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Abstract

Several methods of enhancing heat transfer performance by introducing disturbances
in tubes exist, these disrupts the thermal boundary layer and thus, increases heat
transfer rate. This is also accompanied by increased pressure drop due to the in-
creased hindrance of the flow. In this work heat transfer enhancement is investigated
using large eddy simulations by introducing internal corrugations in a tube with in-
ternal diameter of 5 cm and flow characteristics of 20000 in Reynolds number. The
aim was to learn more how the boundary layers are affected by the corrugations
and how the enhanced heat transfer is sustained until it is decreased and further
disturbances need to be introduced. The simulations were done for a smooth tube
and three different rough tube designs, where the pitch (p) to roughness height (e)
ratio was varied from 2.2, 10 and 20 for the respective cases. For each simulation
the heat and momentum transfer is quantified in the form of Nusselt number and
pressure drop which were compared with empirical correlations. The simulations
were of good LES quality, where the smooth and p/e = 2.2 design were in good
agreement with correlations, in comparison to 10 and 20 where lack of correlations
was apparent. The heat transfer performance was increased around 200 % for all
the rough tube designs but had a maximum at p/e = 10 where it was enhanced
by around 218 %. The pressure drop did not increase in the same way as p/e =
2.2 yielded the lowest pressure drop and p/e = 10 the highest. Thus in terms of
operational costs the p/e = 2.2 case yields the highest heat transfer enhancement
in relation to pressure drop as it yields an increase in heat transfer performance
comparable to p/e = 10 but has a pressure drop only a factor of 3.44 larger than the
smooth case, instead of 7.62 as for p/e = 10. It was further seen that the enhanced
heat transfer starts to decrease close the next corrugation for p/e = 10 and earlier
for p/e = 20 where the boundary layer thickness starts to increase after one third of
the distance between the corrugations and thus reducing the heat transfer. It could
be concluded that the "general" wall functions for the smooth and rough (densely
packed) case is Reynolds dependant as the LES data does not collapse on the wall
function. Furthermore the velocity and temperature profiles in the near wall region
are strongly dependent on the separation of the corrugations, and further dependent
on the post-processing method.
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B intersection constant, see Eq. 2.48
BT intersection constant, see Eq. 2.50
cP specific heat capacity at constant pressure, [J/kg K]
D tube diameter
e roughness height, [m]
k roughness height, [m]
k+ dimensionless roughness height, [-]
Nu Nusselt number, [-]
P pressure, [Pa]
Pr Prandtl number, [-]
q wall heat flux, [W/m2]
Re Reynolds number, [-]
T temperature, [K]
Tw wall temperature, [K]
T+ dimensionless temperature, [-]
uτ friction velocity, [m/s], see Eq. 2.40
U velocity, [m/s]
U+ dimensionless velocity, [-]
y distance from the wall, [m]
y+ dimensionless distance from the wall, [-]

Greek letters

β linearly-varying component of pressure, see Eq. 2.38
θ temperature scaling function, see Eq. 2.39
κ mixing-length constant, [-]
ν kinematic viscosity, [m2/s]
ρ fluid density, [kg/m3]
τw wall shear stress, [kg/(m s2)]
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1 Introduction

1.1 Background

Heat transfer between two fluids is an important process in many industries as it can
lower the need for external cooling or heating and thus lower the operational costs of
an arbitrary operation. Engineering applications where heat exchangers stands for
an important part of the operation are applications which includes space heating,
air-conditioning, heat recovery systems and many more [1].

A common configuration of a heat exchanger for convective heat transfer is to arrange
the flow of the two fluids in a counter-current fashion, as the total energy transfer
per unit area is greater in comparison to flow arranged in a co-current manner, [2].
The convective heat transfer is related to the fluid motion within the heat exchanger
together with the properties of the fluid and the geometry implemented in the specific
case. Unquestionably, the boundary layer, will play an important role in momentum
and heat transfer which is underlined by Dipprey and Sabersky, [3]. A thermal
boundary layer will be created due to the temperature difference between the wall
and the bulk flow in the heat exchanger, which will generate inherent resistance to
transfer heat from the wall to the fluid.

Improvement of heat transfer rate has been an immediate topic for a long time
as low energy usage is a global goal, both in terms of economics and in relation
to the environment, [4]. There is currently a great deal of effort in enhancing the
heat transfer of heat exchangers where considerable research has been conducted
on how to modify the interior geometry of the heat exchanger. There are several
ways of modifying the geometry, such as wire coils, corrugated or dimpled tubes.
The choice of a particular modification is dependent on the Reynolds number, fluid
properties and particular application in comparison to enhancing heat transfer (e.g
ease of cleaning). In addition to increasing the heat transfer the modification of ge-
ometry generally increases the pressure drop, due to the roughness of the individual
geometry modification, [5].

In the effort to increase heat transfer performance several studies have been reported
in the literature. Experiments have been done for different heat enhancement strate-
gies at varying Reynolds numbers and roughness parameters such as different rough-
ness heights, distance between the roughness elements and type of roughness [5–7].
Analysis of flow and thermal performance based on computational studies has been
performed. Mirzaei et al. [8], used large eddy simulation (LES) to study flow and
heat transfer in a channel with outward corrugated elements on one side, at dif-
ferent corrugation amplitudes. Lee et al. [9] and Krogstad et al. [10] used direct
numerical simulations (DNS), of Reynolds number based on momentum thickness
and bulk respectively of 300-1300 and 12800, to investigate how roughness affected
the turbulent boundary layer and the overall flow.

This project aims at investigating how the heat transfer is enhanced using internally
corrugated tubes of different designs. The goal is to develop further understanding
how hydrodynamic and heat transfer resistance is affected by disturbance of the near
wall region using corrugated tubes and further how this affects the heat transfer rate.
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How long this enhanced heat transfer survives, and when another disturbance need
to be introduced, is also investigated. The investigation is to be performed using
LES. Further the structure of the corrugations will be done according to the d- and
k-type pipe roughness proposed by Perry et al. [11].

2 Theroretical background

In order to fully understand how heat transfer is affected by geometrical distur-
bances, knowledge of how turbulence works is needed. The following section gives a
theoretical background on turbulence followed by a description of LES and different
subgrid models. Finally periodic boundary conditions, wall treatment and the effect
of wall roughness are discussed.

2.1 Turbulence theory

Turbulence is perhaps in the eyes of an arbitrary person an unwittingly feature of
everyday flows. However turbulence is a complex and important feature in many
engineering flows, such as processes involving mixing, diffusion and transport of heat,
mass and momentum. Thus it is of great interest to understand turbulence.

Turbulence in itself is not well defined, however it is closely connected to observation
of vortices together with some distinctive features of turbulent flows which are given
by Tennekes [12]. Turbulent flows are by nature chaotic with random motion of a
fluid that involves several different scales of varying magnitudes, i.e. length-, time-
and velocity scales. These length scales of turbulence are of larger magnitude than
molecular scales and turbulence can as such be treated as a continuum phenomena.
The largest scales are attributed to the largest of the aforementioned vortices (also
called eddies), where a vortex is a reasonably coherent structure of turbulent motion
over a region of space within the flow confinement. This region accommodates in
addition to the larger vortices, vortices of smaller magnitudes leading to turbulent
flows being irregular, meaning that it contains a wide range of different scales. [12,
13]

Turbulence is a 3D phenomena due to turbulent mechanisms such as vortex stretch-
ing and vortex tilting, which are ways to describe conservation and transfer of energy
of vortices of different sizes. This is closely connected to the feature that turbulent
flows are dissipative, meaning that turbulence cannot exist without a continuous
flux of energy from a source. In pipe flow the source of energy is coming from the
mean flow, see section 2.1.2 for further explanation.

2.1.1 Kolmogorov’s hypotheses and relation to length scales of
turbulence

As stated before there are several magnitudes of scales each denoting a size of a
vortex, to which there are several definitions, where some vortices are just transfer-
ring energy and other lose their energy through dissipation. In 1941 Kolmogorov
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stated three hypotheses, which have become a foundation for current turbulence
research, [13,14]. The first hypothesis stated by Kolmogorov is in regard to isotropy
of small-scale motion (i.e. small eddies). He argued that the larger eddies of scales l0
are anisotropic (non-uniform in orientation) and that they lose directional informa-
tion due to a chaotic scale-reduction process, i.e. transfers energy down to smaller
eddies (because of being dissipative). The hypothesis is stated as: At sufficiently
high Re numbers, the small scales of turbulent motions (l ≪ l0) are statistically
isotropic, [13, 14].

Kolmogorov further argued that all sense of geometry is lost as the energy from the
larger eddies is passed down to smaller eddies. In that sense the statistics of the
smaller and isotropic eddies could be said to be universal or similar in every high
Re-number turbulent flow. It could at this point be beneficial to introduce a de-
marcation length scale, lEl, as a means of separating eddies which are isotropic and
anisotropic. The processes of importance within this universal range are the transfer
of energy and the viscous dissipation, which leads to Kolmogorov’s second hypoth-
esis: In every turbulent flow at sufficiently high Reynolds number, the statistics of
the small-scale motions (l < lEl) have a universal form that is uniquely determined
by ν and ε, [13, 14].

Figure 1: Energy cascade which describes the hierarchy of energy transfer in turbulent
eddies, adopted from [13].

The range l < lEl, where isotropic vortices are located, is called the universal equi-
librium range, see Figure 1, in which the eddies are of such small scale that they are
assumed to be able to maintain dynamic equilibrium i.e. that production of turbu-
lence is the same as the dissipation. The scales that describe the smallest eddies are
called the Kolmogorov scales,

η ≡ (ν3/ε)1/4, (2.1)

uη ≡ (εν)1/4, (2.2)

τη ≡ (ν/ε)1/2. (2.3)
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Here η is the Kolmogorov length scale, uη the Kolmogorov velocity scale and τη is
the Kolmogorov time scale. The Reynolds number based on the Kolmogorov scales
is by definition 1 and as such the smallest scales are always laminar.

Kolmogorov’s third hypothesis is under the assumption that there exists a range,
namely called inertial subrange, of length scales where the viscous effect is of minor
importance and such the statistics of the motion is only being dependent on the
energy-dissipative rate. The approximate hypothesis is stated as follows: In every
turbulent flow at sufficiently high Reynolds number, the statistics of the motion of
scale l in the range l0 ≫ l ≫ η have an universal form that is uniquely determined
by ε independent of ν, [13, 14].

Thus according to the two last hypotheses it can be concluded that the motion in
the inertial subrange is solely dependent on the inertial effects of the flow while
within the dissipative range the motion is dependent on the viscous effects.

2.1.2 Energy spectra

For flows of high Reynolds number there is according to the Kolmogorov hypothesis
a range of different length scales. One common way of visualizing this is by plotting
the so called energy spectrum. Figure 2 shows the energy spectrum which, for fully
developed homogeneous turbulence, is a tool of identifying the energy distribution
(see Eq. 2.4) over the different length scales. However instead of length scales the x
axis is composed of the wave number κ which is inversely proportional to the radius
of the eddies (κ ∝ 1/r), where Cκ is a universal constant.

E(κ) = Cκε
2/3κ−5/3 1

l0
≪ κ ≪ 1

η
(2.4)

As seen in Figure 2 most of the turbulent energy is located in the larger eddies and
thus has a larger impact on the turbulent transport. Equation 2.4 is also called
the Kolmogorov spectrum law and states that for a flow that is fully turbulent
there exists an area where the energy spectrum displays a decay in the order of
-5/3, [13].

2.2 CFD simulation principles

In order to simulate physical systems, simplifications by means of introducing mod-
els that describe the behaviour of the system are needed. The fluid is assumed to
follow the continuum assumption, meaning that the fluid is thought of as a con-
tinuous distribution of matter, [2, 15] as such quantities as density and pressure,
among others, could vary from point to point i.e. the contribution of the molecular
interaction can thus be neglected as the molecular interaction evens out sufficiently
and the properties of the fluid could thus be described as continuous fields. From
this, equations for conserved quantities such as mass, momentum and energy can be
formulated.
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Figure 2: Energy spectrum with subranges, adopted from [13].

Conservation of mass also known as continuity, [13], describes the transport of mass
within a volume and is formulated as:

∂ρ

∂t
+

∂ρUi

∂xi

= 0. (2.5)

Where ρ is the density of the fluid, Ui is the flow velocity vector field and i is a dummy
index of a set {1,2,3} indicating summation over the three velocity directions ac-
cording to Einstein summation convention. Given the nature of waters insignificant
effect on density due to pressure variations the assumption of incompressible fluid
can be assumed which reduces Eq. 2.5 to

∂Ui

∂xi

= 0. (2.6)

Assuming that impact due to gravity and other external forces are negligible then
the conservation equation of momentum, i.e. Navier-Stokes equation, [13], be-
comes,

∂Ui

∂t
+ Uj

∂Ui

∂xj

= −1

ρ

∂p

∂xi

+ ν
∂2Ui

∂xj∂xj

. (2.7)

Where p is the pressure of the fluid and ν is kinematic viscosity. Note that j is here
the dummy index and i is the free index.

The energy equation in its conserved form when neglecting heat addition from reac-
tions, radiation and viscous heating (as the Brinkman number is lower than unity)
is written as
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∂(ρcPT )

∂t
+

∂(ρUjCpT )

∂xj

=
∂

∂xj

(
κ
∂T

∂xj

)
. (2.8)

Where cP is the heat capacity at constant pressure and κ is the thermal conductivity
of the fluid, [13].

2.3 Large Eddy Simulations

To simulate a phenomenon of interest, a satisfactory resolution is needed to include
the relevant scales present in the problem. In order to capture the true behaviour
of an arbitrary phenomena it needs to be fully resolved, which can be done by
doing Direct-Numerical Simulations (DNS). In DNS the turbulent flow is numerically
solved directly, where no turbulence model is used. This is possible by resolving all
spatial and temporal scales that is included in the phenomena. The procedure is
computationally very heavy, as it would require the mesh to be very fine to resolve
the scales of the bulk and near wall region, which is why DNS mainly is used as
a research tool. In comparison to DNS there exists simulation tools where the
conservation equations, in section 2.2, are simplified by introducing e.g. Reynolds
decomposition, resulting in Reynolds Averaged Navier Stokes (RANS) turbulence
models such as k-ε, k-ω and RSM. These models solve the turbulent behaviour of
the flow by modelling it instead of directly resolving it by averaging over time scales
larger than the largest eddies. Due to its simplicity and low computational cost
RANS models have been the standard of modelling industrial applications, but as
computational power increases so does the availability to move to higher resolution.
A compromise between both DNS and simplified models such as the RANS models is
the large eddy simulations (LES) which is a method of fully resolving the turbulent
flow field for the larger eddies while using models to predict the behaviour of the
smaller and isotropic eddies.

2.3.1 The fundamentals of LES

LES is done by implementing a spacial filtering method of the different scales found
in the flow. The filtering is done to fully resolve the larger to intermediate scales
while the smaller scales are modelled, [16]. The advantage of doing this is that the
computational power is reduced as not all scales need to be fully resolved. Fur-
ther the smaller and isotropic eddies are much easier modelled in comparison to
the anisotropic larger scales, which is why models are used for the smaller scales.
However one downside of LES is that one need to perform the simulations over a
certain time in order to collect data that is statistically correct. This is because
in LES the transient flow fields are time averaged, thus to yield proper mean fields
one have to average over long enough time, which is time-consuming. Before proper
data can be extracted, the flow field has to be fully developed to avoid data which
is still affected by the initialization of the simulation, [13,16].

To ensure that the LES simulation is done properly several ways of evaluating the
resolution can be performed, such methods includes estimating the amount of re-

6



solved kinetic energy in relation to the total energy, i.e. kresolved/(kresolved+kresidual)
which should always be above 80 % for a reasonable LES simulation. Two-point cor-
relation can be performed to assess that at least 5-10 cells are resolving the largest
turbulent structures. Subgrid viscosity ratio can be calculated as a measurement of
the importance of unresolved scales, the smaller the ratio the better, where a value of
0 is required for DNS resolution. Finally one can check that there exist a -5/3 slope
in the energy spectra that confirms the existence of the inertial subrange, [13].

2.3.2 Filtering of LES

Filtering of the turbulent scales is done by using a filter operation that spatially
separates the scales of the larger and smaller eddies, a generalized filter can be
defined as,

Ui(x,t) =

∫∫∫
G(x− ξ; ∆)Ui(ξ,t)d

3ξ. (2.9)

Where the filter function (G), will act to exclude velocities (Ui) that are occurring
at smaller scales than the filter width ∆ and eliminating these from the solution
procedure of the governing equations and instead model them using subgrid models.
The velocity field will thus be decomposed into two separate fields, [13, 16],

Ui(x,t) = U i(x,t) + ui(x,t). (2.10)

Where U i(x,t) is the velocity field of the resolved scales used in the filtered equations
and ui(x,t) is the residual velocity flow field. Applying the filtering procedure on
the Navier-Stokes- and energy equation (Eqs. 2.6-2.8) yields,

∂U i

∂xi

= 0, (2.11)

∂U i

∂t
+

∂UiUj

∂xj

= −1

ρ

∂p

∂xi

+ ν
∂2U i

∂xj∂xj

, (2.12)

∂(ρCpT )

∂t
+

∂(ρCpUjT )

∂xj

=
∂

∂xj

(
κ
∂T

∂xj

)
. (2.13)

Where all terms are known in terms of filtered quantities (U or T ) except for non-
linear terms UiUj and UjT .

By introducing a decomposition of the two terms they can be expressed in filtered
quantities and the residual stress tensor, [13], and the residual scalar flux, [17],
respectively as

τRij = UiUj − U iU j, (2.14)
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τRj,T = UjT − U jT . (2.15)

Which describes the interaction of momentum and thermal energy, between different
scales (including filtered and non-filtered scales), respectively and are modelled using
subgrid models. The resulting filtered equations become

∂U i

∂t
+

∂U iU j

∂xj

= −1

ρ

∂p

∂xi

+ ν
∂2U i

∂xj∂xj

−
∂τRij
∂xj

, (2.16)

∂(ρCpT )

∂t
+

∂(ρCpU jT )

∂xj

=
∂

∂xj

(
κ
∂T

∂xj

)
−

∂τRj,T
∂xj

. (2.17)

Now all terms are expressed in quantities that either are known or will be mod-
elled.

2.3.3 Subgrid modelling

Subgrid models aim to model the isotropic eddies that are not being resolved by
the LES procedure. Many subgrid models usually employ the concept that the
momentum transport through the residual stress tensor can be modelled by a subgrid
eddy viscosity which was first proposed by Smagorinsky, [18]. The concept is further
developed in several other subgrid models such as the Dynamic Smagorinsky-Lily,
[13], the Wall-Adapting Local Eddy-viscosity (WALE) model, [19] and the Dynamic
Kinetic Energy (DKE) model, [20]. The basic idea is that the subgrid viscosity can
with the help of Prandtl mixing length hypothesis enable the subgrid viscosity to
be expressed by a distinctive subgrid velocity and length scale.

νSGS = lSGS USGS (2.18)

The length scale can be assumed to be proportional to the filter size ∆ times a
constant Cs (called the Smagorinsky coefficient), while the velocity scale is assumed
to be proportional to the second invariant of the filtered strain rate tensor as USGS =
lSGS|S| resulting in the following

νSGS = (Cs ∆)2|S|. (2.19)

The Smagorinsky coefficient is needed to be known a priori. By modifying the
filtered pressure and residual stress tensor (seen in Eq. 2.16),

P = p+
1

3
τkk, (2.20)

τ dij = τRij −
1

3
τkkδij = −2 νSGS Sij, (2.21)
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and using a linear eddy-viscosity concept, the deviatoric part of the residual stress
tensor can be related to the filtered rate of strain as seen as the last part of Eq.

2.21, where Sij =
1

2

(∂U i

∂xj

+
∂U j

∂xi

)
.

Thus the resulting modified Navier-Stokes equation is

∂U i

∂t
+

∂U iU j

∂xj

= −1

ρ

∂P

∂xi

+ (ν + νSGS)
∂

∂xj

(
∂U i

∂xj

+
∂U j

∂xi

)
. (2.22)

Dynamic Smagorinsky-Lily model

The dynamic Smagorinsky-Lily model, [13], works by relating the subgrid scale stress
at two filters of different sizes, through the introduction of a test filter, in extension
to the first filter discussed in earlier sections. The test filtering denoted as "tilde"
(∼) is done according to,

Ũi(x,t) =

∫∫∫
G(x− ξ; ∆̃)Ui(ξ,t)d

3ξ. (2.23)

Applying the test filter on the already filtered velocity field U i then yields a double
filtered velocity Ũ i, which allows for decomposition of the velocity field according
to,

Ui = U i + ui = Ũ i + (U − Ũ i) + ui. (2.24)

In a similar manner as the residual stress tensor was put up a residual stress tensor
for the test filter scale can be put up as,

Tij = ŨiUj − Ũ iŨ j. (2.25)

By applying the test filter on Eq. 2.14 the residual stress tensor becomes,

τ̃ij = ŨiUj − Ũ iU j. (2.26)

Subtracting this equation from Eq. 2.25 then one get the resolved turbulent stress
tensor (also known as the Germano identity),

Lij = Tij − τ̃ij = ŨiUj − Ũ iŨ j −
(
ŨiUj − Ũ iU j

)
= Ũ iU j − Ũ iŨ j. (2.27)

By then taking the deviatoric part of the stress tensor and the test stress tensor and
defining

Mij = 2∆
2
S̃ Sij − 2∆̃

2

S̃ S̃ij, (2.28)
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yields the Dynamic Smagorinsky constant cs in terms of the deviatoric stress tensor
Lij

Ld
ij = Lij − Lkkδij = T d

ij − τ̃ dij = csMij. (2.29)

However cs is in tensorial form and thus a least square minimization method is
used to yield one equation. Furthermore the constant is averaged in space or time
(possibly both) to enable the constant to sustain numerical stability during the
simulation yielding the final equation for the dynamic Smagorinsky constant,

cs =
⟨MijLij⟩
⟨MklMkl⟩

, (2.30)

which is used instead of the Smagorinsky coefficient in Eq. 2.19.

WALE model

The WALE model was first introduced by Nicoud and Ducros, [19], who used
the deviatoric part of the square of the velocity gradient to estimate the eddy-
viscosity,

Sd
ij =

1

2
(g2ijg

2
ji)−

1

3
δijg

2
kk, where gij =

∂U i

∂xj

. (2.31)

The eddy-viscosity is then expressed as spatial operators together with scaling to
account for the correct behaviour close to the wall according

νSGS = (Ls)
2

(Sd
ijS

d
ij)

3/2

(SijSij)5/2 + (Sd
ijS

d
ij)

5/4
, (2.32)

where Ls = Cw ∆ which is similar to length scale stated for the Smagorinksy model
where it in this case is a WALE coefficient, [19].

DKE model

The DKE model proposed by Kim and Menon, [20], uses the subgrid kinetic energy
to yield a dynamic expression for the eddy-viscosity and thus uses a similar test-filter
mentioned for the Dynamic Smagorinsky-Lily-model.

The velocity scale is then characterized using the subgrid kinetic energy

USGS = k
1/2
SGS =

(1
2
(UkUk − UkUk)

)1/2
, (2.33)

where kSGS is the subgrid kinetic energy. Note that the usage of the kinetic energy
results in one additional transport Eq. for kSGS to solve.
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The length scale is characterized by ∆ which is the test-filter size times a dynamically
determined coefficient Cτ yielding the eddy-viscosity as

νSGS = Cτ ∆k
1/2
SGS. (2.34)

2.4 k-ω SST

The k-ω SST model is a RANS model that integrates through the boundary layer
down to y+ close to 1 as it uses the k-ω model in the wall region and k-ε in the bulk. It
is allegedly better at predicting the boundary layer behaviour with adverse pressure
gradients, due to modification of the turbulent viscosity definition, introduction of
blending functions and incorporation of a damped cross-diffusion derivative term in
the ω equation, [13,21,22].

2.5 Boundary conditions

For internal flow within a tube the evolution of the boundary layer will be dependent
on the development of a fully developed velocity profile. This means that the viscous
effect that occurs due to the shearing of fluid-fluid and wall-fluid interaction has to
stabilize, with respect to the streamwise direction in order to be able to acquire
statistical stable flow properties. Experimentally one can perform measurements an
arbitrary distance away from the inlet of the pipe, where the velocity profile yet has
to develop, in order to reach a fully developed velocity profile. In simulations however
there are several means of achieving a fully developed velocity profile, an extension
of the geometry can be made where the flow is enabled to stabilize before reaching
the point of interest. One can after having run a simulation for a while, copy flow
properties from a plane close to the exit of the computational domain and use as inlet
boundary conditions, which is repeated until a fully developed profile is achieved i.e.

when
∂Ui

∂xi

= 0 at the boundary, [23]. Yet another method can be utilised, which is

the use of periodic boundary conditions (PBC). The PBC method allow to perform
flow simulations where the velocity profile is fully developed, through an iterative
manner, while limiting the computational power by using smaller sections of the
geometry.

This is done under the assumption that the velocity within the geometry is periodic
[22] i.e.,

Ui(r̂) = Ui(r̂ + L̂) = Ui(r̂ + 2L̂) = ... (2.35)

Where r̂ is the position vector (x,y,z) within the geometry and L̂ is the periodic
length vector, in this case only containing the streamwise component (z-direction).

This then replaces the criteria of
∂Ui

∂xi

= 0 as a boundary condition with [24],

Ui(x,y,0) = Ui(x,y,L). (2.36)
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Where the computational domain will mainly be limited by the choice of L (and
x,y but they are in this case limited by the diameter of the pipe), which can be
arranged to pseudo-optimize the computational requirements of the simulation. In
order to establish periodic boundary conditions for perpetual flow a correction to
the pressure calculation need to be done to prevent inherent build-up of pressure
drop as the iterations proceeds. The pressure in itself is not periodic as the case of
velocity; however the pressure drop is periodic and can be expressed as,

∆p = p(r̂)− p(r̂ + L̂) = p(r̂ + L̂)− p(r̂ + 2L̂) = ... (2.37)

For this study, where the flow is incompressible, the treatment of the pressure in
terms of periodicity is to decompose the pressure into two parts, according to,

∂p

∂xi

= β
L̂

|L̂|
+

∂p′

∂xi

. (2.38)

Where p′ is the periodic pressure and β is the linearly-varying component of the
pressure.

In addition to modifying the pressure, the temperature need to be modified as well
to account for streamwise periodic boundary conditions. For the case of constant
wall temperature, a scalar function, which conforms with the periodic conditions
over the domain limited by L, is introduced,

θ =
T (r̂)− Tw

Tbulk,inlet − Tw

. (2.39)

Where T (r̂) is the temperature of position vector r̂, Tw is the wall temperature and

Tbulk,inlet is the bulk temperature defined as Tbulk,inlet =

∫
A
T |ρvdA|∫

A
|ρvdA|

where A is the

inlet cross-sectional area of the pipe. The scalar function will enable the temperature
to behave in a periodic behaviour and thus avoid excess build-up of enthalpy.

2.6 Wall treatment and turbulent boundary layers

The near-wall region is an area which is of high importance when performing sim-
ulations. It can affect the reliability of the numerical solution, as the wall is the
main source of vorticity and turbulence, [22]. In the near-wall region high gradients
of variables such as velocity but also of scalars such as temperature are present,
which makes the treatment of the near-wall region an important part to a successful
simulation.

At a solid wall the relative velocity between the wall and adjacent fluid is zero.
This is called the no-slip condition and is the reason for the creation of a boundary
layer close to the wall. Prior to the collision with the wall the molecules move with
a velocity of the mean field with an addition of the random molecular motion of
fluid particles. As the fluid molecules collide with the wall the relative velocity
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(momentum) becomes zero and the molecule linger for a brief moment until they
leave the surface in a random direction. The combined effect of these molecules
which has "bounced" away from the wall, results in slowing the adjacent molecules
further away from the wall and as such forming a boundary layer, [13, 25]. Within
this boundary layer the velocity of the fluid slowly decreases from the mean flow,
in the bulk, to zero at the wall. In a similar way there exists a thermal boundary
layer, which is caused by the finite temperature specified at the wall being different
from the bulk temperature.

The behaviour of a boundary layer present at the wall varies and can either be
laminar or turbulent dependent on the Reynolds number. The difference being
that the turbulent boundary layer is characterized by unsteady swirling of of the
flow which yields higher mass, heat and momentum transfer, in comparison to the
laminar case. However as the momentum transfer is increased, so does the wall
shear stress and thus increases the pressure drop required to overcome for a flow of
a fixed quantity, [13]. This is caused by turbulent mixing which dissipates a lot of
energy and thus causes an increase in resistance for the flow to pass, [25].

Flow within an arbitrary geometry can be divided into two regions; one outer region
where the effect of the wall is negligible, and one inner region where the effect has
to be taken into account.Turbulent boundary layers are, shown from experiments,
often divided into sub-layers, [22]. The sub-layer furthest from the wall, also referred
to as fully turbulent sub-layer, is predominately turbulent and thus dependent on
the turbulent stresses as the viscous effect of the wall is negligible at that point.
The other two layers however, namely the viscous sub-layer and the buffer sub-
layer cannot neglect the viscous effect. In the viscous sub-layer the flow is close to
being laminar as the viscous effects (stress) is high and as the name implies, is the
prominent cause of momentum transport in this sub-layer. The third and last sub-
layer is the buffer layer which is an area of transition between the viscous and fully
turbulent sub-layers where both the viscous and turbulent stresses are of equivalent
importance. Common practice is to express the distance, from the wall, of these
sub-layers in terms of variables of the wall.

The characteristic velocity scale of the turbulent, fluctuating motion of the sub-layer
scale uτ , often referred to as the friction velocity, can be expressed by assuming
constant wall stress, [25],

uτ =

√
|τw|
ρ

. (2.40)

Where τw is the wall shear stress defined by τw = −ρu′v′ + ρν
du

dy
. By defining

a length scale based on the friction velocity, lτ = ν/uτ , where ν is the kinematic
viscosity, yields a Reynolds number of 1 and thus relating the velocity- and length
scale to the laminar region close the wall.

By scaling the velocity and the physical distance from the wall with friction variables
we obtain in dimensionless form
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U+ =
U

uτ

, (2.41)

y+ =
yuτ

ν
. (2.42)

Based on the dimensionless wall distance (y+) the three sub-layers can, after mea-
surements performed by H. Reichardt, [25], close to the wall, be expressed as fol-
lows:

Viscous sub-layer: 0 < y+ < 5
Buffer sub-layer: 5 < y+ < 30
Fully turbulent sub-layer: y+ > 30

Typically these sub-layers can be identified for an arbitrary experiment or simu-
lation by simplifying the total stress tensor. The total stress tensor is written as
follows,

τxy = ρν
d⟨Ux⟩
dy

− ρ⟨uxuy⟩, (2.43)

where the first term on the right-hand side (RHS) is the viscous stress and the other
RHS term is the Reynold stress (inertial stresses), [13].

By assuming that the total stress close to the wall is only due to viscous stress and
is constant the stress tensor can be rearranged and integrated with respect to the
wall distance y to yield, [13],

⟨Ux⟩ =
τwy

ρν
=

u2
τy

ν
. (2.44)

Refering back to Eqs. 2.41 and 2.42 this can be expressed in dimesionless form
as

⟨Ux⟩+ = y+. (2.45)

By doing a similar assumption of the total stress but in the fully turbulent sub-layer
the total shear stress can be expressed as only to be affected by the Reynolds stress
(inertial component),

τw = −ρ⟨uxuy⟩. (2.46)

By using Prandtl’s mixing length hypothesis, [25], and introducing a Prandtl’s mix-
ing length as l = κy, where κ is an experimental constant later referred to as the
von Kármán constant (∼0.42), the above equation can be rewritten as

τw
ρ

= −ρ⟨uxuy⟩ = l2

(
d⟨Ux⟩
dy

)2

= κ2y2

(
d⟨Ux⟩
dy

)2

. (2.47)
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Further simplification can be done knowing the friction velocity (Eq. 2.40). By then
integrating the resulting equation one obtains the logarithmic velocity profile which
in dimensionless terms is expressed as

⟨Ux⟩+ =
1

κ
ln(y+) +B, (2.48)

where B is an intersection constant found through experiments to be around 5.

Similar logarithmic profiles can be developed for other quantities than velocity such
as the temperature. For the near wall area the temperature is supposed to vary with
the Prandtl number and the dimensionless wall number, [26],

⟨T ⟩+ = Pr y+. (2.49)

For the inertial range the temperature will vary as, [13, 25,27],

⟨T ⟩+ =
1

κT

ln(y+) +BT , (2.50)

where κT and BT are dependent on the Prandtl number accordingly, κT = κ/Prt
and BT = 13.7 Pr2/3−7.5, where Prt s the turbulent Prandtl number, [13,25].

The temperature is scaled as follows,

⟨T ⟩+ =
(Tw − T ) ρ cP uτ

q
, (2.51)

where q is the heat flux through the wall.

2.6.1 Surface roughness

Until this point the walls of the geometry has always been assumed to be hydrauli-
cally smooth in nature. By introducing wall roughness into a flow the overall mo-
mentum, heat and mass transport is increased, as a result of the roughness dis-
turbing the hydrodynamic and thermal boundary layers, [13]. However the effect of
this is limited to roughness height (k) larger than the thickness of the viscous sub-
layer, [13, 25,28]. The roughness can be expressed in dimensionless form as,

k+ =
kuτ

ν
. (2.52)

It has been shown through experiments by Tani [29], and mentioned by Schlichting
and Gersteg, [25] and Cebeci and Bradshaw, [28], that the velocity profile for flow
with rough surfaces exhibit a similar logarithmic behaviour as seen for the smooth
case (Eq. 2.48). The difference being that an additive constant ∆B is present in
the rough case,
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⟨U+⟩ = 1

κ
ln(y+) + ∆B(k+), (2.53)

which is dependent on the dimensionless roughness height and the type of roughness
(e.g uniform sand, corrugations, ribs etc) used,

∆B(k+) = C − 1

κ
ln(k+). (2.54)

Here C is a constant of integration which is equal to 5 (same as B in Eq. 2.48)
for smooth tubes and different when roughness is important. As such it would be
expected that from an arbitrary roughness there would be a parallel downward shift
of the logarithmic curve. It has further been seen that there exists three distinct
regimes depending on the value of the dimensionless roughness height [25]1:

Hydraulically smooth: 0 < k+ < 5
Transition region: 5 < k+ < 70
Fully rough: k+ > 70

where the fully rough region is when the roughness height is much larger than the
viscous sublayer and thus fully disturbs and as such decoupled from the dependency
of the molecular viscosity. In comparison the hydraulically smooth region represent
the opposite where the roughness height is smaller than the viscous sublayer and
as such do not yield any noticeable effect on the parallel shift and thus result in a
behaviour displayed by Eq. 2.48.

In the case of fully rough regime the additive term C is 8.0 according to Schlichting,
[25], and 8.5 according to Cebeci and Bradshaw, [28].

The temperature wall function for roughness elements of sand-grain roughness is
proposed by Kays and Crawford, [26] to have the form of:

T+ =
1

Stk
+

Prt
κ

ln
(32.6 y+

k+

)
, (2.55)

where Stk is a constant which is determined experimentally. Dipprey and Sabersky,
[3] correlated data to form the following equation,

Stk = Cs(k
+)−0.2 Pr−0.44, (2.56)

where Cs is constant given the value of 0.8 for closely packed spheres [30].

3 Methodology

In the beginning of this chapter the geometry and meshing is described. The nu-
merical method together with the empirical correlations used in this study is then

1Note that these limits are varying depending on source as Cebeci and Bradshaw [28], indicate
different values for the regimes and the additive constant compared to Schlichting [25]
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presented. The geometry and corresponding mesh was generated in ANSYS Work-
bench v.17.

3.1 Geometry and meshing

The smooth tube used as a reference is generated by making a pipe of 5 cm in
diameter and further extruding it to desired length, see Table 1 and Figure A.1a in
Appendix A.

The mesh was created by performing a sweep method where an arbitrary sweep
element size was chosen to be able to control the stretching of the cells in the
streamwise direction. Inflation layers were added to either accommodate the RANS
simulations prior to the switch to the LES model, [13]. First layer heights was
estimated based on goal y+ ≤ 1 and estimation of wall shear stress (τw). The mesh
was structured by hexagonal elements where the number of inflation layers was
varied to ensure good transition between the cells, close to the wall, and the cells in
the bulk.

Table 1: The streamwise dimension of the different tubes and the corresponding mesh
size

Geometry Length [cm] Spacing p [cm] p/e Cells [million]

Smooth 20 - - 0.34, 4.0, 17
p/e = 2.2 6.1 0.55 2.2 8.7
p/e = 10 2.5 2.5 10 4.0
p/e = 20 5.0 5.0 20 6.5

The disturbance within the tube was introduced by creating sections of internal
corrugations, see Figure A.1, in Appendix A, where the roughness height is set to
0.25 cm. The geometries of the corrugations simulated can be seen in Table 1. With
the pattern function the corrugation could then be placed a specific space or pitch
(p) apart until desired d-, intermediate or k-type corrugation was established, see
Table 1.

The mesh procedure for the rough cases was generated differently than the smooth
case. Instead of having a single body to mesh, the geometry was divided into a center
cylinder for the bulk and two separate volumes for the near region, see Figures A.1b-
A.1d. The two outer volumes was meshed around the streamwise axis2, which yielded
satisfactory mesh properties of maximum aspect ratio and skewness below 20 (at
the walls) and 0.95 respectively [13]. The mesh resolution was, for the rough tubes,
managed by keeping a constant ratio of number of mesh elements to streamwise
length (N/z). The ratio that was used was around 1.43.

2It was tried to perform the same procedure as the smooth case but that yielded a mesh with
very thin slices of too high aspect ratio, close to the corrugation.

3This was mainly to limit the number of mesh elements.
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3.2 Numerical method

The simulations were done using Fluent v.17 which is a finite volume solver where
the dynamic Smagorinsky-Lily subgrid model will be employed, as it in relation to
the standard Smagorinsky model does not need any a priori determination of the
Smagorinsky coefficient Cs, but instead allows calculation of the coefficient during
the simulation. Furthermore the simulation for the smooth tube was investigated
by testing two additional subgrid models, namely the WALE- and dynamic kinetic
energy (DKE) model.

3.2.1 Boundary conditions

At the solid wall of the pipe, no-slip boundary condition is applied. Further, in the
heat transfer simulations the fluid inside the pipe will be heated up and thus the
thermal boundary conditions used is that of constant wall temperature at 60 °C and
an inlet bulk temperature of 20 °C. The Prandtl number is kept constant in the
simulations at 6.9.

Periodic boundary conditions are used, as described in section 2.5, where the pres-
sure drop is solved by iterative calculations of β and the temperature is scaled using
Eq. 2.38 and 2.39 respectively. The periodic boundary condition is chosen to be cal-
culated from a fixed mass flow of 0.787 kg/s based on geometry and chosen Reynolds
number of 20000 of the smooth case.

3.3 Flow, turbulence and heat transfer analysis

The analysis procedure consists of two parts, one of which each tube design is run
with the k-ω-SST model. This is to be compared both to empirical correlations, see
section 3.3.3, and later on LES simulations.

3.3.1 k-ω SST

The k-ω SST model, was solved together with the SIMPLEC algorithm for the
pressure-velocity coupling. It iterates the pressure until the continuity equation is
satisfied, similar as SIMPLE, with the exception that the SIMPLEC solver is formu-
lated to accelerate the convergence, if the issue lies in the pressure-velocity coupling.
This is a result of a difference in the cell face flux expression. A production limiter
is included in the SST model in order to dampen the production of turbulent energy
in areas of stagnation. To account for the variation in the streamwise curvature in
the roughness cases a curvature correction term is introduced to sensitize the tur-
bulent production term to account for sudden curvature change, [22]. The spacial
discretization is first order upwind schemes in order to stabilize the numerical pro-
cedure, together with second order for pressure and least squares cell based method
for gradient. The under relaxation factors (URF:s) for pressure and energy are 0.9
and 0.7 respectively, which is based on the usage of SIMPLEC, and necessity to get
a stable solution.
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For each k-ω SST simulation a standard initialization is done according Appendix
B.

3.3.2 Large eddy simulation and data analysis

The LES simulation was done by using k-ω SST simulation results as starting values,
on the mesh that is used for the desired LES. Synthetic turbulence was superimposed
on the mean field when the k-ω SST model was converged. Sampling was started
when relatively stable monitors of wall heat-flux, wall shear stress, and periodic
statistics of pressure gradient and temperature ratio was observed.

The subgrid turbulence model chosen was the dynamic Smagorinsky-Lily, as it does
not need any input for the Smagorinsky coefficient but would be solved dynamically
during the simulation and no extra equations to be solved (as in the case of DKE),
see section 2.3.3.

SIMPLEC was used for the pressure-velocity coupling and the spatial discretization
were least squares cell based method for gradients, second order schemes for pressure
and energy, and bounded central differencing scheme for momentum, in order to
meet requirement for conservativeness, boundedness and transportiveness. Time
discretization is done with a second order implicit scheme, where the time-step is
calculated from the convective time-scale. The time-step and the URF:s are chosen
in order to reduce the number of internal iterations to a maximum of 20.

Sampling of the time-averaged quantities was done for an arbitrary amount of resi-
dence times, dependent on the length of the computational domain, until statistically
steady values was obtained. The data is averaged in the radial and streamwise di-
rection, however for the simulations of corrugations (p/e = 10 and 20) this is not
done. This was compensated for by sampling for a longer time to yield satisfactory
statistics. The data will further be constrained by introducing a virtual origin of
the rough wall as proposed by Cui, Patel and Lin, [31]. Data will thus be taken
from this virtual origin and to the center of the pipe. The virtual origin will be
determined at a point where the streamwise velocity is zero.

3.3.3 Validation of simulations

One way to verify that the simulation results matches reality is to compare with em-
pirical correlations. The hydrodynamics of the flow was analyzed using correlations
from preceding work of von Kármán and Nikuradse, [2, 32], displayed for smooth
and roughness by Eqs. C.1 and C.2 in Appendix C.

Thermal performance will be analyzed using correlations from Dittus and Boelter, [2]
and Bhatti and Shah, [33], Eqs. C.3 and C.4.

Note that the formulas for roughness are formulated to suite Nikuradse-like rough-
ness and as such not applicable in cases where the roughness elements are separated
of an arbitrary distance. In that case the results will be mainly compared to the
correlations below which only handles the hydrodynamics of the case.

19



The first correlation that takes the distance between the correlation into account
is the one from Webb, Goldstein and Eckert, [7], which investigated square formed
ribs at p/e ratios of 10-40, Eq. C.5.

The second one which will be used is the one from Ravigurarajan and Bergels, [34]
who summaries data from several tube configurations, Eq. C.6.

In addition to the use of correlations the LES will be scrutinized regarding the ratio
of resolved energy and the subgrid viscosity ratio see section 2.3.1. Further the
presence of an inertial subrange is also a method used to validate LES simulations,
however this was not made in this study but the reader is referred to the study
performed by Ghasempour [35], where an inertial subrange is identified for the case
of a smooth tube with the same geometry and flow characteristics.

4 Results and discussion

In this section the results from the mesh resolution study and comparative study
of different subgrid models are presented together with hydrodynamic and thermal
performance, which are compared to correlation from section 3.3.3. Finally dimen-
sionless velocity and temperature profiles are presented and discussed, for different
tube designs.

4.1 Analysis of smooth tube

Table 2 summarizes the pressure drop, amount of resolved energy and viscosity ratio
for the LES simulations of the smooth tube using different mesh resolutions, where
the dynamic Smagorinsky-Lily subgrid model was employed. The mesh resolution
study showed discrepancies in terms of the pressure drop estimation. The low mesh
resolution yielded a too low pressure drop whilst the high mesh resolution uses
excessive computer power as a mesh of 4 M cells is sufficient enough to yield a good
LES resolution. In total the pressure drop of the intermediate and fine mesh vary
within less than 2 %. The pressure drop calculated from a common correlation
(Eq. C.1) was estimated to 41.73 Pa/m. Thus even the fine mesh yields a too low
pressure drop but within acceptable boundaries as it differs by 4.6 %, or 6.3 % for
the intermediate mesh resolution.

The resolved energy is above 80 % for all three mesh sizes and the viscosity ratio
decreases as the resolution is refined, and is thus of good LES resolution. The
pressure drop is reasonably predicted using a resolution 4 M without using too
much computer power and thus chosen as reference for the simulations of rough wall
geometries.
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Table 2: Pressure drop, resolved energy and viscosity ratio from LES simulations.

∆Pdrop [Pa/m] Resolved energy ratio Viscosity ratio

0.34 M 32.71 0.85 0.38
4 M 39.10 0.93 0.11
17 M 39.81 0.95 0.07

Velocity profiles based on the dimensionless parameters are shown in Figure 3, where
the LES data is compared to DNS data from Khoury et al. [36]. In the wall near
area all simulations collapse on U+ = y+. In the outer region the graphs of the
intermediate and the fine mesh are closely following each other and depict a similar
pattern as the DNS data from Khoury et al. [36] for Re = 19000. The DNS and LES
data does not collapse onto the wall function (Eq. 2.48). Research done by Khoury
et al. [36] and Eggels et al. [37], who both performed DNS simulation of turbulent
pipe flows for relatively low Reynolds numbers (down to 5300 for Khoury et al. and
7000 for Eggels et al.), show a similar shift from the "general" wall function for
smooth walls. From their respective studies the validity of the smooth wall function
was questionable for turbulent flows at low Reynolds number, as their data did not
collapse on the wall function, but instead was shifted above it. This was further
confirmed by HWA, LDA and PIV measurements by Eggels et al. [37]. The LES
data obtained in this project seem to indicate the same trend as data from Khoury
et al., however the LES data is shifted upwards in relation to the DNS data. This
is believed to be due to the difference in flow characteristics (Reynolds number) but
also as previously mentioned that the pressure drop is slightly under predicted in
comparison to correlations, shown in Table 5.

The low mesh resolution however does not follow either the DNS or the other LES
data, as it is shifted above. This is believed to be a result of how the normalization
of the dimensionless velocity is done (Eq. 2.41). As the pressure is underestimated
the resulting friction velocity will also be underestimated, thus resulting in a positive
displacement of the curve.
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Figure 3: Dimensionless velocity profile, compared with DNS data of Re = 19000
from Khoury et al. [36].

Table 3 shows the resulting pressure drop and Nusselt number for each subgrid
model. The pressure drop and Nusselt number varies by 0.1-0.5 % between the
different models. The Nusselt number from a common correlation (Eq. C.3) was
estimated to 138.15. The estimated pressure drop and Nusselt number are within
5.8-7.2 and 0.9-2.3 % compared to correlations for smooth tube.

Table 3: Pressure drop and Nusselt number for LES simulations of smooth tube with
different subgrid models for a mesh resolution of 4 M.

∆Pdrop [Pa/m] Nusselt number [ - ]

Dynamic Smagorinsky-Lily 39.10 140.77
WALE 39.29 139.39

Dynamic Kinetic Energy 38.74 141.39

The similarities is further emphasized in Figure 4 where the LES simulations with
varied subgrid models are visualized in the form of dimensionless parameters. It
can be pointed out that the difference between the subgrid models is small, as
they collapse on each other in the wall near area and good agreement in the outer
region.
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(a) Velocity profile (b) Temperature profile

Figure 4: Simulations performed on the smooth case with varied subgrid at 4 M mesh
resolution, compared with the "general" wall function, Eq. 2.48 and Eq. 2.50.

The variation of the subgrid model indicated small dependence on the subgrid model
as all models yielded similar results in both pressure drop and Nusselt number. How-
ever the small difference in the outer region indicate that the usage of the dynamic
Smagorinsky-Lily subgrid model yields the least shifted data set in comparison to
the DNS data by Khoury et al. [36]. As this is only done for the smooth tube,
any discussion regarding the choice of subgrid model, is not done for the remaining
simulations of different rough wall geometries, where the dynamic Smagorinsky-Lily
subgrid model is used.

4.2 Analysis of corrugated tubes

Table 4 shows the resolved energy and viscosity ratios for the simulation of smooth
and the rough tube designs. It can be concluded that the resolution of the LES is
of good quality as all the simulations are resolving more than 90 % of the kinetic
energy and have low viscosity ratios, [14].

Table 4: The amount of mean resolved energy, viscosity ratio for the different simu-
lations.

Resolved energy Viscosity ratio

Smooth LES 0.93 0.11
p/e = 2.2 LES 0.94 0.10
p/e = 10 LES 0.95 0.18
p/e = 20 LES 0.95 0.14

The hydrodynamic and thermal performance parameters for the LES simulations
together with empirical correlations and results from RANS simulations are sum-
marized Table 5 and 6.
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Table 5: Pressure drop for each tube, where the pressure drop is given in [Pa/m]
(streamwise direction).

∆PCORR ∆PRANS ∆PLES

Smooth 41.734 42.67 39.10
p/e = 2.2 116.225 139.96 134.31
p/e = 10 471.496 / 228.257 177.46 297.78
p/e = 20 290.738 162.51 232.47

The LES for the densely packed corrugations (p/e = 2.2) showed that the pressure
yielded a reasonable agreement with its correlation. The correlations used for the
case of p/e = 2.2 were those of Nikuradse sand roughness of the same roughness
height as in this study. This can be expected to yield a lower pressure drop compared
to this study as the flow is more hindered (p/e = 2.2) as the corrugations consists of
half-cylinders and not spheres. Furthermore Table 5 shows that the pressure drop
for both p/e = 10 and 20 is in fair agreement with their respective correlations.
However a few numbers of correlations exist for when the roughness elements are
introduced and the distance between them increased. For the cases of p/e = 10
and 20 the correlation of Webb, Goldstein and Eckert, [7] (Eq. C.5), relies on data
of square corrugations and not rounded corrugations which would yield a higher
pressure drop due to the square ribs blocking more of the flow. However another
correlation from Ravigururajan and Bergels, [34] (Eq. C.6) was found that included
data from rounded corrugations which yield a lower pressure drop than the corre-
lation from Webb et al. Though caution should be taken regarding the validity of
these correlations, as the data of Ravigururajan and Bergels is for maximum p/e
ratio of 7 and thus would be questionable even though a relatively good match with
the LES data is achieved.

The thermal performance of the smooth and densely packed roughness were of good
agreement between correlations and LES simulations, where both LES simulations
differed by 1.6 and 1.3 % from their respective correlation (Eq. C.3 and C.4). In
general it can be shown in Table 6 that the overall thermal performance is increased
as the roughness elements are introduced, and further enhanced as the distance
between the corrugations is increased until a certain point, close to p/e = 10, where
a maximum of 218 % increase in heat transfer is achieved in comparison to the
smooth tube. However a similar trend can be seen with the pressure drop which
was increased for all designs but had a maximum for p/e = 10 where it was increased
by 662 %, shown in Table 5. This is expectd as the corrugations introduce hindrance
of the flow and as such increases the pressure drop which is an unavoidable result of
increasing the thermal performance by introduction of roughness elements. However
as shown in Tables 5 and 6 is that the p/e = 2.2 yields a considerably lower pressure
drop in relation to its enhancement in heat transfer performance compared to the
other design. As the heat transfer performance is increased by around 200 % for

4Appendix C, Eq. C.1 [2].
5Appendix C, Eq. C.2 [2].
6Appendix C, Eq. C.5 [7].
7Appendix C, Eq. C.6 [34].
8Appendix C, Eq. C.5 [7].
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all the designs, a trade-off of achieving higher thermal performance in relation to
the allowable pressure drop has to be done. Furthermore the maximum of the
pressure drop and thermal performance close to p/e = 10 is in agreement with
simulations performed by Okamoto et al. [38], who investigated square ribs using
LES, for different pitch to roughness height ratios.

Table 6: Overall Nusselt number for each tube.

NuCORR NuRANS NuLES

Smooth 138.159 162.25 140.77
p/e = 2.2 420.0010 384.97 425.36
p/e = 10 - 254.85 448.01
p/e = 20 - 269.22 390.85

The RANS simulation is shown to yield similar pressure drop and thermal perfor-
mance for the cases of smooth and p/e = 2.2 as the LES and correlations, but poor
agreement for the cases p/e = 10 and 20. In the RANS modeling the quantities are
averaged over scales larger than the largest eddies and thus do not take the impact
of the different scales into account. As such it would make sense that the RANS
models yields poor agreement as the corrugations are introducing disturbances of
the boundary layers and inertia to the flow, which includes several different scales.
Furthermore the RANS is done in steady-state and thus the dynamic behaviour of
these scales at the recirculation zones is not captured, in comparison to the LES.
The dynamic behaviour, in terms of dynamic reattachment and recirculation, is fur-
ther increased as the distance between the corrugation is increased. The dynamic
behaviour of these scales is not included in the RANS simulations resulting in under-
estimated pressure drop and Nusselt number as the dynamic behaviour affects the
disruption of the boundary layers at the wall. The good agreement of the smooth
and p/e = 2.2 case is believed to be a result of the dynamic behavior not being a
big part of the flow as in the smooth case there is no recirculation. However, p/e
= 2.2 does include densely spaced corrugations which enables steady recirculation
zones that do not add any dynamic behaviour to the overall flow and thus yielding
a good agreement with the LES simulations and the correlations.

4.3 Analysis of boundary layers

The velocity profiles for the simulations with rough tube design are depicted in
Figure 5. The vectors are fixed to have the same length but the magnitudes of cases
p/e = 10 and 20 are multiplied by 2 respective 4 in order to enhance visualisation.
It can be seen for the case of p/e = 2.2, the boundary layer is fully disturbed as the
small space between the corrugations invoke the formation of stable recirculation
zones, resulting in the boundary layer at the wall being decreased in thickness. The
recirculation can be seen by noting the change in velocity direction. It is further
noted that the flow close to the wall, between the corrugations, is close to stagnant

9Appendix C, Eq. C.3 [2].
10Appendix C, Eq. C.4 [2].
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as the velocity is very low. The boundary layer can further be argued to have been
displaced above the corrugations as the tube acts with an effective diameter of ∼
D-e.

In cases p/e = 10 and 20 an interpretation of a boundary layer is more clear. There
are still recirculation occurring close to the wake of the corrugation but it is seen
that the boundary layer reattaches to the wall between ratio z/w = 0.5 and 0.25-0.5
respectively as the profiles resembles the parabolic profile seen in smooth tubes.
This can be confirmed by Figures 7c and 7e where the skin friction (based on the
mean wall shear stress) as function of the streamwise direction is shown. At the
reattachment zones the value of the skin friction should be close to 0 which is seen
to happen at z/p = 1 and 0.8 for p/e = 10 and 20 respectively. Note that the low
skin friction in Figure 7a is due to the flow being close to stagnant between the
corrugations and not due to a reattachment zone. Furthermore, dynamic formation
and detachment of small circulation zones, close to the wake of the corrugation could
be seen for cases p/e = 10 and 20.

The thermal boundary layer is visualized in Figure 6, where the temperature is
plotted as function of the streamwise direction, for each simulation of rough tube
design. The sudden variation of the contours between the corrugations is a result of
the periodic boundary conditions in order to prevent build-up of enthalpy. Figure
6 shows similar trends as for the hydrodynamic boundary layer where the wall
boundary layer is entirely disturbed in the case of p/e = 2.2. However for p/e
= 10 the thermal boundary layer start to increase in thickness close to the next
corrugation which increases the thermal resistance and results in a reduction in
the enhanced heat transfer. For p/e = 20 the thickness of the boundary layer is
increasing at z/w = 0.33, reducing the heat transfer before another corrugation
is introduced. This is showed by Figures 7d and 7f where for p/e = 20 the heat
transfer almost reduces to that of a smooth tube. It is thus further confirmed that
the maximum heat transfer enhancement occurs for p/e close to 10 and that further
increase of the ratio above 20 would yield increased heat transfer only in the vicinity
after the corrugation. However in sense of operational cost the best option would
be p/e = 2.2 as it in relation to 10 and 20 yields similar heat transfer enhancement
but not as high pressure drop.
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(a) p/e = 2.2

(b) p/e = 10

(c) p/e = 20

Figure 5: Streamwise velocity vectors from the wall into the center of the tube flow,
for the simulations of different rough wall geometries.
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(a) p/e = 2.2

(b) p/e = 10

(c) p/e = 20

Figure 6: Contours over temperature in relation to the streamwise position for the
roughness simulations.
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(a) Skin friction (Cf ), p/e = 2.2 (b) Nusselt number, p/e = 2.2

(c) Skin friction (Cf ), p/e = 10 (d) Nusselt number, p/e = 10

(e) Skin friction (Cf ), p/e = 20 (f) Nusselt number, p/e = 20

Figure 7: Streamwise distribution of skin friction Cf and Nusselt number in relation
to the position of the corrugation for respective rough wall simulations.
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4.4 Dimensionless profiles

Figure 8 shows results from the LES simulations of smooth and rough wall geome-
tries. Further compared to a rough wall function (Eq. 2.53) of the same roughness
element height as in this study. The profiles are shifted downwards, as was expected.
The downward shift for each rough wall simulation is approximately 7, 15 and 14
respectively. However it can be noted that the profiles for case p/e = 10 and 20 are
shifted further down than p/e = 2.2 thus leading to believe that more parameters
than k+ and the type being important for proper wall function behavior. Not so
unexpectedly, the pitch to roughness height ratio (p/e) seem to be an important
parameter as these are shifted further down than p/e = 2.2. Furthermore the profile
of p/e = 20 is shifted less downwards than p/e = 10, which is believed to be caused
by the fact that if p/e would go towards infinity the profile would be the same as for
the smooth tube, thus explaining the slightly upward shift. This is also in agreement
with the pressure drop being lower for p/e = 20 than p/e = 10.

The rough wall function as stated in section 2.6.1, is dependent on the roughness
height and the type of roughness, but also on roughness regime. As the sand-grain
roughness (Eq. 2.53) is densely spaced it makes sense to only be comparable with
the case of p/e = 2.2. The resulting dimensionless roughness height for p/e = 2.2,
10 and 20 were 102.5, 152.7 and 134.9 respective and thus falling under the fully
rough regime. In that case the additive constant in Eq. 2.53 is 8.0. As seen in
Figure 8 the data of p/e = 2.2 does not collapse onto the rough wall function, but
instead indicate a similar shift between the wall function and the LES data as seen
for the smooth case, which is believed to be due to the low Reynolds effect discussed
earlier.

Figure 8: Dimensionless velocity profiles for LES Simulation of p/e = 2.2, 10 and 20
compared to smooth.

The dimensionless temperature profiles are shown in Figure 9 where p/e = 2.2, 10
and 20 are shifted by 25, 10 and ∼9.5 respectively. The data of the smooth LES
is in good agreement with Eq. 2.49 and a similar low Reynolds shift in the inertial
subrange as the velocity profile is observed. It can be seen that cases p/e = 2.2 and
10 do not collapse on the inner wall function (T+ = Pr y+) which is most likely
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due to how the curves are shifted to the virtual origin. Points that are close to the
wall are thus removed resulting in temperatures that are lower than the wall at the
virtual origin leading to Eq. 2.51 being larger than 0 close to the wall. This is not
the case for p/e = 20 because there is no virtual shift done as the mean velocity
data is not zero except for at the wall.

The dimensionless temperature profile for p/e = 2.2, does not match with the wall
function (Eqs. 2.55-2.56) taken from Kays and Crawford, [26] and Dipprey and
Sabersky, [3]. In Eq. 2.55 the Stanton number (Stk) is determined from an empirical
correlation for densely spaced spheres (Eq. 2.56) which is believed to be a reason
for the large shift, as p/e = 2.2 is half-cylinders and separated by a small distance.
However this difference was not seen for the velocity profiles.

The positions of the profiles are nearly the same as for the velocity profiles, however
the p/e = 10 and 20 are above p/e = 2.2 which in sense could indicate that the
temperature profile falls back to the smooth profile faster than the velocity pro-
file as the distance between the corrugations is increased. This argument can be
strengthened by viewing Figures 10 and 11 where the normalized11 velocity and
temperature profile are plotted at different streamwise positions after the corruga-
tion. As shown the temperature profile indicate a faster return back to the smooth
curve as the distance is increased. However caution should be taken when analysing
the dimensionless temperature profiles, shown in Figure 9, as they are dependent on
the post-processing of the data, which is not easily done as there is limited literature
describing this. Furthermore the normalized raw data of Figure 11 is more easier
understood as less tampering of the data is done. Though the main objective of the
dimensionless profiles is to depict how the properties behave in order to yield better
wall functions for rough wall problems which can be said to be achieved. However in
terms of analysing the profiles and how it behaves in relation to the smooth curve,
it is more advantageous to analyze the raw data.

Figure 9: Temperature profiles for the smooth, p/e = 2.2, 10 and 20, compared with
the smooth and rough wall function.

11Velocity is normalized by bulk velocity and temperature is normalized by the wall temperature
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(a) p/e = 2.2

(b) p/e = 10

(c) p/e = 20

Figure 10: Normalized velocity profiles for all rough wall designs.
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(a) p/e = 2.2

(b) p/e = 10

(c) p/e = 20

Figure 11: Normalized temperature profiles for all rough wall designs.
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5 Conclusion

In this work heat transfer enhancement was investigated using LES simulations by
introducing internal corrugations in a tube with internal diameter of 5 cm and flow
characteristics of 20000 in Reynolds number. The simulations were performed on a
smooth tube and three different roughness tubes where the pitch (p) to roughness
height (e) ratio was varied from 2.2, 10 and 20 for the respective cases. For each
simulation the heat and momentum transfer is quantified in the form of Nusselt
number and pressure drop and compared to empirical correlations. The smooth
tube and p/e = 2.2 case achieved good agreement with the correlations, whilst the
agreement for case p/e = 10 and 20 were not as good, partly due to the lack of
correlations.

The resulting heat transfer was enhanced for all the roughness simulations. It could
be seen to have a maximum at p/e = 10 where the heat transfer was enhanced
by around 220 %. The pressure drop also had its maximum at p/e = 10 which
was increased by 662 %. p/e = 10 also enables most enhancement of heat transfer
over the distance between the corrugations as the enhanced heat transfer started
to decrease only prior to the next corrugation, compared to p/e = 20 where the
boundary layer thickness starts to increase after one third of the distance between the
corrugations and thus reducing the heat transfer. However in terms of operational
costs the p/e = 2.2 case yields the highest heat transfer enhancement in relation to
pressure drop as it yields a similar increase in heat transfer performance as p/e =
10 but has a pressure drop only a factor of 3.44 larger than the smooth case, instead
of 7.62 as for p/e = 10.

It could be concluded that the "general" wall functions for the smooth and rough
(densely packed) case is Reynolds dependant as the LES data does not collapse
on the wall function. Furthermore the velocity and temperature profiles in the near
wall region are strongly dependent on the separation of the corrugations, and further
partly dependent on the post-processing method of how the shifting to the virtual
origin is done.

5.1 Future investigations

Future aspects could be to use data from this study to present a formulation for
wall function handling of corrugated tubes in flow and heat transfer problems. Cre-
ation of a more universal wall handling approach for roughness parameters would
need further studies on different types of roughness and optimization of different
geometrical parameters.
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Appendix A Geometries of each tube

Figure A.1 shows the geometries used in the different cases.

(a) Smooth (b) Rough - p/e = 2.2

(c) Rough - p/e = 10 (d) Rough - p/e = 20

Figure A.1: Geometries of the different simulations performed.



Appendix B Initialization of simulation for RANS
models

Initialization of the flow, turbulent and thermal quantities needs to be done. The
example below demonstrates the typical procedure of estimating initialization val-
ues.

The streamwise velocities (z) is calculated from the expected Reynolds number of
20000 and the diameter of the pipe:

uz =
Re ν

D
=

20000 · 1e−6

5e−2
= 0.4 [m/s]

Whereas the velocities in the spanwise directions were assumed to be negligible in
magnitude in comparison of the streamwise velocity and thus initialized as zero.

The turbulent quantities were calculated assuming that these quantities could be
taken from large anisotropic eddies which would then give the turbulent quantities
necessary for the initialization as:

k = u2
fluct = 0.0025 [m2/s2]

and

ω =
ε

k
≈ 14 [1/s]

where k is the turbulent kinetic energy, ufluct is the velocity fluctuations assumed to
be ∼10 % of the streamwise velocity, ω is the specific dissipation rate and epsilon is
the turbulent dissipation calculated from:

ε =
k3/2

l
≈ 0.036 [m2/s3]

where l is the length scale of the larger eddies defined as l = 0.07 D ≈ 0.046 m



Appendix C Correlations

1√
fsmooth

= 4.06 log10Re
√

fsmooth − 0.60, (C.1)

1√
frough

= 4.06 log10
D

e
+ 2.16. (C.2)

Where f is the Fanning friction factor for smooth and rough respectively and
D

e
is

the diameter to roughness height ratio.

Nusmooth = 0.023 Re0.8 Pr0.4 (C.3)

Nurough =
Re Pr (frough/2)

1 +
√
(frough/2)(4.5 Re0.2e Pr0.5 − 8.48)

(C.4)

where Ree is the roughness Reynolds number based on the roughness height (Ree =
ϵu∗/ν).

(2/f)0.5 = 2.5 log(D/(2e))− 3.75 + 0.95 (p/e)0.53 (C.5)

frough/fsmooth =

(
1 +

[
29.1 Re(0.67−0.06 p/D−0.49 β/90)·

(e/D)(1.37−0.157 p/D) · (p/D)(−16.6e−6 Re−0.33 β/90)·
(β/90)(4.59+4.11e−6 Re−0.15 p/D) ·

(1 + 2.94/ncorners) sin(βrib)
]15/16)16/15

(C.6)

Where β is the helix angle relative to the tube axis, set to 90°and βrib is the profile
contact angle of the rib to the internal surface also set to 90°. ncorners is the number
of sharp corners of the rib, which is set to a high number to signify a smooth circular
surface.


