CHALMERS | UNIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY

A Comparative Study of Segmentation and
Classification Methods for 3D Point
Clouds

Master’s thesis

PATRIK NYGREN and MICHAEL JASINSKI

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG

Gothenburg, Sweden 2016

A Comparative Study of Segmentation and
Classification Methods for 3D Point Clouds

Patrik Nygren and Michael Jasinski

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY and
UNIVERSITY OF GOTHENBURG
Goteborg, Sweden 2016

A Comparative Study of Segmentation and Classification Methods for
3D Point Clouds

PATRIK NYGREN, MICHAEL JASINSKI

© PATRIK NYGREN, 2016.
© MICHAEL JASINSKI, 2016.

Supervisor: Marco Fratarcangeli, Department of Applied Information Technology
Examiner: Graham Kemp, Department of Computer Science and Engineering

Master’s Thesis 2016

Department of Computer Science and Engineering

Chalmers University of Technology and University of Gothenburg
SE-412 96 Gothenburg

Telephone +46 31 772 1000

Cover: Point cloud taken from a street with a Velodyne laser scanner.

Typeset in KTEX

Abstract

Active Safety has become an important part of the current automotive industry
due to its proven potential in making driving more joyful and reducing number of
accidents and causalities. Different sensors are used in the active safety systems to
perceive the environment and implement driver assistance and collision avoidance
systems. Light detection and ranging (LIDAR) sensors are among the commonly
utilized sensors in these systems; a LIDAR produces a point cloud from the sur-
rounding and can be used to detect and classify objects such as cars, pedestrians,
etc. In this thesis, we perform a comparative study where several methods to both
segment Region Growing and Fuclidian Clustering) and classify (Support Vector
Machines, Feed Forward Neural Networks, Random Forests and K-Nearest Neigh-
bors) point clouds from an urban environment are evaluated. Data from the KITTI
database is used to validate the methods which are implemented using the PCL and
Shark library. We evaluate the performance of the classification methods on two
different sets of developed features. Our experiments show that the best accuracy
can be obtained using SVMs, which is around 96.3% on the considered data set with
7 different classes of objects.

Keywords: machine learning, neural networks, support vector machines, random
forest, k-nearest neighbours, segmentation, classification, features, point cloud.

1ii

Acknowledgements

We would mainly like to thank our supervisor at Volvo, Nasser Mohammadiha, for
all prestigeless discussions we had with him, for the help he gave us writing our
proposal, and for all valuable input he gave us throughout the work. We would also
like to thank our supervisor at Chalmers, Marco Fratarcangeli, and our examiner
Graham Kemp, both of whom always found the time to help us whenever we felt lost.
An additional thanks to Jonathan Ahlstedt and Johan Villysson for their guidance.
Finally, we would like to thank the community behind PCL and Shark for providing
the resources that made this work possible.

Patrik Nygren and Michael Jasinski, Gothenburg, June 2016

v

Contents

List of Figures

List of Tables

1 Introduction

1.1
1.2
1.3

Purpose
Limitations
Thesis Outline

2 Background

2.1

Object segmentation
2.1.1 Region Growing
2.1.2 Clustering

2.1.3 Noise Filtering and Ground removal

2.2 Classification
2.2.1 Feature extraction
2.2.2 Support Vector Machines
2.2.3 Artificial Neural Networks
2.2.4 Random Forests
2.2.5 K-Nearest Neighbours

3 Theory

3.1 Region growing

3.2 Euclidean clustering

3.3 Support Vector Machines
3.3.1 Linear SVMs
3.3.2 Linear SVMs with soft margin . . .
333 Kernels

3.4 Artificial Neural Networks
3.4.1 Feed Forward Neural Networks . .

3.4.1.1 Training a FFNN
3.4.1.2 Learning rate

3.5 K-Nearest Neighbors

3.6 Random Forests

4 Implementation

4.1 Third party dependencies

411 PCL

vii

ix

17
17
17

Contents

4.1.2 KITTI
4.1.3 Shark
4.2 Overview of the pipeline
4.3 Segmentation Lo
4.3.1 Filtering
4.3.2 Groundremoval
4.4 Classification
4.41 Featureset A
442 Featureset B Lo
443 Datasets
4.4.3.1 Avoiding validation biases
4.4.4 Training and Validation
4.4.4.1 Searching optimal parameters
Results
5.1 Segmentation
5.1.1 Under-segmentation
5.1.2 Over-segmentation
5.2 Classification result L
5.2.1 SVM performance on Featureset A
5.2.2 KNN performance on Feature set A
5.2.3 FFENN performance on Feature set A
5.2.4 RF performance on Feature set A
5.2.5 Overall results on Featureset A
5.2.6 SVM performance on Featureset B
5.2.7 KNN performance on Featureset B
5.2.8 FFNN performance on Featureset B
5.2.9 RF performance on Featureset B
5.2.10 Overall results on Featureset B
Discussion
6.1 Segmentationo
6.2 Classification
6.2.1 Thegood
6.2.2 Thebad
6.2.3 Theugly
6.3 Future work

7 Conclusion

Bibliography

vi

25
25
25
26
27
28
28
28
29
29
31
31
31
32
32

34
34
34
35
35
36
36

38

40

1.1

3.1
3.2
3.3
3.4
3.5
3.6
3.7

4.1
4.2
4.3

5.1
5.2
2.3
5.4
2.9
2.6
5.7
5.8

List of Figures

Overview of the segmentation-classification pipeline

Two separable classes with two features.
Case of overfitting
Case of non-linear separable classes
A simple model of a single neuron.
A Feed forward Neural Network with four layers
K-nearest neighbors example
An example of a decision tree.

Overview of the whole segmentation-classification pipeline.

A training example representing a car and the three dimensions

The training example from figure 4.2 projected onto a surface

People crossing street. Lo
People crossing street segmented by Fuclidean clustering.
People crossing street segmented by Region growing.
Traffic congestion.
Traffic congestion segmented by Fuclidean clustering.
Traffic congestion segmented by Region growing.
Graph of class performance for each classifier over feature set A. . . .
Graph of class performance for each classifier over feature set B. . . .

25
26
26
27
27
27
30
33

vii

List of Figures

viil

List of Tables

4.1 Feature set A 20
4.2 Number of examples for each class and for each data set. 22
4.3 Optimal parameters for methods searched over feature set A. 24
4.4 Optimal parameters for methods searched over feature set B. 24
5.1 Confusion matriz for SVM on feature set A. 28
5.2 Confusion matriz of KNN on feature set A. 28
5.3 Performance matriz of FFNN on feature set A. 29
5.4 Performance matrix of REF on feature set A. 29
5.5 Total and mean accuracy for each classifier on feature set A. 29
5.6 Performance matriz of SVM on feature set B. 31
5.7 Performance matriz of KNN on feature set B. 31
5.8 Performance matriz of FFNN on feature set B. 32
5.9 Performance matrix of RF on feature set B. 32
5.10 Total and mean accuracy for each classifier on feature set B. 32

ix

List of Tables

1

Introduction

The car manufacturers of today compete for the consumers by providing Active
Safety systems that prevent accidents without the need of the driver’s control. As
car manufacturers incorporate more and more computer systems into cars, the com-
petitive advantages of Active Safety functions such as adaptive cruise control and
collision avoidance systems are growing in importance. According to a study [1]
carelessness and negligence of the driver is not the major reason for car accidents
but the drivers inert perception, resulting in a delayed response to rapidly changing
traffic conditions. Nearly 1.3 million people die in road accidents globally each year,
and on average 3,287 deaths occur each day [2].

Active safety systems utilize many sensors to produce data. One such sensor is LI-
DAR (Light Detection and Ranging), an optical remote sensing technology which
produces point clouds of the surroundings. The LIDAR is comprised of a number
of spinning laser beams and is usually mounted on the roof of a car. The LIDAR
spins 360 degrees around its axis while sending out laser beams. The reflection of
each laser beam is registered in the sensor which measures the light intensity and
distance to each reflected point. The final product is a point cloud image that is
produced for each rotation of the sensor (see front page).

In order to extract information from the point cloud it normally goes through a
segmentation and classification process. The segmentation algorithm is used to
cluster different points of the point cloud to smaller clusters according to some
similarity criterion. These smaller point cloud clusters are subsequently labelled by
a trained classifier into different categories, such as cars, pedestrians, etc. The final
result is a point cloud with labeled objects. This offline result finally provides an
accuracy measure that can be compared with the cars online sensor accuracy, to
establish a threshold that can act as metric of the online sensor’s performance.

1.1 Purpose

The aim of this thesis is to implement and evaluate a segmentation-classification
pipeline for classifying objects in urban environments and compare different methods
with respect to their accuracy. Figure 1.1 shows an overview of the pipeline.

1. Introduction

Paint Cloud
Segmentation
Cluster 1 Cluster N
'L ¥
Classification Classification

—

Point Cloud with labels

Figure 1.1: The input to the pipeline is a sparse point cloud. The point cloud is
segmented into different objects referred to as clusters, 1 to N. The clusters are then
classified and the predicted class label is assigned to each cluster. Lastly, the original
point cloud is visualized, showing the relevant objects in bounding boxes and their
respective label.

To enable a feasible study the performance of four different classifiers are compared,
namely Support Vector Machines (SVM), Feed Forward Artificial Neural Networks
(FENN), Random Forests (RF), and K-Nearest Neighbours (KNN). A comparative
study of two Segmentation methods, Region Growing and Fuclidean Clustering is
made. In addition to comparing classifiers two different feature sets (Feature set A
and Feature set B) will be composed to evaluate how the Classifiers performance
gets affected by changing their input.

The following classes are the subjects for the classification:

Cars

Trucks

Vans

Pedestrians

Bicyclists / Motorcyclists
Signs / Poles

Unknowns

No Ot W

1.2 Limitations

The accuracy of the segmentation algorithms will be evaluated visually and will
be considered satisfactory if it manages to segment the mentioned object classes

1. Introduction

in section 1.1. This thesis provides the comparison of two different types of seg-
mentation algorithms, Fuclidian clustering and Regional growing, both of which are
implemented in PCL[3].

The implementation and evaluation of the classification is limited to comparing four
different discriminative machine learning algorithms, namely SVM, FFNN, RF and
KNN. The literature presents another type of algorithms that will not be considered
here, namely generative algorithms. The main difference between these types of
algorithms will not be covered in great detail in this thesis, the reader is instead
referred to the literature. However, according to [4] discriminative classification
models are almost always preferred to generative ones, since they solve the classifi-
cation problem directly instead of solving a more general problem such as modeling
the probability distributions for the classes.

1.3 Thesis Outline

The thesis is divided into five main chapters. The Background gives an overview
of used methods in the field of urban point cloud segmentation and classification.
The used methods gets a deeper explanation in Theory, where the algorithms in
focus will be explained to the reader. An explanation of the process of the work and
the methods used for evaluating the algorithms are given in Implementation and
also some details regarding the segmentation-classification pipeline implementation.
Results accounts for the measured results of the pipeline, and how the different
segmentation and classification methods performed. Discussion reflects over the
results and provides some thoughts on possible future work. The major findings in
the thesis are finally presented in Conclusion.

2

Background

This chapter aims to give some background to the general problems that exist in
urban point cloud segmentation and classification. Moreover, it aims to give some
insight into related segmentation approaches from the literature and an understand-
ing of how different combinations of classification algorithms, feature vectors and
class types may affect the final classification accuracy.

2.1 Object segmentation

When performing segmentation on a sparse point cloud the main problems that arise
are: The under-segmentation problem (how to handle spatially close objects), and
the over-segmentation problem (how to handle objects inherent surface variations).
When sections of the point cloud that represent individual objects are too close it
becomes significantly more difficult to segment these correctly since they appear to
be one object. The opposite problem arise when a single object can be perceived as
several objects. The main reason for these problems comes from the fact that sparse
point clouds represent a small sample of all possible points and hence results in an
information loss. Different methods address these problems in different ways. In
general segmentation methods can be divided into three approaches: Model fitting,
Region growing, and Clustering [5]. Since Model fitting combines segmentation and
classification in one step and the scope of the thesis is to evaluate segmentation and
classification algorithms as separate steps the reader is referred to the literature for
further details about Model fitting.

2.1.1 Region Growing

Region growing methods start by using random seed points and compares them to
neighbouring points based on a similarity criterion, if they are similar according
to the criterion they get merged into the segment otherwise they get rejected and
can later be incorporated in other segments. The algorithm continues to grow the
region this way to form a segment. Although Region growing algorithms can be used
successfully for segmentation and are generally fast [6] the random choice of seed
points usually results in different segmentations and are therefore not considered as
robust as others methods [7]. In [8] they use Region growing to segment building
features from a facade. The similarity criterion used in this work was proximity and
perpendicular distance. This way walls, windows, doors, etc. could be satisfactory
segmented since these classes shift in perpendicular distance compared to each other.

4

2. Background

2.1.2 Clustering

Similar to Region growing, clustering relies on similarity criteria for subdivisions to
be grouped. The simpler clustering techniques use a spatial similarity criterion such
as the Manhattan distance or the Euclidean distance [9]. In [10] Euclidean clustering
is used to find objects placed on a table in a robotic context. The segmentation was
done after ground removal (removal of the table). Focusing the segmentation to
certain regions of the point cloud the performance varied significantly depending on
whether several objects of interest were included in that region or not, with better
accuracy when only a single object of interest was included.

2.1.3 Noise Filtering and Ground removal

A typical pre-processing step before segmentation is to extract the ground from the
point cloud in order to focus the segmentation to objects of interest and not ground
segments. Example of such work include [11], where objects are derived after the
ground has been removed. Furthermore, it has been shown that removing noise
by doing statistical outlier filtering before the ground removal increases the perfor-
mance of the ground removal [12]. Noise filtering also allows for a more accurate
segmentation later, and therefore for a more accurate classification since the features
that describe the object can be more precise.

According to [13], the RANdom SAmple Consensus (RANSAC) algorithm is a com-
mon method used to detect planes in point clouds applications. Due to its robustness
to outliers RANSAC is a popular model fitting method that was presented in [14].
Given a geometrical template (i.e. model) RANSAC randomly samples a subset of
points and computes the model parameters of each subset. The best fitted model
is decided on the estimated parameters that contain the largest number of inliers
(points). Omne of the challenges applying RANSAC consist of determining the "in-
liers threshold", i.e the variance allowed in the model for points to be considered

belonging to the model [5].

2.2 Classification

A set of discriminative features in the point cloud needs to be chosen that either
describe the object locally or globally in order to classify point cloud clusters. In
a general 3D point cloud context there are two basic alternatives for labeling data.
The first alternative is to use a discriminative 3D point feature descriptor/vector
and train a machine learning algorithm to predict the correct labels for different
classes of objects. The second alternative is to use geometric reasoning techniques
to fit geometric primitive shapes (i.e cylinders, spheres, etc) to the data. Generally,
the former approach will outperform the latter geometric approach in most cases [9].

One important question using the former method is the choice of feature vector,
such that representative but also discriminative information is extracted from the

2. Background

point cloud. The goal is to find features that are similar for objects in a given class
and that vary as much as possible between different classes.

2.2.1 Feature extraction

Whichever classification algorithm is used, the results of the classification will in al-
most all cases depend on what type of features are used. Features can be described
as the attributes of an object, e.g. the volume or the height of an object. The goal
is to find features that are similar for objects in a given class and that vary as much
as possible between different classes.

There are a number of different approaches to feature extraction in urban environ-
ments. For example, in [15] a total of 15 different geometrical features are used
to classify pedestrians from non-pedestrians, while [16] use a feature vector of 28
features, including various intensity features, to classify cars from non-cars. Three
of the features used by the latter authors include eigen-features computed by per-
forming a principal component analysis (PCA).

2.2.2 Support Vector Machines

A common technique in point cloud classification is to use Support Vector Machines
(SVM). Given a set of training examples, the SVM algorithm attempts to find an
optimal separation of sets of training examples belonging to the same class. In [17]
SVM is used to classify different point clouds according to two data sets, of which one
contains: cars, lampposts, lights, posts, and trees, another data set contains: cars,
poles and trees. In the work they combined geometrical features with contextual
features, where contextual features is defined as neighbouring regions touching the
object. They recorded a best overall accuracy of 88% on the latter set. On a different
data set of 20 classes they achieved a best overall accuracy of 82%. In [18] they use
SVM to classify: cars, pedestrians, cyclists, poles and unknown objects with an
overall accuracy of 96%.

2.2.3 Artificial Neural Networks

Artificial Neural Networks relies on a network of nodes, where each node, given an
input, performs a computation with some learned parameters. During training all
the nodes computations result in a prediction, and depending on the error rate the
nodes can refine their individual parameters through a process of backpropagation.
[19] uses a Feedforward Artificial Neural Network (FFNN) implementation to classify
the following objects in a point cloud: vehicles, people, tree trunks, light poles and
buildings. The features used in this work is described in section 4.4.2. With this
setup they are able to achieve an accuracy of 94.61%.

2.2.4 Random Forests

Random forest (RF) is a technique that build up multiple decision trees during
training. Each tree is based on a random subset of the data where the decision nodes

6

2. Background

are randomly picked from the feature set. Each node in the tree forms a binary
decision about an individual feature on an example that categorises the example
and continues categorising until a leaf is reached, where the leafs represent unique
classes. Each tree gets to make a vote on an example and the class that gets the
majority vote decides the class. The authors of [20] use RF to classify a point cloud
captured from an airborne LIDAR sensor. The following classes are subjects for
classification: natural ground, artificial ground, buildings, and vegetation. Height
features, eigen-features, local plane features and full-waveform LIDAR features are
used in this work to classify objects. They achieved an overall accuracy of 94.35%.

2.2.5 K-Nearest Neighbours

K-Nearest Neighbours (KNN) is a technique that in contrast to the other mentioned
classification methods does not produce a model after training. It simply stores all
the examples in memory and picks out the K neighbours that lie closest to the
example in question in the feature space. Similar to RF it lets all the neighbouring
training examples make a vote on the class and classifies the example based on the
majority vote. In [21] they use KNN to classify a point cloud. The classes are: cars,
poles, trees and walls. In the work they compare eigen-features applied locally, with
some other local shape descriptors such as spin images, and a global descriptor, i.e a
descriptor that describes the whole point cloud, called spherical harmonic descriptor.
They achieved an overall accuracy of 92.1%.

3

Theory

This chapter will give the reader a deeper explanation of the algorithms used in
the implementation of the pipeline. The details of each algorithm will be limited
to the relevance of this work. First, the two main segmentation algorithms will be
explained on a high level, thereafter the classification algorithms will be explained
in some detail.

3.1 Region growing

For surface based segmentation methods two approaches are possible: bottom-up
and top-down [6]. Bottom-up approaches start from some seed-point/points and
grow the segments from these by comparing these seed points to new candidate
points, based on a given similarity property that acts as a threshold. If the candidate
points gets incorporated into the segment they become new seed points. Top-down
does the opposite by first assigning all points to a segment and then trying to fit a
surface to it and as long as the figure to fit does not comply to a certain threshold
it keep subdividing the segment. Region growing is an instance of the former where
the algorithms grows regions (i.e segments) from a seed point by using a similarity
property (i.e smothness, color etc), which determines whether the candidate point
belong to the cluster or not [9)].

3.2 Euclidean clustering

Euclidean clustering, in the context of point clouds, processes points by search-
ing for the nearest points to a candidate point according to a distance threshold,
and clusters points together as long as they fall inside the range of the thresh-
old. The distance threshold, as the name implies, is simply the euclidean distance
d = v/x% + y? + 22 between neighboring points. A common way to find the neighbors
of a point is to construct a KD-tree [9]. A KD-tree is a data structure that separate
the dimension space to k sub-dimensions which helps to organize and localize the
nearest points to a certain point.

3.3 Support Vector Machines
Support Vector Machines (SVMs) are generalizations of the more simple mazimal

margin classifier [22]. The basic idea of SVMs is to separate classes in the training
data by hyperplanes. The hyperplanes then act as decision boundaries for unlabeled

8

3. Theory

examples. Since SVM only can do binary classification, one-versus-one or one-
versus-all is often used on multiclass problems.

3.3.1 Linear SVMs

Linear SVMs does not apply to all data sets since they require that the training
examples in the data set are linearly separable by some hyperplane so that each
division is able to isolate a class, as seen in figure 3.1.

A

Support
Margin ., Vector

X1

A
L J

X2

Figure 3.1: Two separable classes with two features. The hyperplane is illustrated
by the solid line, while the distance to a dashed line represents the margin. The
circles represent training examples and the ones that lie on the dashed lines are the
support vectors.

A hyperplane is defined as: 5y + 121 + ... + Brx, = 0. Depending on if SX < 0 or
BX > 0 (the sign of the inner product) the class of X is decided. The data examples
that lie closest to the hyperplane are called support vectors since they support the
maximal margin to the hyperplane (the descision boundary). The maximal margin
classifier chooses the hyperplane by picking the one that maximizes the margin
between the classes; this way the method reformulates the classification problem to
the following optimization problem:

maximize M (3.1)
BO1"'7BTL
subject to) | 6]2 =1 (3.2)
j=1
Yi(Bo + Brxin + -+ -+ Buzin) > M, Vi=1,...,m, (3.3)

where M is the margin and the class labels y;,...,y, € {—1,1}. Equation 3.1 is
the objective function that maximizes the margin, and the two following equations,
3.2 and 3.3, are the constraints. The first constraint enforces the solution to be
a hyperplane, and the last constraint in the optimization problem guarantees that
each example is on the correct side of the hyperplane.

3. Theory

3.3.2 Linear SVMs with soft margin

In a training data set with outliers the maximal margin classifier may overfit (see
figure 3.2) and with non-separable examples it may even be unable to create a linear
decision boundary (see figure 3.3).

oo \ @
. @ @
@ O
\\O“‘ © @ Q
N @ x
X1 \ \\“ Seen
o
.
\
\

X2
Xz

Figure 3.3: Case of non-linear sep-

Figure 3.2: Case of overfitting arable classes

To alleviate the problem the Linear SVMs with soft margin may ignore some exam-
ples to achieve a better generality and a higher confidence, therefore it is sometimes
referred to as a Soft Margin Classifier. In order to allow some missclassifications
the optimization problem is reformulated:

maximize M
607--~76n>507“-76n

subject toZﬁf =1

Jj=1

Yi(Bo + Brzin + oo+ Buin) > M(1—¢;), ¢, >0, Y & < C,
i=1

where ¢, ..., €, are slack variables that allow some examples to be on the wrong side
of the hyperplane. If, for instance, ¢; > 0 for the ith training example, the example
ended up violating the margin boundary in the solution, and if ¢; > 1 it even ended
up on the wrong side of the hyperplane. The role of C' is to bind the sum of €, ..., €,
and therefore it determines the tolerance of violations that the optimizer will allow.
C' is a tuning parameter that is set by the user of the algorithm, whose optimal
value usually is searched for experimentally. When C' is small larger margins are
allowed and when it is large more errors are allowed.

The support vector classifier involves inner products of the training examples (ex-
amples are vectors of features). After the optimization the support vector classifier
can be represented as:

f(z) =B+ ZOHWB%%

i€S

10

3. Theory

where aq, ..., a,, are the resulting optimization parameters. Since only the training
examples that support the margin are needed to classify a unlabeled example, only
a minor set of the examples (support vectors) are used in the classifiers. In the
formula the indexes of the support vectors are denoted as S.

3.3.3 Kernels

Sometimes the classes can not be linearly separated. In these cases normally quadratic,
cubic or other higher-order polynomial terms are introduced to allow for more com-
plex functions to describe the decision boundary, but this way the feature space gets
enlarged. If the data examples only can be separated by a non-linear hyperplane the
examples gets mapped to a higher dimensional feature-space where they are linearly
separable. If the function is very complicated the optimization problem becomes
very hard to solve, since the feature space to search is much bigger. Kernels are an
extension to Linear SVMs that allows for a implicit enlargement of the feature space.

A kernel is function that generalizes the inner product in a computation so that
the inner product calculation instead is implicit and can save the method using the
inner product some time.

f@)=PBo+ > o K(x,x;)

€S

A popular example of a non-linear kernel is the gaussian radial basis function kernel

(RBF):

K(x;,xy) —exp(ZIZ] Tyrj))

v is often a tuning parameter in implementations of SVMs just as C' in support
vector classifiers. A small gamma gives a low bias and high variance while a large
gamma gives a higher bias and lower variance. To find appropriate values of v and
C a grid search is often applied, where different combinations of the parameters are
tested by doing cross-validation.

3.4 Artificial Neural Networks

Artificial Neural Networks (ANNs) are a collection of machine learning techniques
that are supposed to mimic the behavior of a biological brain [23]. The basic building
blocks used to model a neural network are nodes and edges, both of which are
illustrated in figure 3.4. The corresponding terminology used in biology is neurons
and synapses, respectively. These terms will be used interchangeably in this thesis.
There are many different types of neural networks but they all have certain traits
in common, namely, they all consist of a set of nodes that are interconnected via
edges, which together form a network. A single node usually consists of a number
of input edges and a number of output edges and it is the computational unit of a

11

3. Theory

Neural Network. In some cases a bias value b = 1 is added to its input. The typical
computations performed by a node is to add its inputs by a weighted sum:

z =) wjr; (3.4)
j=1

and apply a so called activation function (typically a sigmoid function) to the sum:

y=¢(z+Db) (3.5)

where z; is the input for input link j, w; is the weight for the corresponding input,
©() is an activation function, b is the optional bias parameter and y is the output of
the neuron.

> Node / Neuron

A4

Input Edge / Qutput Edge
Synapse / Synapse

Figure 3.4: A simple model of a single neuron. A neural network consists of many
such neurons connected to each other via their input/output edges

3.4.1 Feed Forward Neural Networks

A special class of artificial neural networks commonly used is the Feed Forward Neu-
ral Network or FFNN (Also called Multilayer Perceptrons or MLPs) which consists
of multiple layers of fully connected neurons [23]. Figure 3.5 shows a FFNN with
four layers.

A FFNN typically has three different types of layers, one input layer, one output
layer and a number of hidden layers. The input layer does not perform any compu-
tations, it simply takes all its inputs, x = [z1, ..., z,|, and outputs them to the next
layer. Each neuron in the hidden layers computes the equations 3.4 and 3.5 on the
received inputs and outputs its results to the next layer. A neuron in the output
layer performs the same computations as the the neurons in the hidden layer, and
the result of an output neuron is then passed as the network’s response, y = h(x).
This process is called forward propagation.

Determining the number of hidden layers and the number of neurons in each layer
is not a trivial task and often depends on the amount of available training data as
well as the properties of the training data. The number of neurons in the output
layer is determined by the number of possible classes used in the specific context
of the problem at hand. There is usually one neuron per class and the predicted

12

3. Theory

label can be extracted from the output vector. Note that this is only true when
classification is considered while regression problems are usually solved with only
one output neuron.

Input layer

Hidden layers

X1
COutput layer

Xp —

X3

X4

X5

Figure 3.5: A Feed forward Neural Network with four layers, one input layer with
five neurons (blue), two hidden layers with 4 neurons each (green) and one output
layer with two neurons representing two classes (yellow). The neurons between two
consecutive layers in a FENN are always fully connected.

3.4.1.1 Training a FFNN

A FFNN is often trained using backpropagation or BackProp, which is a popular
learning algorithm that trains a FFNN by adjusting the weights in each layer to
give better future predictions. BackProp is usually used in conjunction with an op-
timization algorithm such as gradient descent. In contrast to the feedforward step,
which propagates a training example from the "back" to the "front" (From left to
right in figure 3.5), the BackProp algorithm propagates its values in the opposite
direction, hence its name. The following steps give a high level overview of how the
algorithm works:

1. Each training example z¢ goes through a forward propagation step where a
network response is given, as explained earlier.

2. The error of the output layer is computed by comparing the networks response
with the actual class label of the training example, i.e. a cost function

€ =Yi — Ypi

is computed, where n is the number of neurons in the output layer, y; is the
actual label of the training example for output neuron ¢ and y,, is the response
of neuron .

3. Gradient descent is then used to minimize this cost function by computing the
gradients 8‘37{ for each synapse (link) going from neuron i to neuron j in each
ij

13

3. Theory

layer 1. For each weight, the gradients are calculated by using the chain rule
as follows:

07 _ Oy g 0

w Dy 0z dw

4. Moreover, these gradients are then used to adjust the weights in the network
with the following computation:

Awl, = —a——
K dwl;

! ! !
wij,new = wij,old + Awij
where « is a constant called the learning rate, wéj,old is the old value of the
weight w;; and wﬁmew is the new, updated weight value.

3.4.1.2 Learning rate

Gradient descent algorithms use a constant o which is called the learning rate to
determine how fast it steps. The choice of learning rates is often determined exper-
imentally by trying different values to see which perform best. The authors of [24]
have proposed an approach they call Rprop where the learning rate is calculated
locally for each weight.

3.5 K-Nearest Neighbors

K-nearest neighbors or KNN is a relatively simple algorithm that doesn’t require
any training. The algorithm takes a new example, finds its K nearest neighbors,
and applies a voting strategy where the predicted label of the example is set to be
the class of the majority of its neighbors. Although there are other, a very common
strategy used to determine which neighbors are nearest is the euclidian distance

where N is the dimensionality of the feature space, z, is the test point and z; is a
neighbor of z,,. Figure 3.6 shows a simple example of a classificaiton problem having
two classes, circles and triangles. The new test point is being classified as belonging
to one of these classes depending on the majority vote of its neighbors.

14

3. Theory

Class B

Class A

Figure 3.6: The new test example is classified by finding its three (K = 3) nearest
neighbors by calculating the euclidian distance between the new test example and
each of its three neighbors. A majority vote then determines that the new example
belongs to the circles class (2 votes against 1).

3.6 Random Forests

The Random Forests algorithm, or RF, belongs to a family of algorithms that are
based on building decision trees to classify objects based on features. Figure 3.7
presents a simple example of a decision tree that tries to predict whether a student
will pass his/her exam depending on two features, namely, how many hours the
student has studied for the test and how many hours of sleep the student had the
night before the test. Each leaf (The end node of any branch) shows a subset of the
training examples with the same type of output, passing the test or not and these
types of sets are called pure.

Hours studied(x;) Hours of sleep(x;) Passed test(y)
3

4 3 no
1 6 no
4 8 yes
2 8 no
8 9 yes
X1
T
X3 X ¥
2 8 no <3 =3
I & no l
=
T X] X3 ¥
X] X ¥ 4 8 yes
4 3 mo <6 26 8 O yes

Figure 3.7: An example of a simple decision tree trying to predict whether a student
will pass his/her next exam depending on how many study hours and how many hours
of sleep the student had the day before the exam. Fach leaf node shows a pure set of
examples.

15

3. Theory

A nice property of most tree based algorithms is that it is fairly intuitive to un-
derstand how they work compared to many other machine learning algorithms. A
drawback however, is that the simplest decision tree algorithms usually perform
worse in comparison to the more advanced algorithms [22]. However, the RF algo-
rithm manages to mitigate the negative aspects of simple decision trees by sacrificing
some of these simple properties to increase its performance significantly.

The general principle of RFs are to create multiple trees each with a random subset
of the training examples (This technique is referred to as bagging) for each tree.
Moreover, for each node in the tree, the algorithm picks a random subset of the
features, and chooses the best one. Choosing random subsets of features helps to
make the trees less correlated by giving more importance to less significant features.
For example, if a training set has a feature that has a lot more importance in
predicting a certain class then a random subset of features in one of the trees might
not include this feature, giving the less important features a chance of giving "their"
view of the prediction. Typically, the number of random features chosen for a specific

tree is given by
r~+/n

where n is the total amount of features in the training set. Finally, to classify a new
test example, a majority vote for all trees is performed.

16

4

Implementation

This chapter describes third-part dependencies used to build the pipeline, and pro-
vides details of the evaluation setup for the segmentation and classification. Fur-
thermore, an overview of the pipeline itself is provided. Four different classifiers,
and three segmentation algorithms where implemented for this thesis.

4.1 Third party dependencies

This section provides an overview of the external resources and libraries used in this
thesis.

4.1.1 PCL

The Point Cloud Library (PCL) is a large scale open project for 2D/3D image and
point cloud processing[3]. The PCL framework contains numerous state-of-the art
algorithms including filtering and segmentation algorithms, it also contains various
methods for visualization and processing of point clouds. The library was used for
easier handling and manipulation of point cloud data during the implementation,
mainly for filtering (see 4.3.1), ground extraction (see 4.3.2), visualization and for
segmentation (see 4.3).

4.1.2 KITTI

The KITTI vision benchmark suite is a cooperative project between Karlsruhe In-
stitute of Technology and Toyota Technological Institute in Chicago. The goal of
the project is to provide benchmarks with novel difficulties to the computer vision
community[25]. The data benchmarks were collected by driving a vehicle in different
urban settings recording the surroundings of the vehicle with a Velodyne HDL-64E
unit. The benchmark data consist of raw data point clouds collected from city-,
residential-, road-, and campus settings. This data is available online (The KITTI
Vision Benchmark Suite) and was used during the implementation.

4.1.3 Shark

SHARK is a C++ library for machine learning algorithms. It comprises methods
for single- and multi-objective optimization (e.g., evolutionary and gradient-based
algorithms) as well as kernel-based methods, neural networks, and other machine

17

4. Implementation

learning techniques[26]. This library was used for the implementation of the classi-
fication module (see 4.4).

4.2 Overview of the pipeline

The pipeline is comprised of two main processes, segmentation and classification.
The input to the pipeline consist of a point cloud object, which essentially is a
wrapper to a vector of points with x,y,z-coordinates and intensity. The point cloud
is pre-processed by a filtering and ground removal module before the segmentation.
From the resulting point cloud clusters features are extracted, which are then used
by a pre-trained classifier, which returns the labels of these clusters. Figure 4.1
depicts the whole process.

Paint Cloud Frame

Ground Removal
Segmentation

Cluster 1 Cluster N

Feature extration Feature extration
Classification Classification

Point Cloud with labels

Figure 4.1: Overview of the whole segmentation-classification pipeline.

4.3 Segmentation

In the segmentation module, Region growing and Fuclidean clustering was used,
both of which are available in PCL. To find the closest neighbors the Euclidean clus-
tering implementation in PCL uses a KD-tree representation of the points, which
subdivides the 3D-space into a treelike structure for faster search for nearest neigh-
bors. Euclidean clustering was used with a 45cm distance threshold which was
chosen by experimenting and visualizing the results repeatedly. The implementa-
tion of Regional growing in PCL uses smoothness as the similarity property. To use
Region growing estimating normals to all the points in the point cloud were neces-
sary. A method for this in PCL were used. The smoothness property compares the
angle between the estimated normals of the points to some threshold, in this case

18

4. Implementation

it was set to 32°, which also was chosen by experimenting and visualizing the results.

Before the segmentation the point cloud is pre-processed by a filtering and ground
removal module. It has been empirically proven that ground removal improves the
segmentation[11], and that filtering allows for more accurate segmentation and is
preferably done before the ground removal[12].

4.3.1 Filtering

Noise in point clouds occur because registered points often will be unevenly dense
after a scan due to varying distances, other reasons might include wrongly registered
points due to weather conditions such as haze, or due to system noise To remove
noise in the point cloud statistical outlier removal is applied which removes points
that lie outside a given threshold from the distance mean of neighbouring points.
PCL includes functionality for this method which was used in the implementation,
and was done prior to the ground segmentation.

4.3.2 Ground removal

To apply ground removal the model fitting method RANSAC was used in the im-
plementation. To compute whether a point is an inlier or outlier to the ground a
threshold is set, which specifies how far away the point can be to be considered an
inlier. In our instance we use a threshold of 30 cm for the most efficient perfor-
mance. This led to to some parts of the clusters to be cut of such as the feet of the
pedestrians.

4.4 Classification

This section will give a description of how the classification details were implemented.
The shark library was used to implement KNN, FFNN, SVM and RF. SVM used
a One-Vs-All classifier to handle multiple classes, with a radial basis function as
kernel. The following subsection will present the two feature sets (A and B) that
will be used to compare the classification algorithms.

4.4.1 Feature set A

The feature set presented in table 4.1 is the original set used at Volvo Cars by the
authors of [18]. The set contains ten features describing global attributes of the
objects. Since the features have different units and thereby different ranges they are
scaled and normalized to lie in the range —% <f< % The normalization was done
by subtracting each feature by its mean and the scaling was done by dividing by the
range of each feature. The process is summarised by the following equation:

7 Ji—

fi=——

max; — min;

, where f; is feature ¢, y; is the mean value of feature + and maz; and min; are the
max and min values of feature i, respectively.

19

4. Implementation

Features

Feature Description

fi The height of the object

fo The width of the object

f3 The depth of the object

f1 The box-volume of the object

fs The length of the hypotenuse of the width and the depth
of the object

fe The standard deviation of the distance from each point
to the center of gravity of the object

fr The distance to the object from the vehicle multiplied
with the number of points of the object

fs A measure of how scattered the points are in the object

fo A measure of the "linear-ness" of the object

J10 A measure of how "surface-like" the object is

Table 4.1: Feature set A

4.4.2 Feature set B

Feature set B is based on [19] with some slight modifications to suit the classes used
in this project. The basic idea is to project the object onto a 2D grid of fixed size
(16 x 16) where each cell has the dimensions 0.5m x 0.5m. Moreover, the number
of points in each cell is counted and a vector of features is given by concatenating
each row in the grid to a one-dimensional vector of size 256. The resulting feature
vector is given by adding the height H of the object as well as the largest value of
the width W and the depth D to the vector of 256 grid values, forming a feature
vector of size 258 in total.

To project the object onto the 2D grid, the vertical axis of the grid is given by the
z-axis of the point cloud. To determine which of the two x-axis or y-axis should be
used for the projection, the width W and the depth D of the object is calculated
and compared. The horizontal axis of projection is chosen to be the bigger of the
two values, as can be seen in figures 4.2 and 4.3, where the width (x-axis) is used as
the horizontal projection axis.

20

4. Implementation

Figure 4.2: A training example representing a car and the three dimensions (height,
width and depth) are shown The height corresponds to the z axis in the point cloud,
the width and the depth correspond to the x and y axes respectively. The projection
surface is the height combined with the largest of the width and the depth axis.

y = height (m)

e
Figure 4.3: The training example from figure 4.2 projected onto the surface of its
height and width azes. The object is centered in the grid based on its "center of
mass" and the surface grid is divided into 256 cells. The dimensions of each cell is
0.5m x 0.5m. The number of points of each cell is counted and a feature vector is
extracted by appending each horizontal row into a vector.

Choosing the grid size to be 16 x 16 instead of 8 x 8 as done by [19] is because
of the fact that this project considers different classes. The classification of this
project need to be able to differentiate between Vans and Trucks, both of which

21

4. Implementation

are expected to have a horizontal size (maxz(W, D)) bigger than 8 x 0.5 = 4 meters.
16 % 0.5 = 8 meters was chosen by assuming that no Vans can be longer than 8
meters, thus giving the algorithms a better chance of distinguishing between Vans
and Trucks.

Lastly, to normalize the numbers of each cell, the calculated count in each cell is
divided by the maximum count number.

4.4.3 Data sets

The data for the training and validation for the classifiers was taken from the KITTI
data set. KITTI provides tracklets, which basically are files of sequences of the same
clusters from different time steps in a recording. Obtaining training data manually
takes a long time and instead, tracklets from the data set were used to create the
training and validation data. This meant that the same objects could occur mul-
tiple times in the data but from different view points. Therefore this object could
be considered as different examples. But if the recording vehicle at any point stood
still during the recording, for instance by some traffic light, this could have led to
the tracked objects to appear from the same viewpoint multiple times.

Since the tracklets did not contain any poles these where extracted manually from
some selected point clouds. After the data was obtained features for all the clusters
where extracted to a file. This was done for both the training data and the validation
data. The table 4.2 accounts for the number of samples used in each data set.

Class Training Validation
Pedestrian 1307 312
Car 8181 2144
Van 1380 138
Bicycle 658 207
Truck 212 47
Pole 39 10
Unknown 219 21
Total 11996 2879

Table 4.2: Number of examples for each class and for each data set.

4.4.3.1 Avoiding validation biases

In order to avoid the bias of an object reoccurring in both the training and validation
sets, tracklets from completely different data sets were used for the two sets. The
sets total size are approximately divided in to the proportion 70/30 (9117/2879).
The offset to this proportion between the classes in the two sets is related to the
fact that most of the examples originate from the tracklets files in KITTI; a clear
division between 70/30 could therefore not easily be made and moving data between
the sets would lead to a bias.

22

4. Implementation

4.4.4 Training and Validation

In practical machine learning applications the evaluation of parameters is necessary
in order to optimize the performance of the application. The performance on the
training set is not a good indicator on the performance on unseen data due to the
problem of over-fitting, therefore the trained model is usually evaluated with some
unseen data[22].

One common approach is k-Fold Cross-validation, which randomly divides the data
into k equally sized sets of which one becomes a validation set and the rest comprises
the training set, then the error rate is computed, this is repeated until all divisions
have acted as a validation set. The mean error rate of all iterations is returned
finally. Another approach is the validation set approach, which simply separates the
data in a training set and a validation set, where the training set is used to learn
the parameters and the validation set to evaluate the predictive performance of the
parameters[22]. In this thesis the validation set approach was used.

4.4.4.1 Searching optimal parameters

To find the optimal parameters a grid search was performed performed for the
methods with more than one parameter. In a grid search various combination of
parameter values are tried by doing a validation and the parameters with best per-
formance are picked. For each method two searches were made, one for feature set
A and one for feature set B.

For SVM a grid search for v and C' was made with v = 271%, 2713 23 and
C = 275273 ...,27. For RF a grid search for optimal nodesize and trees was
made with nodesize = 1,5, 10, 20, 30, 40, 50 and trees = 50, 100, 128, 256. For KNN
the optimal tree size was searched for by simply testing K =1,3,...,99.

In the Shark library the RF algorithm takes nodesize as a parameter. The nodesize
is a upper bound on the node before it is classified as a leaf. Lowering this value
makes the trees in the ensemble larger and increasing this value makes the trees
smaller.

To determine the number of hidden layers, the number of neurons in each hidden
layer and the type of activation function in the hidden and output layers for the
FFNN implementation, a grid search was performed for each combination of acti-
vation functions (sigmoid, hyperbolic tangent and linear). The search was limited
to at most 2 hidden layers. The network structure determined by the grid search
turned out to give very unstable accuracy results after running the validation several
times with the best parameters. This lead to a new approach, where the network
parameters where manually selected by finding a relatively stable parameter-setup,
where each consecutive run produced similar accuracies. The most stable activation
function combination was to use a sigmoid function in the hidden layers and a linear
function in the output layer for feature set A. For feature set B, a hyperbolic tangent
function for both the hidden layer and the output layer produced the most stable

23

4. Implementation

combination.

Parameter search on feature set A

Method Parameters Values
SVM v, C 0.125, 128
RF trees, nodesize 128, 30
FFNN hiddennodes 5
KNN K 9

Table 4.3: Optimal parameters for methods searched over feature set A.

Parameter search on feature set B
Method Parameters Values

SVM v, C 0.125, 2
RF trees, nodesize 128, 5
FFNN hiddennodes 128
KNN K 5

Table 4.4: Optimal parameters for methods searched over feature set B.

24

O

Results

The following section will present the results obtained during the segmentation and
classification steps. First, the segmentation results will be presented. Thereafter,
the performance of the classification algorithms will be presented.

5.1 Segmentation

The segmentation results will be presented visually and compared using images for
the algorithms Euclidean Clustering, Region Growing.

5.1.1 Under-segmentation

To illustrate the under-segmentation problem a point cloud with people close to
each other is segmented by Euclidean clustering and Region growing. The following
pictures depicts the results.

{1

) L« 253, i?'_:‘ =i J- |
e e m i, M T R

5

Figure 5.1: People crossing street.

25

5. Results

B,

- = L B =
il TR R = =
3 '—Z_E =.] é:“": e s S T
S EEE8E S sTv
: E z—%% is =S e
2 = E = EF= Frme—
e % = i

Figure 5.2: People crossing street segmented by Fuclidean clustering.

[e g
.]
==
E'H
= - = e
= ZE = F
g_.-_;\.-—_-':- = = = =
EEeETT=" = = —_— =
=T = e —
*F S =EEe FEE.
s =% CES
=== =L = - -
) = h

Figure 5.3: People crossing street segmented by Region growing.

5.1.2 Over-segmentation

To illustrate the over-segmentation problem a point cloud taken from traffic conges-

tion with a large truck is segmented by Euclidean clustering and Region growing.
The following pictures depicts the results.

26

5. Results

Figure 5.4: Traffic congestion.

Figure 5.5: Traffic congestion segmented by Fuclidean clustering.

Figure 5.6: Traffic congestion segmented by Region growing.

5.2 Classification result

In order to evaluate the classification algorithms a comparison of KNN, FFNN, RF
and SVM was made were the results are presented in a confusion matrix for the
classes. Two different feature sets where tested with different properties.

27

5. Results

5.2.1 SVM performance on Feature set A

The following section shows the accuracy results for our SVM classifier for feature
set A. Table 5.1 shows the confusion matrix for each class.

Pedestrian | Car | Van | Bicycle | Truck | Pole | Unknown
Pedestrian | 298 9 0 5 0 0 0
Car 4 2138 | 1 1 0 0 0
Van 0 48 89 1 0 0 0
Bicycle 5 2 9 191 0 0 0
Truck 0 1 3 0 43 0 0
Pole 3 0 0 0 0 7 0
Unknown | 0 21 0 0 0 0 0

Table 5.1: Confusion matriz for SVM on feature set A. The rows are the actual
class label while the columns show the predicted class label.

5.2.2 KNN performance on Feature set A

The following section shows the accuracy results for our KNN classifier for feature
set A. Table 5.2 shows the confusion matrix for each class.

Pedestrian | Car | Van | Bicycle | Truck | Pole | Unknown
Pedestrian | 278 30 0 4 0 0 0
Car 5 2123 | 11 3 0 0 2
Van 0 45 88 1 0 0 4
Bicycle 13 0 5 183 0 0 6
Truck 0 1 10 |0 27 0 9
Pole 3 0 0 0 0 7 0
Unknown |0 21 0 0 0 0 0

Table 5.2: Confusion matriz of KNN on feature set A. The rows are the actual
class label while the columns show the predicted class label.

5.2.3 FFNN performance on Feature set A

The following section shows the accuracy results for our FFNN classifier for feature
set A. Table 5.3 shows the confusion matrix for each class.

28

5. Results

Pedestrian | Car | Van | Bicycle | Truck | Pole | Unknown
Pedestrian | 299 1 0 11 0 0 1
Car 4 2136 | 2 2 0 0 0
Van 0 48 89 |1 0 0 0
Bicycle 1 24 0 180 0 0 2
Truck 0 0 1 0 46 0 0
Pole 0 0 0 0 0 10 0
Unknown | 0 21 0 0 0 0 0

Table 5.3: Performance matrix of FENN on feature set A. The rows are the actual
class label while the columns show the predicted class label.

5.2.4 RF performance on Feature set A

The following section shows the accuracy results for our RF classifier for feature set
A. Table 5.4 shows the confusion matrix for each class.

Pedestrian | Car | Van | Bicycle | Truck | Pole | Unknown
Pedestrian | 307 2 0 3 0 0 0
Car 3 2106 | 33 |1 0 0 1
Van 0 35 102 | 0 0 0 1
Bicycle 2 27 1 174 0 0 3
Truck 0 0 2 0 42 0 3
Pole 2 0 0 0 0 8 0
Unknown | 0 21 0 0 0 0 0

Table 5.4: Performance matriz of RF on feature set A. The rows are the actual
class label while the columns show the predicted class label.

5.2.5 Overall results on Feature set A

Table 5.5 shows the total accuracy performance for all algorithms for feature set A.
The accuracies are calculated by dividing the total number of correctly classified
validation exampled by the total amount of validation examples, for each classifier.
The mean accuracy is calculated by taking the mean of the true positives (the
diagonal from left to right, bottom down) from the confusion matrices in the previous
subsections.

Classifier | Accuracy | Mean Accuracy
SVM 96.3% 73.4%
FENN 95.9% 77.8%
RF 95.1% 74.9%
KNN 94.0% 66.8%

Table 5.5: Total and mean accuracy for each classifier on feature set A.

29

5. Results

Classification accuracies for feature set A

—e— SVM
—— KNN
FFNN

RF

Accuracy %
ot
o
I

Car [
Van |-
Bicycle |
Truck [
Pole |

Pedestrian |-
Unknown &

Figure 5.7: A visual representation of the accuracies for different classes for feature
set A. The horizontal axis represents the classes while the vertical axis shows the
accuracies in percentages.

30

5. Results

5.2.6 SVM performance on Feature set B

The following section shows the accuracy results for our SVM classifier for feature
set B. Table 5.6 shows the confusion matrix for each class.

Pedestrian | Car | Van | Bicycle | Truck | Pole | Unknown
Pedestrian | 311 0 0 1 0 0 0
Car 6 2122 |12 | 4 0 0 0
Van 0 34 100 | 4 0 0 0
Bicycle 6 21 0 180 0 0 0
Truck 0 0 11 0 34 0 2
Pole 4 0 0 0 0 6 0
Unknown |0 21 0 0 0 0 0

Table 5.6: Performance matrixz of SVM on feature set B. The rows are the actual
class label while the columns show the predicted class label.

5.2.7 KNN performance on Feature set B

The following section shows the accuracy results for our KNN classifier for feature
set B. Table 5.7 shows the confusion matrix for each class.

Pedestrian | Car | Van | Bicycle | Truck | Pole | Unknown
Pedestrian | 307 4 1 0 0 0 0
Car 8 2101 |20 |6 0 0 9
Van 0 40 88 |9 0 0 1
Bicycle 14 4 1 184 0 0 4
Truck 0 0 26 |0 19 0 2
Pole 3 0 0 0 7 0
Unknown | 0 20 1 0 0 0 0

Table 5.7: Performance matrix of KNN on feature set B. The rows are the actual
class label while the columns show the predicted class label.

5.2.8 FFNN performance on Feature set B

The following section shows the accuracy results for our FFNN classifier for feature
set B. Table 5.8 shows the confusion matrix for each class.

31

5. Results

Pedestrian | Car | Van | Bicycle | Truck | Pole | Unknown
Pedestrian | 297 7 2 5 0 1 0
Car 7 2054 | 60 |3 7 13 0
Van 0 27 108 | 2 0 0 1
Bicycle 4 33 0 170 0 0 0
Truck 2 4 17 10 16 0 8
Pole D 0 1 0 0 4 0
Unknown | 0 21 0 0 0 0

Table 5.8: Performance matriz of FFNN on feature set B. The rows are the actual
class label while the columns show the predicted class label.

5.2.9 RF performance on Feature set B

The following section shows the accuracy results for our RF classifier for feature set
B. Table 5.9 shows the confusion matrix for each class.

Pedestrian | Car | Van | Bicycle | Truck | Pole | Unknown
Pedestrian | 309 2 0 1 0 0 0
Car 7 2118 |19 |0 0 0 0
Van 0 29 109 | 0 0 0 0
Bicycle 6 36 0 165 0 0 0
Truck 0 1 20 |0 23 0 3
Pole 4 0 0 0 0 6 0
Unknown |0 21 0 0 0 0

Table 5.9: Performance matrix of RF on feature set B. The rows are the actual
class label while the columns show the predicted class label.

5.2.10 Overall results on Feature set B

Table 5.10 shows the total accuracy performance for all algorithms for feature set
B. The accuracies are calculated by dividing the total number of correctly classified
validation exampled by the total amount of validation examples, for each classifier.
The mean accuracy is the mean accuracy over the classes.

Method | Accuracy | Mean Accuracy
SVM 95.6% 70.1%
FFNN | 92.0% 60.8%
RF 94.8% 66.5%
KNN 94.0% 65.6%

Table 5.10: Total and mean accuracy for each classifier on feature set B.

32

5. Results

accuracy %

Classification accuracies for feature set B

- NN —e— SVM
B —m— KNN
B FFNN
RF
| =7
= 3
| | | | | | k‘}
= ;-(o o 24 @ o
< o < s) o
g O = = = o %
= 2 - g
) m —
= =
o)
[a W

Figure 5.8: A visual representation of the accuracies for different classes for feature
set B. The horizontal axis represents the classes while the vertical axis shows the
accuracies in percentages.

33

O

Discussion

A comparison of two segmentation methods and four different classification meth-
ods is presented. Two feature sets (A and B) are also compared for classification
results where feature set A contains 10 global features and feature set B contains
256 local features and 2 global features. Out of the four classifiers SVM has the
highest overall accuracy using Feature set A. This chapter provides some thoughts
on the results and gives suggestions for future work.

6.1 Segmentation

Although Region growing is generally considered to be more unstable than Euclidean
clustering Region growing outperforms the Euclidean clustering approach under the
over-segmentation problem as illustrated by the the segmentation of a truck in figure
5.6. The truck and the trailer were segmented as two objects by Region growing
while Euclidean clustering segmented also the truck into two objects (figure 5.5).
The reason for Euclidean clustering’s over-segmenting behaviour is that the 45cm
distance threshold, that was set, was too small in this case. But when experimen-
tally searching for a threshold with reasonably good performance greater thresholds
were found to under-segment too many objects so this was not changed.

Region growing also outperforms Euclidean clustering under the under-segmentation
problem as illustrated by the segmentation of pedestrians in a group in figure 5.3.
Both algorithms segment poorly and this also is due to wrong parameters in this case.
A much finer grained segmentation could have been done with smaller thresholds
set for both methods but this would have led to poor results in the general case.
Although the two methods both segment the three pedestrians in the center wrongly
Region growing is able to distinguish one from the others, while Euclidean clustering
segments them all into one segment (figure 5.2).

6.2 Classification

The classification results that were obtained can be divided into three categories,
represented by the following sub sections. The first sub section covers the results that
are considered to be very promising and that can be compared to results obtained
by other authors in the literature. The next sub section discusses results that are
not considered as good, where the classifiers are having difficulties distinguishing

34

6. Discussion

between several classes. The third sub section discusses mistakes that could have
been avoided during the implementation.

6.2.1 The good

All of the classification methods have fairly good accuracies for pedestrians and cars
on both feature sets. All algorithms except KNN have an accuracy over 95% on
feature set A. These results are expected since there is a relatively large amount of
training data for these classes, 1307 and 8181 examples respectively. On feature set
A, SVM has a total accuracy of 96.3%, FFNN 95.9% and RF 95.1% (figure 5.5).

On feature set B, all of the algorithms, including KNN, has an accuracy perfor-
mance over 95% for pedestrians and cars. An interesting observation is that all
methods except FFNN have an accuracy over 98% for these classes, since the paper
that feature set B originated from used FFNN to classify. This means that better
performance probably could have been achieved if other methods than FFNN had
been chosen in that case. On feature set B SVM had an overall accuracy of 95.6%,
RF 94.8%, and KNN 93.9% (figure 5.10).

Almost all of these accuracy results for pedestrians and cars are comparable to the
results obtained in the literature. Moreover, avoiding biases in the validation data
was considered important, as mentioned in section 4.4.3.1. Taking this into account,
our classification results for pedestrians and cars can be considered as quite good
results.

6.2.2 The bad

There were some confusion between Pedestrians-Bicyclists, Bicyclists-Cars, Poles-
Pedestrians, Vans-Cars, and Vans-Trucks. This was expected since these classes are
similar and easy to confuse. Since there was a comparatively small set of examples
in the validation data for Poles and Trucks (10, 47 examples respectively) it is more
difficult to draw any conclusions about the performance of the classifiers between
these classes, although the largest variations between the classifiers performance can
be observed in these classes (figure 5.7, 5.8). One possible reason for these results is
that there are too few training and validation examples to train a classifier to dis-
criminate between the confused classes, especially since many of them have similar
geometrical properties. An obvious solution to this problem is to add more training
and validation examples. Another possible reason is that neither of the two feature
sets that are used are able to discriminate between these classes satisfactory enough.
A possible solution to this problem could be to find additional features that are able
to differentiate between these classes.

FFNN had best mean accuracy on feature set A but it was also pretty unstable and
the accuracy varied considerably between runs. The weights are randomly initialized
during each training-validation run of FFNN. Since this is the only varying factor
between runs, it is very likely the reason for the unstable results. If this factor could
be minimized, FFNN would be a more promising candidate to use in future work.

35

6. Discussion

6.2.3 The ugly

Figures 5.7 and 5.8 show that the accuracy of the unknown class is 0%, consistently
for all classifiers on both feature sets. One reason for the poor result is because
unknown has been trained with only unknown data examples that represent any
other possible class, from small stones to large buildings. These training examples,
though containing 219 examples, did only consist of 7 objects but taken from multiple
frames. Therefore none of the machine learning methods were able to learn any
parameters for the class unknown. A better approach that was not taken would
be to compare the probabilities of each predicted class with a threshold value. If
the probability is smaller than the threshold, the object would be classified as an
unknown object.

Another more obvious reason for the poor performance and also an explanation
for why all Unknown validation examples were classified as Cars is that the 21
validation examples in the validation set actually consisted of only one object taken
from multiple frames. When visualizing this object it seemed to look like a large
box or container, which meant that its geometrical properties were similar to a car
which might have led the classifiers confusing it with a car.

6.3 Future work

During the thesis we have identified some areas that authors of future work could
consider when evaluating different algorithms.

One of the most interesting aspects is to focus on finding new features that are bet-
ter at distinguishing between objects with similar properties such as cars, vans and
trucks or poles and pedestrians. Current research presents a large number of differ-
ent features that looks promising. One set of features that could be considered are
for example different variations of intensity features (mean intensity, std.dev of the
intensity etc.). Another example is to replace the box volume with a more detailed
calculation of the volume of an object. For example, a pedestrian holding out his
hands horizontally will have a significantly increased box volume. Such variations
in real life data may affect the variations in features like the box volume but also in
features like the width and depth among others. Instead, an alternative to the box
volume would be to explore other ways of finding more exact volumes of irregular
objects in point clouds.

It would also be interesting to see how a segmentation-classification pipeline could
be implemented by using model-fitting approaches. In this work segmentation and
classification has been considered as two separate steps but by using a model-fitting
approach these steps could be done in one. An example of such an algorithm to use
is the Iterative Closest Point (ICP) which tries to transform and rotate an object to
fit a target (class). This approach was used in [21] and gave an accuracy on par with
high performing feature based classifiers. A significant point to notice is that by us-
ing this approach far less data would be needed since no training would be necessary.

36

6. Discussion

An interesting approach would be to investigate if it’s possible to combine all or
some of the classification methods to improve the results. For example to make
predictions based on majority votes of the classifiers. If the majority of the algo-
rithms predicted a certain class with a confidence above some threshold then that
would be the predicted class label. Alternatively, one could look at the confidence of
each algorithms prediction and pick the one having the highest value. The benefits
of these approaches is that the inherent differences between the classifiers could be
exploited and combined to potentially produce better results.

37

[

Conclusion

Region growing, although not considered stable is generally more performant than
Euclidean clustering and a strong contender to use for segmentation in the context
of urban environments. There is an obvious trade-off between under-segmentation
and over-segmentation. Depending on the classes for classification a good threshold
should be experimentally be searched for the best performance.

The winner when it comes to total accuracy for both feature sets is SVM. This seems
to go hand in hand with the literature, where most papers that we have looked at
are using SVMs for classification in the context of urban point cloud classification.
Although, one can argue that both FFNN and RF are good contenders to SVM for
feature set A, and RF is a good contender for SVM for feature set B, based on the
fact that the accuracies are relatively close.

When considering the accuracies for different classes there seems to be no clear
winner since different algorithms perform better for a specific class than another
algorithm. For example, RF seems to be better than the other algorithms at pre-
dicting pedestrians and vans for feature set A, but worse at predicting bicycles, for
the same feature set. A conclusion that can be made is that the choice of algorithm
is not as important as the choice of features since all algorithms perform better for
feature set A than feature set B.

38

7. Conclusion

39

[1]

2]

[10]

[11]

[12]

40

Bibliography

V. Yushkov, B. Yushkov, and A. Burgonutdinov, “Active safety vehicles and
reducing road accidents (in German),” Proceedings of Moscow State University
of Civil Engineering/Vestnik MGSU, no. 10, 2014.

“Annual global road crash statistics” http://asirt.org/initiatives/

informing-road-users/road-safety-facts/road-crash-statistics. Ac-
cessed: 2016-03-30.

R. B. Rusu and S. Cousins, “3D is here: Point cloud library (PCL),” in Robotics
and Automation (ICRA), 2011 IEEE International Conference on, pp. 1-4,
[EEE, 2011.

A. Jordan, “On discriminative vs. generative classifiers: A comparison of Lo-
gistic regression and Naive Bayes,” Advances in neural information processing
systems, vol. 14, p. 841, 2002.

E. H. Lim, 3D Urban Modelling. PhD thesis, Monash University, 2004.

T. Rabbani, F. Van Den Heuvel, and G. Vosselmann, “Segmentation of point
clouds using smoothness constraint,” International Archives of Photogramme-
try, Remote Sensing and Spatial Information Sciences, vol. 36, no. 5, pp. 248—
253, 2006.

F. Moosmann, O. Pink, and C. Stiller, “Segmentation of 3D LIDAR data in
non-flat urban environments using a local convexity criterion,” in Intelligent

Vehicles Symposium, 2009 IEEFE, pp. 215-220, IEEE, 2009.

S. Pu, M. Rutzinger, G. Vosselman, and S. O. Elberink, “Recognizing basic
structures from mobile laser scanning data for road inventory studies,” ISPRS
Journal of Photogrammetry and Remote Sensing, vol. 66, no. 6, pp. 28-39, 2011.

R. B. Rusu, “Semantic 3D object maps for everyday manipulation in human
living environments,” KI-Kiunstliche Intelligenz, vol. 24, no. 4, pp. 345-348,
2010.

S. Bhatia, S. K. Chalup, et al., “Segmenting salient objects in 3D point clouds
of indoor scenes using geodesic distances,” Journal of Signal and Information
Processing, vol. 4, no. 03, pp. 102-108, 2013.

B. Douillard, J. Underwood, N. Kuntz, V. Vlaskine, A. Quadros, P. Morton,
and A. Frenkel, “On the segmentation of 3D LIDAR point clouds,” in Robotics
and Automation (ICRA), 2011 IEEE International Conference on, pp. 2798
2805, IEEE, 2011.

J. Palnick, Plane Detection and Segmentation for DARPA Robotics Challenge.
PhD thesis, Worcester Polytechnic Institute, 2014.

http://asirt.org/initiatives/informing-road-users/road-safety-facts/road-crash-statistics
http://asirt.org/initiatives/informing-road-users/road-safety-facts/road-crash-statistics

Bibliography

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

M. Y. Yang and W. Forstner, “Plane detection in point cloud data,” in Proceed-
ings of the 2nd int conf on machine control guidance, Bonn, vol. 1, pp. 95-104,
2010.

M. A. Fischler and R. C. Bolles, “Random sample consensus: a paradigm for
model fitting with applications to image analysis and automated cartography,”
Communications of the ACM, vol. 24, no. 6, pp. 381-395, 1981.

C. Premebida, O. Ludwig, and U. Nunes, “LIDAR and vision-based pedestrian
detection system,” Journal of Field Robotics, vol. 26, no. 9, pp. 696711, 2009.
M. Himmelsbach, A. Miiller, T. Liittel, and H.-J. Wiinsche, “Lidar-based 3D
object perception,” in Proceedings of 1st international workshop on cognition
for technical systems, vol. 1, 2008.

A. Serna and B. Marcotegui, “Detection, segmentation and classification of 3D
urban objects using mathematical morphology and supervised learning,” ISPRS
Journal of Photogrammetry and Remote Sensing, vol. 93, pp. 243-255, 2014.
J. Ahlstedt and J. Villysson, “Classification of objects using a Velodyne LIDAR
scanner,” tech. rep., Department of Mathematics, Chalmers Tekniska Hogskola,
2013.

D. Habermann, A. Hata, D. Wolf, and F. S. Osorio, “Artificial neural nets
object recognition for 3D point clouds,” in Intelligent Systems (BRACIS), 2013
Brazilian Conference on, pp. 101-106, IEEE, 2013.

N. Chehata, L. Guo, and C. Mallet, “Airborne LIDAR feature selection for ur-
ban classification using Random Forests,” International Archives of Photogram-
metry, Remote Sensing and Spatial Information Sciences, vol. 38, no. Part 3,
p. W8, 2009.

B. Douillard, J. Underwood, V. Vlaskine, A. Quadros, and S. Singh, “A pipeline
for the segmentation and classification of 3D point clouds,” in Fxperimental
Robotics, pp. 585600, Springer, 2014.

G. James, D. Witten, T. Hastie, and R. Tibshirani, An Introduction to Statis-
tical Learning, vol. 112. Springer, 2013.

S. Haykin, Neural Networks: A Comprehensive Foundation. Upper Saddle
River, NJ, USA: Prentice Hall PTR, 2nd ed., 1998.

M. Riedmiller and H. Braun, “A direct adaptive method for faster backprop-
agation learning: The RPROP algorithm,” in Neural Networks, 1995., IEEE
International Conference on Neural Networks, pp. 586591, IEEE, 1993.

A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, “Vision meets robotics: The
KITTI dataset,” The International Journal of Robotics Research, vol. 32,
pp. 1231-1237, 2013.

C. Igel, V. Heidrich-Meisner, and T. Glasmachers, “Shark,” Journal of Machine
Learning Research, vol. 9, pp. 993-996, 2008.

41

Bibliography

	List of Figures
	List of Tables
	Introduction
	Purpose
	Limitations
	Thesis Outline

	Background
	Object segmentation
	Region Growing
	Clustering
	Noise Filtering and Ground removal

	Classification
	Feature extraction
	Support Vector Machines
	Artificial Neural Networks
	Random Forests
	K-Nearest Neighbours

	Theory
	Region growing
	Euclidean clustering
	Support Vector Machines
	Linear SVMs
	Linear SVMs with soft margin
	Kernels

	Artificial Neural Networks
	Feed Forward Neural Networks
	Training a FFNN
	Learning rate

	K-Nearest Neighbors
	Random Forests

	Implementation
	Third party dependencies
	PCL
	KITTI
	Shark

	Overview of the pipeline
	Segmentation
	Filtering
	Ground removal

	Classification
	Feature set A
	Feature set B
	Data sets
	Avoiding validation biases

	Training and Validation
	Searching optimal parameters

	Results
	Segmentation
	Under-segmentation
	Over-segmentation

	Classification result
	SVM performance on Feature set A
	KNN performance on Feature set A
	FFNN performance on Feature set A
	RF performance on Feature set A
	Overall results on Feature set A
	SVM performance on Feature set B
	KNN performance on Feature set B
	FFNN performance on Feature set B
	RF performance on Feature set B
	Overall results on Feature set B

	Discussion
	Segmentation
	Classification
	The good
	The bad
	The ugly

	Future work

	Conclusion
	Bibliography

