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Abstract

A company from the automotive sector has shown interest in looking for cause-effect relations
in some systems with multiple input and output signals. The available data from such systems
is in the form of time series. This thesis aims to study and develop univariate time series data
mining tools, which will be used for clustering, classification and anomaly detection in time series
subsequences.

A popular choice for performing data analysis over time series subsequences is the use of Motif-
detection. Motifs are defined as frequently occurring patterns of subsequences. A reason why
Motif-detection is popular is because the concept is fairly simple to understand and implement.
Therefore one of the data mining methods explored in this thesis is Motif based.

We found some drawbacks using a Motif based data mining technique. A standard Motif based
technique returning optimal Motifs has shown not to be scaleable with an increasing number of
subsequences. This result originate from the vital part to compare every subsequence to all the
other subsequences and thus its time complexity is quadratic in the number of subsequences.
Moreover, no good solution to update the Motifs, as new time series data arrive, has been found.

Considering such drawbacks, we explored Mixture Model based data mining techniques. Bas-
ing ourselves on the concepts of an existing state of the art online kernel density estimation
technique, namely oKDE, we derive an even lighter technique suitable for finding patterns in
time series subsequences. The technique we propose, Compressed Mixture Model, is suitable
for real time applications because of the possibility to incrementally update the model. Our
technique is linear in the number of subsequences and thus overcomes the drawbacks of using a
Motif based technique, which is not scalable in the number of subsequences.

Methods for classification and anomaly detection of subsequences using cluster models ob-
tained from the two clustering methods mentioned are proposed. The classification and anomaly
detection methods take into account of the locations, shapes as well as the frequencies of clusters.

The Compressed Mixture Model is concluded superior to the clustering method using Motifs
in many ways. Especially, the Compressed Mixture Model allows incremental learning which in
turn enable online clustering, classification and anomaly detection.

Keywords: Machine Learning, Data Mining, Clustering, Classification, Anomaly Detection,
Density Modeling, Time Series Analysis





Sammanfattning

Ett företag inom fordonsindustrin har visat intresse av att analysera samband mellan orsak
och verkan samband i system med flera in- och utsignaler. Den tillgängliga datan för analys fr̊an
de tänkta systemen är i form av tidsserier. Målet med det här examensarbetet är att utveckla ett
verktyg för tidsserieanalys, av endimensionell tidsseriedata, med egenskaper som till̊ater klustring,
klassificering samt upptäckning av onormalt beteende hos delsekvenser i tidsserier.

Ett populärt val vid analys av delsekvenser i tidsserier är att använda sig av motiv. Motiv
definieras som frekventa mönster hos delsekvenser i en tidsserie. Att motiv är ett populärt val har
framför allt tv̊a orsaker. Konceptet är tämligen enkelt att först̊a samt att implementera, varför
ett av de tv̊a föreslagna verktygen för tidsserieanalys är baserat p̊a motiv.

Under arbetets g̊ang upptäckte vi ett antal nackdelar med att använda en teknik baserad p̊a
motiv. En teknik med avseende p̊a att hitta optimala motiv, samt är skalbar i antalet delsekven-
ser, hittades inte. Detta grundar sig i det kritiska momentet att jämföra alla delsekvenser med
varandra, vilket resulterar i kvadratisk tidskomplexitet med avseende p̊a antalet delsekvenser.
Dessutom har ingen bra lösning för att uppdatera en motivbaserad model hittats.

Med tanke p̊a dessa nackdelar utforskade vi en probabilistisk teknik för att utföra tidsseri-
eanalys. Genom att utg̊a fr̊an en toppmodern teknik för att online estimera en täthetsfunktion
baserad p̊a sannolikhetskärnor, oKDE, härleder vi en lättviktsversion lämpad för att hitta möns-
ter hos delsekvenser i tidsseriedata. Tekniken som vi föresl̊ar, Compressed Mixture Model, är
lämplig för online-applikationer i och med möjligheten att inkrementellt uppdatera modellen.
Tekniken är linjär i antalet delsekvenser och överkommer därmed nackdelarna av att använda
en motivbaserad modell.

Förslag av metoder ges för klassificering samt upptäckning av onormalt beteende, genom att
använda de tv̊a föreslagna metoderna för klustring av delsekvenser i tidsserier. Metoderna tar
hänsyn till b̊ade position, form samt frekvens hos klustren.

Vi drar slutsatsen att den föreslagna tekniken, Compressed Mixture Model, är överlägsen den
motivbaserade tekniken för klustring i flera avseenden. I synnerhet till̊ater sig den probabilistiska
tekniken, Compressed Mixture Model, att utföra klustring, klassificering samt upptäckning av
avvikelser p̊a kontinuerligt strömmande data.
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1
Introduction

B
uilding cleaner and safer cars involves many challenges for data analytics. Until relatively
recent years, a significant amount of such challenges have been tackled by humans. Global
economic pressures together with more demanding regulatory frameworks create the need

for more thorough testing. More thorough testing increases the rate at which data is being
generated, at a point in which the traditional ways of analyzing data is no longer suitable. This
has created a motivation for the automotive industry to look into computing techniques for
analyzing time series data.

A company from the automotive sector has shown interest in looking for cause-effect relations
in some systems with multiple input and output signals (see Figure 1.1). The available data from
such systems is in the form of time series. More specifically the company would like to use such

XIn Out

Figure 1.1: System X.

data mining tool for compressing many Gigabytes of time series data into a much small number
of unique subsequence scenarios (see Figure 1.2). The content of this thesis focus on solving
the problem of learning unique patterns of in-/output signals of a system X. When all the
unique subsequence scenarios have been extracted and stored, the plan is to use them for system
development purposes (see Figure 1.3). Before the patterns can be used for system development
purposes, an engineer will have to manually look through the unique output patterns extracted
for the signals of interest in system X. For each existing output pattern the engineer label it as
either OK or NOT OK. The engineer should have a vast knowledge of the system and the signals
at hand to be trusted with such an important task. Such development processes might involve
simulating system behavior by feeding various input patterns. For such a process an engineer
will have to manually analyze the simulated system output signals. Also, parameter tuning of
control system parameters being part of system X is achievable having access to use the unique
patterns. If a method to reconstruct the (controllable) input signals of system X, verification in

1
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Multiple data files Extract time series T1, T2, ..., Tn

X00 GB of time series

Learning
Current 

model(s) or 
empty

Updated model(s)

All unique 
scenarios

Extract clusters

~N00 patterns

Figure 1.2: Pattern learning phase. A huge amount (X00 GB) of time series data is compressed
into a small number of unique subsequence scenarios (∼N00 scenarios per time series).

form of a Design of Experiments (DoE) would be possible to perform. At last, regression of new
data producing reports of the system output is made possible by having a simple model of each
signal (see Figure 1.4).

This thesis aims to study and develop univariate time series data mining tools, which will be
used for clustering, classification and anomaly detection in time series subsequences.

Esling and Agon [3] summarize three fundamental aspects to consider when working with any
time-series data mining system: data representation, similarity measures, and indexing methods.
A good time series representation technique should derive the notion of shape by reducing the
dimensionality of data while retaining its essential characteristics. A proper similarity measure
should establish a notion of similarity between any pair of time series. Such notion of similarity
is usually based on some perceptual criteria. Finally, indexing methods facilitate scaling the
algorithm in the amount of data points.

For our work, we will be concerned with data representation methods and similarity measures.
Two data representation techniques will be studied namely the Piecewise Aggregate Approxima-
tion (PAA) introduced by Keogh et al. [9] and the Symbolic Aggregate approXimation (SAX)
introduced by Lin et al. [13]. We argue that PAA, the predecessor to SAX, serves as the better
choice of data representation method for the application at hand. Reasons for such statement
will be explained and summarized in section 4.1.

Regarding similarity measures, we will use a measure that Keogh et al. [9] presented for PAA
and a measure that Lin et al. [13] presented for SAX. In section 2.3 we will explain the reasons
why those measures are suitable for our study. Indexing methods are out of the scope of this
work. Yet, shall our tool be taken into production, a suitable indexing method will indeed affect
performance in a positive way. Considering that, a by-product of this study is concerned with
some thoughts regarding indexing methods. Those thoughts are discussed in section 4.2.4.

A method is considered to be meaningless if the output is independent of the input. Con-
versely, a meaningful method adapts to the input data and produces results accordingly. The
former notion was coined by Keogh and Lin [8]. They also showed that traditional clustering
methods applied on time series subsequences produce meaningless results. Then, to avoid mean-
ingless results and instead find meaningful clusters, the same authors suggested the concept of
Motifs in time series. Time series Motifs are defined as frequently occurring patterns of subse-
quences. One of the methods for clustering time series subsequences in this thesis relies upon

2
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All unique 
scenarios

Simulate 
Behavior

Tuning system X

Regression 
testing (SW)

Verification, 
physical test 

(DoE)

Development Judge

Can be 
automated, if 
output labels 

exists

Figure 1.3: Pattern usage phase. The unique subsequence scenarios extracted are used for de-
velopment purposes. Having access to all the unique patterns it is possible to perform simulations
of system behavior feeding various input patterns. An engineer will have to manually analyze the
simulated system output signals. Also, parameter tuning of control system parameters being part of
system X is in the scope of how to use the unique patterns. If a method to reconstruct (controllable)
input signals based on the unique patterns or model found can be developed, verification in form
of a Design of Experiments (DoE) is possible to perform. At last, regression of new data producing
reports of the system output is made possible by having a simple model of each signal.

New data
Classification

Pattern id
Lookup

Pattern label
Report

----- OK
----- OK
----- OK
----- OK
----- OK
----- NOT OK
.....

Figure 1.4: Regression of system response on new input data.

the concept of Motifs.

We also use a completely different technique for comparison. Based on the concepts of an
existing state of the art online kernel density estimation technique proposed by Kristan et al.
[10], namely oKDE, we derive an even lighter technique. The technique we propose, Com-

3



CHAPTER 1. INTRODUCTION

pressed Mixture Model (CMM), is suitable for real time applications because of the possibility
to incrementally update the model. Additionally, our technique scales linear to the number of
subsequences. CMM discovers and adapts the number of clusters as well as their location and
shape in a feature space. It features online clustering, classification and anomaly detection. It
also allows storage reduction in the form of compression. Classification and anomaly detection,
using CMM, takes into account for the shapes and the frequencies of clusters.

The second chapter of this thesis introduces the reader to the underlying theory for the later
proposed clustering, classification and anomaly detection techniques. In addition, the chapter
covers the concepts of time series representation techniques, similarity measures, how to merge
two Gaussian distributions and at last a part regarding density modeling. In the Method chapter,
a detailed outline of two data mining methods is provided. One of the methods feature a threshold
based solution of the data mining tasks, while the other method features a probabilistic solution.
A comparison of the two methods as well as an evaluation of the highest potential method when
applied on use case data is given in the Results & Discussion chapter. Moreover, the results
will be discussed in parallel with the results shown. In the Conclusions chapter conclusions
regarding the two methods are presented. Finally, in the Future Work chapter some proposals
for improvements and additional features for the method with the higher potential are made.

4



2
Theory

T
his chapter is initialized by a short introduction to general time series concepts. Then,
the two time series representation techniques Piecewise Aggregate Approximation (PAA)
and Symbolic Aggregate approXimation (SAX) are presented. The two representation

techniques is followed by a section introducing similarity measures for the two time series repre-
sentation techniques. Also, similarity measures for probability distributions are presented in the
same section. This is followed by a method to merge two Gaussian distributions, together with
a method to estimate the information lost by merging. At last, theory covering kernel density
estimation and mixture model is provided.

2.1 Time Series Introduction

Esling and Agon [3] defines a time series as an ordered sequence of real-valued variables.

Definition 2.1. A time series T is an ordered sequence of n real-valued variables

T = (t1, . . . , tn), ti ∈ R.

Throughout this study time series measurements are assumed to be collected at a constant
sampling rate. Thereby, the time series consists of uniformly spaced (in time) measurements
from the underlying process. The time series considered in the thesis are real-valued, and thus
the data mining methods are developed for such time series. Esling and Agon [3] continues
defining subsequences of a time series.

Definition 2.2. Given a time series T = (t1, . . . , tn) of length n, a subsequence S of T is a
time series of length m ≤ n consisting of contiguous time instants from T

S = (tk, tk+1, . . . , tk+m−1)

with 1 ≤ k ≤ n−m+ 1. We denote the set of all subsequences of length m from T as SmT .

5
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The time series in Definition 2.1 is univariate, i.e. the resulting measurements from one process
producing one dimensional values. Multivariate time series are several univariate time series that
together span multiple dimensions for the same set of time stamps.

2.2 Time Series Representation Techniques

Time series are often approximated by dimensionality reducing representations to deal with one
major issue for time series data mining, namely the high dimensionality of the data. Esling and
Agon [3] provides a formal definition of a time series representation.

Definition 2.3. Given a time series T = (t1, . . . , tn) of length n, a representation of T is a
model T̄ of reduced dimensionality d̄, (d̄ << n), such that T̄ closely resembles T .

As mentioned earlier the two time series representation techniques PAA and SAX are used
throughout this study. The SAX representation is a symbolical version of the PAA representation,
both will be described in more detail in the upcoming sections.

According to Keogh and Kasetty [7] it is well understood that it is not meaningful to compare
time series with different offsets and amplitude. This statement is taken into consideration by
Lin et al. [13] in the paper introducing SAX, where each subsequence is normalized to zero mean
and unit standard deviation before obtaining the discrete representation.

Normalizing subsequences removes information regarding subsequence amplitude and offset.
The similarity between subsequences is thus reduced to only account for shapes in time series
subsequences. A special case is when the standard deviation of a subsequence is very small
(almost constant subsequence), then by normalization unwanted patterns might emerge. Thus,
normalization is performed if the standard deviation is higher than a threshold value ε. Otherwise
the subsequence is considered totally flat (all zeros).

Throughout this study the time series subsequences are normalized, zero mean and unit
standard deviation, before finding a dimensionality reduced representation. The results obtained
will have to be analyzed keeping the normalization in mind.

The time series representation techniques will be visualized using the time series in Figure
2.1.

2.2.1 Piecewise Aggregate Approximation

The time series representation technique PAA is introduced by Keogh et al. [9] and a brief
summary of the technique follows in this section. For a more detailed description the reader is
referred to Keogh et al. [9].

A time series subsequence S = (s1, . . . , sm) can be represented in a reduced N -dimensional
space (1 ≤ N ≤ m) by a vector S̄ = (s̄1, . . . ,s̄N ). The element s̄i is calculated according to the
decimation scheme (2.1).

s̄i =
N

m

 m
N i∑

j=m
N (i−1)+1

sj

 (2.1)

It is assumed that N is a factor of m, which is not a requirement, but a simplification for the
notation. The vector S̄ is referred to as the PAA representation of S.

In simpler terms the PAA representation is obtained by dividing S into equi-sized frames,
where the mean value of the data within each frame form a vector of means and becomes the
PAA representation S̄.

6
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Figure 2.1: Normalized signal to visualize the two time series representation techniques, PAA and
SAX.

Note: that the PAA representation in equation (2.1) can be obtained by filtering and down-
sampling of a time series1.

An example of how to reduce a subsequence S into a PAA representation S̄ is graphically
visualized in Figure 2.2.

According to Keogh et al. [9], the time complexity to generate PAA representations for all
subsequences of length m (i.e. SmT ) from a time series of length n is O(|SmT |m). The reasoning
behind this statement is that for |SmT | subsequences (2.1) has to be calculated N times and (2.1)
has a summation length of m/N . It is possible to reduce this complexity to O(|SmT |N) according
to Keogh et al. [9, p. 5], which will be valuable if N << m.

0 20 40 60 80 100
−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

Figure 2.2: PAA representation S̄ (dashed line) of the signal S (solid line) using a frame size of
10.

1The dimensionality reduced representation PAA could equally well be obtained by filtering the time series
using a non-causal symmetrical FIR-filter, where all filter coefficients are the same (=N/m).
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2.3. SIMILARITY MEASURES CHAPTER 2. THEORY

2.2.2 Symbolic Aggregate approXimation

Having transformed a normalized2 subsequence S into a PAA representation S̄, it is possible to
apply one additional transformation to obtain a discrete representation. The symbolic time se-
ries representation technique SAX is introduced by Lin et al. [13] and inherits the dimensionality
reduction obtained from the PAA representation. A brief summary of the time series represen-
tation technique follows. For a more detailed description of SAX the reader is referred to Lin
et al. [13].

It is indicated by Lin et al. [13] that it is beneficial to have equiprobable symbols. Also,
the authors state that normalized subsequences have a standard Gaussian distribution. They
propose splitting space into α equiprobable parts by determining breakpoints using a standard
Gaussian distribution in Definition 2.4.

Definition 2.4. Breakpoints: breakpoints are a sorted list of numbers B = β1, . . . ,βα−1
such that the area under a N(0,1) Gaussian curve from βi to βi+1 = 1/α (β0 and βα are
defined as −∞ and ∞, respectively).

From the breakpoints using an alphabet of size α, the SAX representation Ŝ is obtained
from the PAA representation S̄ by assigning a discrete symbol for each element in S̄ based
on the alphabet. Using the English alphabet, all elements s̄i smaller than the first breakpoint
are assigned the first symbol in the alphabet a, all elements greater than or equal to the first
breakpoint but smaller than the second breakpoint are assigned the second symbol of the alphabet
b, etc.

The concatenation of symbols that represents a subsequence is referred to as a word and the
definition given by Lin et al. [13] follows.

Definition 2.5. Word : A subsequence S of length n can be represented by a word Ŝ =
{ŝ1, . . . ,ŝN} as follows. Let alphai denote the ith element of the alphabet, i.e., alpha1 = a
and alpha2 = b. Then the mapping from a PAA approximation S̄ to a word Ŝ is obtained
as follows:

ŝi = alphaj, iff βj−1 ≤ s̄i < βj (2.2)

A word obtained using Definition 2.5 will be referred to as the SAX representation of a sub-
sequence from here on. An example of how to reduce a subsequence S into a SAX representation
Ŝ is graphically visualized in Figure 2.3.

Note: that in signal processing terms the procedure of obtaining the SAX representation is
referred to as quantization.

One matter deserving to be enlightened is the fact that the SAX symbols have been proven
not to be equiprobable by Butler and Kazakov [2]. More specifically, they show how the process
of finding the PAA representation decreases the standard deviation of the reduced representation
below one. This means that the symbols will be concentrated around the symbols in the middle
of the alphabet. In this study the non-equiprobable symbols are regarded as a minor flaw of the
SAX representation and no additional effort will be put into this matter.

2.3 Similarity measures

Esling and Agon [3] claims that nearly every task in time series data mining is dependent on a
similarity measure between time series and gives a formal definition.

2Zero mean and unit standard deviation.

8
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Figure 2.3: SAX representation Ŝ of the signal S (solid thick line) using an alphabet size of α = 5
and number of frames N = 10 is deeedbaaab (using the English alphabet). The horizontal dotted
lines divides space into equiprobable regions with respect to a standard Gaussian distribution and
the SAX representation is obtained by studying in which region the PAA representation (dashed
line) falls into for each frame.

Definition 2.6. The similarity measure D(T,U) between time series T and U is a function
taking two time series as inputs and returning the distance d between these series.

Definition 2.6 is general enough to define similarity measures between dimensionality reduced
time series representations by replacing T,U by either the PAA representations T̄ , Ū or the SAX
representations T̂ , Û . The distance has to be non-negative, i.e. D(T,U) ≥ 0.

A measure is a metric if it in addition to the non-negative property satisfies the symmetry
property D(T,U) = D(U, T ) and subadditivity (known as the triangle inequality) D(T, V ) ≤
D(T,U) +D(U, V ) and also D(T,U) = 0⇔ T = U .

If two subsequences are found sufficiently similar with respect to a threshold value δ they are
said to be a match.

Definition 2.7. Given a query time series Q and a similarity measure D(Q,T ), the two
time series Q and T is a match of order δ if D(Q,T ) ≤ δ, for any choice of δ > 0.

A commonly used and easy to implement similarity measure is the Euclidian distance, which
is a metric by definition. If a similarity measure lower bounds the Euclidian distance between any
two time series (or dimensionality reduced representations) it implies that a match in the original
space will still be a match in the reduced space under this similarity measure. Faloutsos et al.
[4] refer to this property as the Lower Bounding Lemma and it guarantees no false dismissals.

The Euclidian distance between two time series Q = (q1, . . . , qn) and C = (c1, . . . , cn) is given
by

D(Q,C) =

√√√√ n∑
i=1

(qi − ci)2. (2.3)

9
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2.3.1 Similarity Measure for Piecewise Aggregate Approximation

The similarity measure between two PAA representations proposed by Keogh et al. [9] is a scaled
euclidian distance in the reduced space.

DR(Q̄, C̄) =

√
n

N

√√√√ N∑
i=1

(q̄i − c̄i)2 (2.4)

Here n is the number of data points in the original time series and N is the dimension (number of
frames) in the reduced space. This similarity measure satisfies the conditions for being a metric,
since it is a scaled Euclidian distance in the reduced space. The similarity measure DR(Q̄,C̄)
has been proven to be a lower bound approximation of the Euclidian distance D(Q,C), proof
given by Keogh et al. [9, Appendix A].

2.3.2 Similarity Measure for Symbolic Aggregate approXimation

The similarity measure MINDIST (Q̂,Ĉ) proposed by Lin et al. [13] lower bounds the PAA
similarity measure DR(Q̄,C̄) and thereby inherits the lower bounding property of the Euclidian
distance D(Q,C), proof given by Lin et al. [14].

MINDIST (Q̂, Ĉ) =

√
n

N

√√√√ N∑
i=1

(dist(q̂i, ĉi))
2

(2.5)

Here N is the word length (equal to the number of frames in PAA), and n is the number of data
points in the original space. The function dist(q̂i, ĉi) returns the smallest distance between the
symbols q̂i and ĉi. It can be implemented using a lookup table as illustrated in Table 2.1. The

a b c d

a 0 0 0.67 1.34

b 0 0 0 0.67

c 0.67 0 0 0

d 1.34 0.67 0 0

Table 2.1: A lookup table used by MINDIST for an alphabet size α = 4. As the lookup table
illustrates, the distance between two adjacent symbols is zero.

distance between two adjacent symbols has to be zero in order to guarantee the lower bounding
property. The value in each cell of the lookup table (Table 2.1) is calculated with respect to the
breakpoints according to (2.6).

cellr,c =

0, if |r − c| ≤ 1

βmax(r,c)−1 − βmin(r,c), otherwise.
(2.6)

Interesting to note is that while both the Euclidian distance D(Q,C) and the PAA distance
DR(Q̄,C̄) are metrics, the SAX distance MINDIST (Q̂,Ĉ) is not. It fails to satisfy the two
properties of subadditivity and D(Q̂, Ĉ) = 0⇔ Q̂ = Ĉ, due to the fact that the distance between
adjacent symbols is zero.

10
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Example 2.8. For example the distance between the two words aaa and aac is greater
than zero, but the distance between aaa and aab as well as the distance between aab and
aac is zero. Thus, by taking the detour from aaa to aab and then going to aac from aab
gives a total distance of zero.

There is an important trade-off to consider when choosing which of the two representation
methods to work with. As a direct consequence of using MINDIST for SAX distance measure,
the resolution (distance between SAX representations) is traded against a smaller cardinality
discrete representation. In applications where a discrete representation is necessary this is an
easy trade, but for applications where the trade can be abstained PAA is to prefer.

2.3.3 Similarity Measures for Probability Densities

To measure the distance between two probability densities, information theory measures serves
as great candidates. Two possible measures, the Kullback-Leibler divergence and the Hellinger
distance, are presented below.

Kullback-Leibler divergence

Kullback-Leibler divergence is an information theory measure that measures the difference be-
tween two probability distributions P and Q. According to Burnham and Anderson [1, p. 51] the
Kullback-Leibler divergence can be interpreted as either the information lost when the distribu-
tion Q is used to approximate the distribution P or the distance from Q to P . The Kullback-
Leibler divergence in the case of continuous distribution functions is given by (2.7).

D̄KL(P,Q) =

∫ ∞
−∞

p(x) log

(
p(x)

q(x)

)
dx (2.7)

In the special case when comparing two Gaussian distributions, P ∼ N (µ0,Σ0) and Q ∼
N (µ1,Σ1), the Kullback-Leibler divergence have a closed form solution.

D̄KL(P,Q) =
1

2

(
tr
(
Σ−11 Σ0

)
+ (µ1 − µ0)TΣ−11 (µ1 − µ0)− k + ln

(
det Σ1

det Σ0

))
(2.8)

Here k is the number of dimensions of the distributions.
The Kullback-Leibler divergence is always non-negative, but lack the property of symmetry.

The non-symmetry property can be taken care of with the following simple adjustment.

DKL(P,Q) =
1

2
(D̄KL(P,Q) + D̄KL(Q,P )) (2.9)

The Kullback-Leibler divergence is in this study calculated using the symmetric formula in (2.9).
Examples of Kullback-Leibler divergence values comparing two Gaussian distributions is pre-
sented in Figure 2.4.

Hellinger Distance

The Hellinger distance is an information theory distance and quantifies the similarity between
two probability distributions. In (2.10) the squared Hellinger distance is stated in the case of
continuous distribution functions P and Q.

11
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Figure 2.4: Kullback-Leibler divergence and Hellinger distance between two Gaussian distributions
with distant locations (left) midrange locations (middle) and close locations (right). The standard
deviation is equal for the two Gaussian distributions in all subplots.

D2
H(P,Q) =

1

2

∫ (√
dP

dλ
−
√
dQ

dλ

)2

dλ (2.10)

In the special case when P ∼ N (µ0,Σ0) = N0 and Q ∼ N (µ1,Σ1) = N1, the squared
Hellinger distance have a closed form solution.

D2
H(P,Q) = 1− |Σ0|1/4|Σ1|1/4∣∣Σ0+Σ1

2

∣∣1/2 exp {−1

8
(µ0 − µ1)T

(
Σ0 + Σ1

2

)−1
(µ0 − µ1)} (2.11)

The Hellinger distance satisfies the property 0 ≤ DH(P,Q) ≤ 1 and also the property of sym-
metry. Examples of Hellinger distance values comparing two Gaussian distributions is presented
in Figure 2.4.

2.4 Merging Gaussian Distributions

Consider two multivariate Gaussian distributions P1 ∼ N (µ1,Σ1) and P2 ∼ N (µ2,Σ2) of
weights w1 and w2 respectively. An aggregation method to merge the two probability distri-
butions is suggested by Kristan et al. [10] using moment matching, and the resulting composite

Q ∼ N (µ̂, Σ̂) with weight ŵ is stated in (2.12).

ŵ =

2∑
i=1

wi

µ̂ = ŵ−1
2∑
i=1

wiµi

Σ̂ = ŵ−1
2∑
i=1

wi
(
Σi + µiµ

T
i

)
− µ̂µ̂T

(2.12)

If the two distributions P1 and P2 are replaced by their composite Q according to (2.12)
information will be lost. It is of interest in this study to bound the amount of information lost.
This requires a measure of the information lost, let us refer to this quantity as the merge loss.

12
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Figure 2.5: Merge loss when merging the two Gaussian distributions (dashed lines) into their
composite Gaussian (solid line). The dotted lines in the subplots are the weighted sum of the two
individual Gaussian distributions in each subplot respectively. The merge loss describes the distance
between the composite (solid line) and the weighted sum (dotted line). In this figure the two original
Gaussian distributions have equal weights of 0.5 and both the composite and the weighted sum has
weights of 1.

The merge loss can be assessed by calculating the information lost by replacing each individual
of the original distributions by the composite and then averaging the results using the weights
as in (2.13).

ML(P1,P2) = ŵ−1
2∑
i=1

wiDxx(Pi,Q) (2.13)

In equation (2.13) Dxx can be replaced by either the Kullback-Leibler divergence DKL (2.8)
inserted in (2.9) or the Hellinger distance DH (2.11).

Hellinger distance is preferable to Kullback-Leibler divergence. By using Hellinger distance
the merge loss is a quantity with the property 0 ≤ML(P1, P2) ≤ 1, where 0 means no merge loss
and 1 means total merge loss. Thus, the merge loss is easier to interpret using Hellinger distance
than using Kullback-Leibler divergence with merge loss values ranging between 0 and ∞.

Examples how the composite looks like merging two Gaussian distributions is graphically
visualized in Figure 2.5, using the same example distributions as in Figure 2.4.

2.5 Density Modeling

Density modeling is a powerful tool in order to characterize a process. Often the kind of tasks
that involve decision making can benefit the most from density models. A density model enables
possibilities of drawing random samples from a process without physically running it and finding
out how likely an event is to occur.

2.5.1 Kernel Density Estimation

Kernel Density Estimation (KDE) or Parzen estimator is a non-parametric method utilizing
multiple local kernels to estimate a global probability density function. By construction, a KDE
has the ability of handling various data types choosing suitable kernels for the data at hand. KDE
is non-parametric and exploratory in the sense that it does not assume any prior distribution of
the data. According to Parzen [16] and Shalizi [17] the KDE for observed real-valued univariate
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data xi (the ith observation) is obtained by adding together all the local kernels as

f̂h(x) =
1

n

n∑
i=1

1

h
K

(
x− xi
h

)
, (2.14)

where K is a kernel function which integrates to 1 and h the kernel width or bandwidth. The
factor 1/h ensures f̂h(x) integrates to 1.

It can be found that the Integrated Squared Error (ISE), a common quantity to measure
quality of the KDE, is given by (2.15).

ISE ≈ h4σ4
K

4

∫
(f ′′(x))

2
dx+

∫
K2(u) du

nh
(2.15)

In (2.15) f(x) is the true underlying distribution to be estimated. The optimal bandwidth
selection is found as the optima (minima) of ISE (2.15) by taking the derivative with respect to
h and finding the stationary point hopt.

hopt =

( ∫
K2(u) du

σ4
K

∫
(f ′′(x))

2
dx

)1/5

n−1/5 = O(n−1/5) (2.16)

Here σ2
K =

∫
K(u)u2 du. For a more detailed derivation the reader is referred to Shalizi [17, p.

313-315]. By plugging in hopt found from (2.16) into ISE (2.15) the best ISE goes to zero in the
order of O(n−4/5). Parzen [16] derive at the same convergence rate with a different derivation
approach.

For a Gaussian kernel one can show, using (2.16), that the optimal bandwidth for estimating
a Gaussian distribution is 1.06σn−1/5, where σ is the standard deviation of that Gaussian distri-
bution. This is referred to as the Gaussian reference rule kernel width selection and can be used
as a less time consuming alternative to cross-validation. Another technique discussed by Shalizi
[17] is the plug-in method. The plug-in method starts with an initial bandwidth from e.g. the
Gaussian reference rule and then finds a preliminary estimate of the density. This estimate can
be plugged in into equation (2.16) to get a new bandwidth and it is possible (not necessary) to
iterate multiple times.

Multivariate Kernel Density Estimate

The transition from univariate to multivariate data is accomplished by defining a multivariate
kernel. A multivariate kernel could be defined in many ways. Two of the most common are
to either use a multivariate distribution as the kernel for the vector x or to use a product of
univariate kernels to form the multivariate kernel. Shalizi [17] defines a product of kernels.

K(x− xi) = K1(x1 − x1i )K2(x2 − x2i ) · . . . ·Kp(x
p − xpi ) (2.17)

Further, using the product of kernels proposed in equation (2.17) a bandwidth for each di-
mension is required and the multivariate KDE is given by (2.18).

f̂(x) =
1

n
∏p
j=1 hj

n∑
i=1

p∏
j=1

Kj

(
xj − xji
hj

)
. (2.18)

Shalizi [17] that the ISE (Integrated Square Error) goes to zero like O(n−
4

(4+p) ), were p is
the number of dimensions. This rate is asymptotically obtained using cross-validation to pick
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bandwidth. From this result it is clear that as the number of dimensions increases the convergence
rate decreases, which is recognized as the curse of dimensionality.

A consequence choosing a multivariate distribution as a kernel is that it is possible to in-
corporate correlations between dimensions for some choices of data types and distributions. By
using products of univariate kernels as a multivariate kernel there are no dependencies between
dimensions.

Mixed data types

Li and Racine [12] consider the problem of using kernel density to estimate an unknown distri-
bution defined over a mixture of discrete and continuous variables. They define a multivariate
kernel for categorical data in the simplified case when X is a k-dimensional binary variable,
X ∈ {0,1}k.

Lix ≡ L(Xi,x,λ) =

k∏
t=1

l(Xi,t,xt) = (1− λ)k−dixλdix (2.19)

Here dix = (Xi − x)T(Xi − x) equals the number of disagreement components between Xi and
x and Xi,t denote the tth dimension of the ith data point. The univariate categorical kernel
l(Xi,t,xt) is defined to take the value l(Xi,t, xt) = 1 − λ if Xi,t = xt and l(Xi,t, xt) = λ if
Xi,t 6= xt, where λ is a smoothing parameter.

They further define a multivariate kernel for continuous variables.

Wh,iy ≡Wh(Yi, y) = h−pW

(
Yi − y
h

)
= h−p

p∏
t=1

w

(
Yi,t − yt

h

)
(2.20)

Here w(·) is a univariate kernel function and Yi,t denotes the tth dimension of the ith data point.
Having a multivariate kernel for categorical data as well as a multivariate kernel for continuous
data Li and Racine [12] move on to propose to estimate the underlying mixed density function

by f̂(x,y) given in equation (2.21). Let Z = (X,Y ), and f(z) = f(x,y).

f̂(z) =
1

n

n∑
i=1

Kh,iz (2.21)

Here Kh,iz = LixWh,iy.

2.5.2 Mixture Model Intro

Shalizi [17] defines a mixture model f as a mixture of K component distributions f1, f2, . . . , fK

f(x) =

K∑
k=1

λkfk(x; θk), (2.22)

where λk defines the mixing weight of component k, λk > 0 and
∑
k λk = 1. It is possible to

generate data from f(x) due to the fact that f(x) is a probability density function for the mixture.
The mathematical expressions for generating random samples is given in equation (2.23).

Z ∼Mult(λ1, λ2, . . . , λk),

X|Z ∼ fZ(x).
(2.23)

In plain english, first a component Z is randomly chosen based on the mixing weights and then
a data point is generated based on the randomly chosen components density function fZ .
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3
Method

T
he goal of this study is to build a univariate time series analysis software tool covering the
data mining tasks of clustering, classification and anomaly detection on subsequences of
a time series. Two different approaches were studied: a Motif based and a Mixture Model

based. Using Motifs we developed threshold based methods to solve the data mining tasks, while
using the Mixture Model based method we developed probabilistic methods to solve the same
set of data mining problems.

3.1 Clustering

According to Esling and Agon [3] clustering is the process of finding natural groups in a data set.
A clustering method should tend to minimize the variation within a cluster while maximizing
the variation between clusters.

In this study it is of interest to find clusters in the set of all subsequences SmT of a time series.
The concepts of Motifs and Components presented in the two upcoming sections will be used

to represent clusters of time series subsequences.

3.1.1 Motifs

Keogh and Lin [8] make a surprising claim and provides convincing evidence that traditional
clustering of time series subsequences is meaningless. They define an algorithm to be meaningless
if the output produced is independent of the input.

Time series Motifs are overrepresented subsequences in a time series and the definition by
Keogh and Lin [8] is stated in Definition 3.2.

An important observation made by Keogh and Lin [8] is that different subsequences among
the set of all subsequences SmT have different numbers of trivial matches. A slightly modified
definition of trivial matches from the one suggested by Keogh and Lin [8] is used in this study,
found in Definition 3.1.

Definition 3.1. Given a subsequence S beginning at position p, a matching subsequence
M beginning at q, and a distance R, define M to be a trivial match to S of order R, if either
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p = q or there does not exist a subsequence M ′ beginning at q′ such that D(S,M ′) > R,
and either q < q′ < p or p < q′ < q. In addition the two subsequences S and M can not
share less than 50 percent of their data points to be considered trivial matches.

The difference between an uneventful and an eventful time series is that subsequences of
the former tends to have a tremendous amount of trivial matches in contrast to the latter.
The amount of trivial matches greatly influence the position of cluster centers and therefore
not frequently occurring subsequences with many trivial matches would be preferred as cluster
centers over frequently occurring subsequences with less trivial matches.

A workaround to find meaningful clusters by using the concept of Motifs is suggested. In this
study the algorithm proposed to find Motifs is unsuitable for massive data sets, since it scales
quadratic with the number of subsequences.

Definition 3.2. Given a time series T and a distance range R, the most significant motif in
T (called 1-Motif ) is the subsequence S1 that has the highest count of non-trivial matches.
Subsequently, the J th most significant motif in T (called J-Motif ) is the subsequence SJ
that has the highest count of non-trivial matches, and satisfies D(SJ , Si) > 2R, for all
1 ≤ i < J .

Definition 3.2 ensures that no two Motifs can be matches. Also, no matching subsequence of a
Motif is allowed to be a matching subsequence to any other Motif. The previously mentioned
consequences is visualized in Figure 3.1. The concept of non-trivial matches was introduced

1-Motif

No-Motif

2-Motif

Figure 3.1: A simple graphical visualization in 2D showing the properties of Motifs. The solid
circles have a radius of R from the Motif, while the dashed circle has a radius of 2R. The point
marked as No-Motif can not be considered a Motif since it is covered by the circle of radius 2R from
the 1-Motif.

without a formal definition. Keogh and Lin [8] defines the set of non-trivial matches to a subse-
quence Si as the set difference between all matching subsequences of Si and its trivial matches.
Defining non-trivial matches in such a way will not take into account for the trivial matches of
subsequence Si’s non-trivial matches. In this study the following definition will be used.
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Definition 3.3. Given a subsequence Si its matching subsequences M of order R and
its trivial matches TM, consider the set A = M\TM. The set A holds Si’s non-trivial
matches together with their trivial matches. Thus, Si’s non-trivial matches are found as the
middle element among coherent subsequences in A, where coherent subsequences are e.g.
Sj−2,Sj−1, Sj , Sj+1, Sj+2.

Finding Motifs

The algorithm to find Motifs in a univariate time series is presented in this section. The algorithm
is inspired by the findings of Keogh and Lin [8] and is exhaustive in the sense that it finds all
the Motifs of the input time series. A subsequence is considered a Motif only if it has at least
one non-trivial match. The procedure of finding the Motifs in a time series is stated below.

1. Find all subsequences in T given a window size W , i.e. SWT .

2. Find SAX representations for the subsequences ŜWT given the set of parameters: word
length w, alphabet size α and minimum standard deviation ε.

3. Calculate all pairwise distances between SAX representations D, using MINDIST .

4. Find and save the Motif M with the highest count of non-trivial matches according to D
with respect to a distance threshold R.

5. Remove the subsequences closer than 2R to M.

6. Repeat 4-5 until no new Motifs can be found.

3.1.2 Compressed Mixture Model

In this section we outline an exploratory density model technique named Compressed Mixture
Model (CMM), inspired by Kristan et al. [10], is outlined together with a novel proposition
how to apply it on time series subsequences. It features online learning, compression (storage
reduction), and exploration of not only the number of clusters but also their locations and
shapes. As defined in section 2.5.2 a mixture model is a mixture of component densities. A
CMM is a mixture model incrementally attained feeding subsequences incorporating possibilities
of component merges. Thus a CMM is a probabilistic model of time series subsequences and the
component densities found can be interpreted as cluster densities.

The core elements of the CMM is presented next.

Encoder

The encoder translates a subsequence into a feature vector. In this study the feature vector is
the PAA representation of a normalized subsequence. A feature vector is then a real valued N -
dimensional vector, where N is the number of frames in the PAA representation. The encoded
subsequence will hence forth be referred to as the feature vector.

The PAA representation was chosen over the SAX representation for the feature vector be-
cause of the advantage of being able to use well-defined kernels as explained next.
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Atomic Unit

An atomic unit is a kernel for the feature vector. The multivariate Gaussian kernel is used and
an atomic unit is therefore a multivariate Gaussian kernel with a location defined by the feature
vector and shape by a default covariance matrix Σ. Every component in a CMM is initially
created from an atomic unit.

Three possible alternatives exist to define the covariance matrix Σ for the atomic unit. In
increasing order of complexity: a spherical covariance matrix Σ (equal standard deviation for all
feature dimensions); a diagonal covariance matrix Σ (non-equal standard deviations for all fea-
ture dimensions); and a full covariance matrix Σ incorporating feature dimension dependencies.
In this study the first alternative is implemented and used, while the other two more complex
alternatives could be considered in future studies.

Kernel Usually when dealing with multivariate data a kernel width for each dimension is
needed. Using the PAA representation as the feature vector where the subsequence is normalized
beforehand, the feature dimensions approximately ranges between ±1 (unit standard deviation).
Thus, one can argue that only a single kernel width for all feature dimension is needed.

The Gaussian reference rule 1.06σn−1/5 suggests kernel widths depending on the number of
data points according to Table 3.1, where unit standard deviation is assumed. A rule-of-thumb is

n kernel width

1,000 0.25

10,000 0.16

100,000 0.1

1,000,000 0.06

Table 3.1: Kernel width suggested by the Gaussian reference rule for variables of unit standard
deviation.

to choose the kernel density in the magnitude of 0.1 times the range for each feature dimension.
Using PAA as the feature vector, each dimension ranges between ±1 and thus a kernel width
of 0.2 would be suitable. This is in accordance with the values in Table 3.1. Moreover, the two
methods of cross-validation and plug-in method briefly mentioned earlier in section 2.5.1 are too
computationally expensive for our application to be considered as an option for kernel width
estimation.

Aggregation Method

If two components are to be merged the composite is found using the moment matching ag-
gregation method to produce their composite as described in section 2.4. Important to note is
that even though the default covariance matrix of an atomic unit is not accounting for feature
dependencies, the method producing a composite is. This will result in an introduction of feature
dimension dependencies during aggregation.

Component Distance

To assess distances between component densities in CMM, information theory measures serve
the purpose well. Two well-known and commonly used probability measures are the Kullback-
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Leibler Divergence 2.3.3 and the Hellinger Distance 2.3.3, and both of them are implemented in
the CMM.

Merge Loss

The information lost when replacing two components C1 and C2 with their composite Ψ(C1,C2)
is an important part constructing a CMM. Replacing the two components should only be valid
if the merge loss is smaller than a defined threshold value. The merge loss is assessed using the
method described in section 2.4.

Definition 3.4. The operator Ψ(C1,C2) returns the composite component of the two com-
ponents C1 and C2.

CMM Update Procedure

A pseudo-code of the CMM update procedure is presented in Algorithm 3.1.
The algorithm parses through each feature vector xi supplied in the list of feature vectors X

(line 2). When a feature vector is supplied to the CMM an atomic unit c is created (line 3) using
the feature vector xi as the mean and a default covariance matrix as described by the Atomic
Unit section in 3.1.2. Next, the distance between the atomic unit c and all components ck ∈
CMM is calculated (line 4) as described by the Component Distance section in 3.1.2 as well as
the closest component K together with the distance δ is found (line 5). The composite Ψ(c,K)
is found (line 6) according to the Aggregation Method described in section 3.1.2 and the merge
loss of replacing the two components c and K by their composite Ψ(c,K) (line 7) according to
the Merge Loss section in 3.1.2. The component distance is needed in addition to the merge loss
because of the fact that the merge loss will decrease as a components weight grows and therefore
huge components will tend to grow uncontrollably, “the snowball effect”. By introducing also the
component distance, the shape of the component density is taken into consideration which will
maintain a controllable component growth. If the distance between c and K is smaller than the
distance threshold δ̄ and if the merge loss is smaller than the merge loss threshold ξ̄ then the
merge is accepted and further action is required (lines 9-24). Otherwise the merge is rejected
and the atomic unit is added as a component to the CMM (line 26) and the component distances
between all pairs of components are updated and saved in ∆ (line 27).

In the case of an accepted merge the following actions is needed. First, the composite Ψ(c,K)
is added to the CMM (line 9), then the component K is removed from the CMM (line 10) and
the inter component distance ∆ is updated (line 11). It is necessary to determine if any new
merges were made possible by replacing component K with the composite Ψ(c,K). As long as
the two closest components in CMM ca and cb can be merged (lines 13-24), add their composite
Ψ(ca,cb) to CMM (line 18), remove them from CMM (line 19) and update the inter component
distances ∆ (line 20).

3.2 Classification and Anomaly Detection

Anomaly detection is a classification problem with two classes, normal and abnormal. In this
study a subsequence is considered normal if it can be explained by a model of the subsequences
generated from the same signal and abnormal otherwise. In the case a subsequence is classified
as normal it belongs to a cluster in the model and will be labeled accordingly. Next the process
of classification and anomaly detection is explained using Motifs and CMM respectively to model
subsequences of a signal.
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Algorithm 3.1: Compressed Mixture Model

Input: X - list of feature vectors, σ - kernel width, ξ̄ - Merge loss threshold, δ̄ - Distance

threshold

Output: CMM - Compressed Mixture Model (set of components)

1 Initialize: CMM (empty), ∆ - inter component distances (empty)

2 for xi ∈X do

3 Create a component (atomic unit) c of the feature vector xi

4 Calculate the distance between c and all ck ∈ CMM

5 Let K ∈ CMM be the closest component to c and δ their distance

6 Find the composite Ψ(c,K)

7 Calculate the merge loss ξ of replacing c and K with Ψ(c,K)

8 if ξ < ξ̄ and δ < δ̄ then

9 Add composite Ψ(c,K) to CMM

10 Remove K from CMM

11 Update inter component distances ∆

12 Set continue to TRUE

13 while continue do

14 Find the closest components ca, cb ∈ CMM and their distance δ

15 Find the composite Ψ(ca,cb)

16 Calculate the merge loss ξ of replacing ca and cb with Ψ(ca,cb)

17 if ξ < ξ̄ and δ < δ̄ then

18 Add composite Ψ(ca,cb) to CMM

19 Remove ca and cb from CMM

20 Update inter component distances ∆

21 else

22 Set continue to FALSE

23 end

24 end

25 else

26 Add c to CMM

27 Update inter component distances ∆

28 end

29 end

30 return CMM

3.2.1 Motifs

Assuming a model of subsequences from a signal have been acquired, where the model is the
Motifs present in the time series. A new subsequence is assessed normal if it belongs to or can be
explained by any of the Motifs in the model, or abnormal otherwise. A subsequence is defined
to be explained by the model if the distance to the closest Motif is smaller than 2R. Here R is
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the same distance as used during training of the model. If the subsequence can be explained by
the model it is considered normal and is labeled to belong to the closest Motif, otherwise it is
abnormal.

3.2.2 Compressed Mixture Model

As mentioned earlier, a subsequence is considered normal if it can be explained by a model of
subsequences generated from the same signal, otherwise abnormal.

Using a CMM as the model, a feature vector is considered abnormal if it can not be explained
by the model or if it is unfrequent. In more details a feature vector is considered abnormal if the
feature vectors atomic unit is:

1. not allowed to merge with a component in the CMM, or

2. allowed to merge with a component in the CMM, but the frequency of that component
(number of subsequences added to that component during training) is smaller than a fre-
quency threshold,

To choose a good value for the frequency threshold, it is important to consider the possibility
of trivial-matches. A good threshold value will preferably be chosen in the range of the largest
amount of possible trivial matches, i.e. the length of each subsequence m divided by 2. As the
length of the subsequences outgrow the length of the patterns in the signal such a naive choice of
threshold is no longer suitable, and the length of the smallest interesting pattern will then serve
as a substitute for the subsequence length m when defining the threshold. The threshold will
differ between signals due to their individual nature, some are rapidly changing while others are
smooth and slowly changing.

By construction of the CMM every feature vector is considered equally important and the
CMM is a model of both normal and abnormal behavior simultaneously. A component is con-
sidered abnormal as long as the frequency of the component is below the threshold value. Thus,
abnormal components are regarded as temporarily abnormal until it is more frequently observed.

If a subsequence is considered normal it is labeled to belong to the closest component in the
CMM based on component distance values.
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4
Results & Discussion

T
his chapter starts of with a short discussion regarding the two time series representation
techniques in the PAA vs SAX section. We will compare scalability and applicability of
the Motif based and the Mixture Model based approach. Two datasets will be used for

comparison: first a data set in which the most fundamental concepts can be explained with ease,
and secondly a dataset from a real automotive application.

4.1 PAA vs SAX

In this study the SAX representation was used as a segmentation method for time series in the
process of finding Motifs. Resolution was traded for a discrete representation method. The theory
of finding Motifs does not rely on time series being represented using discrete representations.
With this in mind, PAA would be just as suitable as the segmentation method in the Motif based
approach. There exist other data mining applications in which a discrete time series is favorable.
However, we decided to use SAX as the segmentation method in the Motif based approach for
diversity. As we will soon see, the Motif based algorithm scales quadratic no matter which of
the segmentation methods we decide to use.

The Compressed Mixture Model presented is using PAA representations as feature vectors
and builds a probabilistic model of subsequences of a time series.

An important result of this study is that the similarity measure for SAX does not obey
the triangular inequality. This fact is presented in section 2.3.2. Moreover, the simpler PAA
representation is better than SAX at preserving resolution. This allows discrimination between
relatively close subsequences in cases where SAX fails. For these reasons, we judge PAA to be
preferable over SAX.

4.2 Applicability and Scalability

In this section, the two cluster approximation concepts Motifs and CMM are compared. They
are both applied on the same data set with known features, D1, visualized in Figure 4.1.

25



4.2. APPLICABILITY AND SCALABILITY CHAPTER 4. RESULTS & DISCUSSION

0 500 1000 1500 2000
35.0

35.1

35.2

35.3

35.4

35.5

35.6

35.7

Figure 4.1: The data set of known features, D1, consisting of 2000 data points.
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Figure 4.2: Motifs found in the data set D1 using the parameter values presented in Table 4.1
Motifs are SAX representations and is plotted in this figure using the 50-percentile of the symbol
region.

4.2.1 Motifs

The Motif finding algorithm (section 3.1.1) was applied on the data set D1 in order to find all
the Motifs. The Motifs found are presented in Figure 4.2 using a parameter setting as displayed
in Table 4.1.

Using the Motifs found as cluster centers, classification and anomaly detection (section 3.2.1)
was performed on the same data set D1 using the same distance threshold R = 0.6 as during
training. In Figure 4.3 the classification of subsequences in the data set D1 is visualized. There
is one plot for each of the six Motifs found where each subsequence classified as that Motif is
highlighted in black.
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W (window size) w (word length) ε α (alphabet size) R (distance threshold)

20 5 10−4 15 0.6

Table 4.1: Parameter settings used to find the Motifs present in the data set D1.
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Figure 4.3: Data set D1 with highlighted areas according to the Motif labeling of subsequences.

One outlier was found using Motifs to model the data set D1. Each Motif holds information
regarding its location and an outlier/anomaly is defined to be a subsequence further away than
2R from its closest Motif.

4.2.2 CMM

The Compressed Mixture Model (section 3.1.2) was trained on the data set D1 to find the
components of the mixture. The distance metric used for training was the Hellinger distance (an
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Figure 4.4: Outliers, i.e. subsequences not explained by the Motifs.
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Figure 4.5: Component centers found in the data set D1 using the parameters presented in Table
4.2 and the Hellinger distance as the choice of distance method. The window size W , number of
frames w as well as ε are given by Table 4.1.

information theory distance). The training parameters are summarized in Table 4.2. The time
series representation parameters, window size W , number of frames w as well as ε are the same
as used when finding the Motifs given in Table 4.1. The component centers found with these
settings are presented in Figure 4.5.

The order in which the components are presented in Figure 4.5 does not reflect their relative
importance, i.e. the component weight, in contrast to the Motifs where the most representable
subsequence is found as the 1-Motif, the second as the 2-Motif etc.

Kernel width Merge loss threshold Distance threshold

0.5 0.2 0.6

Table 4.2: Parameter settings used to train a CMM on the data set D1.

Using the components in the CMM as cluster densities, classification and anomaly detection
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Figure 4.6: Data set D1 with highlighted areas according to the assigned component labeling of
subsequences using a frequency threshold of 10.

(section 3.2.2) is performed on the same data set. The parameters as well as their values used are
the same as during training with one exception. The frequency threshold for when a component
is considered to be abnormal needs to be specified. Classification is performed using a frequency
threshold of 5. In Figure 4.6 the subsequences classified as the respective component is highlighted
in black.

No subsequences are labeled as component 1, which is due to that the frequency of that
component is smaller than 5 and thus by definition is considered abnormal. The outlier or
abnormal behavior found, Figure 4.7, correspond to subsequences similar to component 1.

4.2.3 Discussion regarding Applicability

A direct result from the applicability comparison between the two methods is that it is possible to
produce similar results using either of the two methods by tuning the parameter values. When
comparing Figure 4.2 with Figure 4.5 the two methods find similar cluster centers with the
exception of Motifs finding one less. This is due to the definition that a subsequence can only
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Figure 4.7: Outliers, i.e. subsequences not explained by the CMM.

be considered a Motif if it has at least one non-trivial match. Component 1 corresponds to a
subsequence only occurring once, which is therefore not considered as a Motif but is considered
as a component of the CMM. If one would pair the Motifs with the component centers they
would pair up as: (1-Motif, Component 4), (2-Motif, Component 6), (3-Motif, Component 5),
(4-Motif, Component 7), (5-Motif, Component 3) and (6-Motif, Component 2).

The two clustering methods differ greatly regarding their learning procedures. In the process
of training a CMM one feature vector is added at a time in order to update the CMM, while
the Motif finding procedure requires the whole time series to be available during learning. Thus,
CMM possesses the ability of online clustering, classification and anomaly detection on streaming
data.

Both of the clustering methods have the ability to learn the number of clusters and the cluster
locations. The difference is that when a Motif is found its location is locked never to be altered
in contrast to the locations of components in a CMM that are updated as new data becomes
available.

Also, approximations of clusters provided by the two methods differ. By definition a Motif is
spherical in shape with a fixed radius defined by the user and provides a poor cluster approxi-
mation in many cases. In contrast, the components of a CMM are only initially set to a default
shape as an atomic unit (default covariance matrix) and are free to adapt their shape (covariance
matrix) during learning which results in better cluster approximations.

4.2.4 Discussion regarding Scalability

The proposed algorithm for finding time series Motifs has already been regarded as unsuitable
for massive data sets as it is quadratic in the number of subsequences n i.e. O(n2). No such
implication has been made regarding the time complexity or scalability of the CMM update
procedure. The Motif based algorithm does not scale well, since the pairwise distance between
all subsequences has to be calculated in order to rank the subsequences with respect to their
number of non-trivial matches.

We were not able to perform an in depth time complexity analysis of the CMM update
procedure. The parameter settings for encoding the subsequence (i.e. PAA representation)
as well as the merge loss threshold, distance threshold and kernel width all contributes to the
number of components found during learning. Therefore, since the number of components vary
throughout learning this introduces an additional level of difficulty analyzing the time complexity.
Apart from these difficulties, it is clear from Algorithm 3.1 that the CMM update procedure is
linear in the number of subsequences n, i.e. O(n).

Using the PAA representation as a substitute for the SAX representations when finding Motifs
will not alter the time complexity. It will still be quadratic O(n2) with respect to the number of
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Figure 4.8: The use case output signal, with a normalized y-axis. Here the x-axis is given by the
sample number.

subsequences n.
The CMM update procedure is linear with respect to the number of subsequences. This is a

great improvement in comparison to the Motif finding algorithm that is at least quadratic in the
number of time series subsequences.

Improvements of the CMM update procedures running time could be performed by introduc-
ing a fast indexing method, e.g. R-tree indexing, to search for close components.

4.3 Use Case

In this section we will apply CMM on use case data to obtain features from subsequences in the
time series.

The company for which this study was conducted has provided a set of questions that the
CMM will help answer. For that, the CMM will first be trained in the use case output signal
(see Figure 4.8).

The single most important question to answer is the number of unique patterns (clusters)
building up a signal and also their shapes. By construction, the CMM is exploring the compo-
nents/clusters as more data becomes available. The expected result using a CMM is that the
number of components converges to the actual number of clusters in the dataset.

The upcoming results were obtained using the parameters: window size W = 100, number
of frames w = 5, ε = 10−4 to find the PAA representations; and the parameters of kernel width
of 0.3, component distance threshold of 0.5 and a merge loss threshold of 0.2 defining the CMM
update procedure.

Training a CMM using the parameter values stated in the previous paragraph resulted in a
learning of the number of components as presented in Figure 4.9. From the trace of number
of components it is visible that the number of components seems to converge for the given
data. Initially the number of clusters quickly increases until about 20000 subsequences when the
number of components reaches its maximum value. After the maximum number of components is
reached the components of the mixture continue to merge with each other to form larger clusters,
while fewer new components are found. This is the explanation to why the number of component
in the mixture decreases before converging to a more or less constant level.
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Figure 4.9: The trace of the number of components found in the use case output signal after
training on 51533 subsequences. After completed training on one data set a total of 114 components
were found.

Thus, the question regarding how many unique patterns builds up a signal is simply answered
by the number of components (clusters) available in the CMM. Their shapes are given by the
component center. This is of course assuming that all the possible subsequence scenarios have
been fed to the CMM for learning. A CMM will deem all unseen subsequence scenarios, i.e.
scenarios not explained by the model, as abnormal.

Another interesting question to answer is which subsequences are most- and less frequently
occurring. By construction, the CMM stores how many subsequences that every component is
build up from. Thus, this question is a very simple query to answer for the CMM. A histogram
of the frequency of each component is presented in Figure 4.10.

In Figure 4.11 the most frequent subsequences of the use case output signal are presented
and they correspond to the components producing the highest bars of the histogram in Figure
4.10. The less frequent subsequences are presented in Figure 4.12 and they correspond to the
components producing the lowest bars of the histogram in Figure 4.10.

The four most frequently occurring subsequences correspond to an increase and decrease in
the use case output signal. At a first glance of Figure 4.11, the two most frequently occurring
components might seem too similar to be accounted for as different components. The same goes
for the third and forth most frequent components. If a more generous merge loss and distance
threshold had been chosen these components might have been merged into a composite, but for
the current settings they are accounted for as two separate components. Interesting to note is that
most of the frequently occurring subsequences also seem to possess a linear trend-like behavior.
This could be explained by the fact that they possess a larger amount of trivial matches than
patterns of higher variation. The frequency count of the most frequent components in decreasing
order are: 2848, 1978, 1869, 1817, 1556.

In contrast to the very frequent subsequences for which a trend-like behavior was observed,
the most unfrequent components in Figure 4.12 seem not to follow a linear trend. This statement
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Figure 4.10: A histogram representing the component frequencies in the CMM trained on the use
case output signal. Each bar corresponds to one component, and the height of a bar represents the
frequency of that component.
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Figure 4.11: The five most frequent components in CMM, with their component centers plotted.
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Figure 4.12: The five most unfrequent components in CMM, with their component centers plotted.

holds for four of the most uncommon components, but not for the most uncommon component
which seems to have a more trend-like behavior than the others. The frequency counts of the
most unfrequent components in increasing order are: 1, 5, 6, 6, 7. This means that the most
unfrequent component was added as the CMM trained on the last provided feature vector, oth-
erwise there would have been an additional number of trivial-matches merged into the most
unfrequent component. All of these five low frequency components should by definition be con-
sidered abnormal since they only contain one subsequence and its trivial matches. As previously
mentioned, the frequency threshold value should be set in the range of the largest amount of
trivial matches.

The company is also interested in finding subsequences of large variation where the definition
of variation is allowed various interpretations. In this study the subsequences are normalized
before the PAA representations are obtained. Therefore any information regarding position in
space and scaling is removed and no inference regarding absolute information of subsequences
will be available. A suggestion of how to include absolute information for each component is
suggested in the Future Work chapter. Finding components with the highest variance of cluster
centers will therefore be non-informative (all component centers have standard deviations pending
around 1). Instead a measure of variation of a component center (PAA) is measured based on its
deviations from a linear regression fit. In Figure 4.13 the components of the highest variation,
and considered normal, are presented.

Analyzing the use case output signal from the same kind of system, but three different objects,
will provide interesting material to discuss. In Figure 4.14 the three objects were subjects to
similar testing scenarios. During these tests the speed of the process was subject to change and
every 5000 data point the process speed was increased.

It is clear from the graphs in Figure 4.14 that every 5000 data point the number of components
increases, which means that the CMM observes new subsequences not seen before. This happens
every time the process speed increases for all three objects. After a number of subsequences
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Figure 4.13: The five components of highest variation in CMM classified as normal, with their
component centers plotted.
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Figure 4.14: Evolution of CMM over time. Using W = 100, w = 5, ε = 1e − 4 and merge loss
threshold 0.2, distance threshold 0.5 kernel width 0.3. Every 5000 data points the test condition of
the systems changes, in this case the process speed is increased.
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have been observed by the CMM at the new process speed the number of components starts
to decrease. This is due to the fact that components in the CMM merge together to form
bigger components approximating larger clusters. It is not possible to assess if the number of
components converge to a constant level from this test, since the number of data points in the
time series at the different levels of process speeds are too small.

The behavior of increasing number of components when the process speed changes might be
countered. Instead of using time to measure the process, another process speed adaptive measure
should preferably be used.
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5
Conclusions

T
wo univariate data mining tools, one Motif based and the other Mixture Model based,
have been implemented and compared in this thesis. They both feature clustering, clas-
sification and anomaly detection of time series subsequences. Even though one of them

shows a higher potential for further development, both techniques solve the crucial problem to
cluster subsequences. This relates to solving the task of learning one model for each of the input
time series in Figure 1.2 found in the Introduction chapter. The company for which this study
was conducted will be able to use the data mining tool, Compressed Mixture Model, to achieve
compression of time series data and to find all unique patterns.

Using the Compressed Mixture Model as a model of time series subsequences is beneficial in
comparison to using Motif based model in many aspects, e.g.

• The time complexity for CMM’s learning procedure is linear in the number of subsequences,
while the time complexity for finding all Motifs is quadratic. The CMM learning procedures
time complexity depends on the number of components. Thus it is beneficial having a
proper indexing method to find the closest pair of components to minimize the actual
running speed.

• CMM discovers and adapts the number of clusters as well as their location and shape in
a feature space. The Motif based technique discovers the number of clusters and their
location for a chosen radius of the multidimensional cluster, but not the shape which is
spherical by definition (see Figure 3.1).

• The proposed technique, Compressed Mixture Model, is suitable for real time applications
because of the possibility to incrementally update the model. This is not the case for the
Motif based technique for which no good update procedure has been found.

• Classification and anomaly detection is simple to perform when a CMM has been trained,
and it takes into account for the locations, shapes and frequencies of the components.

There is one aspect where the Motif based technique triumphs the CMM, it takes into account
for trivial matches of subsequences. This is accounted for when finding anomalies in the CMM
by setting a higher frequency threshold value. However, the number of trivial matches varies
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between different patterns and therefore a more adequate method to deal with trivial matches
would increase the value of CMM.
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6
Future Work

T
his chapter contains possible improvements of the univariate time series data mining
tool, CMM, proposed in this study. One improvement would be to extend the univariate
CMM to also cover multivariate data mining. Another would be to include additional

information regarding absolute values in the CMM. At last, including methods for automatic
parameter selection would improve the useability of the CMM.

6.1 Multivariate Data Mining

The study conducted has solely focused on building a model for univariate time series data
mining. Many of the interesting time series analysis applications feature a system of multiple
input-/output signals, where it would be interesting to perform simultaneous data mining on
all signals to capture cause-effect relations. The cause would be an event in one or multiple
input signals, while the effect is an observed reaction to the event in one or multiple output
signals. Capturing such relations would require that possible time delay between input- and
output signals are known and accounted for. The company for which this study was conducted is
interested in analyzing input-output relations in systems where the time delay is inconsiderable
8-16 ms, while patterns in the signals is in the order of 1 s. Therefore the cause-effect relations
will be covered by the window size since it will be sufficiently large. Moreover, in order for such
a multivariate cause-effect comparison to be meaningful, the window size W and the number
of frames w should be chosen to be the same for all the signals. This would create one feature
vector per dimension (signal) and it would be possible to proceed with the multivariate analysis
in two separate directions.

6.1.1 Multivariate CMM

The first option is to create a multivariate kernel for all the signals and build a multivariate
CMM.
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Multivariate Gaussian Kernel

A multivariate kernel can be created by expanding the feature vector used in the univariate case
to a vector of the form (f11, . . . ,f1w,f21, . . . ,f2w, . . . ,fn1, . . . ,fnw) where fij is the feature value
for signal i and feature j. The current implementation of the CMM could then be used to find
multivariate clusters, their locations as well as shapes. No extra parameters will have to be added
when comparing to the univariate case and the kernel width can be the same for all signals due
to the normalization.

Using a multivariate Gaussian kernel for multivariate analysis (multivariate signals), the
number of parameters to estimate would increase quadratically with respect to the number of
signal dimensions. One problem introducing multiple signal dimensions is that the amount of data
required to assess good cluster approximations quickly outgrows the amount of data available.
Therefore, in order to obtain good cluster approximation using the data available at hand, it is
important to make the aggregate method more robust especially when updating the covariance
matrix.

An interesting suggestion of estimating the covariance matrix using the concept of shrinkage
is defined by Ledoit and Wolf [11]. They propose a linear combination of an unstructured sample
covariance matrix S (full covariance matrix) and a highly structured estimator of the sample
covariance matrix F as the estimator for the true covariance matrix, δF + (1 − δ)S, where
δ ∈ [0,1]. The shrinkage covariance matrix estimator seems like a promising alternative to tackle
the curse of dimensionality and to make the covariance matrix estimate more robust.

Markov Chain Model

As a direct result after expanding the CMM to handle multivariate signals, the multivariate
feature vector could be built up by two consecutive feature vectors x1 and x2 (consecutive in
time). The two feature vectors x1 and x2 both share the same data points but one. This means
that it is possible to create a Markov chain CMM where the conditional distribution of the
possible values of x2 is conditioned on the current value of x1.

6.1.2 Multiple Univariate CMMs

The second option is to build univariate CMMs for all the signals and produce multidimensional
labels. 

L1

L2

...

LM

 =


l11 l12 l13 . . . l1N

l21 l22 l23 . . . l2N
...

...
...

. . .
...

lM1 lM2 lM3 . . . lMN


Here, element lij is the label of subsequence j in signal i. It is now possible to estimate how
many multidimensional clusters there are by counting the number of unique multidimensional
labels and how frequently occurring they are. It would also be possible to answer the question,
conditioned on l1j = A how many unique multidimensional clusters exist and what are their
frequencies. Moreover, it would be possible to easily remove a signal from the analysis by not
considering its univariate label vector Li.
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6.2 Absolute Information

The CMM proposed in this study builds a model of the shape and trends of time series subse-
quences. No information regarding the absolute values of subsequences mean value and standard
deviation is stored in the current implementation of CMM. One possible solution could be to
include two additional 1-dimensional CMMs for each component and signal dimension. In one
of them the mean value for a subsequence added to the component is inserted, while in the other
the standard deviation is inserted. This would mean that every component can keep a proba-
bility model of absolute information and would introduce the possibility to draw conclusions if
a subsequence is normal or not including information regarding the absolute values of mean and
standard deviation.

6.3 Parameter Selection

The time series data mining tool, CMM, is sadly not parameter free. A number of parameter
values needs tuning, and this task is non-trivial. As a recommendation for future improvements
using CMM to model time series subsequences, this section highlight promising techniques to
automate the parameter selection process.

6.3.1 Minimal Descriptive Length

Hu et al. [5] propose the use of Minimal Descriptive Length (MDL) to discover the natural
intrinsic representation model, dimensionality and alphabet cardinality of a time series. They
provide a general MDL algorithm and specific examples of how to apply it for model- and
parameter selection, using a set of possible models and parameter values. The best model and
parameter values are the ones that minimize the memory usage for decoding the time series,
which is a trade-off between the model fit and the number of parameters.

To connect this to our work, it is possible to apply this method in order to determine the best
set of parameters for the PAA representation given a time series. The parameters to consider
for such a parameter selection technique are the window size and the number of frames defining
the PAA representation.

6.3.2 Goodness-of-fit Measures

The problem of choosing the number of components of a Gaussian Mixture Model (GMM) using
model selection techniques have previously been studied by e.g. McLachlan and Rathnayake [15]
and Huang et al. [6]. Such model selection techniques assess the GMM’s goodness-of-fit and
make inference on the optimal number of components. In this study, the number of components
is depending on the parameter choices of the kernel width, merge loss threshold and component
distance threshold.

The idea is to make the parameter selection into a search problem for optimal fit, using the
goodness-of-fit of the CMM (CMM is a GMM) for a set of parameters. It is necessary to define
optimality of a CMM. Various possibilities exists e.g. optimal with respect to the data, the
components and/or the merge loss.
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A
Appendix

I
t is beneficial to understand the strengths and weaknesses of the time series representation
techniques used, i.e. PAA and SAX. The following transformations presented in (A.1) are
the interesting invariance scenarios.

y = f(x) + ∆ε

y = f(x) + ∆y + ε

y = f(x) ·∆y + ε

y = f(x+ ∆x) + ε

(A.1)

In (A.1), the first equation denotes a noise scaling transformation, the second offset trans-
formation, the third signal scaling transformation and the forth time translation transformation.
In this study the subsequences are normalized before represented by either PAA or SAX which
removes the two invariance scenarios offset transformation and scaling transformation from the
table. Both of the methods lack the time translation invariance property. It is of interest to
assess how well the representations performs when noise is introduced.

How well the two representations perform is evaluated based on the distance between a
reference signal sref and the same signal distorted with varying levels of noise. The reference
signal together with examples of distorted reference signals is presented in in Figure A.1.

Noise scale invariance

The signal sref was defined as the underlying pattern with 100 data points and a half sinusoidal
wave introduced of length 10 samples. Different levels of gaussian noise was added to the signal
with mean 0 and varying standard deviation. The Signal-to-Noise Ratio (SNR) is defined as the
ratio between the signal amplitude and the standard deviation of the noise.

The PAA representation was obtained using varying number of frames (or word lengths) and
an ε = 10−6. In Figure A.2 the distance between the reference signal and distorted signals of
varying magnitude of noise is graphically presented. The distances for each set of parameters is
calculated as the mean of 100 uniquely distorted signals.
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σ = 0.01 (SNR = 100)
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Figure A.1: The reference signal sref and two examples of distorted reference signal with various
levels of Gaussian noise.

The plots in Figure A.2 points out that the finer the resolution in space, i.e. an increasing
alphabet size α, used to obtain the SAX representation it more closely resembles the PAA
distance. In the limit α→∞ the PAA and SAX distances becomes equal.

Regarding the noise invariance property. The SAX distance for smaller α’s is close to zero
which means that it is noise invariant. But it comes with a drawback of loosing too much
information in the discretization procedure. It is easier to interpret the resulting PAA distances
and for all the different choices of number of frames (or word length) as the SNR→∞ the distance
tends to zero. Common SNRs for the signals of the application is usually larger than 20 and the
word lengths are in the range of 5-10. For this parameter settings, the PAA representation can
be considered to be noise invariant.
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(b) SAX with α = 10
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(c) SAX with α = 15
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(d) SAX with α = 20
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(e) SAX with α = 25

Figure A.2: The z-axis is defined as the distance (PAA distance and SAX distance respectively)
between the signal sref and distorted signals of varying magnitude. The SAX representation was
obtained using an alphabet size of 10 (upper left) 15 (upper right) 20 (lower left) 25 (lower right).
They all share the same color bar.
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