2 Dynamical Models for the Study of Flexible
Robotic Arms

In this part of the thesis report, an extensive study for the modelling and control
of flexible robotic manipulator arm is presented. In order to perform analysis of
control schemes for a manipulator arm with compliant links, it is necessary to un-
derstand the dynamics of elastic systems in question. Since the targeted new control
method will approximate a link with bending, or twisting, flexibility with a stiff arm
having a joint flexibility, it is important to understand the dynamics of these kind
of systems. Thus, models of 2-mass and 3-mass systems will be analysed as well
as models of multi mass systems and FEM models. For each model the equation
of motion, the transfer function from motor torque to motor acceleration, the state
space representation and the frequency response from motor torque to motor ac-
celeration are presented. The relations between motor torque and acceleration are
shown since these are used when tuning the inverse models for feed-forward control.

2.2.1 2-Mass System Dynamic Model of a Motor with Flex-
ible Gearbox Drive Train

The simplest model used in the thesis is the 2-mass model consisting of a first inertia
(motor inertia) connected to a second inertia (for example the load on a gearbox)
by a spring in parallel with a damper. An example of such a simplified mass-spring-
damper model of a drive train of a flexible robotic manipulator consisting of only a
motor (torque Tm, inertia Jm) and a flexible gearbox (stiffness kg, damping dg) and
a rigid link (with inertia Jg on the output of the gearbox) is shown in Figure 2.5.

Figure 2.5: Mass-spring-damper model for a flexible manipulator with a motor, a
flexible gearbox and an inertia on the output of the gearbox.

The corresponding equations of motion resulting from applying Newton’s second
law (in differential equations form) are:

0 = Jgϕ̈g + dg(ϕ̇g − ϕ̇m) + kg(ϕg − ϕm)
τm = Jmϕ̈m − dg(ϕ̇g − ϕ̇m)− kg(ϕg − ϕm)

(2.1)
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2. Modelling of Flexible Robotic Manipulators

where (respecting order of subscripts):
ϕm, ϕg: Motor angular displacement and gearbox angular displacement (rad).
ϕ̇m, ϕ̇g: Motor angular speed and gearbox angular speed (rad/s).
ϕ̈m, ϕ̈g: Motor angular acceleration and gearbox angular acceleration (rad/s2).
Jm, Jg: Motor inertia and gearbox inertia ((kg.m2).
kg: Gearbox stiffness (N/m).
dg: Gearbox damping (N/m2).

The above set of motion equations can be described by the following transfer func-
tion:

G(s) = Y (s)
U(s) = s2/ω2

z + 2ζzs/ωz + 1

(Jm + Jg)
s2/ω2

p + 2ζps/ωp + 1
 (2.2)

where:

ωz =

√√√√kg

Jg

, ωp =

√√√√kg(Jm + Jg)
JmJg

, ζz = dg

2

√
1

Jgkg

, ζp = dg

2

√
Jm + Jg

JmJgkg

(2.3)

The input u is the motor torque (taum) and the output y is the motor acceleration
(ϕ̈m).
Figure 2.6 shows a snapshot of the state-space model corresponding to the dynamical
model in (2.1).
Figure 2.7 shows the frequency response of the transfer function model in (2.2); with
the following parameters: Jm = 6×10−3, Jg = 30×10−3, dg = 30×10−3 and kg = 5.
In Appendix B, frequency responses of three more 2-mass model versions used in
the analysis are shown.

2.2.2 3-Mass System Dynamic Model of a Motor with Flex-
ible Gearbox Drive Train and a Rigid Link

In cases where a inertia is situated between the gearbox output shaft and the flexible
link, a 3-mass system is needed to describe the dynamics. This is, for example, the
case for axis 1 of an anthropomorphic robot when the upper robot link is flexible and
the lower robot link is rigid. Then the inertia of the lower robot link will introduce
a large inertia between the gearbox output and the flexible upper link. A simplified
mass-spring-damper model of a flexible robotic manipulator consisting of a drive
train of a motor (torque Tm, inertia Jm), a flexible gearbox (stiffness kg, damping
dg), an inertia on its output(Jg) and a flexible link (stiffness kl, damping dl, inertia
Jl) is shown in Figure 2.8.
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Figure 2.6: State-space model for a flexible manipulator with a motor, a flexible
gearbox and an inertia on the output of the gearbox.
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Figure 2.7: Frequency response for transfer function from motor torque (τm) to
motor acceleration (ϕ̈m) of a flexible manipulator with a motor, a flexible gearbox
and an inertia on the output of the gearbox (2-mass system).

Figure 2.8: Mass-spring-damper model for a flexible manipulator with a motor, a
flexible gearbox, an inertia on the output of the gearbox and a flexible link.
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The corresponding equations of motion resulting from applying Newton’s second
law (in differential equations form) are:

0 = Jlϕ̈g + dl(ϕ̇l − ϕ̇g) + kl(ϕl − ϕg)
0 = Jmϕ̈m + dg(ϕ̇g − ϕ̇m) + kg(ϕg − ϕm)

−dg(ϕ̇l − ϕ̇g)− kg(ϕl − ϕg)
τm = Jmϕ̈m − dg(ϕ̇g − ϕ̇m)− kg(ϕg − ϕm)

(2.4)

where (ϕm, ϕg, Jm, Jg, kg and dg) are as previous, in addition to:

ϕl: Link angular displacement (rad).

ϕ̇l: Link angular speed (rad/s).

ϕ̈l: Link angular acceleration (rad/s2).

Jl: Link Inertia ((kg.m2).

kl: Link stiffness (N/m).

dl: Link damping (N/m2).

The above set of motion equations can be described by the following transfer func-
tion:

G(s) = Y (s)
U(s) =

JgJls
4 + (Jgdl + Jldg + Jldl)s3

+(JgKl + Jlkg + Jlkl + dgdl)s2

+(kgdl + kldg)s+ kgkl


JmJgJls

4 + (JmJgdl + JmJldg + JmJldl + JgJldg)s3

+(JmJgkl + JmJlkg + JmJlkl + Jmdgdl + JgJlkg + Jgdgdl + Jldgdl)s2

+(Jmkgdl + Jmkldg + Jgkgdl + Jgkldg + Jlkgdl + Jlkldg)s

+Jmkgkl + Jgkgkl + Jlkgkl


(2.5)

where the following pairs of mode and anti-resonant frequencies can be obtained
(using a symbolic solver in, for e.g. Mathematica, Matlab or Maple):
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ωz1,z2 = +

√√√√√√√√
Jgkl + Jlkg + Jlkl

∓
√√√√ J2

gk
2
l + J2

l k
2
l + J2

l k
2
g

−2JgJlkgkl + 2JgJlk
2
l + 2J2

l kgkl

2JgJl

ωp1,p2 = +

√√√√√√√√√√√
 JmJgkl + JmJlkg

+JmJlkl + JgJlkg

∓
√√√√√√√

J2
mJ

2
gk

2
l + J2

mJ
2
l k

2
g + J2

mJ
2
l k

2
l + J2

gJ
2
l k

2
g

+2J2
mJ

2
l kgkl + 2J2

mJgJlk
2
l − 2J2

mJgJlkgkl

−2J2
mJ

2
gJlkgkl − 2JmJgJ

2
l kgkl + 2JmJgJ

2
l k

2
g

2JmJgJl

(2.6)

The input u is the motor torque (τm) and the output y is the motor acceleration
(ϕ̈m).
Figure 2.9 shows a snapshot of the state-space model corresponding to the dynamical
model in (2.4).

Figure 2.9: State-space model a flexible manipulator with a motor, a flexible
gearbox, an inertia on the output of the gearbox and a flexible link.

Figure 2.10 shows the frequency response of the transfer function model in (2.5);
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with the following parameters: Jm = 6 × 10−3, Jg = 30 × 10−3, dg = 30 × 10−3,
kg = 5, Jl = 60 × 10−3, dl = 30 × 10−3 and kl = 5. In Appendix C, frequency
responses of other versions of the 3-mass system used in the analysis are shown.
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Figure 2.10: Frequency response for transfer function from motor torque (τm) to
motor acceleration (ϕ̈m) of a flexible manipulator with a motor, a flexible gearbox ,
an inertia on the output of the gearbox and a flexible link (3-mass system).

2.2.3 Multi-Mass System Dynamic Model of a Motor with
Flexible Gearbox Drive Train and LumpedMass-Spring-
Damper Model of a Flexible Link

According to [67], an equivalent dynamic equation of motion for a distributed flex-
ible manipulator system link can be obtained using a lumped parameter system.
Such a cascaded system consists of a chain of weightless linear angular springs
separated by concentrated point-masses, and it is described by a set of ordinary
differential equations. Furthermore, using enough number of lumped elements N ,
the frequency responses of the equivalent lumped parameter system approach the
frequency response of the clamped-free continuously flexible assumed-mode method
(AMM) model from the left and the calculated natural frequencies will be adequately
close to experimental results. Thus the lumped model can be regarded as a good
approximation for the real model when N increases.
Figure 2.11 shows a mass-spring-damper model of a flexible robotic manipulator
consisting of a drive train of a motor (torque Tm, inertia Jm) and a flexible gearbox
(stiffness kg, damping dg), an inertia on its output (Jg), together with a lumped
(multi-mass) mass-spring- damper model of a flexible link (stiffness kl, damping dl,
inertia Jl).
The corresponding numerical values for the equivalent lumped parameter model can
be calculated by using the following set of derivations and equations:
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Figure 2.11: Mass-spring-damper model for a flexible manipulator with a motor,
a flexible gearbox, an inertia on the output of the gearbox and lumped (multi-mass)
model of a flexible link.

Assuming that there are ne lumped masses (each has a uniform mass mi, stiffness
ki and damping di) in the flexible link that is approximated by a a beam of a total
length Lbeam [m], total mass Mbeam [kg] and inertia Jbeam [kg.m2], total stiffness
kbeam [N/m] and total damping dbeam [N.s/m], then:

mi = ( 1
ne

×Mbeam) [kg]; i = 1, ... , ne

Ja1 = mi × (1× Lbeam

ne

)2

Ja2 = mi × (2× Lbeam

ne

)2

...

Jane
= mi × (ne ×

Lbeam

ne

)2

(2.7)

And hence the mass of each individual element (mi) of the lumped link can be
calculated by solving:

Jbeam(at the motor side) = N2Jbeam(at the link side) =
ne∑

i=0
mi × (Lbeam

ne

+ i× Lbeam

ne

)2

(2.8)

In addition, the stiffness and damping of individual mass elements (ki and di respec-
tively) of the lumped link can be calculated via:
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kbeam(at the motor side) = N2kbeam(at the link side) = ki

ne

⇒ ki = neN
2kbeam(at the link side)

= nekbeam(at the motor side) [N/m]; i = 1, ... , ne

1
dbeam

(at the motor side) = N2 × 1
dbeam

(at the link side) = ne

di

⇒ di = neN
2dbeam(at the link side)

= nedbeam(at the motor side) [N.s/m]; i = 1, ... , ne

(2.9)

where N is the gear ratio between the low-speed motor side and the high-speed
flexible link side.
Figure 2.12 shows a snapshot of the state-space model corresponding to the model
show in Figure 2.11, followed a detailed state-space representation of the lumped
link model dynamics shown in Figure 2.13.

Figure 2.12: State-space model for a flexible manipulator with a motor, a flexible
gearbox, an inertia on the output of the gearbox and lumped (multi-mass) model of
a flexible link.
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Figure 2.13: State-space model for a lumped (multi-mass) model of a flexible link
(with n lumped elements).

To obtain a very realistic simulation of the first axis motion of a real robot (a 2-mass
system) and also its upper link (a 3-mass system), a tip-mass load with a big inertia
around the base first and then the first axis of motion is consequently added to the
end of the lumped link (Mload = 250 kg).
Figure 2.14 shows the identified (using a chirp input signal) frequency response of
the resulting 2-mass system; with the following set of discrete model parameters:
Jm = 6 × 10−3, Jg = 45.952 × 10−3, dg = 30 × 10−3, kg = 5, Jl = 11.376 × 10−3,
dl = 100× 10−3, kl = 5 and n = 15.
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Figure 2.14: Frequency response for transfer function from motor torque (τm) to
motor acceleration (ϕ̈m) of a flexible manipulator with a motor, a flexible gearbox,
an inertia on the output of the gearbox and lumped (multi-mass) model of a flexible
link with a big-inertia tip-mass load (2-mass system case).

On the other hand, Figure 2.15 shows the identified (using a chirp input signal)
frequency response of the resulting 3-mass system; with the following set of discrete
model parameters: Jm = 6 × 10−3, Jg = 10.2 × 10−3, dg = 30 × 10−3, kg = 5,
Jl = 11.376× 10−3, dl = 30× 10−3, kl = 5 and n = 15.
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Figure 2.15: Frequency response for transfer function from motor torque (τm) to
motor acceleration (ϕ̈m) of a flexible manipulator with a motor, a flexible gearbox,
an inertia on the output of the gearbox and lumped (multi-mass) model of a flexible
link with a big-inertia tip-mass load (3-mass system case).
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In Appendix D, frequency responses of other versions of the multi-mass (3-mass)
systems used in the analysis are shown, together with an illustrative comparison
explaining the effect of the number of lumped elements (in the multi-mass link
model) on the frequency response.

2.2.4 ADAMS Models of Gearbox Drive Train with FEM
Model of a Flexible Link

In order to make it possible to understand the problems with flexible link control
in a more realistic set-up, a simplified robot arm was designed with a FEM model
in the ADAMS software package. The model corresponds to a flexible upper link
of a large robot handling 250 kg load. The link is connected to a gearbox, which is
simulated in Simulink. The main bending mode of the ADAMS model is exported to
Simulink and all the model analysis is then made in Simulink. The ADAMS model
consists of a flexible link, a rigid mass mounted on the tip of the link and a rigid
mass mounted on the output of the gearbox shaft. The flexible link is mounted on
the rigid joint mass and this mass can be designed to obtain a 3-mass system, which
at low mass approaches a 2-mass system.
Figure 2.16 shows an ADAMS model for a flexible manipulator link model integrat-
ing an ADAMS FEM model for the flexible link with a relatively small inertia on
the output of the gearbox, which will result in a 2-mass system.

Figure 2.16: ADAMS model for a flexible manipulator gearbox with a relatively
small inertia on the output of the gearbox and FEM model of a flexible link with a
load at its end (2-mass system case).

Figure 2.17 shows an ADAMS model for a flexible manipulator model integrating
an ADAMS FEM model for the flexible link with a large inertia on the output of
the gearbox, which will give rise to a 3-mass system. This may be the case for axis
1 of an industrial robot.
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Figure 2.17: ADAMS model for a flexible manipulator gearbox with a large inertia
on the output of the gearbox and FEM model of a flexible link with a load at its
end (3-mass system case).

Figure 2.18 shows a snapshot of the state-space model corresponding to a flexible
manipulator integrating an ADAMS FEM model for the flexible link.

Figure 2.18: State-space model for a flexible manipulator integrating a motor, and
gearbox model in Simulink with an ADAMS FEM model of an inertia on the output
of the gearbox and a flexible link.

Figure 2.19 shows the identified (using a chirp input signal) frequency response of
the state-space model shown in Figure 2.18 using the ADAMS model in Figure 2.16
(2-mass model).
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Figure 2.19: Frequency response for transfer function from motor torque (τm) to
motor acceleration (ϕ̈m) of 2-mass system resulting from a motor and a gearbox
flexibility driving an ADAMS model with low inertia on gearbox output and FEM
model of a flexible link.

On the other hand, Figure 2.20 shows the identified (using a chirp input signal)
frequency response of the state-space model shown in Figure 2.18 using the ADAMS
model in Figure 2.17 (3-mass model).

10
-2

10
0

10
2

10
4

M
a

g
n

itu
d

e
 (

a
b

s)

From: Tm  To: Motor Acceleration

10
-1

10
0

10
1

10
2

10
3

10
4

0

45

90

135

180

P
h

a
se

 (
d

e
g

)

Bode Diagram

Frequency  (rad/s)

Figure 2.20: Frequency response for transfer function from motor torque (τm) to
motor acceleration (ϕ̈m) of a 3-mass system resulting from a motor and gearbox
flexibility driving ADAMS model with large inertia on the output of the gearbox
and FEM model of a flexible link.

26



2. Modelling of Flexible Robotic Manipulators

2.3 Modes and Anti-Modes Matching in the Fre-
quency Plane

In order to avoid using the inverse of the complex FEM ADAMS model for feed-
forward control (it takes relatively longer time to simulate even simple cases), the
idea is to use the inverse of a model with lumped rigid masses having the same
frequency response as the ADAMS model. This means that given the frequency
response of the FEM model, a method must be developed to match the zeros and
poles of the simpler lumped-mass model with the zeros and poles of the ADAMS
model. This frequency response matching is made in the following way:

• The frequency response of the ADAMS model is obtained after exciting the
ADAMS plant system with a swept-frequency sinusoidal (chirp) signal and
recording both gain and phase-shift for each pair of amplitude and frequency
of the sinusoidal input signal while sweeping. Thus, an approximate estimation
of the plant’s frequency response can be obtained. Even though the frequency
response can be obtained directly from the ADAMS model, such frequency
response identification experiments are very useful as they are necessary to be
carried out, in practice, on the real manipulator.

• The zeros and poles are found from the frequency response (Bode diagram).
• A lumped model with the same zeros and poles is determined. This model

may either be a 2-mass model or a 3-mass model.
In this section it is shown by means of frequency responses that it is possible to make
accurate matching of lumped models to FEM models. The methodology followed to
achieve this goal is also described. When the matched lumped model is obtained,
then the inverse of this model can be derived and used for feed-forward control.
Matching of simple 2-mass and 3-mass models is provided first in order to build
the practical experience before diving into the more complex cases. The matching
procedure and the precise steps for mode/anti-mode matching in the frequency
plane using 2-mass and 3-mass inverse dynamic models are described in details
in Appendix E.

2.3.1 Frequency Response Matching of a 2-Mass Plant Sys-
tem Using an Identical 2-Mass Inverse Dynamics Model

Figure 2.21 portrays the results of the pair of mode and anti-mode frequency match-
ing process of the 2-mass plant system shown in Figure 2.7 by an identical 2-mass
inverse dynamic model.
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Figure 2.21: Frequency response matching of a 2-mass plant system by an identical
2-mass inverse dynamic model.

2.3.2 Frequency Response Matching of a 3-Mass Plant Sys-
tem

2.3.2.1 Using a 2-Mass Inverse Dynamics Model

Figure 2.22 portrays the results of lower pair of mode and anti-mode frequency
matching process of the 3-mass plant system shown in Figure 2.10 by a 2-mass
inverse dynamic model.
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Figure 2.22: Frequency response matching of a 3-mass plant system by a 2-mass
inverse dynamic model (lower pair of mode and anti-mode matching).
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Figure 2.23 portrays the results of terminal pair of mode and anti-mode frequency
matching process of the 3-mass plant system shown in Figure 2.10 by a 2-mass
inverse dynamic model.
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Figure 2.23: Frequency response matching of a 3-mass plant system by a 2-mass
inverse dynamic model (terminal pair of mode and anti-mode matching).

Figure 2.24 portrays the results of higher pair of mode and anti-mode frequency
matching process of the 3-mass plant system shown in Figure 2.10 by a 2-mass
inverse dynamic model.
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Figure 2.24: Frequency response matching of a 3-mass plant system by a 2-mass
inverse dynamic model (higher pair of mode and anti-mode matching).
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2.3.2.2 Using an Identical 3-Mass Inverse Dynamics Model

Figure 2.25 portrays the results of the pair of mode and anti-mode frequency match-
ing process of the 3-mass plant system shown in Figure 2.10 by an identical 3-mass
inverse dynamic model.
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Figure 2.25: Frequency response matching of a 2-mass plant system by an identical
2-mass inverse dynamic model.

2.3.3 Frequency Response Matching of Multi-Mass Plant
Systems

2.3.3.1 A 2-Mass Plant System Case

Figure 2.26 shows the results of the pair of mode and anti-mode frequency matching
process of the 2-mass ADAMS plant system frequency response shown in Figure
2.19 by a multi-mass inverse dynamic model (2-mass system).
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Figure 2.26: Frequency response matching of an ADAMS 2-mass plant system by
a multi-mass inverse dynamic model (a 2-mass system).

Using a 2-Mass Inverse Dynamics Model

Figure 2.27 portrays the results of the pair of mode and anti-mode frequency match-
ing process of the 2-mass plant system shown in Figure 2.14 by an identical 2-mass
inverse dynamic model.
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Figure 2.27: Frequency response matching of a multi-mass plant system (2-mass
system) by an identical 2-mass inverse dynamic model. 31
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2.3.3.2 A 3-Mass Plant System Case

Figure 2.28 shows the results of the pair of mode and anti-mode frequency matching
process of the 3-mass ADAMS plant system frequency response shown in Figure
2.19 by a multi-mass inverse dynamic model (3-mass system).
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Figure 2.28: Frequency response matching of an ADAMS 3-mass plant system by
a multi-mass inverse dynamic model (a 3-mass system).

Using a 2-Mass Inverse Dynamics Model (lower pair of mode and anti–
mode matching)

Figure 2.29 portrays the results of lower pair of mode and anti-mode frequency
matching process of the 3-mass plant system shown in Figure 2.15 by a 2-mass
inverse dynamic model.
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Figure 2.29: Frequency response matching of a multi-mass plant system (3-mass
system) by a 2-mass inverse dynamic model (lower pair of mode and anti-mode
matching).

Using a 3-Mass Inverse Dynamics Model

Figure 2.30 portrays the results of the pair of mode and anti-mode frequency match-
ing process of the 3-mass plant system shown in Figure 2.10 by an identical 3-mass
inverse dynamic model.
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Figure 2.30: Frequency response matching of a multi-mass plant system (3-mass
system) by an identical 3-mass inverse dynamic model.
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2.3.4 Frequency Response Matching of ADAMS Plant Sys-
tems

2.3.4.1 A 2-Mass Plant System Case

Using a 2-Mass Inverse Dynamics Model

Figure 2.31 portrays the results of the pair of mode and anti-mode frequency match-
ing process of the 2-mass plant system shown in Figure 2.19 by an identical 2-mass
inverse dynamic model.
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Figure 2.31: Frequency response matching of an ADAMS plant system (2-mass
system) by an identical 2-mass inverse dynamic model.

2.3.4.2 A 3-Mass Plant System Case

Using a 2-Mass Inverse Dynamics Model (lower pair of mode and anti–
mode matching)

Figure 2.32 portrays the results of the pair of mode and anti-mode frequency match-
ing process of the 2-mass plant system shown in Figure 2.20 by an identical 2-mass
inverse dynamic model.
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Figure 2.32: Frequency response matching of an ADAMS plant system (2-mass
system) by a 2-mass inverse dynamic model (lower pair of mode and anti-mode
matching).

Using a 3-Mass Inverse Dynamics Model

Figure 2.33 portrays the results of the pair of mode and anti-mode frequency match-
ing process of the 2-mass plant system shown in Figure 2.20 by an identical 2-mass
inverse dynamic model.
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Figure 2.33: Frequency response matching of an ADAMS plant system (3-mass
system) by an identical 3-mass inverse dynamic model.

35



3
Problem Statement, Control

System Design and Compensation
Techniques

As mentioned earlier, the goal of this thesis work is to accurately track a pre-
scribed angular position reference trajectory profile by the end-effector’s tip of an
elastic robotic arm (with both a flexible joint and a flexible link). To achieve this
task, we need to develop a realistic model for the elastic arm (lumped multi-mass-
spring-damper and FEM models are used to capture the interesting link’s “bending”
flexibility). The frequency response of this “nonlinear” model is then identified and
inverted using a feed-forward computed torque method of a 4th-order (2-mass inverse
dynamics) or a 6th-order (3-mass inverse dynamics). The result of this input-output
linearisation process is a linear system that can be easily controlled by a simple PID
feedback controller. Additionally, a smooth position reference trajectory that can
be differentiated up to the required order of the inverse dynamic model should be
generated. Due to the difficulties encountered as a result of noisy derivatives in the
inverse dynamic models, some smoothing is needed to avoid running into numerical
problems, hence some smoothing filters are utilised. Furthermore, a scheme for com-
pensation of the residual tracking errors (for position and speed), that arise because
of the model-mismatch with the real plant, is introduced and implemented.
In this chapter, the trajectory tracking problem for the manipulator’s end-effector
is formally introduced. Beside that, a thorough discussion regarding the different
issues related to smooth reference trajectory generation is given. The theory and
motivation behind the PID controller variant adopted for feedback control in this
thesis work are also introduced, in addition to the computed torque scheme used
for feed-forward compensation with all filtering needed to avoid numerical prob-
lems. At the end, compensation of dynamical residual errors are also discussed in
details studying various flexible manipulator designs that are mostly encountered in
practice.

3.1 Problem Statement

The scheme of a two-link planar robotic manipulator arm (in a horizontal plane)
is shown in Figure 3.1. The manipulator arm is actuated by two motors (with
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their gearbox drive-trains) and have the ability to rotate, by construction, in the
horizontal plane. Each of these two motors resides at one of the flexible joints (A
or B). For a robot arm with two flexible links, the control problem is to find the
input torques (τm1 , τm2) that guarantee transferring the load mass at the tip of the
arm (the manipulator’s end-effector) from its initial configuration

ϕl1(0) = ϕ0
l1 , ϕl2(0) = ϕ0

l2 , ϕ̇l1(0) = ϕ̇l2(0) = 0 (3.1)

to any admissible arbitrary final configuration

ϕl1(T ) = ϕref
l1 , ϕl2(T ) = ϕref

l2 , ϕ̇ref
l1 (T ) = ϕ̇ref

l2 (T ) = 0 (3.2)

and keep it in this final configuration until new desired trajectory settings are ex-
ecuted. Here, ϕ0

l1 is the first link’s end-point initial angle (usually it starts from
rest at 0), ϕ0

l2 is the initial interlink angle and ϕref
l1 and ϕref

l2 are the desired angle
rotations of the link; where as T is the motion time that is not given but necessarily
as short as possible for this class of manipulators’ tasks (and hence excitation of
flexible modes). Additionally, initial and final elastic deformations are desireably
zero too.

Figure 3.1: Scheme of a robotic arm manipulator with two (flexible) links.

3.2 Reference Trajectory Planning for Feedfor-
ward Motion Control

High-performance industrial robotic manipulator systems, such as pick-and-place
units and positioning systems, involve short motion times (small cycle times, and
hence high accelerations), little settling times and relatively very high accuracies in
reference tracking. Moreover, these systems are often set to be used in rest to rest
motion fashion, which makes it harder to meet these strict demands in real-time
setting. Therefore it is not only enough to utilise even a well- designed controller
together with accurate dynamic models, but also an efficient, dedicated motion
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controller is needed. A motion controller is usually a computer hardware that is
responsible for the details of trajectory planning and motion online execution at
each sample instant, and its tasks are mainly comprised of [6]:

• Reference trajectory planning: calculations of an allowable trajectory to be
tracked.

• Profile generation: the representation of the reference trajectory as a sampled
time sequence.

• Feed-forward control: the control process that calculates the actuating signals
to obtain an intended reference trajectory.

• System compensation (includes feedback control): to minimise or mitigate
unwanted behaviour like sensed disturbances or unmodelled nonlinearities.

• Internal checks, fault notifications, diagnostics, safety issues, communications,
and so.

It is apparent that there is quite a high burden for the motion controller with a high
sampling rate requirements. One straightforward, practical implementation of a sim-
ple motion controller is known as mass feed-forward (or rigid body feed-forward).
In mass feed-forward, the first three tasks (reference trajectory planning, profile
generation and feed-forward control) are usually done for each actuator (considered
acting on a simple mass object and hence represents a single degree of freedom)
separately. As a result of this simplification, the feed-forward control problem is
just to generate the required force to accelerate the associate mass according to the
desired (allowable) trajectory. The disadvantage of this simple method is its depen-
dence on feedback to deal with unmeasured disturbance or unmodelled behaviour
aforementioned, which cause undesired and even dangerous high trajectory tracking
inaccuracy, in addition to (indefinite) time delays. To overcome these deficiencies,
many academic and practical approaches are suggested and used with the intention
to simplify these tasks. These approaches include trajectory smoothing or shaping,
plant-inversion feed-forward control and feed-forward control based on optimisation
plus system compensation.
A purposeful and promising implementable extension of ‘rigid-body feed-forward’
for higher-order reference trajectory planning that can be incorporated with all of
the alternatives mentioned above is the “fourth-order feed-forward”. Furthermore,
it is well-matched with the behaviour of electromechanical systems in general (and
industrial robotic manipulator systems used in factory automation in particular)
and it obtains time optimality within given physical actuator bounds and motion
system limits.

3.2.1 Higher-order trajectory planning:

A trapezoidal (or triangular) velocity motion profile produces a discontinuous ac-
celeration. As a consequence, the mechanical system that is fed by this acceleration
input may suffer efforts and stresses (due to the saturated actuating acceleration),
which may cause permanent damages or undesired vibrational effects. Therefore,
a smoother motion profile must be defined, for example by adopting a continuous,
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linear piece-wise, acceleration profile. In this case, the resulting velocity is composed
by linear segments connected by parabolic blends, hence the name double S for this
trajectory profile [3].

Generally speaking, second- and third-order trajectories are reasonably known both
in industry and academia with numerous approaches to give a valid solution for the
trajectory planning problem. However, extensions to fourth-order trajectory plan-
ning are not that direct and trivial. Before digging into the details of a generic
algorithmic solution for obtaining the required higher-order trajectory (irrespective
of the order of the resulting trajectory), the primary objectives of trajectory plan-
ning is summarised and reviewed. Those objectives work as general guidelines for
applicability of any trajectory planning solution, and briefly, they are (as mentioned
in [6]):

• Timing: A time-optimal trajectory is always required or at least getting closer
to it with the consequences of trajectory execution time specified to assess the
effect of boundary conditions.

• Actuator effort: This usually forms the basis for selecting limits on veloc-
ity, acceleration and jerks, though they sometimes attributed to bounds on
mechanical construction or safety aspects.

• Accuracy: For point-to-point motion commands, the end-effector position of
the trajectory must be set to the desired position at each instant (within
acceptable measurement accuracy).

• Complexity: Although the trajectory planning is usually treated as being
done off-line, however, practically the desired end-effector position may be-
come available only at the moment when the trajectory should be started.
Thus, the required time for trajectory planning is lost and this delay should
be minimised.

• Reliability: The planning algorithm should always yield a valid solution.

• Implementation: Trajectory planning algorithm is implemented in computer
hardware, making it subject to discretisation and quantisation (digitalisation)
characteristics.

3.2.1.1 Fourth-order trajectory planning

As discussed earlier, it is required for our simulation studies of flexible robotic ma-
nipulators to have a trajectory with a continuous derivative of acceleration (i.e.
jerk). For this reason, a variation of the double S trajectory that has a trapezoidal
jerk profile can be used. The overall trajectory is comprised of fifteen segments,
where the jerk increases or decreases linearly with time, or is constant at some level.
The bound on the first derivative of jerk is necessary to be defined (called jounce,
ping, or more formally snap).

Given that the positions at the start and end points are q0 and q1 respectively, the
corresponding initial and final values of velocity are v0 and v1, and the lower and
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upper saturation limits on velocity v , acceleration a, jerk j and snap s are specified
as:

vmin = −vmax, amin = −amax, jmin = −jmax, smin = −smax; (3.3)

The fifteen-segments “double S” trajectory consists of an acceleration phase (the first
seven segments), a constant velocity phase (the eighth segment) and a deceleration
phase (the phases from 9 to 15), all together constituting the whole trajectory with
a continuous jerk. The complete trajectory is thus determined by specifying the
time length expressions for different component segments (detailed analysis with
complete derivations can be found, for e.g., in [3]), according to:



Ts ; jmax

smax

Tj ; Ts + amax

jmax

Ta ; Tj + vmax−v1
amax

Td ; Tj + vmax−v0
amax

Tv ; q1−q0
vmax

− T0
2 (1 + v0

vmax
)− Td

2 (1 + v1
vmax

)

(3.4)

Alternatively, to obtain the jerk, acceleration, velocity and position profiles, one can
obtain the corresponding snap profile and integrate it numerically to get the required
set of lower-order profiles. The snap profile’s expression is particularly rather simple
and is given by:

q(4)(t) =



+smax ; t ∈ [0, Ts]
0 ; t ∈ [Ts, Tj − Ts]
−smax ; t ∈ [Tj − Ts, Tj]
0 ; t ∈ [Tj, Ta − Tj]
−smax ; t ∈ [Ta − Tj, Ta − Tj + Ts]
0 ; t ∈ [Ta − Tj + Ts, Ta − Ts]
+smax ; t ∈ [Ta − Ts, Ta]
0 ; t ∈ [Ta, Ta + Tv]
−smax ; t ∈ [Ta + Tv, Ta + Tv + Ts]
0 ; t ∈ [Ta + Tv + Ts, Ta + Tv + Tj − Ts]
+smax ; t ∈ [Ta + Tv + Tj − Ts, Ta + Tv + Tj]
0 ; t ∈ [Ta + Tv + Tj, T − Tj]
+smax ; t ∈ [T − Tj, T − Tj + Ts]
0 ; t ∈ [T − Tj + Ts, T − Ts]
−smax ; t ∈ [T − Ts, T ]

(3.5)

where T represents the total trajectory duration, Ts represents the numerical inte-
gration step size of the trapezoidal rule used in the bilinear transform (or Tustin’s
discretisation method); i.e. the sampling period. The meanings of Tj, Ta, Td and
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Tv are best explained graphically as in Figure 3.2.

Figure 3.2: Continuous jerk profile in a fifteen-segments “double S” trajectory [3].

Although generating position, speed, acceleration and jerk profiles using this ap-
proach is conceptually quite simple (see Figure 3.3 below), care must be taken
to avoid numerical problems that can possibly arise and cause unacceptable posi-
tion/velocity/acceleration drifts.

Figure 3.3: Conceptual scheme for the numerical computation of lower-order (jerk,
acceleration, velocity and position) profiles of the fifteen-segments trajectory starting
from the derivative of jerk “snap” profile [3].

Figure 3.4 reports the position, velocity, acceleration, jerk and snap profiles of a
fifteen-segments trajectory concerning a double S motion; with the boundary con-
ditions: q0 = 0, q1 = 1, v0 = 1, v1 = 0, and the constraints: vmax = 1, amax =
5, jmax = 50, smax = 1000. It is worth mentioning that this trajectory profile repre-
sents our first trial to design a reference input to be used with our inverse dynamics
feed-forward computed torque controller.
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Figure 3.4: Fifteen segments trajectory (position, velocity, acceleration, jerk and
snap).
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It is sometimes desireable to have even higher derivatives of jerk (q(5)(t), q(6)(t),
q(7)(t), ...etc) so as to reduce the filtering needed in the inverse dynamic models
which leads to a reduction in the manipulator bandwidth and hence its maximum
speed. For this purpose, one can iterate the above mentioned algorithmic solution
for trajectory generation to design the higher derivative of jerk profile (up to the
order required smooth) firstly, and then use a chain of integrators (and Tustin’s
discretisers if required) to get the rest of lower-order trajectories profiles as previous.
Figure 3.5 reports the position, velocity, acceleration, jerk and snap, together with
first and second derivatives of snap of a continuous second derivative of jerk profile,
generated using the technique that is just described (i.e. after iterating the algorithm
of generating the fifteen-segments trajectory twice). The boundary conditions and
constraints imposed on the reference motion are the same as before. This reference
was used in the simulations, meaning that the position reference can be differentiated
six times in the inverse dynamics calculations used for feed-forward control.
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Figure 3.5: Iterated (twice) fifteen-segments trajectory profiles (position, velocity,
acceleration, jerk, snap and its derivatives up to the second derivative).
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3.3 Servo PID Controller

It is well-known, both in academia and industry, that the proportional-integral-
derivative (PID) controller is the simplest, yet the most useful control algorithm in
many practical solutions (for both linear and nonlinear systems). Many structures
are available when it comes to the implementation of a PID controller, depending
on the sensors available, all with the primary goal of meeting the position and speed
regulation aim to ensure:

lim
t→∞

q(t) = qd , lim
t→∞

q̇(t) = q̇d (3.6)

where qd and q̇d are constants specifying desired reference set-points to be tracked
at each sampling instant. For our simulation studies here, qd and q̇d will represent
the angular position and angular speed reference trajectory profiles, respectively, for
a flexible link’s actuator (a servo motor in our case).
From a stability perspective, the hierarchical structure shown in Figure 3.6 is pre-
ferred [7]; where p is the differential operator, (τmin

, τffw) are the actual motor
torque and the feed-forward computed compensation torque, and (kp, kv, ki) are
the proportional, integral, and derivative gains, respectively, with ki = 1

Ti
(Ti is the

integrator reset time). This specific PID variant is based in a velocity inner loop
plus a position outer loop to keep the closed-loop system stability less stringent than
those required when the PID control is implemented as the other PI position loop
plus velocity feedback classic variant.

Figure 3.6: PID control based on PI feedback of velocity error.
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3.4 Inverse Dynamics (Feed-forward) Computed
Torque Controller

Most of the time, the end-effector of some industrial manipulator is required to
track a specific trajectory (a continuous function of time) instead of a discrete set
of set-points. Trajectory tracking is needed in applications such as plasma cutting,
water jet cutting, laser-cutting, arc welding and paint spraying, where both the
position and the velocity of the end-effector have to be controlled at all points
along the course of the specified trajectory. Since the underlying nonlinear nature
of a manipulator becomes more significant under high-speed trajectory tracking,
linear control strategies (like PD controllers and so) then fail to satisfy the required
performance metrics anymore and a more sophisticated control approach is then
required. Therefore, modern model-based control techniques have to be proposed
and designed in order to minimise both the position and velocity tracking errors in
all the trajectory points in space. However, with all these new schemes, a feedback
part is still incorporated to take care of model errors, gravity and other disturbances,
and is usually done by a PD, or a PID, controller [2].

Many modern model-based control schemes have been proposed to handle the tra-
jectory tracking problem in rigid manipulators. Among those, the computed torque
control (CTC) method - sometimes called inverse dynamics control - is perhaps the
best known control concept for rigid manipulators. It has been proved to be very
successful in practice and promising for extensions to be used with larger classes of
manipulators (including various flexibilities). CTC is explicitly based on a model
of the rigid manipulator and it compensates, via inverse dynamics, the model’s
nonlinear dynamic terms, decoupling the interactions between the degrees of free-
dom. This is mainly because the inverse dynamics (or computed torque) control
approach accounts explicitly for and compensate most of the nonlinear dynamics of
the robotic manipulator robustly. Furthermore, ideally under no model uncertain-
ties, the closed-loop system is both linear and decoupled and can be controlled by
simple controller (commonly based on classical linear control theory, for instance,
PD or PID). The computed toque method is also known as the static nonlinear state
feedback approach, because the tracking objective is achieved through a special type
of feedback linearisation [2].

A CTC scheme is usually comprised of two parts: (1) a compensation part to take
care of the nonlinear dynamic terms (i.e. a kind of feed-forward control) plus (2)
an “internal” or “external” PD or PID-term. In the ideal case when the model
matches the actual underlying manipulator dynamics exactly (for example in fre-
quency response sense as used for this thesis work), the CTC method theoretically
guarantees globally, asymptotically stable trajectory tracking. However, in practice
the tracking performance substantially decreases if the model structure is imperfect
or if the parameters are unknown or time-varying (need for robust -/or adaptive
control schemes).

In the rest of this section, the two very similar control concepts, inverse dynamics
and computed torque, are combined together (as classically done in industry) and
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termed as “inverse dynamics computed torque control (ID CTC)”. This suggested
inverse dynamics computed torque control approach leads to the familiar second-
order, linear error dynamics, which can easily be shown to yield a stable system
under certain conditions for the controller gains.

Figure 3.7 shows a global sketch of the reference generator together with the de-
veloped controller within the closed-loop system. The role of ID CTC block is to
take the desired trajectory profiles (as the ones shown in Figures 3.4 and 3.5) for
the link’s tip of the flexible robotic manipulator (qref

l , q̇ref
l and q̈ref

l ), which are gen-
erated by the reference generator shown, and provides the corresponding references
trajectories to be sent to the joint actuators (motors) (qref

m , q̇ref
m and q̈ref

m ).

Figure 3.7: Scheme for reference trajectory generation and inverse dynamics plus
FFW computed compensation torque controller.

The inverse dynamic (ID) model and the feed-forward computed compensation
torque (CTC) for the 2-mass system can be obtained from (2.1) by taking the
Laplace transform (in the complex frequency variable s) as:

ϕref
m (s) =

Jgs
2 + dgs+ kg

dgs+ kg

ϕref
l (s)

ϕ̇ref
m (s) = sϕref

m (s)
ϕ̈ref

m (s) = sϕ̇ref
m (s)

τF F W
m (s) = Jmϕ̈

ref
m (s) + Jlϕ̈

ref
l (s)

= Jmϕ̈
ref
m (s) + dg(ϕ̇ref

m − ϕ̇ref
l )(s) + kg(ϕref

m − ϕref
l )(s)

(3.7)

Whereas the inverse dynamic (ID) model and the feed-forward computed compen-
sation torque (CTC) for the 3-mass system can be obtained as two serially-cascaded
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2-mass inverse dynamics, as in (3.7) above, from (2.4) as

ϕref
g (s) =

Jgs
2 + dgs+ kg

dgs+ kg

ϕref
l (s)

ϕ̇ref
g (s) = sϕref

g (s)
ϕ̈ref

g (s) = sϕ̇ref
g (s)

ϕref
m (s) =

(Jls
2 + dls+ kl)(Jgs

2 + dgs+ kg) + Jl(dls+ kl)s2

(Jls2 + dls+ kl)(dgs+ kg)

ϕref
g (s)

=


(Jls

2 + dls+ kl)(Jgs
2 + dgs+ kg) + Jl(dls+ kl)s2

(Jls2 + dls+ kl)(dgs+ kg)

×
Jgs

2 + dgs+ kg

dgs+ kg

ϕref
l (s)

ϕ̇ref
m (s) = sϕref

m (s)
ϕ̈ref

m (s) = sϕ̇ref
m (s)

τF F W
g (s) = dl(ϕ̇ref

g − ϕ̇ref
l )(s) + kl(ϕref

g − ϕref
l )(s)

τF F W
m (s) = Jmϕ̈

ref
m (s) + Jgϕ̈

ref
g (s) + Jlϕ̈

ref
l (s)

= Jmϕ̈
ref
m (s) + dg(ϕ̇ref

m − ϕ̇ref
g )(s) + kg(ϕref

m − ϕref
g )(s)

(3.8)

In general, taking the derivative of a discontinuous or noisy signal tends to exac-
erbate the influence of that noise, and differentiators (even in Simulink or more
importantly in practise) exhibit this behaviour. Therefore, one should make sure
that all signals in the reference generator and the inverse dynamics plus feed-forward
controller are continuous in time and amplitude with a small derivative at t = 0 and
relatively low level of noise. Since there is need for taking derivatives of the mo-
tor reference position signal (obtained via inverse dynamics) in order to get the
corresponding velocity, acceleration and also then the feed-forward compensating
torque, it is evident that the reference trajectory should be appropriately defined
to avoid running into numerical problems or instability. To this end we can employ
the following tricks: (1) rearranging the dynamic equations so as to describe the in-
verse dynamic system in its best-form mathematical model exclusively that involves
only integrators (i.e. no differentiators at all), (2) including the differentiator into a
transfer function that directly precedes it whenever that is possible, and (3) always
filter the signal before taking the derivative and afterwards as much as possible. It
is clear that the first remedy is not valid with our 2-mass and 3-mass inverse dy-
namic models aforementioned. On the other hand, the second approach can always
be used. Then it is important that the reference to the inverse dynamic model is
possible to differentiate the number of times needed in the inverse dynamic model,
see Section 3.5.

47



3. Problem Statement, Control System Design and Compensation Techniques

3.5 Smoothing Filters for Reference Profile Sig-
nals and Inverse Dynamics Derivations

In general, digital filtering may indicate any form of digital signal processing. In
the narrow context of robotics manipulators that we are currently discussing, it
refers to discrete-time low-pass (LP) smoothing, that has been an essential tool in
designing inverse dynamics-based feed-forward (FFW) compensators in industrial
robotics manipulators.
Practically speaking, a good practice that is encouraged before feeding a refer-
ence trajectory profile signal to an inverse dynamic model is to filter/smooth it,
to avoid discontinuities that may arise upon successive differentiations encountered
later along the inverse dynamics path. It is also known that the resulting position
reference signal for motor movement must be sufficiently low-pass filtered in order
to prevent excessive noise that can occur when its derivative is taken to obtain the
corresponding velocity, acceleration or even more difficult the computed torque for
FFW compensation. However, low-pass filtering of kinematic data may remove high
frequency components of the actual movement of the controlled link, and the effects
of such filter-induced errors lead to an overall slower response and possibly tracking
inaccuracies (a critical compromise that should be cautiously addressed). It is the
purpose, as for digital filtering, that the cut-off frequency must be decided carefully
(or equivalently, the frequency bandwidth or operation window of the controlled
manipulator). In order not to largely affect this bandwidth, since the flexibility is
introduced in the first place in order to enable the industrial robotic working at
higher speeds, the reference signal is generated adequately very smooth by using the
newly developed iteration scheme for the higher-derivative of jerk trajectory profile,
as discussed in the previous sections. As a result, multiple copies of a very simple
second-order low-pass filter that is formed by cascading two first-order low pass filter
serially are used as just needed, and each of this second-order smoothers is given by:

HLP (s) = ωc
2

s+ ωc
2

ωc
2

s+ ωc
2

(3.9)

It is worth-mentioning here that this low-pass filter pair (two first-order low-pass
filters cascaded serially to give a second-order smoother) can also be used to smooth
the derivative of the position difference error compensation signal. Such a compen-
sating signal is obtained as the output of the compensation scheme and its derivative
(the corresponding velocity difference error compensation signal) may be needed
while controlling the ADAMS FEM models. Otherwise, one can tune these filters as
required since they are inside the exogenous compensation scheme added on top of
the controller but is not really a part of it, thus none of these compensation signals
affect the closed-loop system bandwidth.
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3.6 Compensation of Differences between ADAMS
FEM/Lumped-Masses Model and Flexible Link
Model

Before discussing the theoretical grounds and the practical considerations for the
proposed compensation schemes, some definitions and conventions are first pre-
sented.
Relying on (3.10) and Figure 3.8, the following necessary definitions are first intro-
duced:

∆error = (ϕm − ϕfake
l )− (ϕref

m − ϕref
l )

ϕm = ϕref
m ⇒ ∆error = ϕref

l − ϕfake
l

Quotaerror = ϕm − ϕfake
l

ϕref
m − ϕref

l

(3.10)

where ∆error is the dynamic difference error between a FEM/lumped model reference
angle ϕl

ref and the real flexible plant angle ϕl
fake (when ϕm = ϕref

m ), Quotaerror is
the corresponding ratio.

Figure 3.8: A schematic representation of the 3-mass manipulator inverse dynamic
model (comprised of a motor, a flexible gearbox and a rigid link) for compensation
purposes, together with its system I/O abstraction.

49



3. Problem Statement, Control System Design and Compensation Techniques

Figure 3.9: A schematic representation of a manipulator plant model with a motor,
a flexible gearbox and a flexible link with the motor and “fake” link angular positions
demonstrated.

Using a more generalised notation for the motor, gearbox and link angular positions,
their angular speeds and angular accelerations, the upper part of Figure 3.10 outlines
an exaggerated situation for a flexible link mounted on a motor inertia via a flexible
gear. qm is the motor angle, qg is the gearbox angle and ql is the link fake angle.
In the lower part of the drawing, the inverse dynamic model used for feed-forward
control is shown. In this case, this model is a 2-mass model with a motor inertia
connected via a spring to a rigid link inertia.

Figure 3.10: A flexible link mounted on a motor inertia via a flexible gear and
how the inverse dynamics can be used to control it in a feed-forward fashion.

The upper part of Figure 3.11 shows an example of a compensation relation obtained
by theoretical calculations or experimental measurements. The lower part shows how
this compensation relation is used.
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Figure 3.11: A compensation scheme and its usage.

In some cases the link consists of a rigid part, on which a flexible part is mounted.
The fake link angle ql can here be defined according to Figure 3.12. However, this
will give another compensation relation than for the case in Figure 3.10.

Figure 3.12: A two-links manipulator with a flexible link mounted on a rigid link.

Another way than the one illustrated in Figure 3.12 is to connect a rigid link part
with a flexible part. Here the rigid part is mounted with a right angle to the rigid
part giving an offset, which will introduce a kinematic error when compensation for
the angle of the flexible part is made.
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Figure 3.13: A two-links manipulator with a flexible link mounted with a right
angle on a rigid link.

When two compliant links form a 2-DOF robot, it is necessary to compensate for
the bending angle of the first arm (lower link) when the reference angle of the second
arm (upper link) is used as the link angle reference. This case is shown in Figure
3.14.

Figure 3.14: A manipulator with two flexible links with some important definitions
illustrated.

Now we are ready to give the constructive discussion behind the compensation
schemes developed, with the help of the various above shown cases. The idea to
use lumped models in the inverse dynamics for the feed-forward control makes it
necessary to develop a method to take care of the differences between the lumped
models and the real plants with elastic links. This difference will depends both on
the angular errors, when a fake angle is approximated with angles between lumped
masses, and on kinematic parameters that cannot be taken care of by a simple 2- or
3-mass model. The upper drawing in Figure 3.10 outlines a flexible link connected
via a gearbox compliance to a motor inertia. Since in this case the inertia on the
output of the gearbox is small, this case will appear as a 2-mass system with the
gearbox stiffness in series with the link stiffness. The frequency response of this
system can be matched by the frequency response of a lumped-mass system with 2

52



3. Problem Statement, Control System Design and Compensation Techniques

masses separated by a spring and a damper. The inverse of such a matched 2-mass
system is implemented in the inverse dynamic model with inputs and outputs as
shown in the lower drawing of Figure 3.10. Here qm should excite the servo in such
a way that qref

l should be as close as possible to the fake angle ql in the real link.
However, because of the differences between the real system and the model, there
will be a difference (ql− qref

l ). Now it is possible to calculate or measure this differ-
ence and relate it to (qref

l −qref
m ) as exemplified in the upper drawing in Figure 3.11.

This relation is then stored as a table or a mathematical expression and used for
compensating the input to the inverse dynamic model. Of course the same concept
can be used also for a 3-mass system.
Figure 3.12 shows a case when the link consists of one rigid part and one compliant
part. In this case, the fake angle will contain the rigid part and another relation will
be achieved between (qref

l − qref
m ) and ql and qref

l . If the rigid part has low inertia
in relation to the link (link+load in a real case) a 2-mass inverse dynamic model
can be used, otherwise a 3-mass model is needed or a 2 mass model matched to the
lowest zero and pole in the frequency response of the real system.
Figure 3.13 illustrates a case where full accuracy cannot be obtained using the
inverse dynamics for feed-forward, and the compensation scheme in Figure 3.12 will
not be able to compensate for this kinematic error. However, the arm design should
consider this and keep offsets in this direction as small as possible. In order to
compensate for this error at least one more DOF is needed, and then it is possible
to use a compensation scheme including the kinematics of the whole manipulator.
Figure 3.14 shows a case that has to be handled when the manipulator has more
than one link. Here the compliance of the first link gives a bending in the tip of
this link, which will add angle to the second link. This can be compensated for
by a table generated from experiments or from FEM models; obtaining the bending
angle of the lower link as a function of the difference between the link angle reference
and the motor angle reference of the inverse dynamic model of the lower link. The
estimated bending angle can then be added to the link angle reference of the inverse
dynamic model of the upper link.
If a manipulator is designed without any larger offsets as in Figure 3.13, it will be
possible to use the proposed compensation scheme for a multi DOF manipulator.
If the situation as in Figure 3.13 or other situations that need a kinematic manip-
ulator model, it is possible to input the angle compensations obtained from tables
or mathematical expressions based on the compliances from the inverse dynamic
models to a kinematic compensation model generating the necessary compensations
on the inputs of the inverse dynamic models of the robot joints.
One point that must be considered with this concept is that compensations will be
made on old calculations of the inverse dynamics. However, the errors caused by a
lag in compensation will be small if the sampling time is high in relation to the time
constants of the manipulator dynamics. Otherwise, it is always possible to make
double inverse dynamic model calculations or having two inverse dynamic models
running in parallel. In this Master Thesis work, two parallel inverse models were
used motivated by implementation reasons in Simulink.
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4
Simulation Results and Discussion

4.1 Simulation Parameters and Scenario

Before delving into the results, their analysis and discussion, some numerical values
for the simulation parameters are given.
Following the rules of thumb for tuning of the three PID parameters (kp, kv and
ki) to get an oscillation-free accurate tracking results, and after further fine tuning
process depending on the end-effector’s tracking errors, the following two set of PID
parameters gave the best tracking results:

kp = 0.75, kv = 1.5, Ti = 0.25 (4.1)
kp = 0.3, kv = 0.3 Ti = 3 (4.2)

the first PID parameters set can be used with simple 2-mass and 3-mass plant
systems, while the second one can be used for controlling the lumped multi-mass
and ADAMS FEM models of the flexible link.
In addition, (ωc = 20 rad/s) is reached for the filter in (3.9) after some tuning to
get both a fast response and an oscillation-free tracking for velocity and acceleration
that is numerically stable. In addition, this filter’s cut-off frequency respects the
high smoothness requirements discussed earlier while still preserves a reasonable
controlled manipulator’s bandwidth to fully achieve the tasks requested within the
demanded performance specifications.
The first target of this thesis is to obtain a basic understanding of the relationships
between flexible manipulator arm model types and feed-forward inverse dynamic
model types. The flexible manipulator arm model dynamics should be as close to
reality as possible and the inverse model should be as simple as possible. Manipula-
tor arm models that have been studied are 2-mass and 3-mass lumped-mass models,
multi-mass lumped-mass models and FEM models, where the FEM models should
have the dynamics and compliance geometry closest to a real manipulator arm. In
order to make it possible to run the inverse dynamic models in real-time in a real
industrial robot controller, only 2-mass and 3-mass lumped-mass models have been
used. The biggest problem with the inverse models is the necessary chain of deriva-
tives and hence, the inverse 2-mass model should be the first choice. An important
finding therefore is that even if the manipulator arm model corresponds to a 3-mass
model it is still possible to obtain good results when using a 2-mass inverse model,
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especially if its frequency response is matched to the lowest pair of anti-resonance
and resonance frequencies.
The second target of the thesis is to test a new concept to compensate for differences
between the dynamics and compliance geometry of a 2-mass/3-mass inverse model
and a more accurate arm model. The concept used is to save the error between the
real link fake angle and the lumped-mass link angle as a function of the compliance in
the lumped-mass system. When running the simulation, the link position reference
to the inverse dynamic model is compensated for this error using the saved error as
a function of the actual compliance of the inverse dynamic model.

4.2 Simulation Results with Comments

In Table 4.1, the results from different control and arm model combinations are
shown, focusing on the inverse model type. The values depicted are the maximum
deviation between the actual link angle/speed and the reference angle/speed. For
comparison, no inverse model at all is used as a first option and the results rely on
the tuning of the PID controller. The simulations show that as expected, the 2-mass
lumped model is easiest to tune with a PID controller while 3-mass, multi-mass and
ADAMS models will give 4− 5 times worse results.

Inverse Model Type Link Model Type Compensation Type Angular Error (rad) Speed Error (rad/s)
No (only PID) 2-Mass lumped model No 0.020 0.080

3-Mass lumped model No 0.110 0.360
Multi-mass one resonance No 0.090 0.290
Multi-mass two resonances No 0.090 0.300
ADAMS one resonance No 0.110 0.360
ADAMS two resonances No 0.110 0.310

2-Mass lumped 2-Mass lumped model No 0.004 0.008
3-Mass lumped model No 0.006 0.026

Multi-mass one resonance No 0.003 0.007
Multi-mass two resonances No 0.004 0.012
ADAMS one resonance No 0.006 0.035
ADAMS one resonance Yes, angle 0.003 0.047
ADAMS one resonance Yes, angle and speed 0.003 0.047
ADAMS two resonances No 0.004 0.030
ADAMS two resonances Yes, angle 0.003 0.054
ADAMS two resonances Yes, angle and speed 0.007 0.055

3-Mass lumped 3-Mass lumped model No 0.004 0.007
Mult-imass two resonances No 0.004 0.010
ADAMS two resonances No 0.006 0.034
ADAMS two resonances Yes, angle 0.003 0.046
ADAMS two resonances Yes, angle and speed 0.003 0.046

Table 4.1: Angular errors and speed errors when different inverse dynamic model
types are used for feed forward control. The errors are recorded for the different
link dynamic models developed in the thesis.

In the case when a 2-mass lumped inverse model is used for feed forward control,
it can be seen that the results of angle errors are gathered in a smaller interval
(0.003 − 0.0065) and now the tuning of the PID is no longer as critical as without
feed-forward control. As expected the best results are obtained when the link model
has only one resonance (including the 2-mass lumped link model). In the case of

55



4. Simulation Results and Discussion

links with two resonances (including the 3-mass lumped link model), the error is
not much larger. In the cases when the link model has two resonances, the inverse
lumped 2-mass model is matched to the lowest pair of anti-resonance and resonance
frequencies of the link model. This will give the best results as can be seen in Table
4.1.
Using a lumped 2-mass inverse model was also tested on the ADAMS two resonances
link model with the compensation method described in Section 3.6. It was shown
that compensating the link reference angle reduced the angle error while the speed
error was increased. The compensation of both the link reference angle and the
speed gave worse results. Hence, more investigative studies are needed here.
Feed forward control with lumped 3-mass model on links with two resonances (in-
cluding 3-mass lumped model) gave about the same results as with feed-forward
using the lumped 2-mass system. One reason for this could be that the inverse
3-mass model includes more differentiations and filters, whereby the feed-forward
signals will not be that accurate. The compensation method described in Section
3.6 was also used for the ADAMS two-resonances model with a 3-mass inverse model.
It was shown that the compensation reduced the angle error a factor of 2; both for
angle compensation and combined angle and speed compensation. The speed error
was in both cases increased somewhat.
In Table 4.2, the data has been arranged to easier find which inverse model (including
only PID control) that offers the best performance for a given link model. As can
be seen, no feed-forward always gives the worst result. For the 3-mass lumped link
model, a 3-mass inverse model gives the best result, especially interesting is the very
low-speed error. It is also interesting to note that for the multi-mass model with
two resonances, the 2-mass and 3-mass inverse models give very close results.

Link Model Type Inverse Model Type Compensation Type Angular Error (rad) Speed Error (rad/s)
2-Mass lumped model No (only PID) No 0.020 0.080

2-Mass lumped model No 0.004 0.008
3-Mass lumped model No (only PID) No 0.107 0.360

2-Mass lumped model No 0.006 0.026
3-Mass lumped model No 0.004 0.007

Multi-mass one resonance No (only PID) No 0.090 0.290
2-Mass lumped model No 0.003 0.007

Multi-Mass two resonances No (only PID) No 0.091 0.300
2-Mass lumped model No 0.004 0.012
3-Mass lumped model No 0.004 0.010

ADAMS one resonance No (only PID) No 0.110 0.360
2-Mass lumped model No 0.006 0.035
2-Mass lumped model Yes, angle 0.003 0.047
2-Mass lumped model Yes, angle and speed 0.003 0.047

ADAMS two resonances No (only PID) No 0.109 0.312
2-Mass lumped model No 0.004 0.030
2-Mass lumped model Yes, angle 0.003 0.054
2-Mass lumped model Yes, angle and speed 0.007 0.055
3-Mass lumped model No 0.006 0.034
3-Mass lumped model Yes, angle 0.003 0.046
3-Mass lumped model Yes, angle and speed 0.003 0.046

Table 4.2: A rearrangement of Table 4.1 to easier see which inverse dynamic model
type that best suits a given link dynamic model type.

For both the ADAMS link models, the angle compensation scheme yields about half
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the angle error, which is very encouraging for future analysis of this concept.
Table 4.3 shows the importance of how a 2-mass lumped inverse model for feed-
forward control is matched to a link with two resonances, in this case a 3-mass
lumped-mass link. As a reference, the angle- and speed errors are shown for a 3-
mass lumped inverse model. As can be seen, the best results are obtained when
matching the 2-mass lumped inverse model to the first zero- and pole frequencies
(the lowest pair of anti-resonance and resonance frequencies). However, matching
the zero of the 2-mass model to the first zero of the 3-mass link model and the
pole to the second pole of the 3-mass link model will just give slightly worse results.
This means that the most important interesting frequency to match with the feed-
forward inverse dynamics model is the first zero (the lowest anti-resonance). This
conclusion is further verified by the case when matching is made for the highest
pair of anti-resonance and resonance frequencies, where the worst tracking results
are obtained. However, PID control without feed-forward will still give even worse
results.

Link Model Type Inverse Model Type Angular Error (rad) Speed Error (rad/s)
3-Mass lumped model 3-Mass lumped model 0.004 0.007

2-Mass lumped model lowest anti-resonance and lowest resonance 0.006 0.026
2-Mass lumped model lowest anti-resonance and highest resonance 0.007 0.028
2-Mass lumped model highest anti-resonance and highest resonance 0.070 0.250

No (only PID) 0.107 0.360

Table 4.3: Results from different matching strategies for the inverse dynamic 2-
mass model when the link model has two resonances. In this case, the link model is
a lumped 3-mass model.

Summing up, from Tables 4.1, 4.2 and 4.3, we can make the following conclusions:
• A lumped 2-mass inverse model for feed-forward matched to the lowest pair

of anti-resonance and resonance frequencies will give good results for all the
link models studied. This is a very promising finding since a 2-mass inverse
model will need less number of differentiations and therefore, the requirements
on the reference generator and filtering of differentiation steps will be much
lower.

• The new compensation scheme presented in Section 3.6 works and gave in the
case of the tested ADAMS FEM link model a reduced angle error of a factor
of 2.

• Using feed-forward control with frequency response matching gives about the
same results for all the link model types studied. This means that it will be
possible to make simulations with simple dynamic models when new control
concepts are tested, for example when a manipulator with two or more links
are analysed or when concepts for friction compensation is added to the feed-
forward control.

Figure F.28 and Table F.28 illustrate both qualitatively and quantitatively, respec-
tively, the flexible FEM link’s tip tracking performance. The plant system whose
frequency response is shown in Figure 2.20 is in effect a 3-mass plant system. The
tracking results shown are obtained when this system is controlled by a 3-mass
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inverse dynamics with a simple servo PID controller, in addition to both angular
position and angular speed difference errors compensation.

min(ϕlref − ϕl) max(ϕlref − ϕl) min(ϕ̇lref − ϕ̇l) max(ϕ̇lref − ϕ̇l) min(ϕ̈lref − ϕ̈l) max(ϕ̈lref − ϕ̈l)
−0.001066 0.002929 −0.039955 0.046281 −0.249029 0.228360

Table 4.4: An ADAMS system (3-mass plant case) tracking with a 3-mass inverse
dynamics and PID controller with angular position and angular speed difference
errors compensations results
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Figure 4.1: Flexible FEM link’s tip angular position, angular speed and angular
acceleration reference tracking using a 3-mass inverse dynamics with PID controller,
in addition to both angular position and angular speed difference errors compensa-
tion (a 3-mass plant system).

The rest of the results discussed and summarised here together with their qualitative
tracking plots and numerical error values are given in Appendix F.
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5
Conclusions and Future Work

The dynamic analysis and control of flexible manipulators is an emerging research
area in both academia and industry fields (such as manufacturing, automation,
and robotics), where a lot of work is required to control the effects of flexibility.
Robotic manipulators with flexible links became more widely used in many applica-
tions (starting from simple pick-and-place operations of an industrial manipulator
to micro-surgery and maintenance of nuclear plants). Combining both joint and
link flexibilities in the manipulator model and compensating for their effects in
closed-loop systems in real time is a challenging problem to solve. In this thesis,
a modelling- and control technique for manipulators with both flexible joints and
flexible links has been presented.

The inverse dynamics “feed-forward” computed torque control scheme has been in-
troduced to derive a model-based real-time controller for various manipulator plants.
This model considers both concentrated joint flexibilities as well as distributed link
flexibilities, while only using joint sensors (collocated control). To perform realistic
simulations, ADAMS FEM models for the flexible link together with the inertia on
the gearbox output shaft are developed and integrated in a cosimulation environ-
ment with MATLAB/Simulink. Furthermore, models of flexible links using different
numbers of lumped masses have been developed and their dynamic behaviours are
compared with those of the corresponding ADAMS FEM models. The frequency
responses of 2-mass and 3-mass models were successfully matched to all the types
of link models used. The inverse matched 2-mass and 3-mass systems were then
derived and used for feed-forward control. Simulations with feed-forward control
using the lumped or FEM versions of the link model have shown that the inclusion
of both joint and link flexibilities in the inverse feed-forward control model achieves
satisfactory tracking accuracy within the desired boundaries. Both joint and link
vibrations are suppressed effectively, even though the robotic manipulator system
is underactuated (the number of degrees of freedom exceeds the number of control
inputs).

In order for the inverse dynamics (or computed torque) control method to work,
a desired reference trajectory that is smooth-enough (i.e. can be differentiated the
required number of times depending on the complexity of the inverse dynamics
model used, either 2-mass or 3-mass) is generated. That is done by iterating the
process of fourth-order trajectory planning (smooth derivative of jerk profile) twice
to yield a position trajectory profile with a continuous second derivative of snap.
Additionally, a number of second-order smoothers, comprising two serially-cascaded
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identical copies of simple low-pass filters, are placed whenever a derivative is taken
and the cut-off frequency of each simple low-pass filter is determined after careful
tuning so as not to slower the overall system response, i.e reduce its bandwidth, too
much. However, one part of the residual path tracking error was probably due to
missing bandwidth in the differentiation steps of the inverse model.

The proposed model-based controller can be regarded as a conventional inverse
dynamics computed torque controller (ID CTC) plus a compensation unit that ac-
counts for the effects of errors in inverse dynamic models due to neglected coupled
inertia between the lumped masses and neglected link flexibility dynamics (in case
the plant has higher order, for example when a 2-mass inverse dynamic model is used
to match a 3-mass plant resonance and anti-resonance frequencies). The required
inverse dynamics schemes were developed based on the frequency-domain analysis of
the plant models used. Additionally, a concept for compensation of difference errors
has also been introduced and used to compensate for residual tracking errors. This
compensation made it possible to reduce the residual error by 50%. In particular,
we obtain the relation between the residual error and the dynamic lag in the inverse
dynamic model and then we use this relation to generate a compensation signal to
the inverse dynamic model during the link control.

5.1 Future Work

One issue that should be studied in future is how to improve the compensation in
the time-domain of the residual tracking errors. Even if the obtained 50% reduction
in the tracking error is a good result, it should be possible to reach further reduction.
Here one question regards whether it is possible to reduce residual errors because of
lacking differentiation bandwidth in the inverse model. Another question concerns
whether it is possible to reduce the residual errors because of differences between
the dynamics of the lumped-mass models used for feed-forward control and the
controlled link model. A closer study of the dynamic influence of the time-domain
compensation is then needed. It will be probably possible to increase the efficiency
of the compensation by model-based compensation filters. Whether to introduce
the compensation signal and where in addition to how to tune the timing should
also be studied.

An example of a link structure that gave larger residual errors with the lumped-mass
models used for feed-forward control is the link structure outlined in Figure 3.12.
An ADAMS implementation of this model can be seen in Figure 5.1. Here the link
consists of one rigid part with about the same length as the flexible part mounted
on the tip of the rigid part. In order to obtain a better path tracking using this link
structure a 3-mass model better adapted to the link structure is probably needed.
A future research possibility in this respect is to find out if specialised 2- or 3-mass
lumped-mass dynamic models can be derived to obtain the same good path tracking
performance for structures like the one in Figure 5.1 as for the structures studied in
this thesis work.
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Figure 5.1: A manipulator link with a rigid part having the same length as the
outer flexible part. The output of a flexible gearbox (implemented in Simulink) is
connected to the rigid part at its left end.

The proposed model-based strategy followed during modelling, simulation and con-
trol of various mechanical design of the planar robotic manipulator with a flexible
joint and a flexible link is more complete than other methods used earlier, in the
sense that it considers both the effects of structural damping in joints and links in
addition to payload. It provides a promising scheme to study “nonlinear” under-
actuated robotic manipulator systems, and to integrate other sources of additional
phenomena than joint and link flexibilities, such as friction, clearances and back-
lash. In addition, using a modular approach for the model formulation offers the
opportunity to exploit it in order to obtain dynamic models (approximate frequency
responses) for practical flexible manipulators that incorporate any number of joints
and links, building upon the models and results obtained. The only thing that should
be taken care of then is the specific compensation scheme for residual tracking errors
of the specific controlled plant.

As an example, Figure 5.2 shows a proposal for a scheme to control a manipulator
with two links using the results of the present thesis. The scheme can, of course, be
expanded to manipulators with more degrees of freedom. A trajectory is generated in
Cartesian space and a dynamic filter generates the dynamic path profile with speed,
acceleration and the number of derivatives of the acceleration needed for proper
use of the feed-forward inverse dynamic models. The allowable acceleration and
speed levels are obtained from a rigid multi-body dynamic model. The dynamically-
filtered trajectory in Cartesian coordinates is then transformed to joint coordinates
by a kinematic model. The joint value outputs of this model are used by the rigid
multi-body dynamic model to calculate the parameters of the dynamic equations
of motion for the manipulator. The joint values (angle, speed, acceleration) are
also used as link angle reference values to the inverse dynamic models, one model
for each joint. These models are based on lumped 2- or 3-mass models and the
output of the inverse dynamic models form the references (angle, speed) and feed-
forward torques to the PID servo units. The output and input of the inverse dynamic
models are used as inputs to the angle compensation units. These units calculate
from calibration curves (usually a linear relationship) the difference between the link
reference angle input to the inverse dynamic model and the real link angle. This
difference is buffered to avoid numerical loops and then fed into the inverse dynamic
model for error compensation.

It is assumed that joint 2 is mounted on joint 1 and to compensate for the bending
of the first link, the bending angle is calculated from the input and output of the
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inverse dynamic model of joint 1 together with a calibration curve.
In order to compensate for coupled inertia, Coriolis torques and centrifugal torques,
dynamic coupling calculations are made based on the actual parameters from the
rigid multi-body dynamic model given the actual speed and acceleration values of
the link as calculated by the inverse dynamic models.
There are of course many ways to build up a system for the control of manipulators
with compliant links. For example, the outputs from the angle compensation units
and the bending compensation units could go to a kinematic compensation unit,
which with the help of the kinematic model of the whole manipulator can calculate
the angle compensation signals to the inverse dynamic models. It could also be
possible to use the outputs from the angle compensation units to compensate the
trajectory via inverse kinematics calculations. In this case, the compensations could
also be stored and used in an iterative learning control concept.

Figure 5.2: Proposal of how to connect the modules developed in the thesis to
control a manipulator of two degrees of freedom.

One more important issue to reflect on here is that linearised models of the dis-
tributed link flexibility are considered in this Master’s thesis study, which reduced
the complexity of the model-based controllers employed. Accordingly, the result-
ing models can not take care of large elastic deflections of the manipulator links
and more general 3D motion. Fortunately, these cases are unlikely to happen in a
real industrial manipulators for the application areas discussed, due to their limited
payload weight usually.
Another aspect that is very crucial and needs further investigation is the energy
consumption associated with the modelling, control and compensation techniques
developed, studying the possibility of incorporating some active elements like springs
or dampers. Such topic and others related to the operation and implementation can
be addressed after testing the designed reference generation and proposed control
and compensation schemes on a real robotic manipulator to verify the results and
validate the conclusions drawn.
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A
ADAMS-MATLAB/Simulink
Interface and Performing

Co-Simulations

ADAMS is a dynamic modelling software package that has the capability of sim-
ulating any mechanical system’s kinematics and kinetics behaviour, resulting in a
dynamic behaviour for the simulated system with an acceptable error in compar-
ison to the real models. ADAMS/View is a very useful tool within ADAMS for
exact modelling and accurate calculation of both dynamical and kinematical pa-
rameters (for example inertial couplings of a robotic manipulator system, bending
of its flexible links, . . . etc.) of mechanical systems. ADAMS/Flex is another tool
within the ADAMS modelling and simulation environment, that can be used alone
for modelling and simulation of flexible structures, or can be integrated as an exten-
sion inside ADAMS/View for modelling of the flexible components of a mechanical
system [8]. On the other hand, MATLAB, together with its companion Simulink
simulation environment, is a well-known software package and powerful tool for ef-
ficiently simulating control algorithms and applying control commands to (for e.g.,
a robotic manipulator model). Hence, interfacing ADAMS and MATLAB can be
very useful for having an efficient simulation package that can be used to design and
test suggested modelling techniques with control strategies, therefore the ability to
establish and execute a co-simulation between ADAMS and MATLAB is noticeably
useful and encouraged [9].
To carry out a co-simulation between ADAMS and MATLAB, acceptable formats
for inputs and outputs for the both programs should be defined. The co-simulation
objective is then to provide a communication channel that guarantees that any
change is mutually exchanged back and forth between the two programs affecting
both ADAMS and MATLAB simultaneously [69]. In other words, as long as this
interface is established and active, ADAMS outputs are matched with MATLAB
inputs and the other way around.
To provide a simulation that enables ADMAS to understand the exported output
from MATLAB, a “control” plug-in inside ADAMS needs to be activated via the
“Plug-in Manager” wizard in ADAMS, beside defining the robotic manipulator as a
plant. After activation, a new window appears for the determination of plant and
its inputs and outputs. Afterwards, ADAMS saves dynamic model of the robotic
manipulator motion as a complex set of seven matrices that can be sent to MAT-
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A. ADAMS-MATLAB/Simulink Interface and Performing Co-Simulations

LAB as a Simulink block called Adams-sub. The first four are A, B, C, D matrices
of state-space representation of the “linearised” plant model. The fifth and sixth
matrices are associated with predefined inputs and outputs. And the last one in-
cludes information about state variables of the “linearised” plant [70,71]. By having
Adams-sub block in SIMULINK environment, the robot model is suitable for control
and motion simulation as a well-defined system in MATLAB.

For our thesis tasks specifically, in order to obtain the measurements for angular po-
sition, angular speed and angular acceleration of the end-effector at the flexible link’s
tip (and sometimes the gearbox’s angular position too), in addition to the torque
that move the joint motor, a control system was developed using ADAMS/Controls
and MATLAB/Simulink. ADAMS/Controls is an extra plug-in that can be acti-
vated inside ADAMS/View. It allows integrating motion simulation and controlling
system design in the virtual model. It also allows connecting the ADAMS model to
block diagrams that are developed with the control application (MATLAB/Simulink
in our case).

To keep it simple and yet precise, the process to combine ADAMS with MATLAB;
providing a co-simulation of the “linearised” robotic manipulator system under study
involves the following concrete steps [10,72,73]:

1. Build the mechanical model of the (sub-)system to be controlled in ADAMS/View
(the plant model), including all the necessary geometry, forces and constraints.

2. Transform rigid parts that are required to be compliant into their flexible
counterpart representations by utilising ADAMS/Flex. To do so, right-click
on the specific part of the plant model and choose “Make Flexible”, then define
the number of flexible modes to be exported, the attachments nodes, . . . etc.

3. Define the required actuation signals (torques and forces) and sensing (mea-
sures) for the quantities that are to be imported from and exported to, respec-
tively, MATLAB for control and simulation purposes.

4. To import mechanical model created in ADAMS/View into ADAMS/Controls,
a CMD file has to be exported by ADAMS/View. Next point is to deactivate
the motions in the control system. The motions will be replaced by torques
and forces in a next step.

5. Define the input and output variables of the ADAMS developed plant model:
the inputs represent the variables to be exported to MATLAB (measure-
ments/sensors), whereas the outputs are the variables to be imported from
MATLAB (torques and forces) at each time sample of the communication
channel. For the ADAMS outputs, simply state variables can be used by def-
inition and the state variable can be simply set equal to a measure which
was defined before. A useful name for the state variable should be given so
that it can be simply recognised in MATLAB. For the ADAMS inputs, also
state variables have to be created and must be initialised to zero upon def-
inition. Later, the corresponding ADAMS input is edited and its value is
set equal to the VARVAL function of the previously defined state variable:
Tin = V ARV AL(TMAT LAB); where Tin is the input torque, and TMAT LAB
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is the corresponding state variable equal to zero. VARVAL(variable) is the
ADAMS function that returns the value of the given variable.

6. Pick a useful name for the plant model to be generated by ADAMS/Controls.
Then use the variable browser to insert the input and output state variables,
respecting the order in which you want them to be imported in the block dia-
gram exported to MATLAB/Simulink. An important issue to take care of here
is making sure that the units are uniform by using unit conversions as needed
(note: MATLAB uses SI units). It should be made sure that latest at this
point that ADAMS and MATLAB are working in the same file directory. The
export process will create some files in the common ADAMS-MATLAB work-
ing directory to be used for information exchange between the two software
packages.

7. Close the ADAMS/Controls window and start the MATLAB/Simulink, where
the controller scheme (block diagram) is built, and include the ADAMS plant
block into the MATLAB/Simulink control system simply by copy and paste.
The m-file created by ADAMS has to be started first. A good practice then is
to merge it together with the m-file of the control system, so that before a sim-
ulation only one common m-file has to be executed. The ADAMS/Controls
block diagram of the robotic manipulator FEM flexible link with the gear-
box inertia in MATLAB/Simulink for co-simulation is showed in Figure A.1,
and Subfigure A.1a is obtained by double clicking the adamssub in Subfigure
A.1b. Then the input and output connections have to be realised. Adamsuout,
Adamsyout, Adamstout are the input and output variables and the simulation
time, respectively. The block ADAMS Plant is the encapsulated dynamic
model of the robotic manipulator FEM flexible link with the gearbox inertia.
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(a) The encapsulated model generated by ADAMS and shown under
Simulink

(b) Architecture of the adamssub block

Figure A.1: The ADAMS/Controls block diagram of the FEM flexible robotic link
with the gearbox inertia in MATLAB/Simulink.
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8. Execute initialisations and set all the parameters used in the co-simulation
(including calling of the plant model generated by ADAMS, to define the
state-space matrices and inputs and outputs variables of the shared interface
between ADAMS and MATLAB).

9. Call the ADAMS/Controls generated plant in MATLAB, the plant name
should be entered in the “command window” so that the corresponding in-
put and output information will appear. By executing adamssys command,
the blocks that contain information about the dynamic model of the robotic
manipulator link with the gearbox inertia in MATLAB/Simulink environment,
are loaded.

10. Perform the simulation of the combined mechanical model (including the
ADAMS plant) and control system (developed in MATLAB/Simulink) in MAT-
LAB. Here, a crucial thing is the choice of integration step size. It is then
recommended to choose the ODE45 integration method in MATLAB with
variable step size when using continuous mode. The simulation precision can
be defined among the relative accuracy and the absolute accuracy. These in-
dividual values have to be adjusted in case the simulation is problematic. It
is recommended to set the relative tolerance to maximum while the absolute
tolerance is set to auto (In our case, the relative tolerance is set to 10−9).
Additionally, the initial conditions for the ADAMS Plant block are all set to
0. When all the parameters are set, the co-simulation can be carried out.
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B
Frequency Responses of

Additional 2-Mass Models Used in
Simulations

Figure B.1 shows the frequency response of the transfer function model in (2.2);
with the following parameters: Jm = 6× 10−3, Jg = 30× 10−3, dg = 30× 10−3 and
kg = 32.
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Figure B.1: Frequency response for transfer function from motor torque (τm) to
motor acceleration (ϕ̈m) of a flexible manipulator with a motor, a flexible gearbox
and an inertia on the output of the gearbox (2-mass system with kg = 32).

Figure B.2 shows the frequency response of the transfer function model in (2.2);
with the following parameters: Jm = 6× 10−3, Jg = 30× 10−3, dg = 30× 10−3 and
kg = 45.
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Figure B.2: Frequency response for transfer function from motor torque (τm) to
motor acceleration (ϕ̈m) of a flexible manipulator with a motor, a flexible gearbox
and an inertia on the output of the gearbox (2-mass system with kg = 45).

Figure B.3 shows the frequency response of the transfer function model in (2.2);
with the following parameters: Jm = 6× 10−3, Jg = 30× 10−3, dg = 30× 10−3 and
kg = 65.
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Figure B.3: Frequency response for transfer function from motor torque (τm) to
motor acceleration (ϕ̈m) of a flexible manipulator with a motor, a flexible gearbox
and an inertia on the output of the gearbox (2-mass system with kg = 65).
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C
Frequency Responses of

Additional 3-Mass Models Used in
Simulations

Figure C.1 shows the frequency response of the transfer function model in (2.5);
with the following parameters: Jm = 6 × 10−3, Jg = 30 × 10−3, dg = 30 × 10−3,
kg = 32, Jl = 60× 10−3, dl = 30× 10−3 and kl = 20.
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Figure C.1: Frequency response for transfer function from motor torque (τm) to
motor acceleration (ϕ̈m) of a flexible manipulator with a motor, a flexible gearbox
, an inertia on the output of the gear box and a flexible link (3-mass system with
kg = 32 and kl = 20).

Figure C.2 shows the frequency response of the transfer function model in (2.5);
with the following parameters: Jm = 6 × 10−3, Jg = 30 × 10−3, dg = 30 × 10−3,
kg = 45, Jl = 60× 10−3, dl = 30× 10−3 and kl = 20.
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Figure C.2: Frequency response for transfer function from motor torque (τm) to
motor acceleration (ϕ̈m) of a flexible manipulator with a motor, a flexible gearbox
, an inertia on the output of the gear box and a flexible link (3-mass system with
kg = 45 and kl = 20).

Figure C.3 shows the frequency response of the transfer function model in (2.5);
with the following parameters: Jm = 6 × 10−3, Jg = 30 × 10−3, dg = 30 × 10−3,
kg = 65, Jl = 60× 10−3, dl = 30× 10−3 and kl = 20.

10
-2

10
0

10
2

10
4

M
a

g
n

itu
d

e
 (

a
b

s)

10
-1

10
0

10
1

10
2

10
3

10
4

0

45

90

135

180

P
h

a
se

 (
d

e
g

)

Bode Diagram

Frequency  (rad/s)

Figure C.3: Frequency response for transfer function from motor torque (τm) to
motor acceleration (ϕ̈m) of a flexible manipulator with a motor, a flexible gearbox
, an inertia on the output of the gear box and a flexible link (3-mass system with
kg = 65 and kl = 20).
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D
Frequency Responses of

Additional Multi-Mass (3-Mass)
Models Used in Simulations

Figure D.1 shows the identified (using a chirp input signal) frequency response of
the multi-mass link and gearbox resulting in a 3-mass system; with the following
set of discrete model parameters: Jm = 6 × 10−3, Jg = 30 × 10−3, dg = 30 × 10−3,
kg = 65, Jl = 60−3, dl = 30× 10−3, kl = 20 and n = 5.
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Figure D.1: Frequency response for transfer function from motor torque (τm) to
motor acceleration (ϕ̈m) of a flexible manipulator with a motor, a flexible gearbox,
an inertia on the output of the gearbox and lumped (multi-mass) model of a flexible
link with a big-inertia tip-mass load (3-mass system case with n = 5).

Figure D.2 shows the identified (using a chirp input signal) frequency response of
the multi-mass link and gearbox resulting in a 3-mass system; with the following
set of discrete model parameters: Jm = 6 × 10−3, Jg = 30 × 10−3, dg = 30 × 10−3,
kg = 65, Jl = 60−3, dl = 30× 10−3, kl = 20 and n = 10.
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Simulations
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Figure D.2: Frequency response for transfer function from motor torque (τm) to
motor acceleration (ϕ̈m) of a flexible manipulator with a motor, a flexible gearbox,
an inertia on the output of the gearbox and lumped (multi-mass) model of a flexible
link with a big-inertia tip-mass load (3-mass system case with n = 10).

Figure D.3 shows the identified (using a chirp input signal) frequency response of
the multi-mass link and gearbox resulting in a 3-mass system; with the following
set of discrete model parameters: Jm = 6 × 10−3, Jg = 30 × 10−3, dg = 30 × 10−3,
kg = 65, Jl = 60−3, dl = 30× 10−3, kl = 20 and n = 15.
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Figure D.3: Frequency response for transfer function from motor torque (τm) to
motor acceleration (ϕ̈m) of a flexible manipulator with a motor, a flexible gearbox,
an inertia on the output of the gearbox and lumped (multi-mass) model of a flexible
link with a big-inertia tip-mass load (3-mass system case with n = 15).
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D. Frequency Responses of Additional Multi-Mass (3-Mass) Models Used in
Simulations

Figure D.4 shows a visual illustrative comparison of the identified (using a chirp in-
put signal) frequency responses of the multi-mass link and gearbox systems resulting
in a 3-mass system, explaining the effect of the number of lumped elements N on the
frequency response. All these frequency responses are obtained with the following
set of discrete model parameters: Jm = 6 × 10−3, Jg = 30 × 10−3, dg = 30 × 10−3,
kg = 65, Jl = 60−3, dl = 30× 10−3 and kl = 20 [n = 5, 10 and 15].
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Figure D.4: Frequency response for transfer function from motor torque (τm) to
motor acceleration (ϕ̈m) of a flexible manipulator with a motor, a flexible gearbox,
an inertia on the output of the gearbox and lumped (multi-mass) model of a flexible
link with a big-inertia tip-mass load (3-mass system case with [n = 5, 10 and 15]).
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E
Steps for Mode/Anti-Mode

Matching in the Frequency Plane
Using Inverse Dynamic Models

The required formulas for frequency response matching are based on the modes and
anti-modes expressions and the inverse dynamics equations given in the main thesis
text (see Subsections 2.2.1, 2.2.2 and 2.2.3, in addition to Section 3.4). Here, the
precise steps for mode/anti-mode matching in the frequency plane using 2-mass and
3-mass inverse dynamic models are provided.

E.1 Matching procedure of a 2-mass (3-mass) plant
mode(s) and anti-mode(s) using a 2-mass in-
verse dynamic model

1. Enter the plant’s estimated frequency response information:
• The anti-resonance frequency (in case of a 2-mass plant), or either the

lower or higher anti-resonance frequency (in case of a 3-mass plant) [ωz].
• The resonance frequency (in case of a 2-mass plant), or either the lower

or higher resonance frequency (in case of a 3-mass plant) [ωp].
• The low frequency region (or DC) gain [HDC ].

2. Pick a reasonable initial value for the motor inertia of the 2-mass inverse
dynamic model [Jm2−mass]. A good guess is then the plant model nominal
value [Jm]. Hence:

Jm2−mass = Jm

3. Calculate the value of the gearbox inertia of the 2-mass inverse dynamic model
[Jg2−mass] using the relation:

Jg2−mass = 1
HDC
− Jm2−mass

4. Calculate the value of the gearbox stiffness of the 2-mass inverse dynamic
model [Kg2−mass] using the relation:

kg2−mass = Jg2−massωz
2
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E. Steps for Mode/Anti-Mode Matching in the Frequency Plane Using Inverse
Dynamic Models

5. Refine the guess for [Jm2−mass]:

Jm2−mass = kg2−mass/
(
ωp

2 − kg2−mass

Jg2−mass

)
6. Tune the damping value of the gearbox damping of the 2-mass inverse dynamic

model [dg2−mass] until the frequency response of the matched 2-mass inverse
dynamic model matches/gets as closest as possible to that of the plant model
(in case of a 2-mass plant) or best fit the lower part of it (in case of a 3-mass
plant) . A good initial guess to start with is then the plant model nominal
value [dg]. Hence:

dg2−mass = dg

E.2 Matching procedure of a 3-mass plant modes
and anti-modes using a 3-mass inverse dy-
namic model

1. Enter the plant’s estimated frequency response information:
• The lower and the higher anti-resonance frequencies [ωz1 , ωz2 ].
• The lower and the higher resonance frequencies [ωp1 , ωp2 ].
• The low frequency region (or DC) gain [HDC ].

2. Pick a reasonable initial value for the motor inertia of the 3-mass inverse
dynamic model [Jm3−mass]. A good guess is then the plant model nominal
value [Jm]. Hence:

Jm3−mass = Jm

3. Solve the four equations that give the resonance and anti-resonance frequencies
for the inverse dynamic model (given by (2.6)) simultaneously after substitut-
ing the value of[Jm3−mass] and equating them to the numerical values entered
above. This step can be done using a symbolic solver, for example the one
integrated in Matlab. As a result, the values of the gearbox inertia [Jg3−mass],
the gearbox stiffness [kg3−mass], the link inertia [Jl3−mass] and the link stiffness
[kl3−mass] of the 3-mass inverse dynamic model are obtained.

4. Refine the guess for [Jm3−mass]:
Jm3−mass = 1

HDC
− Jg3−mass − Jl3−mass

5. Tune the values of the gearbox damping and the link damping of the 2-mass
inverse dynamic model [dg3−mass, dl3−mass] until the frequency response of the
matched 3-mass inverse dynamic model matches/gets as closest as possible to
that of the plant model (best fit) . A good initial guess to start with is then
the plant model nominal values [dg, dl]. Hence:

dg3−mass = dg

dl3−mass = dl
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F
Detailed Results and Comparisons

In this Appendix, the detailed results obtained after implementing each of the fore-
mentioned control and compensation strategies are provided, together with some
comparative bar charts for the results of each plant model used. The plant model
complexity together with the controller complexity were stepwise increased and each
of the results are noted and also compared with the previous ones.

F.1 A 2-Mass Plant System

F.1.1 With A Simple Servo PID Controller Results

Figure F.1 and Table F.1 illustrate both qualitatively and quantitatively, respec-
tively, the flexible gearbox tracking performance of the 2-mass plant system whose
frequency response is shown in Figure 2.7, when it is controlled by a simple servo
PID controller only.

min(ϕgref − ϕg) max(ϕgref − ϕg) min(ϕ̇gref − ϕ̇g) max(ϕ̇gref − ϕ̇g) min(ϕ̈gref − ϕ̈g) max(ϕ̈gref − ϕ̈g)
−0.019896 0.021330 −0.084104 0.075255 0.556559 0.547807

Table F.1: A 2-mass plant system tracking with a PID controller only results
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Figure F.1: Flexible Gearbox angular position, angular speed and angular accel-
eration reference tracking using PID controller only (a 2-mass plant system with
kg = 5N/m).

F.1.2 With A 2-Mass Inverse Dynamics Model Feed-forward
Computed Torque with PID Controller Results

Figure F.2 and Table F.2 illustrate both qualitatively and quantitatively, respec-
tively, the flexible gearbox tracking performance of the 2-mass plant system whose
frequency response is shown in Figure 2.7, when it is controlled by a 2-mass inverse
dynamics with a simple servo PID controller.

min(ϕgref − ϕg) max(ϕgref − ϕg) min(ϕ̇gref − ϕ̇g) max(ϕ̇gref − ϕ̇g) min(ϕ̈gref − ϕ̈g) max(ϕ̈gref − ϕ̈g)
−0.000105 0.004331 −0.008351 0.008135 −0.028569 0.0262159

Table F.2: A 2-mass plant system tracking with an identical 2-mass inverse dy-
namics and PID controller results.
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Figure F.2: Flexible Gearbox angular position, angular speed and angular acceler-
ation reference tracking using identical 2-mass inverse dynamics with PID controller
(a 2-mass plant system with kg = 5N/m).

Figure F.3 shows a bar chart comparison of the 2-mass plant system gearbox’s
tracking errors using various controllers.

Figure F.3: Comparison of gearbox’s angle, speed and acceleration tracking results
obtained using various controllers for a 2-mass plant system.
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F. Detailed Results and Comparisons

F.2 A 3-Mass Plant System

F.2.1 With A Simple Servo PID Controller Results

Figure F.4 and Table F.4 illustrate both qualitatively and quantitatively, respec-
tively, the flexible link’s Tip tracking performance of the 3-mass plant system whose
frequency response is shown in Figure 2.10, when it is controlled by a simple servo
PID controller only.

min(ϕlref − ϕl) max(ϕlref − ϕl) min(ϕ̇lref − ϕ̇l) max(ϕ̇lref − ϕ̇l) min(ϕ̈lref − ϕ̈l) max(ϕ̈lref − ϕ̈l)
−0.107109 0.105483 −0.360957 0.316790 −1.772321 1.423061

Table F.3: A 3-mass plant system tracking with a PID controller only results
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Figure F.4: Flexible link’s tip angular position, angular speed and angular accel-
eration reference tracking using PID controller only (a 3-mass plant system with
kg = 5N/m and kl = 5N/m).

F.2.2 With A 2-Mass Inverse Dynamics Model Feed-forward
Computed Torque with PID Controller Results

Figure F.5 and Table F.5 illustrate both qualitatively and quantitatively, respec-
tively, the flexible link’s tip tracking performance of the 3-mass plant system whose
frequency response is shown in Figure 2.10, when it is controlled by a 2-mass inverse
dynamics (by frequency matching of the lower pair of mode and anti-mode) with a
simple servo PID controller.
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F. Detailed Results and Comparisons

min(ϕlref − ϕl) max(ϕlref − ϕl) min(ϕ̇lref − ϕ̇l) max(ϕ̇lref − ϕ̇l) min(ϕ̈lref − ϕ̈l) max(ϕ̈lref − ϕ̈l)
−0.002540 0.006514 −0.026986 0.024382 −0.143983 0.145532

Table F.4: A 3-mass plant system tracking with a 2-mass inverse dynamics (lower
pair of mode and anti-mode matching) and PID controller results
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Figure F.5: Flexible link’s tip angular position, angular speed and angular acceler-
ation reference tracking using 2-mass inverse dynamics [lower pair of mode and anti-
mode matching] with PID controller (a 3-mass plant system with kg = kl = 5N/m).

Figure F.6 and Table F.6 illustrate both qualitatively and quantitatively, respec-
tively, the flexible link’s tip tracking performance of the 3-mass plant system whose
frequency response is shown in Figure 2.10, when it is controlled by a 2-mass inverse
dynamics (by frequency matching of the terminal pair of mode and anti-mode) with
a simple servo PID controller.

min(ϕlref − ϕl) max(ϕlref − ϕl) min(ϕ̇lref − ϕ̇l) max(ϕ̇lref − ϕ̇l) min(ϕ̈lref − ϕ̈l) max(ϕ̈lref − ϕ̈l)
−0.001705 0.007232 −0.023203 0.028303 −0.189479 0.155322

Table F.5: A 3-mass plant system tracking with a 2-mass inverse dynamics (ter-
minal pair of mode and anti-mode matching) and PID controller results
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Figure F.6: Flexible link’s tip angular position, angular speed and angular
acceleration reference tracking using 2-mass inverse dynamics [terminal pair of
mode and anti-mode matching] with PID controller (a 3-mass plant system with
kg = kl = 5N/m).

Figure F.7 and Table F.7 illustrate both qualitatively and quantitatively, respec-
tively, the flexible link’s tip tracking performance of the 3-mass plant system whose
frequency response is shown in Figure 2.10, when it is controlled by a 2-mass inverse
dynamics (by frequency matching of the higher pair of mode and anti-mode) with
a simple servo PID controller.

min(ϕlref − ϕl) max(ϕlref − ϕl) min(ϕ̇lref − ϕ̇l) max(ϕ̇lref − ϕ̇l) min(ϕ̈lref − ϕ̈l) max(ϕ̈lref − ϕ̈l)
−0.069053 0.071797 −0.256397 0.225889 −1.307012 0.962013

Table F.6: A 3-mass plant system tracking with a 2-mass inverse dynamics (higher
pair of mode and anti-mode matching) and PID controller results

XX



F. Detailed Results and Comparisons
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Figure F.7: Flexible link’s tip angular position, angular speed and angular acceler-
ation reference tracking using 2-mass inverse dynamics [higher pair of mode and anti-
mode matching] with PID controller (a 3-mass plant system with kg = kl = 5N/m).

F.2.3 With A 3-Mass Inverse Dynamics Model Feed-forward
Computed Torque with PID Controller Results

Figure F.8 and Table F.8 illustrate both qualitatively and quantitatively, respec-
tively, the flexible gearbox tracking performance of the 3-mass plant system whose
frequency response is shown in Figure 2.10, when it is controlled by an identical
3-mass inverse dynamics with a simple servo PID controller.

min(ϕlref − ϕl) max(ϕlref − ϕl) min(ϕ̇lref − ϕ̇l) max(ϕ̇lref − ϕ̇l) min(ϕ̈lref − ϕ̈l) max(ϕ̈lref − ϕ̈l)
−0.000142 0.004071 −0.006748 0.007138 −0.028290 0.031018

Table F.7: A 3-mass plant system tracking with an identical 3-mass inverse dy-
namics and PID controller results
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Figure F.8: Flexible link’s tip angular position, angular speed and angular acceler-
ation reference tracking using identical 3-mass inverse dynamics with PID controller
(a 3-mass plant system with kg = kl = 5N/m).

Figure F.9 shows a bar chart comparison of the 3-mass plant system link’s tracking
errors using various controllers.

Figure F.9: Comparison of link’s angle, speed and acceleration tracking results
obtained using various controllers for a 3-mass plant system.
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F. Detailed Results and Comparisons

F.3 Multi-Mass Plant Systems

F.3.1 A 2-Mass Plant System Case

F.3.1.1 With A Simple Servo PID Controller Results

Figure F.10 and Table F.10 illustrate both qualitatively and quantitatively, respec-
tively, the flexible lumped link’s Tip tracking performance of the resulting 2-mass
plant system whose frequency response is shown in Figure 2.14, when it is controlled
by a simple servo PID controller only.

min(ϕlref − ϕl) max(ϕlref − ϕl) min(ϕ̇lref − ϕ̇l) max(ϕ̇lref − ϕ̇l) min(ϕ̈lref − ϕ̈l) max(ϕ̈lref − ϕ̈l)
−0.085512 0.091353 −0.296367 0.220420 −0.957521 1.072504

Table F.8: A multi-mass system (2-mass plant case) tracking with a PID controller
only results
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Figure F.10: Flexible lumped link’s tip angular position, angular speed and angu-
lar acceleration reference tracking using PID controller only (multi-mass plant with
n = 15 and a set of parameter values resulting in a 2-mass plant system).

F.3.1.2 With A 2-Mass Inverse Dynamics Model Feed-forward Com-
puted Torque with PID Controller Results

Figure F.11 and Table F.11 illustrate both qualitatively and quantitatively, respec-
tively, the flexible lumped link’s Tip tracking performance of the resulting 2-mass
plant system whose frequency response is shown in Figure 2.14, when it is controlled
by a 2-mass inverse dynamics with a simple servo PID controller.
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F. Detailed Results and Comparisons

min(ϕlref − ϕl) max(ϕlref − ϕl) min(ϕ̇lref − ϕ̇l) max(ϕ̇lref − ϕ̇l) min(ϕ̈lref − ϕ̈l) max(ϕ̈lref − ϕ̈l)
−0.001045 0.003733 −0.007637 0.005950 −0.036361 0.026958

Table F.9: A multi-mass system (2-mass plant case) tracking with a 2-mass inverse
dynamics and PID controller results
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Figure F.11: Flexible lumped link’s tip angular position, angular speed and an-
gular acceleration reference tracking using a 2-mass inverse dynamics with PID
controller (multi-mass plant with n = 15 and a set of parameter values resulting in
a 2-mass plant system).

Figure F.12 shows a bar chart comparison of the link’s tracking errors using various
controllers for a multi-mass plant with a lumped link having parameters that result
in a 2-mass system.
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F. Detailed Results and Comparisons

Figure F.12: Comparison of link’s angle, speed and acceleration tracking results
obtained using various controllers for a multi-mass plant with a lumped link param-
eters that results in a 2-mass system.

F.3.2 A 3-Mass Plant System Case

F.3.2.1 With A Simple Servo PID Controller Results

Figure F.13 and Table F.13 illustrate both qualitatively and quantitatively, respec-
tively, the flexible lumped link’s Tip tracking performance of the resulting 3-mass
plant system whose frequency response is shown in Figure 2.15, when it is controlled
by a simple servo PID controller only.

min(ϕlref − ϕl) max(ϕlref − ϕl) min(ϕ̇lref − ϕ̇l) max(ϕ̇lref − ϕ̇l) min(ϕ̈lref − ϕ̈l) max(ϕ̈lref − ϕ̈l)
−0.085512 0.091353 −0.296367 0.220420 −0.957521 1.072504

Table F.10: A multi-mass system (3-mass plant case) tracking with a PID con-
troller only results
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Figure F.13: Flexible lumped ink’s tip angular position, angular speed and angular
acceleration reference tracking using PID controller only (multi-mass plant with
n = 15 and a set of parameter values resulting in a 3-mass plant system).

F.3.2.2 With A 2-Mass Inverse Dynamics Model Feed-forward Com-
puted Torque with PID Controller Results

Figure F.14 and Table F.14 illustrate both qualitatively and quantitatively, respec-
tively, the flexible lumped link’s Tip tracking performance of the resulting 3-mass
plant system whose frequency response is shown in Figure 2.14, when it is controlled
by a 2-mass inverse dynamics (by frequency matching of the lower pair of mode and
anti-mode) with a simple servo PID controller.

min(ϕlref − ϕl) max(ϕlref − ϕl) min(ϕ̇lref − ϕ̇l) max(ϕ̇lref − ϕ̇l) min(ϕ̈lref − ϕ̈l) max(ϕ̈lref − ϕ̈l)
−0.001632 0.004376 −0.012736 0.010208 −0.059452 0.053705

Table F.11: A multi-mass system (3-mass plant case) tracking with a 2-mass
inverse dynamics (lower pair of mode and anti-mode matching) and PID controller
results
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0 0.5 1 1.5 2 2.5 3 3.5 4

-2

0

2

A
cc
el
er
a
ti
o
n
(r
a
d
/
se
co
n
d
2
)

ϕ̈l

ϕ̈lref

0 0.5 1 1.5 2 2.5 3 3.5 4

0

0.5

1

S
p
ee
d
(r
a
d
/
se
co
n
d
)

ϕ̇l

ϕ̇lref

0 0.5 1 1.5 2 2.5 3 3.5 4

Time (seconds)

0

0.5

1

A
n
g
le

(r
a
d
) ϕl

ϕlref

Figure F.14: Flexible lumped link’s tip angular position, angular speed and an-
gular acceleration reference tracking using 2-mass inverse dynamics [lower pair of
mode and anti-mode matching] with PID controller (multi-mass plant with n = 15
and a set of parameter values resulting in a 3-mass plant system).

F.3.2.3 With A 3-Mass Inverse Dynamics Model Feed-forward Com-
puted Torque with PID Controller Results

Figure F.15 and Table F.15 illustrate both qualitatively and quantitatively, respec-
tively, the flexible lumped link’s Tip tracking performance of the resulting 3-mass
plant system whose frequency response is shown in Figure 2.15, when it is controlled
by a 2-mass inverse dynamics with a simple servo PID controller.

min(ϕlref − ϕl) max(ϕlref − ϕl) min(ϕ̇lref − ϕ̇l) max(ϕ̇lref − ϕ̇l) min(ϕ̈lref − ϕ̈l) max(ϕ̈lref − ϕ̈l)
−0.001639 0.004377 −0.009809 0.007408 −0.033830 0.026480

Table F.12: A multi-mass system (3-mass plant case) tracking with a 3-mass
inverse dynamics and PID controller results
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Figure F.15: Flexible lumped link’s tip angular position, angular speed and an-
gular acceleration reference tracking using a 3-mass inverse dynamics with PID
controller (multi-mass plant with n = 15 and a set of parameter values resulting in
a 3-mass plant system).

Figure F.16 shows a bar chart comparison of the link’s tracking errors using various
controllers for a multi-mass plant with a lumped link having parameters that result
in a 3-mass system.

Figure F.16: Comparison of link’s angle, speed and acceleration tracking results
obtained using various controllers for a multi-mass plant with a lumped link param-
eters that results in a 3-mass system.
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F. Detailed Results and Comparisons

F.4 ADAMS Plant Systems

F.4.1 A 2-Mass Plant System Case

F.4.1.1 With A Simple Servo PID Controller Results

Figure F.17 and Table F.17 illustrate both qualitatively and quantitatively, respec-
tively, the flexible ADAMS link’s Tip tracking performance of the resulting 2-mass
plant system whose frequency response is shown in Figure 2.19, when it is controlled
by a simple servo PID controller only.

min(ϕlref − ϕl) max(ϕlref − ϕl) min(ϕ̇lref − ϕ̇l) max(ϕ̇lref − ϕ̇l) min(ϕ̈lref − ϕ̈l) max(ϕ̈lref − ϕ̈l)
−0.106301 0.110699 −0.366976 0.2546190 −1.024695 1.208989

Table F.13: An ADAMS system (2-mass plant case) tracking with a PID controller
only results

0 0.5 1 1.5 2 2.5 3 3.5 4

-2

0

2

A
cc
el
er
a
ti
o
n
(r
a
d
/
se
co
n
d
2
)

ϕ̈l (motor side)
ϕ̈lref

0 0.5 1 1.5 2 2.5 3 3.5 4

-1

0

1

2

S
p
ee
d
(r
a
d
/
se
co
n
d
)

ϕ̇l (motor side)
ϕ̇lref

0 0.5 1 1.5 2 2.5 3 3.5 4

Time (seconds)

0

0.5

1

A
n
g
le

(r
a
d
) ϕl (motor side)

ϕg(motor side)
ϕlref

Figure F.17: Flexible FEM link’s tip angular position, angular speed and angular
acceleration reference tracking using PID controller only (a 2-mass plant system).

F.4.1.2 With A 2-Mass Inverse Dynamics Model Feed-forward Com-
puted Torque with PID Controller Results

Figure F.18 and Table F.18 illustrate both qualitatively and quantitatively, respec-
tively, the flexible FEM link’s Tip tracking performance of the resulting 2-mass plant
system whose frequency response is shown in Figure 2.19, when it is controlled by
a 2-mass inverse dynamics with a simple servo PID controller.
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F. Detailed Results and Comparisons

min(ϕlref − ϕl) max(ϕlref − ϕl) min(ϕ̇lref − ϕ̇l) max(ϕ̇lref − ϕ̇l) min(ϕ̈lref − ϕ̈l) max(ϕ̈lref − ϕ̈l)
−0.002652 0.005685 −0.032380 0.034617 −0.223495 0.216481

Table F.14: An ADAMS system (2-mass plant case) tracking with a 2-mass inverse
dynamics and PID controller results
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Figure F.18: Flexible FEM link’s tip angular position, angular speed and angular
acceleration reference tracking using a 2-mass inverse dynamics with PID controller
(a 2-mass plant system).

F.4.1.3 With A 2-Mass Inverse Dynamics Model Feed-forward Com-
puted Torque with PID Controller and Angular Position Differ-
ence Error Compensation Results

Figure F.19 and Table F.19 illustrate both qualitatively and quantitatively, respec-
tively, the flexible FEM link’s Tip tracking performance of the resulting 2-mass plant
system whose frequency response is shown in Figure 2.19, when it is controlled by a
2-mass inverse dynamics with a simple servo PID controller, in addition to angular
position difference error compensation.

min(ϕlref − ϕl) max(ϕlref − ϕl) min(ϕ̇lref − ϕ̇l) max(ϕ̇lref − ϕ̇l) min(ϕ̈lref − ϕ̈l) max(ϕ̈lref − ϕ̈l)
−0.001211 0.003144 −0.040898 0.046700 −0.240849 0.224323

Table F.15: An ADAMS system (2-mass plant case) tracking with a 2-mass inverse
dynamics and PID controller with angular position difference error compensation
results
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Figure F.19: Flexible FEM link’s tip angular position, angular speed and angular
acceleration reference tracking using a 2-mass inverse dynamics with PID controller,
in addition to angular position difference error compensation (a 2-mass plant sys-
tem).

F.4.1.4 With A 2-Mass Inverse Dynamics Model Feed-forward Com-
puted Torque with PID Controller and Angular Position And
Angular Speed Difference Errors Compensation Results

Figure F.20 and Table F.20 illustrate both qualitatively and quantitatively, respec-
tively, the flexible FEM link’s Tip tracking performance of the resulting 2-mass plant
system whose frequency response is shown in Figure 2.19, when it is controlled by
a 2-mass inverse dynamics with a simple servo PID controller, in addition to both
angular position and angular speed difference errors compensation.

min(ϕlref − ϕl) max(ϕlref − ϕl) min(ϕ̇lref − ϕ̇l) max(ϕ̇lref − ϕ̇l) min(ϕ̈lref − ϕ̈l) max(ϕ̈lref − ϕ̈l)
−0.001230 0.003210 −0.041135 0.046756 −0.242779 0.227029

Table F.16: An ADAMS system (2-mass plant case) tracking with a 2-mass inverse
dynamics and PID controller with angular position and angular speed difference
errors compensations results
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Figure F.20: Flexible FEM link’s tip angular position, angular speed and angular
acceleration reference tracking using a 2-mass inverse dynamics with PID controller,
in addition to both angular position and angular speed difference errors compensa-
tion (a 2-mass plant system).

Figure F.21 shows a bar chart comparison of the link’s tracking errors using various
controllers for an ADAMS plant with a FEM link having parameters that result in
a 2-mass system.

Figure F.21: Comparison of link’s angle, speed and acceleration tracking results
obtained using various controllers for an ADAMS plant with a FEM link parameters
that results in a 2-mass system.
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F. Detailed Results and Comparisons

F.4.2 A 3-Mass Plant System Case

F.4.2.1 With A Simple Servo PID Controller Results

Figure F.22 and Table F.22 illustrate both qualitatively and quantitatively, respec-
tively, the flexible ADAMS link’s Tip tracking performance of the resulting 3-mass
plant system whose frequency response is shown in Figure 2.20, when it is controlled
by a simple servo PID controller only.

min(ϕlref − ϕl) max(ϕlref − ϕl) min(ϕ̇lref − ϕ̇l) max(ϕ̇lref − ϕ̇l) min(ϕ̈lref − ϕ̈l) max(ϕ̈lref − ϕ̈l)
−0.103417 0.108585 −0.311751 0.216740 −0.881969 1.032136

Table F.17: An ADAMS system (3-mass plant case) tracking with a PID controller
only results
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Figure F.22: Flexible FEM link’s tip angular position, angular speed and angular
acceleration reference tracking using PID controller only (a 3-mass plant system).

F.4.2.2 With A 2-Mass Inverse Dynamics Model Feed-forward Com-
puted Torque with PID Controller Results

Figure F.23 and Table F.23 illustrate both qualitatively and quantitatively, respec-
tively, the flexible FEM link’s Tip tracking performance of the resulting 3-mass plant
system whose frequency response is shown in Figure 2.20, when it is controlled by
a 2-mass inverse dynamics (by frequency matching of the lower pair of mode and
anti-mode) with a simple servo PID controller.
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F. Detailed Results and Comparisons

min(ϕlref − ϕl) max(ϕlref − ϕl) min(ϕ̇lref − ϕ̇l) max(ϕ̇lref − ϕ̇l) min(ϕ̈lref − ϕ̈l) max(ϕ̈lref − ϕ̈l)
−0.003980 0.007131 −0.029652 0.030330 −0.207301 0.201920

Table F.18: An ADAMS system (3-mass plant case) tracking with a 2-mass inverse
dynamics (lower pair of mode and anti-mode matching) and PID controller results
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Figure F.23: Flexible FEM link’s tip angular position, angular speed and angular
acceleration reference tracking using 2-mass inverse dynamics [lower pair of mode
and anti-mode matching] with PID controller (a 3-mass plant system).

F.4.2.3 With A 2-Mass Inverse Dynamics Model Feed-forward Com-
puted Torque with PID Controller and Angular Position Differ-
ence Error Compensation Results

Figure F.24 and Table F.24 illustrate both qualitatively and quantitatively, respec-
tively, the flexible FEM link’s Tip tracking performance of the resulting 3-mass plant
system whose frequency response is shown in Figure 2.20, when it is controlled by a
2-mass inverse dynamics with a simple servo PID controller, in addition to angular
position difference error compensation.

min(ϕlref − ϕl) max(ϕlref − ϕl) min(ϕ̇lref − ϕ̇l) max(ϕ̇lref − ϕ̇l) min(ϕ̈lref − ϕ̈l) max(ϕ̈lref − ϕ̈l)
−0.002678 0.006474 −0.044735 0.054429 −0.242938 0.214651

Table F.19: An ADAMS system (3-mass plant case) tracking with a 2-mass inverse
dynamics (lower pair od mode and anti-mode matching) and PID controller with
angular position difference error compensation results
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Figure F.24: Flexible FEM link’s tip angular position, angular speed and angu-
lar acceleration reference tracking using a 2-mass inverse dynamics [lower pair of
mode and anti-mode matching] with PID controller, in addition to angular position
difference error compensation (a 3-mass plant system).

F.4.2.4 With A 2-Mass Inverse Dynamics Model Feed-forward Com-
puted Torque with PID Controller and Angular Position And
Angular Speed Difference Errors Compensation Results

Figure F.25 and Table F.25 illustrate both qualitatively and quantitatively, respec-
tively, the flexible FEM link’s Tip tracking performance of the resulting 3-mass plant
system whose frequency response is shown in Figure 2.19, when it is controlled by
a 2-mass inverse dynamics (lower pair of mode and anti-mode matching) with a
simple servo PID controller, in addition to both angular position and angular speed
difference errors compensation.

min(ϕlref − ϕl) max(ϕlref − ϕl) min(ϕ̇lref − ϕ̇l) max(ϕ̇lref − ϕ̇l) min(ϕ̈lref − ϕ̈l) max(ϕ̈lref − ϕ̈l)
−0.002667 0.006471 0.044960 0.0544955 0.243793 0.217596

Table F.20: An ADAMS system (3-mass plant case) tracking with a 2-mass inverse
dynamics (lower pair of mode and anti-mode matching) and PID controller with
angular position and angular speed difference errors compensations results
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Figure F.25: Flexible FEM link’s tip angular position, angular speed and angular
acceleration reference tracking using a 2-mass inverse dynamics[lower pair of mode
and anti-mode matching] with PID controller, in addition to both angular position
and angular speed difference errors compensation (a 3-mass plant system).

F.4.2.5 With A 3-Mass Inverse Dynamics Model Feed-forward Com-
puted Torque with PID Controller Results

Figure F.26 and Table F.26 illustrate both qualitatively and quantitatively, respec-
tively, the flexible FEM link’s Tip tracking performance of the resulting 3-mass plant
system whose frequency response is shown in Figure 2.20, when it is controlled by
a 3-mass inverse dynamics with a simple servo PID controller.

min(ϕlref − ϕl) max(ϕlref − ϕl) min(ϕ̇lref − ϕ̇l) max(ϕ̇lref − ϕ̇l) min(ϕ̈lref − ϕ̈l) max(ϕ̈lref − ϕ̈l)
−0.003073 0.006110 −0.031644 0.033624 −0.221832 0.215012

Table F.21: An ADAMS system (3-mass plant case) tracking with a 3-mass inverse
dynamics and PID controller results
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Figure F.26: Flexible FEM link’s tip angular position, angular speed and angular
acceleration reference tracking using a 3-mass inverse dynamics with PID controller
(a 3-mass plant system).

F.4.2.6 With A 3-Mass Inverse Dynamics Model Feed-forward Com-
puted Torque with PID Controller and Angular Position Differ-
ence Error Compensation Results

Figure F.27 and Table F.27 illustrate both qualitatively and quantitatively, respec-
tively, the flexible FEM link’s Tip tracking performance of the resulting 3-mass plant
system whose frequency response is shown in Figure 2.20, when it is controlled by a
3-mass inverse dynamics with a simple servo PID controller, in addition to angular
position difference error compensation.

min(ϕlref − ϕl) max(ϕlref − ϕl) min(ϕ̇lref − ϕ̇l) max(ϕ̇lref − ϕ̇l) min(ϕ̈lref − ϕ̈l) max(ϕ̈lref − ϕ̈l)
−0.001066 0.002925 −0.039944 0.046284 −0.248577 0.228556

Table F.22: An ADAMS system (3-mass plant case) tracking with a 3-mass inverse
dynamics and PID controller with angular position difference error compensation
results
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Figure F.27: Flexible FEM link’s tip angular position, angular speed and angular
acceleration reference tracking using a 3-mass inverse dynamics with PID controller,
in addition to angular position difference error compensation (a 3-mass plant sys-
tem).

F.4.2.7 With A 3-Mass Inverse Dynamics Model Feed-forward Com-
puted Torque with PID Controller and Angular Position And
Angular Speed Difference Errors Compensation Results

Figure F.28 and Table F.28 illustrate both qualitatively and quantitatively, respec-
tively, the flexible FEM link’s Tip tracking performance of the resulting 3-mass plant
system whose frequency response is shown in Figure 2.20, when it is controlled by
a 3-mass inverse dynamics with a simple servo PID controller, in addition to both
angular position and angular speed difference errors compensation.

min(ϕlref − ϕl) max(ϕlref − ϕl) min(ϕ̇lref − ϕ̇l) max(ϕ̇lref − ϕ̇l) min(ϕ̈lref − ϕ̈l) max(ϕ̈lref − ϕ̈l)
−0.001066 0.002929 −0.039955 0.046281 −0.249029 0.228360

Table F.23: An ADAMS system (3-mass plant case) tracking with a 3-mass inverse
dynamics and PID controller with angular position and angular speed difference
errors compensations results
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Figure F.28: Flexible FEM link’s tip angular position, angular speed and angular
acceleration reference tracking using a 3-mass inverse dynamics with PID controller,
in addition to both angular position and angular speed difference errors compensa-
tion (a 3-mass plant system).

Figure F.29 shows a bar chart comparison of the link’s tracking errors using various
controllers for an ADAMS plant with a FEM link having parameters that result in
a 3-mass system.

XXXIX



F. Detailed Results and Comparisons

Figure F.29: Comparison of link’s angle, speed and acceleration tracking results
obtained using various controllers for an ADAMS plant with a FEM link parameters
that results in a 3-mass system.
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