
?SUCHTHAT(Example, generate_examples(Model),
heuristic(Example) == good).

Heuristics for generating good examples
using QuickCheck

Master’s thesis in Algorithms, Languages and Logic

SEBASTIAN IVARSSON

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG
Gothenburg, Sweden 2016

Master’s thesis

Heuristics for generating good examples using
QuickCheck

SEBASTIAN IVARSSON

Department of Computer Science and Engineering
Chalmers University of Technology

University of Gothenburg
Gothenburg, Sweden 2016

Heuristics for generating good examples using QuickCheck
SEBASTIAN IVARSSON

© SEBASTIAN IVARSSON, 2016.

Supervisor: John Hughes, Department of Computer Science and Engineering, and
Quviq AB
Examiner: Patrik Jansson, Department of Computer Science and Engineering

Master’s Thesis
Department of Computer Science and Engineering
Chalmers University of Technology
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Typeset in LATEX
Department of Computer Science and Engineering
Gothenburg, Sweden 2016

iv

Heuristics for generating good examples using QuickCheck
SEBASTIAN IVARSSON
Department of Computer Science and Engineering
Chalmers University of Technology

Abstract
As software systems grow more complex, the need for advanced testing grows with
them. To thoroughly test modern software, automated tools are often used to relieve
developers of the manual labour of writing tests. This thesis seeks to improve one
such tool, QuickCheck, more specifically the Erlang version from Quviq AB. In a
recent research project an extension to QuickCheck was developed at Quviq and
Chalmers, in the form of a prototype tool called FindExamples. The purpose of
the tool is to generate interesting examples of the behaviour of a program from
a state machine specification using a heuristic. In this thesis, the tool has been
refined to be easier to use, and integrated into one of Quviq’s products, QuickCheck
CI. Furthermore, the heuristic used by the tool to select good examples has been
analyzed, and a few new alternatives have been proposed and tested. A combination
of these new ideas along with the original heuristic has shown some promise, both in
testing during development and in a small experiment involving 22 students using
examples to predict the output of a program. In the experiment, the participants
using the examples generated by the developed heuristic were able to outperform
those given a set of examples generated with full expression coverage.

Keywords: Erlang, QuickCheck, Property-based testing, Feature-based testing,
Good examples

v

Acknowledgements
First, I would like to thank my supervisor, John Hughes, for his help throughout this
thesis, and for proposing the initial idea of the topic. Furthermore, the ideas and
comments from both Thomas Arts and Alex Gerdes from Quviq and Chalmers were
helpful in giving a different viewpoint on some of the issues faced. Also, I am very
thankful for the early introduction to functional programming in the undergraduate
programme by Koen Claessen, and for the continued inspiration in the follow-up
courses in the master’s programme by Patrik Jansson, Mary Sheeran and John
Hughes.

Sebastian Ivarsson, Gothenburg, June 2016

vii

Contents

Contents ix

List of Figures xi

List of Tables xiii

List of Code Listings xv

1 Introduction 1
1.1 Background . 1
1.2 Purpose . 3
1.3 Limitations . 4
1.4 Related work . 4

2 Theory 7
2.1 Stateless testing . 7
2.2 Stateful testing and state machines 9
2.3 FindExamples . 11
2.4 QuickCheck CI . 16

3 Methods and implementation 19
3.1 Study of the systems . 19
3.2 Integration . 20
3.3 Improvement of heuristics . 23
3.4 Evaluation of heuristics . 29

4 Results and discussion 33
4.1 Integration . 33
4.2 Improvement of heuristics . 34
4.3 Evaluation results . 40
4.4 General thoughts . 44

5 Conclusions 47
5.1 Integration . 47
5.2 Improvement of heuristics . 47
5.3 Future work . 48

References 51

ix

Contents

A Appendix A I
A.1 bank.erl . I
A.2 bank_eqc.erl . III

B Appendix B XI
B.1 Cover examples . XI
B.2 Examples from the combined heuristic XI
B.3 Tasks for the students to fill in . XI

x

List of Figures

2.1 The project view of the QuickCheck CI web page, showing that
the two modules locker_eqc and myqueue_eqc contain QuickCheck
properties. The myqueue_eqc module is expanded to show the prop-
erties that have been tested from it. At the top, the red and green
circles represent previously failed and passed builds, respectively. . . . 16

2.2 An expanded view of the property prop_locker that has a few old
examples saved. These are old counterexamples that have failed at
some time during the development of the program, and are now used
as regression tests. The “Output” column displays the test in a human
readable form, whereas the actual data structure of the example is
shown to the left, useful for debugging. 17

3.1 Similar examples from the registry model grouped together in Quick-
Check CI, differing only in the names used for registering, a and b. . 20

4.1 The output from one of the examples from the banking program.
It shows the feature of the test by underlining and colouring the
relevant commands. This particular example illustrates the fact that
the account must be created before any money can be deposited to it. 34

4.2 An example that has changed its feature after a bug in the model
was fixed from an earlier build. The reason for the bug was that the
model did not check that the user was logged in when creating an
account. 35

4.3 An overview of the examples for a property in QuickCheck CI. Green
means that the example is passing, whereas blue is a passing test that
was found in the current build. 35

xi

List of Figures

xii

List of Tables

4.1 Results of testing the frequency at which examples appear when run-
ning the combined heuristic 20 times, generating a total of 66 unique
examples. 41

4.2 The number of points scored by each student in the evaluation exper-
iment. The maximum number of points possible to score was 69. . . . 42

4.3 Statistics of the data collected during the evaluation experiment. . . . 42

xiii

List of Tables

xiv

List of Code Listings

2.1 A QuickCheck generator for lists of pairs of integers and strings. . . . 8
2.2 QuickCheck property specifying that the user’s my_quicksort/1 func-

tion should behave like the standard Erlang lists:sort/1 function. . 8
2.3 The state machine specification for the create_account command in

bank_eqc.erl. 10
2.4 An eqc_statem property that generates commands randomly from

the module containing the state machine model, executes them, and
checks the result. 11

3.1 A property generating examples for a model of the Erlang registry. . . 21

xv

List of Code Listings

xvi

1
Introduction

To put the work of this thesis into context, this chapter introduces the background
and purpose of the project, along with a presentation of some of the work that
relates to the concepts handled in the thesis.
In the following chapters, the theory behind QuickCheck and the related tools is
presented in Chapter 2, the work carried out is described in Chapter 3, and the res-
ults obtained are presented in Chapter 4. Finally, the conclusions drawn throughout
the work are described in Chapter 5.

1.1 Background

As software systems grow larger, the need for quick, automatic and systematic test-
ing grows with them. The larger the system, the more complex it gets, making it
impossible for humans to keep track of its behaviour and whether the system is fol-
lowing its specification or not. Testing is necessary to try to enforce the specification
on the implementation, but a large amount of manual work is required to create test
suites that properly test a system.
Writing and maintaining such test suites can be a daunting task, in some cases as de-
manding as maintaining the program itself. It is therefore helpful to use automated
tools to aid in testing, to avoid the burden of specifying each test case manually.
One such tool that has been very successful is QuickCheck [1].
QuickCheck was originally developed by Claessen and Hughes for Haskell in 1999,
but has been ported to several other languages since then. The version that is
relevant to this thesis is the one written in Erlang created by Quviq AB, founded in
2006 by John Hughes and Thomas Arts1. While the original Haskell version focuses
primarily on pure functional code, Erlang QuickCheck (EQC) has been extended
with the ability to also test stateful code, by providing an interface for defining
state machines modeling the state of the system under test [2]. Another extension
is the ability to also test C-code, which opens up for a large number of possible code
bases to use QuickCheck on.

1http://www.quviq.com

1

http://www.quviq.com

1. Introduction

1.1.1 Model based testing

When testing stateful code, it is not only the commands and the input to the program
that are interesting, but also the order in which they are given. In order to test such
code, one must specify the commands to be tested, and what the expected output
of each command will be. For large systems, this quickly becomes infeasible, and
another approach is needed. Model based testing solves this issue by introducing
a simplified model of the system, known to be correct, which is used to generate
test cases. After constructing such a model, it can be used to obtain traces, or
execution paths that can be used as tests for the real system. These traces can
either be generated by hand, or automatically through randomization. This allows
the tests to capture unforeseen behaviour, that the developer and tester may have
overlooked.

1.1.2 Random testing

In order to completely check the correctness of a system by testing, one would have
to write tests for every possible execution path. Of course, doing this in the general
case is impossible, as there may be an infinite number of paths. The purpose of
testing is to find a good subset of scenarios to use as tests. By letting a developer
choose these subsets, it is very likely that some interesting test cases are overlooked.
Furthermore, it is very hard to maintain manually written test suites, as a single
change in the API may force changes in several tests. To avoid this problem, one
can use tests that are randomly generated. Such tests are much less predictable, and
may find hard-to-think-of errors, that a human would perhaps never even consider.
Random tests also have the advantage that their generators are much more concise,
and are less likely to contain duplicated code, making them easier to maintain.

1.1.3 QuickCheck

QuickCheck is a property-based, randomized testing tool that has been successfully
used for many years. A few examples include using the Haskell version to test
large applications such as the window manager XMonad [3], and the version control
system Darcs [4]. For the Erlang version, bugs have been found in real systems
both within the telecom- [2] and automotive [5] industry. Another interesting use
is within the medical field, where QuickCheck was used to test an organ position
tracker [6].

MoreBugs and FindExamples

To further develop QuickCheck, two prototype tools building on it and its accom-
panying library were developed by Quviq and Chalmers during the EU project
Prowess [7]. The first of these, called MoreBugs, is a prototype of how Quick-
Check testing could be made more efficient. It tries to avoid discovering the same

2

1. Introduction

bug multiple times, by keeping track of what kind of tests have been run previously,
and then avoids generating these again in order to find new bugs during the same
run.
Also developed by Quviq and Chalmers during the Prowess project is the prototype
tool FindExamples, that builds on MoreBugs to provide examples of the correct
specified behaviour of the system. The purpose of these examples is to serve as an
illustration of what the abstract QuickCheck properties test, as the abstract proper-
ties are easier to understand when complemented with good examples. Furthermore,
the examples can work as unit tests, and since they are designed to be easily under-
stood, they can give an indication to the user of what sort of behaviour is actually
tested.
In general, examples are used in most fields to simplify the understanding of abstract
properties or concepts, from mathematics to presenting papers [8]. For QuickCheck,
this is particularly true when it comes to state machine testing, where an entire
module makes up the model used to specify the intended behaviour of the system
under test, and thus concrete examples can aid greatly in understanding what is
actually tested with the model.

QuickCheck CI

As a way of providing open source developers with powerful testing tools for Con-
tinuous Integration, Quviq provides the web-service QuickCheck CI2. It allows the
maintainer of an open-source GitHub repository to connect their repository and
have their Erlang or C-code tested with the full Erlang QuickCheck library. The
results from running the tests are then published on the web page, including the
output from QuickCheck, but also coverage statistics and a history of all the builds
run.

1.2 Purpose

The purpose of this thesis was divided into two parts, where the aim was:
• To improve QuickCheck CI by integrating the FindExamples tool into the web

application.
• To improve the FindExamples tool itself, by investigating and developing the

heuristic used to find the examples, both by modifying the original heuristic
and trying new ideas. This also includes evaluating the improved heuristic.

2http://www.quickcheck-ci.com

3

http://www.quickcheck-ci.com

1. Introduction

1.3 Limitations

Given the limited amount of time available, some restrictions had to be made on
what was expected to be achieved.

• The focus for the integration work is on functionality and not aesthetics, and to
keep the changes as small as possible, preferring to reuse existing infrastructure
rather than rebuilding the system.

• For the development of heuristics, the focus is on exploration and prototyp-
ing, rather than producing a finished tool, and so the evaluation process is
only indicative of performance. The performance in terms of running time or
memory usage is not a priority in this work.

1.4 Related work

A lot of research is done on testing techniques, as is to be expected given the amount
of time and money spent on testing in industry. As the time spent on testing can
be seen as an investment that lowers the cost of maintenance and support later on
in the project, the effort spent testing must be weighed against the possible profit
of releasing the product earlier.
For the concept of generating good examples to aid in the understanding of a system,
no previous work has been found apart from FindExamples itself, however there is a
lot of work related to automated and random testing that is of interest. Particularly
interesting is work related to generating tests for some special purpose, and there are
several articles written on the subject of generating test cases with varying degrees
of randomness involved [9]–[12].

1.4.1 Software testing in general

There are a few different high-level approaches to verification of software, ranging
from unit testing to provable correctness. With unit testing, testing is done on the
lowest possible level, where test-cases are run on the smallest components – methods
or functions. This approach favours modular design, where units are decoupled from
each other as much as possible. The use of unit tests is taken to the extreme in
a development methodology called Extreme Programming [13], where test-driven
development is used. There, a developer must write tests before the real code.
On the other side of the spectrum, there are provably correct programs where the
correctness is mathematically proven. Even though this is the most safe way of
assuring correctness, it is also the hardest and most resource demanding. Further-
more, many programs cannot be proven correct due to non-deterministic behaviour
and the fact that the general problem of automatically proving program correctness
is undecidable, a well known example of this being the halting problem [14]. In ad-
dition, proofs of program correctness require a specification of what is to be proven,

4

1. Introduction

which pushes the issue of bugs from the code to the specification.
There are also several other approaches in between. For this thesis, the concept
of clarifying complex properties and specifications is of interest. There is another
extension to QuickCheck, which was developed during Prowess that determines if
unit tests are covered by properties, connecting the simple test cases to the abstract
properties [15]. Another interesting idea is the one found in the Ruby tool Cucumber
[16], where tests are specified in natural language, and then translated into code –
allowing the tests to work as the specification – while still keeping it readable to
anyone, regardless of programming proficiency.

1.4.2 Property-based and random testing

Apart from QuickCheck, there are several other tools that use property-based and
random testing. Both property-based testing [17] and random testing [18] have
been used for many years. This section contains a few tools that employ interesting
techniques related to these testing methods.

Randoop

Sharing some ideas with MoreBugs and FindExamples, Randoop is a feedback-
oriented testing tool for Java and .NET [19]. Much like QuickCheck it generates
sequences of method calls to test stateful code, but unlike QuickCheck, Randoop
does not wait until having generated the entire sequence before executing methods.
Instead, this is done as they are generated (the reason QuickCheck does not do this
is to facilitate shrinking). The result of executing the methods is used as feedback.
If a call is illegal, the sequence is terminated, and if an error is found the sequence
is used as a counterexample. It is only for successful method calls that the sequence
is kept and further built upon.
The tool uses some interesting techniques, such as combining successful sequences
to construct new ones, and the output of the tool is a ready-to-run test suite – just
like in QuickCheck. This suite contains both a set of failing test sequences, useful
when looking for bugs, and a set of well-behaved tests that can be used for regression
testing.
Randoop has a set of standard contracts that it checks, corresponding to properties
in QuickCheck. These include common object-oriented paradigm laws, such as the
reflexivity of an objects equals() method, as well as the fact that the hashcode()
and toString() methods should not throw exceptions. Furthermore, uncaught
exceptions in general are considered faults, and are only filtered manually if they
are documented properly. In this aspect, QuickCheck provides more power for the
user to decide on what is to be tested by allowing them to create the properties.

5

1. Introduction

DART

DART (Directed Automated Random Testing) is a tool used to automatically check
C-code for errors [20]. It uses a combination of static and dynamic analysis of the
code to detect crashes and failed assertions. One of the most important advantages
is that the tool can be used without any extra code. This is accomplished by
statically extracting the interface of the program under test, and then executing it
several times with different inputs to exercise different paths in the code. The way
these paths are chosen is a combination of random concrete, and directed symbolic
testing.
First, a completely random input is generated and executed, where at each branching
point, a new set of inputs is constructed to be run after the current run. This set
of inputs is chosen to make the execution follow a different path than the one that
was currently taken. To do this, DART uses symbolic constraints, that when solved,
result in a set of inputs capable of reaching new paths in the code. After having
constructed a complete set of inputs, the process is repeated until all possible paths
have been tested.

BLAST

An interesting tool that checks user-specified predicates in C-code is BLAST [21]. It
has been extended with the ability to generate test suites containing both positive
examples proving that the predicate holds in certain locations of the code, as well
as counterexamples of where it does not [22]. The predicates can be specified by the
user, and thus offer a powerful way of guaranteeing properties. One way this can be
used is to check the use of elevated privileges in code, making sure dangerous calls
such as exec and system are never called while the program has root access.
Another useful application of BLAST is finding dead code, that is, code which is
never executed. Such code blocks can be interesting as unreachable code is often
due to an error made by the programmer. Finding these code blocks is done simply
by setting the predicate to always be true, thus any code that never fulfills the
predicate was never executed and is hence considered dead.

6

2
Theory

This thesis deals mainly with the Erlang version of QuickCheck [2] and two prototype
tools developed as extensions to the library [23], [24]. Since the purpose has been
the integration and improvement of one of these tools, this chapter gives a broad
introduction to the QuickCheck library in general, and the state of these tools in
particular. Here, the tools are described as they were at the start of thesis.
The main use of QuickCheck has been the part of the library that deals with stateful
testing, the eqc_statem and eqc_fsm modules 1. The difference between the two is
that eqc_fsm deals with finite state machines with a finite number of named states,
whereas eqc_statem does not have this restriction. There are some advantages with
using eqc_fsm when possible though, for instance that the named states can impli-
citly handle many preconditions, and that diagrams can be automatically generated
from the specification.
Like regular QuickCheck, the testing is done by constructing properties, and in the
case of stateful testing, these properties are much larger than when testing stateless
code, as they also involve creating a model of the stateful program.

2.1 Stateless testing

In order to understand the stateful testing, the basic concepts of stateless Quick-
Check must be understood. A QuickCheck property is essentially a boolean con-
dition that is supposed to hold for all values of some kind (the values need not be
of the same data type, as the dynamic typing of Erlang allows for functions with
multiple input types). The way these values are chosen is specified by a generator,
a function that randomly produces values of a certain kind, and QuickCheck makes
sure the condition holds for each of them.

2.1.1 Generators

For most simple data types, there are already generators defined in the QuickCheck
library (specifically the eqc_gen module), which can be combined to create gener-

1The documentation for all the QuickCheck modules is available at: http://quviq.com/
documentation/eqc/index.html

7

http://quviq.com/documentation/eqc/index.html
http://quviq.com/documentation/eqc/index.html

2. Theory

Listing 2.1: A QuickCheck generator for lists of pairs of integers and strings.

1 -import(eqc_gen, [list/1,int/0,char/0]).
2 sample_generator() ->
3 list({int(), list(char())}).

ators for more complicated types. Listing 2.1 shows an example of a generator that
builds on the standard generators using tuples and lists.
By using the basic generators as building blocks, the user can construct most Erlang
data structures. However, sometimes the standard generators are not enough, and
then the eqc_gen module also provides functions for creating generators from con-
crete values. Say for example that an application takes a special argument that can
only be one of a few possible atoms. One must then generate an atom only from the
set of valid atoms, which can be done by using the eqc_gen:elements/1 function
which takes a list of possible values and generates a randomly chosen element from
the list.

2.1.2 Properties

Once the input has been generated, the actual test should also be run. The test
is run by executing the property written by the user. A property can be seen as a
special function that takes no arguments, but may use generators to generate data,
and returns a boolean which indicates the result of the test. Listing 2.2 shows what
a simple property used for testing an implementation of a sorting algorithm could
look like.

Listing 2.2: QuickCheck property specifying that the user’s my_quicksort/1 function
should behave like the standard Erlang lists:sort/1 function.

1 -include("eqc/include/eqc.hrl").
2 prop_sort() ->
3 ?FORALL(List, sample_generator(),
4 lists:sort(List) == my_quicksort(List)).

Here, ?FORALL is a macro defined in the eqc module, that takes a variable, a gener-
ator and an expression returning a property (booleans are one type of property). It
works basically like a regular ∀x ∈ X : P (x) universal quantification for a property
P (·), but instead of trying all values, QuickCheck generates one hundred values from
the generator, and for each it binds the value to the variable, evaluating the expres-
sion into a property. If any of these fail (return false), the test is considered a failure,
and the generated value that caused the error is taken as a counterexample.
Apart from the ?FORALL macro, there are several others that allow more control
of the properties created, and properties can be extended by nesting macros and
function calls to construct a resulting property with the desired behaviour. These
functions often have type signatures similar to:

8

2. Theory

eqc:numtests(N::nat(), P::prop()) -> prop()

That is, they wrap the property with some extra functionality or change some in-
ternal setting used by QuickCheck when it is executed. In this case, the natural
number N specifies how many tests that should be run (instead of the standard 100).
Since the eqc:prop() type is opaque, its internal data structure is hidden, and thus
wrapping is the only way to change the behaviour of a property after it has been
constructed.

2.1.3 Shrinking

When a counterexample is found for a property it is not likely to be a minimal
counterexample of the given bug. Since the input data to tests is generated at
random, the actual one found to fail is often not very helpful to present to the user.
One of the main selling points of QuickCheck is its ability to shrink failed test cases
into minimal ones that still exhibit the fault. This is done by repeatedly trying to
simplify the counterexample and seeing if it still causes a failure. For regular values,
shrinking is done by trying “smaller” values until the test no longer fails, for instance
shorter lists, smaller numbers and so on.

2.2 Stateful testing and state machines

In order to test stateful code with QuickCheck, a model of the intended functionality
of the program is needed. This is implemented as a state machine, where each
function in the API of the program under test is extended into a family of functions
in the model. This model is written by the user, and serves as the template of correct
behaviour when executing tests. The model contains its own state, often a simplified
version of what is really happening in the program under test. For each of the
available commands in the program, the model contains a transition function that
modifies the model state in the expected manner. Optionally, the user may specify a
pre- and a post-condition for each command. The precondition tells if the command
is valid to generate given the current state, and the postcondition checks if the
program behaved as expected when the command was executed. Listing 2.3 shows
the transition function (create_account_next/3) along with the actual program
call (create_account/2) and the pre- and postconditions.
Properties are still used for stateful testing, but their structure differs slightly from
the stateless properties, and they often follow a similar pattern. An example of
a typical property can be seen in Listing 2.4. This pattern can be summarized
as follows. First, the commands are generated by the built-in command generator
eqc_statem:commands/1. Second, some setup is performed to prepare for the test,
after which the commands are executed. Last, cleanup is performed in order to
allow for continued testing, and the result of the execution is checked. In List-
ing 2.4, the eqc_statem module is used, however, the overall procedure is similar
for eqc_fsm.

9

2. Theory

Listing 2.3: The state machine specification for the create_account command in
bank_eqc.erl.

84 %%%%% Create account
85 create_account_args(S) ->
86 [account(S), name(S)].
87

88 create_account(AccountName, Name) ->
89 bank:create_account(AccountName, Name).
90

91 create_account_next(S, _R, [AName, UName]) ->
92 case create_account_ok(S, {AName, UName}) of
93 true -> S#state{accounts = [{AName, UName, 0} |
94 S#state.accounts]};
95 false -> S
96 end.
97

98 create_account_pre(S) ->
99 S#state.open.

100

101 create_account_post(S, [AName, UName], R) ->
102 Account = {AName, UName},
103 case create_account_ok(S, Account) of
104 true -> R == Account;
105 false -> R == false
106 end.
107

108 create_account_ok(S, {AName, Name}) ->
109 logged_in(Name, S) andalso
110 lists:filter(fun({AN, UN, _B}) ->
111 AN == AName andalso UN == Name
112 end, S#state.accounts) == [].

In the example, the property Res == ok is instrumented by using eqc:aggregate/2
in conjunction with eqc_statem:command_names/1 to print a list of the frequency
of which the different commands occurred. The result of running the generated
commands is then what determines whether the test passes or not.
To generate the commands, the eqc_statem:commands/1 function collects all the
valid commands by looking at the functions exported by the module containing the
state machine model. It also gathers the precondition functions this way, in order
to only generate valid sequences of commands.
The eqc_statem:run_commands/2 function takes the module that contains the state
machine specification, and the generated list of commands as input. It needs the
module name in order to automatically find the postcondition functions. For each
command that is executed, the model state is updated and the post condition is
checked. If it is false, execution is stopped, as a bug has been found, and the list of
commands up until that point are a counterexample to the property under test.

10

2. Theory

Listing 2.4: An eqc_statem property that generates commands randomly from the
module containing the state machine model, executes them, and checks the result.

1 prop_state() ->
2 ?FORALL(Cmds, eqc_statem:commands(?MODULE),
3 begin
4 run_setup(),
5 {_, _, Res} = eqc:statem:run_commands(?MODULE, Cmds),
6 cleanup()
7 eqc:aggregate(eqc_statem:command_names(Cmds),
8 Res == ok)
9 end).

2.2.1 Shrinking command sequences

Just as in the case of stateless testing, QuickCheck is able to shrink the test cases
used in stateful testing. Here, the test case is a sequence of commands to be ex-
ecuted, and thus, a minimal example should contain only the commands necessary
to provoke the bug. QuickCheck does this both by shrinking the arguments of com-
mands, and by repeatedly deleting commands from the sequence, provided the test
case still fails. For example, if there is a fault in the function d/1 on some specific
input V1, an original test case:

a() -> ok
V1 = b()
c(V1) -> ok
d(V1) -> error

might be shrunk to the simpler sequence:
V1 = b()
d(V1) -> error

The notation used here works as follows. Executing a command (for instance a())
results in the value to the right of the arrow (ok). If however, the actual value is not
interesting in itself (such as a pointer when testing C-code), “V1 =” is used, where a
variable (V1) replaces the actual value and is used in the rest of the example. This
helps clarifying where the same pointer is used, as a variable V1 is easier to keep
track of than a pointer value such as 18759424.
In the shrunk example, it is clear that the error is either in the output produced by
b/0, or in the way d/1 handles the input V1. Therefore, there is no longer a need
to consider a/0 or c/1, and the process of debugging this error is simplified.

2.3 FindExamples

The idea of the FindExamples tool is to make the abstract QuickCheck properties
easier to understand. For larger programs, especially those requiring setup before

11

2. Theory

running, the required properties and state machine models can become quite com-
plex and hard to understand. It also becomes increasingly difficult to know what has
actually been tested, as samples of test cases are generally large and unstructured
due to their randomness.
To simplify the understanding of difficult concepts, concrete examples are often used.
This is true for properties and models as well, and by giving concrete examples
of the system behaviour, the FindExamples tool can make the understanding of
QuickCheck properties and models easier. The tool works on state machine model
specifications, generating what is thought to be interesting examples of when the
tests pass. A test case, that is, a sequence of commands run on the API of the
program under test, may either pass or fail due to a number of reasons. These
include the program crashing, or that the program behaviour deviates from the
model.
Of course, simply generating random tests that pass and presenting them to the
user is not likely to be helpful. The examples must somehow be filtered to obtain
only the interesting ones, which let the user understand the behaviour of the system
from just looking at the sequence of commands and their output.
This is where the shrinking capabilities of QuickCheck come in. By using a heuristic
to determine whether or not a test case is interesting, and then shrinking it while
it is still interesting, the examples that are generated are both interesting (from the
heuristic’s point of view) and minimal. Such examples are thus suitable to show to
the user. To allow the generation of several different examples at once, the concept
of features is used to avoid generating examples that are too similar.

2.3.1 Feature based testing

QuickCheck is not only able to generate and run individual tests, it is also able to
generate suites of tests using the eqc_suite module. These can be used as static
regression tests, where you can be sure the same things are tested each time the suite
is run. The way QuickCheck generates such a suite is by using the concept of features.
A feature is an attribute of a specific test case, and could be for instance a list of
the names of the commands executed, or the length of the list of commands. By
randomly generating tests, inspecting what features they exhibit, and then keeping
track of the features already found, a suite that covers as many different features as
possible (within a given time limit) is generated.
The features of a test are specified by the user when writing the property by wrapping
it in a call to eqc:features/2. A feature can be any Erlang data structure, and
each test case can have a list of any number of them. By assigning tests features
in clever ways, one can generate test suites for many different purposes, and this
approach is used to great effect in FindExamples.
A special and useful feature that eqc_suite provides built-in support for is code
coverage, that is, information about what parts of the code are executed by the test
case, and QuickCheck provides functions that let users create test suites that cover

12

2. Theory

as much of the code as possible. There are two different levels of coverage that can
be used, line coverage from the cover module, or the more fine grained expression
coverage provided by the eqc_cover module, included in QuickCheck.

2.3.2 MoreBugs

Another technique used by FindExamples is the prototype tool MoreBugs, an ex-
tension to QuickCheck. The purpose of MoreBugs is to find several bugs in a single
run, by keeping track of what bugs have been found so far. For instance, say there is
a bug in a function f that can be provoked by calling it directly without any setup.
If there is a bug in another function g that requires other commands to run before
it can be executed, it is very likely that QuickCheck only finds the bug in f, as that
will be generated much more often.
In order to keep track of previously found bugs, MoreBugs generalizes bugs into
patterns, and makes sure no tests that match already found patterns are generated
as testing continues. This is made possible by the syntactic generalization used –
bugs are characterized by the commands and arguments that are used to provoke
them, something that can be compared during test case generation. This allows for
the avoidance of already found bugs altogether – there is no need to fully generate
a random test only to discover it finds an old bug.
The tool is also able to detect when bugs subsume each other, that is, when a
counterexample is a more general form of the same bug as another counterexample.
For instance, if there is a bug in the function f/2, that is provoked only when it is
called twice with the same first argument, one counterexample for it could be:

f(a, b) -> ok
f(a, b) -> {’EXIT’, ...}

However, the following counterexample is more general, and arguably more clear, as
it shows that it is in fact the first argument that matters:

f(a, b) -> ok
f(a, c) -> {’EXIT’, ...}

For these two counterexamples, the second would subsume the first by being more
general. In FindExamples, the parts of MoreBugs that perform the comparisons on
bugs are used when abstractly comparing examples by their features, to avoid the
rediscovery of similar examples.

2.3.3 The original heuristic: delete

To determine whether an example is interesting or not, the FindExamples tool uses
a simple heuristic. If the deletion of a single command makes the test fail, it is
considered an interesting example. The example is then presented as the original
list of commands that pass the test, and which command to delete in order for
the test to fail. The failing and deleted command also make up the feature of the
test case, used by eqc_suite, where the commands are abstracted using code from

13

2. Theory

MoreBugs to avoid finding multiple copies of the same example.
In this context, failing does not mean that the commands remaining after deletion are
executed and checked for failure. Instead, the hypothesis that the deleted command
does not affect the behaviour of the commands following it is tested until it fails,
in which case a good example has been found. The testing is done by only running
the model, as the results of running the commands are already available, so there
is no need to re-execute them. If the pre- or postcondition for any command fails
during this testing, the deleted command must have affected it in some way and the
example is thus considered good.
To illustrate this, consider an example using the Erlang registry. Registering the
same process twice is not allowed, and thus, the program should return some negative
result, a caught exception in this case. By using the delete-heuristic, FindExamples
may come up with the following good example:

1. V1 = reg_eqc:spawn()
2. reg_eqc:register(a, V1) -> true
3. reg_eqc:register(b, V1) -> {’EXIT’, {badarg, ...}}

Deleting command 2 changes the behaviour of command 3:
1. V1 = reg_eqc:spawn()
3. reg_eqc:register(a, V1) -> should not fail

Running the resulting shorter sequence of commands, one would expect to get:
1. V1 = reg_eqc:spawn()
3. reg_eqc:register(b, V1) -> true

This is a valid use of the registry, and should pass if executed as a test. However, as
FindExamples checks the postconditions using the values from the original sequence
of commands ({’EXIT’, {badarg, ...}} for command 3 in this case), the post-
condition of command 3 will fail, as it gets true instead.
Thus, the heuristic has found a good example, and one could argue that this actually
is a good example; it illustrates the fact that an Erlang process is only allowed to be
registered to one name. In general, this heuristic is good at finding examples that
showcase the interplay between two commands, where the deletion of one modifies
the behaviour of the other.

2.3.4 Drawbacks with the delete-heuristic

There is however still room for improvement in the prototype tool. One weakness
that was found during the development of the original tool was its inability to find
interesting behaviour that is not clearly visible after only one command deletion.
A concrete example of this is when generating examples for a model of the dets
module. dets provides permanent file storage and works like a key-value store. In
order to use a dets table, it must first be opened, and after using it, it should be
closed, much like operating on a regular file. One very important property of a dets
table is whether or not the contents are kept after closing it. Optimally, this should
be illustrated by the examples generated by FindExamples, by showing an example

14

2. Theory

where data is accessed both before and after closing the table.
This is not the case however, as the tool seems unable to generate such an example.
The reason for this is that deleting only one command will provoke a simpler good
example, as is illustrated by the following example:

1. open_file(dets_table, [{type, bag}]) -> dets_table
2. insert_new(dets_table, {2, 0}) -> true
3. close(dets_table) -> ok
4. open_file(dets_table, [{type, bag}]) -> dets_table
5. lookup(dets_table, 2) -> [{2, 0}]

This sequence shows the fact that closing and opening the dets table keeps its
contents. Now, if the delete-heuristic were to delete the close command, the second
open would fail (opening twice is not allowed), and a change in behaviour would be
found. However, to illustrate that behaviour, the other commands are not necessary,
and the original example would be shrunk to just:

1. open_file(dets_table, [{type, bag}]) -> dets_table
2. close(dets_table) -> ok
3. open_file(dets_table, [{type, bag}]) -> dets_table

which does not show the fact the contents are kept. This issue is similar for many
instances of examples where the behaviour is unaffected by the deletion of a sequence
of commands.

2.3.5 Parameterized modules

A special technique sometimes used in Erlang is parameterized modules [25]. This
language feature was only introduced as an experimental part of Erlang, and was
later dropped, but it is still possible to use it through a parse transform. A parse
transform can change or add functionality in a module by modifying its syntax tree
during compilation, allowing for some patterns to be abstracted away and hidden
from the programmer. One of these patterns is the parameterization of modules,
provided by the pmod_pt transform, allowing for extra arguments to be passed to a
module, making them implicit arguments to all functions in the module.
The reason for parameterized modules being used both in QuickCheck and this
thesis, is that they allow writing modules that “wrap around” other modules, to
extend their functionality. For example, one could imagine a performance critical
algorithm that requires memoization to be efficient. Then, one could implement
the algorithm without memoization in a module A, not involving the complexity of
the state associated with memoization, and a separate module M that can perform
memoization on any module using a certain interface. By using the module M:new(A)
to call the functions of A, the memoization will be used without any extra effort.
The concept is somewhat similar to inheritance in object oriented languages. In
QuickCheck, eqc_fsms are wrapped in a parameterized callback module that has
the same external interface as an eqc_statem module, using the internal eqc_fsm
interface to compute the results. Thus, the code used to handle both kinds of state

15

2. Theory

machines can be the same, avoiding unnecessary code duplication.

2.4 QuickCheck CI

To simplify development of open source projects, the web service QuickCheck CI
provides full access to the Erlang QuickCheck library through its build server. Users
can connect their GitHub repositories and have the QuickCheck CI server run Quick-
Check on any properties in the code. The properties are grouped by modules, and
each property may also hold a set of counterexamples. Figure 2.1 shows the view of
an example project with several properties. A history of the previously performed
builds, and the results of the testing for them is also available.

Figure 2.1: The project view of the QuickCheck CI web page, showing that the
two modules locker_eqc and myqueue_eqc contain QuickCheck properties. The
myqueue_eqc module is expanded to show the properties that have been tested
from it. At the top, the red and green circles represent previously failed and passed
builds, respectively.

Each time a property fails when tested, the counterexample that falsified the prop-
erty is saved and then retested each coming build. The examples thus work as a
form of regression test suite, preventing old bugs from reappearing unnoticed. The
counterexamples are displayed as can be seen in Figure 2.2, along with a button
to deactivate each example, “active”. By deactivating an example, it is no longer
run for coming builds, which can be useful for examples that are no longer relevant.
Reasons for this can be a change in the specification or the API of the program.

16

2. Theory

Figure 2.2: An expanded view of the property prop_locker that has a few old
examples saved. These are old counterexamples that have failed at some time during
the development of the program, and are now used as regression tests. The “Output”
column displays the test in a human readable form, whereas the actual data structure
of the example is shown to the left, useful for debugging.

17

2. Theory

18

3
Methods and implementation

The work done in this thesis can be divided into two main parts: the integration
of the FindExamples tool into the QuickCheck CI web service, and the study and
development of new heuristics for finding good examples. Due to the unfamiliarity
with both Erlang QuickCheck in general, and FindExamples and QuickCheck CI in
particular at the start of the project, the integration part of the work doubled as an
introduction to the systems.

3.1 Study of the systems

The first goal was to become familiar with the QuickCheck state machines used to
test stateful code. Bundled with the FindExamples code provided by Quviq were
several example modules used to test the tool, and these served as a template for
developing a new example from scratch, a simple model of a bank. The choice of
example was made based on the desire to have several actions depending on the
state of the program. This is certainly true for a bank, where the state must be kept
correct to avoid angry customers.
Keeping the example quite simple, the bank module performs only basic operations,
such as creating users, accounts, and depositing or withdrawing money. In order to
introduce more state, some operations require the user to be logged in, and all of
them also require the bank to be open. Of course, the user and account must also
exist for a transaction to be successful. A typical example of the use of the bank API
is the following sequence of commands, where a user deposits some money. In the
banking examples to follow, u1, u2, ... are users, and p and a stand for password
and account respectively:

1. open() -> ok
2. create_user(u1, p3) -> {u1, p3}
3. login(u1, p3) -> ok
4. create_account(a2, u1) -> {a2, u1}
5. deposit(u1, p3, a2, savings, 10) -> 10

In parallel with the development of the bank example, a QuickCheck specification
was developed, using the callback-behaviour defined in eqc_statem. This was a
helpful exercise in using the “new” parts of QuickCheck. Furthermore, the model
was used to continuously test the implementation during development. The most im-

19

3. Methods and implementation

portant parts of the source code for this example can be found in Appendix A.

3.2 Integration

Due to the fact that QuickCheck CI already handled examples before the introduc-
tion of the FindExamples tool, the integration did not require modifications to the
foundation of the web server, and also, the database could be kept intact. When a
regular property fails, the counterexample is stored in the database as an example
that will be run for each successive build of the project. The example is also shown
within the property in the web interface, along with the result of running it and
the corresponding output. Thus, the examples found by the tool did not have to
be modified to be stored in the database, however, the handling of examples had
to change significantly in order for them to display correctly – and for the new ex-
amples from FindExamples – to even be generated in the first place. There were a
few other issues to solve, one of them being the way examples are grouped.

Figure 3.1: Similar examples from the registry model grouped together in Quick-
Check CI, differing only in the names used for registering, a and b.

Grouping of examples is done to avoid several examples showing the same bug or
behaviour from being displayed, by comparing the examples abstractly to ignore
insignificant differences such as differing concrete values of arguments. For instance,
if a process identifier (pid) used in two otherwise equal examples of the registry model
differ, the examples should still be grouped together. Figure 3.1 shows how this is
displayed in the web interface. Since the new type of examples contain more data
than just the commands that are run (for instance the index of the failing command),
they might not compare equal when they should be considered equivalent. This issue
was solved by comparing such examples only by their abstracted feature and not
the entire data structure.

20

3. Methods and implementation

3.2.1 Modifications to the API of FindExamples

The original version of the FindExamples tool was an early prototype, and as such,
there were plenty of things that needed to be cleaned up and simplified before
using it further. The first example of this was the way the tool was used. In or-
der to generate examples, one would have to write a special property that would
not be possible to test with regular QuickCheck. Also, an internal and undocu-
mented function had to be used within this special property. The way this was
remedied was by changing the API of the tool completely, introducing a new func-
tion find_examples:generate_examples/5 that acts as a wrapper around a regular
property, allowing it to still be used with regular QuickCheck without modification.
See Listing 3.1 for an example of how this function is used to construct a prop-
erty.

Listing 3.1: A property generating examples for a model of the Erlang registry.

1 -include_lib("eqc/include/eqc.hrl").
2 -include_lib("eqc/include/eqc_statem.hrl").
3 prop_registry() ->
4 ?FORALL(Cmds,commands(?MODULE),
5 begin
6 % Setting up for a new test
7 [catch erlang:unregister(N) || N <- ?NAMES],
8 {Hist, _State, Res} = run_commands(?MODULE, Cmds),
9 find_examples:generate_examples(?MODULE, Cmds, Hist,

10 Res, Res == ok)))
11 end).

The find_examples:generate_examples/5 function takes as arguments the mod-
ule and regular QuickCheck property in question, as well as the commands run,
the history (containing the output from running them), and the actual result of the
test. Given these, it checks whether or not the list of commands can be used to
find a good example. If the property is being run by regular eqc:quickcheck/1,
the wrapper will behave exactly as the inner property. It will only generate the
examples when run by the special find_examples:find_examples/1 function, that
takes a property as its only argument. It runs the example generation, returning
the resulting list of examples.
Choosing how the property behaves depending on what context it is being called
from was implemented in a slightly tricky way. The generate_examples/5 func-
tion must realize that it should generate examples, and thus find_examples/1 must
somehow notify the property of this. To do this, the fact that QuickCheck prop-
erties are actually generators is used, along with the eqc_gen:with_parameter/3
function, that passes an arbitrary argument to the property. This parameter is then
read from within generate_examples/5, and the appropriate action is taken based
on its value.
Another important aspect when integrating the FindExamples tool into QuickCheck

21

3. Methods and implementation

CI was the fact that the web server must be able to tell what properties are capable
of generating examples, that is, contain a call to generate_examples/5. Since a
property is basically a generator for a zero-argument function, it is not possible to
see what it contains from the outside; the eqc:prop() type is opaque. One way of
solving this would have been to use global state, for instance in the form of the Er-
lang registry, and register a process from within the property if it is able to generate
examples. However, a cleaner approach was to instead make the programmer an-
notate their properties with a module attribute -generate_examples(Prop_name),
which can be read by the web server before deciding to generate examples or not.
This saves it from running the example generation unnecessarily, as though reg-
ular properties will not make find_examples/1 fail, running them is a waste of
time.

3.2.2 Finding bugs

During development, with planted bugs in the test-programs, it became clear that
some bugs that QuickCheck was very unlikely to find in just 100 test runs were actu-
ally more likely to appear when running the feature-based generation of examples.
One very clear example of this was in the banking example, where the following
bug was planted: The “+”-sign in deposit was replaced with a “-”-sign. See Ap-
pendix A.1 for the source code of the banking program without the bug. This is a
very serious bug, but hard to find in a relatively small amount of random tests, due
to the depth at which it occurs; after a user is created, logged in and an account is
setup; the user must be successfully used to first deposit and then try to withdraw
some money. To help the user find such bugs, should FindExamples stumble upon
them, the tool was extended to not only return the good examples found by the
heuristic, but also a list of bugs found. This way, the effort of finding such bugs is
not wasted. In QuickCheck CI, these bugs are handled just like counterexamples for
failing properties.

3.2.3 Pretty printing

When displaying examples in the terminal, a textual representation is used, gen-
erated by the FindExamples tool. The way this was done prior to the thesis was
mainly meant for debugging, and was not easily comprehensible for first time users.
To simplify the output generated, but also make future extensions to the printing
capabilities possible, the printing part of the tool was largely rewritten. Internally,
the printing code uses the standard Erlang library prettypr. The library is based
on a similar Haskell library [26], and provides combinators for constructing nicely
formatted documents. The prettypr module provides a function for converting
such a document into plaintext that can be printed directly to the terminal. The
prototype tool contained code for generating such a document and then converting
it to plaintext, but also for generating LATEX-code directly, without using pretty
printing.

22

3. Methods and implementation

Web

Instead of adding a third heap of printing code to specialize the printing for web dis-
play, the existing code was modified to use an internal data type to encode the data
needed to print examples and commands, somewhat emulating the data structure of
the examples themselves, but also containing the contextual information needed to
distinguish different scenarios when printing. For example, if a piece of text needs
to be printed in a special way, or in some way be marked, that part of the data
structure is tagged with a special value for that kind of marking, like deletion or
failure. To do this, the data structure had to be built from the ground up, with new
types for print-examples, commands, and calls. This meant that prettypr library
could not be used directly as it is, but instead the resulting data structure could
later be translated to a prettypr document containing either plaintext for terminal
output or HTML code for web output.

Latex

Apart from the plaintext and HTML formats that use prettypr, support for gener-
ating LATEX-code from the internal data type was also implemented. Since the con-
textual information is included in the data structure, the amount of code needed for
adding a new printing format was reduced. With working LATEX-generation, print-
able documents could easily be produced automatically from sets of examples.

Compact

As the development of heuristics went on in the second part of the work, where dif-
ferent heuristics required different printing, the printing code needed to be extended
to handle the new ones as well. Furthermore, a way to compactly present a col-
lection of examples from different heuristics was needed. For instance, an example
from the original delete-heuristic consists of two command sequences, one with the
deleted command still left and one without. Such an example could actually be
seen as two examples consisting just of their respective list of commands, meaning
they have nothing to do with the heuristic they were found by, and thus examples
of different kinds can be printed in a unified format alongside each other. Another
advantage of this approach is that some examples, from possibly different heuristics,
can be merged, as they may use the exact same sequence of commands. This was
very useful for the evaluation, where examples from different heuristics needed to be
presented in a concise form on a piece of paper to people that had little experience
with QuickCheck (details on this evaluation can be found in Section 3.4.1).

3.3 Improvement of heuristics

As the integration was becoming more and more finalized, the work started shifting
towards the spawning of ideas for new heuristics and possible improvements to the

23

3. Methods and implementation

old one. This section explains the work carried out consisting of studying available
literature and experimenting with ideas for new and improved heuristics.

3.3.1 Literature study

Despite the lack of literature relating directly to the problem of generating repres-
entative examples from properties, there is much interesting literature regarding the
generation of tests in general. To get some inspiration and ideas of how the heur-
istics could be improved, and also to learn about what had been done previously,
this area of literature was studied. Some of the most relevant literature is cited in
Section 1.4.

3.3.2 Ideas for heuristics

The integration work with the original FindExamples tool was not only good in that
it improved the functionality of QuickCheck CI, it was also a good introduction
to QuickCheck in general, and the concept of generating examples in particular.
During this work, a few ideas were forming, and a lot was learned about the more
advanced uses of the QuickCheck library. Quite early on, a discussion with John
Hughes led to some good starting points in the search for new heuristics. Two ideas
that arose during this discussion were the use of coverage based generation, and the
idea of reusing some of the ideas behind Randoop when generating commands [27].
During the implementation of these ideas, a third potential idea formed – a slight
modification of the original delete-heuristic into a swap-heuristic.
Later on in the project, ideas for not only inventing new heuristics, but also tweak the
original ones were forming. These include the deletion of several commands and the
use of contextual information to determine whether test cases are interesting.

3.3.3 New heuristic: coverage

Often when developing software, the quality of test suites is measured in the percent-
age of coverage they obtain, that is, how large a part of the executable expressions
are actually executed during a run of the test suite [28]. Different coverage tools
have different granularities when it comes to the level of detail they can track, for
example, the Erlang cover module tracks only line coverage, whereas the eqc_cover
module is able to track individual expressions, and is thus able to provide better
statistics. Furthermore, the eqc_suite module contains functions for generating
test suites that cover as much of a module as possible.
It was thus natural to use coverage as a first attempt of an alternative heuristic,
given that there already exist functions handling coverage in the QuickCheck library,
as well as the fact that it is such a simple and quantifiable metric to measure the
supposed quality of tests. Since coverage tools were already available, the task of
implementing this heuristic was not too hard, and a working implementation was

24

3. Methods and implementation

easily produced and tested on a few of the example programs available.

3.3.4 Modified command generation

In an attempt to improve the performance of the coverage based generation, a
Randoop-styled command generation technique was also implemented. This gener-
ator did eventually make its way to other heuristics too, as it was implemented in
a very general way, and could in principle be used by most other conceivable heur-
istics. However, due to an issue that was found late in its development (explained
in Section 4.2.2) this generator was not used in the version that was eventually
evaluated.
The idea is to try and start from previously successful command sequences when
generating new ones, to reuse some of the good sequences found earlier. One example
of this would be the following. Suppose you wanted to generate a valid withdraw
command in the bank example, but there was already a sequence with a valid deposit
command:

1. open() -> ok
2. create_user(u1, p1) -> {u1, p1}
3. login(u1, p1) -> ok
4. create_account(a1, u1) -> {a1, u1}
5. deposit(u1, p1, a1, 42) -> 42

Simply adding the command withdraw(u1,p1,a1,5) to this sequence of commands
would showcase a valid withdraw, which is much more likely to generate than gen-
erating the entire sequence of the 6 commands from scratch randomly.
To do this, the generator that generates the commands run by run_commands/2
had to be modified, to not only generate the commands completely randomly, but
also maintain a set of candidate sequences to build on top of. This being Erlang,
the implementation was done as a server process, getting command sequences from
the property when they pass, and sending them to the command generator when
it produces the next sequence. To ensure some new commands are still generated,
the generator uses a weighted probability when it chooses between generating new
commands, and reusing and extending old ones. By keeping the server internal to
the example generation module, this command generator is as easy to use for the
user as the regular built in generator.
The first version of this generator suffered from a big problem, namely shrinking.
With the server generator, QuickCheck was not able to shrink command sequences,
and thus, the resulting examples were very long (up towards one hundred commands)
and not very useful. To remedy this, a suggestion from John Hughes was to use a
parameterized module to wrap around the state machine module, and maintain the
command candidates there. This way, the command generation can be done one
command at a time, as this allows QuickCheck’s shrinking to work as usual.
Parameterized modules are explained in Section 2.3.5, and by using them, the com-
mand generator can be easily applied to any heuristic. The interface is simple, the

25

3. Methods and implementation

command generator is replaced by a heuristic-specific generator that delegates the
call to the command server through the parameterized module, and once a good
example has been found, it is sent to the server from within the property that
searches for examples. The server is able to store only the fully shrunk examples by
caching the last received command sequence until a new test is begun, avoiding the
unnecessary storing of excessively long examples.

3.3.5 New heuristic: swap

A natural modification to the original heuristic of deleting commands and observing
any differing behaviour, is to instead modify the arguments to the commands and
observe the resulting new behaviour. An example of this could be the following,
where the fact that two users can be created in the system is illustrated:

1. open() -> ok
2. create_user(u1, p1) -> {u1, p1}
3. create_user(u2, p2) -> {u2, p2}

If the first argument of command 2 is changed to u2, command 3 should change be-
haviour to return false instead, showing that a user cannot be created twice. Both
these scenarios are interesting, and indicate that the idea of changing arguments
can find good examples.
To implement this heuristic, one has to be able to randomly generate new argu-
ments. Using the QuickCheck generators available in the model, this is easily done,
however, once again shrinking was affected by using this naïve approach. By gen-
erating the arguments separately from the commands, the result of trying out a
set of commands may differ from run to run, since the arguments are generated
non-deterministically. This showed up as poorly shrunk examples littered with un-
necessary commands.
To avoid this issue, a suggestion from John Hughes was used; generating an altern-
ative command directly. By doing this, both the commands and their arguments
will shrink together, moving the randomness to a single point, allowing shrinking
to work as it should. Much like the command server generator explained earlier,
the generator had to be extended, and again, a parameterized module was used
(since nested parameterized modules are allowed, it is actually possible to use the
command server for the swap-heuristic too).
When generating a command, the parameterized module uses the underlying com-
mand generator in the state machine model, and generates a pair of valid commands
given the current state of the model. The command name is the same, but the argu-
ments may differ and thus be the source of a good example. Now, since QuickCheck
executes the model to check preconditions during the command generation, the calls
returned must be valid calls, they cannot simply be a tuple of calls as that cannot be
executed. Still, both the calls must be available in the data structure that is passed
on, as that is all that will be available to the heuristic. Instead, a small trick is used,
where the erlang:apply/3 function is used in the following data structure:

26

3. Methods and implementation

{call, erlang, apply, [erlang, element, [1, {Cmd1, Cmd2}]]}

When passed to QuickCheck, it will behave in exactly the same way as Cmd1, but
both commands are still accessible to the property when finding the examples, and
so the alternative can be tried out in place of the original, essentially a modification
of the arguments to the command.
Apart from the command generation, the overall structure of the implementation
of this heuristic was quite similar to that of the original delete-heuristic; it uses
eqc_suite:feature_based/1 and a property determining whether or not a test
case is interesting, and many of the other ideas from the original heuristic. These
include the avoidance of re-adding already found examples by checking an ets-
table before adding them, and pruning duplicate examples when done. Also, the
abstraction techniques fromMoreBugs were used to abstract the features of examples
when comparing them. The feature used in this heuristic consisted of the reason
for failure, along with the abstract representation of three commands: the one that
changed behaviour, and the original and modified version of the command that
changed arguments.

3.3.6 Extensions of the delete-heuristic

One of the weaknesses of the original delete-heuristic was its inability to find ex-
amples showcasing the state-preserving behaviour of a program, for instance the fact
that a dets table maintains its contents after closing and re-opening it. To try and
find such examples, a modification to the original delete-heuristic was made, namely
that the deletion is not limited to a single command, instead, a whole sequence of
commands can be deleted, provided that the resulting program behaves in the same
way as the old one. Thus, the close and open calls in dets would be candidates
for deletion of this heuristic, as the behaviour should be the same before and after
deleting them.
To get this working, one must be careful to choose when, and what, commands are
allowed to be deleted, as well as choosing a suitable feature to not have an infinite
stream of uninteresting examples unwillingly generated. The way this is done is to
restrict the deleted commands to be in immediate succession, and that they start
with a failing precondition (removing a call to close just before an open will make the
precondition of open fail, but then deleting open will make the test ok again).
Another detail needed in the implementation is an idea of “negative” and “positive”
commands. To avoid generating examples where the unaffected behaviour is not
interesting in the first place, a filtering is made on the commands, determining if
they were successful or not. Without this, a resulting example may look as follows,
where no interesting behaviour is shown, regardless of the deletion of commands 2
and 3:

1. open() -> ok
2. close() -> ok
3. open() -> ok
4. withdraw(u1, p1, a1, 10) -> false

27

3. Methods and implementation

As the heuristic knows nothing about the program, the user must supply the inform-
ation of what commands are negative, in the form of a callback function negative/1.
For the banking example, this would mean a function that returns true only when
given the value false, possibly also if given an exception. If the user has not im-
plemented the negative function, all return values are assumed positive, allowing
the heuristic to continue working, albeit with lower quality examples as a result. In
many of the examples tried, it is worth the small effort of defining this function,
as it is often the case that a program uses a few values to indicate failure, and by
using a function for this purpose, the user can use all the power of Erlang, including
pattern matching, to define the set of negative return values, for example, any type
of exception or error, with a single line of code.

3.3.7 Combination of heuristics

In an effort to combine the strengths of two previous heuristics, the modified delete
and swap, a new method was tried out and implemented. It uses a combination of
deleting and modifying commands while trying to find interesting examples. Thanks
to the two heuristics being rather similar, quite small modifications were needed to
make them work together. The idea is that some behaviour is better illustrated by
removing the command entirely rather than modifying the arguments, as that often
results in the command becoming useless – the new arguments are invalid and thus
don’t change the state of the system – making it equivalent to deleting the command
altogether. The reason for wanting to delete the command instead is that it is easier
to read when the command is removed, and not just invalidated. Furthermore,
given the inability of the swap-heuristic to modify zero-arity commands, the delete-
heuristic was deemed a good complement.
When combining the two heuristics, the resulting examples will have features of
differing types, making them hard to compare, meaning there might be similar ex-
amples from the two heuristics that show the same thing. To avoid redundancy, some
way of combining results of different types was required; especially when wanting to
present the examples in a concise and simple way. Because of this, a compact ver-
sion of examples was introduced, more like a regular QuickCheck counterexample,
namely a list of executable commands. The difference here is that also included are
the results and an abstract representation of the commands. This way, the compact
examples can be printed with their result easily, and similar examples can be pruned
away.
Each delete or swap example is turned into two compact examples, the original
list of commands and their recorded results are trivially turned into one, while the
second requires some more work. From the example data structure, the alternative
list of commands can be constructed, by either deleting or swapping the relevant
command. The resulting list of commands is then executed to obtain the actual
results (not only from the model) of running it, and the second compact example
can be constructed. The compact examples can now be mixed from both heuristics,
and any duplicates can be removed, further decreasing the space needed to display
them.

28

3. Methods and implementation

3.4 Evaluation of heuristics

During early development, the main evaluation of how a heuristic performed was
done by comparison with the existing delete-heuristic. For a new heuristic to even
be considered for more thorough evaluation, it must at least perform on par with
the existing delete-heuristic. At an early stage in continuous development, the com-
parison is made on the fly, as the examples generated by the delete-heuristic are
fairly constant and easy to understand, so it is quickly evident if a new candidate is
consistently missing some examples previously found. Conversely, given the many
runs of the delete-heuristic during the web-integration, any new example found by
a candidate heuristic would likely be noticed.
In order to get more formal results of the usefulness of the new heuristic, an exper-
iment similar to one conducted at the end of the FindExamples prototype project
was carried out.

3.4.1 Evaluation experiment

During the Prowess research project, an experiment was carried out to test the ef-
fectiveness of the original delete-heuristic. It was carried out by letting test subjects
try to predict the outcome of a program given examples from the original Find-
Examples tool. This experiment was rather small in size, and was was focused on
testing only the heuristic, with no control group.
To get stronger results, a larger experiment was carried out as part of this thesis,
and a few modifications to the design of the experiment were made. As John Hughes
was lecturing a course on parallel functional programming involving Erlang during
the second half of the project, the students of the course were used as test subjects
during the break of a lecture. Each student was given two sheets of paper, one
containing representative examples of the banking program, and another containing
command sequences from the banking program without their results, for them to
fill in. Each such sequence makes up one task, and for each command, one point
could be scored.
The goal was to show that the final combined heuristic was really a helpful tool for
developers and to do so, it was compared with a reference set of examples. Thus,
half of the students were given the good examples from the developed heuristic,
whereas the other half were used as a reference group. Deciding which students
were given what sets of examples was done completely randomly, and the papers
had no connection to the students, leaving no way of identifying who had answered
what. Since the experiment was carried out in a lecture room, there was no need to
handle any personal information, and the anonymity of the participants was fully
maintained.
There were a few candidates for the choice of the reference examples. The easiest
way would be to generate random examples of the same size as those of the heuristic,
but this would likely not be very helpful, and the fact that the heuristic performs

29

3. Methods and implementation

better than random is not a very strong statement. Instead, the coverage based
heuristic was used, as that is the simplest and most obvious way of measuring
test quality, and it is an approach widely used in industry. Showing that the final
heuristic outperforms a suite of tests with maximum coverage would be a stronger
statement.
After getting the papers back from the participants, the results were collected and
the total score of each student was calculated. The mean and standard deviation
of the score of the two different groups were calculated. This was then used as the
measurement of performance for the two methods.

3.4.2 Statistical significance

When performing an evaluation with randomly chosen test subjects, the results must
be critically studied before drawing any conclusions from them [29]. In this case,
the sample of test-subjects is representative of the intended audience for Erlang
QuickCheck: functional programmers. The goal was to find a statistically signi-
ficant indication of the usefulness of examples. Thus, the null hypothesis for the
experiment was the following:

• The performance of the students with the good examples does not differ from
the performance of the students with cover-examples

To test this hypothesis, a two sample t-test with differing variances (also called
Welch’s t-test) [30] was used to compare the means of the two groups of students.
The reason for this choice is that although the underlying distribution of scores is
unknown, the distribution of the mean scores is likely to be normal, along with the
fact that the score is rather tightly bounded (0 is the absolute minimum, and the
total number of commands in the tasks is a relatively small integer). As for the
variance, it is also unknown, but since Welch’s t-test works for differing variances,
it is not an issue.
With this statistical test, the p-value threshold is set to 0.05. The p-value measures
the probability of making a Type I error, that is, rejecting the null hypothesis when
it is actually true. Thus, as long as the p-value is lower than the threshold, the null
hypothesis can be rejected with reasonable confidence.
Let the cover-group be group 1, and the group given the good examples be group 2.
Next, let x̄1, x̄2 denote the sample means of the two groups, and s1, s2 denote the
sample standard deviation, as defined by:

si =

√√√√√ 1
Ni − 1

Ni∑
j=1

(xi,j − x̄i)2

Where xi,j is the score of student j in group i.

30

3. Methods and implementation

The test statistic t can now be computed as follows:

t = x̄1 − x̄2√
s2

1
N1

+ s2
2

N2

To be able to test the hypothesis and perform a two tailed test, the degree of freedom
needs to be approximated using:

v ≈
(s2

1
N1

+ s2
2

N2
)2

s4
1

N2
1 (N1−1) + s4

2
N2

2 (N2−1)

Now, given t and v, the p-value can be computed using the t-distribution, either by
a table or more exactly by using statistical software, for instance scipy for Python1,
to determine if the experiment showed a significant difference; that is, if p < 0.05.
A two tailed test is used, as no assumption on the performance of the two methods
can be made.
Another important statistical measure to consider is effect size, also mentioned in
[30], which gives an indication of how much of a difference there are between the
means of two populations [31]. The effect size is calculated by using the means and
the pooled standard deviation:

spooled =
√

(n1 − 1) ∗ s2
1 + (n2 − 1) ∗ s2

2
n1 + n2 − 2

The effect size d or Cohen’s d is then calculated as:

d = x̄2 − x̄1

spooled

According to general practice, there are three “guideline” levels of d-values, where
0.2, 0.5, 0.8 correspond to small, medium and large effects, respectively [31].

3.4.3 Selection of examples

To conduct the experiment, two sets of examples had to be created. For the cover-
heuristic, there was a theoretical maximum of examples that could be generated:
once the set of examples obtains full coverage, there will be no more examples
generated. The generation was thus set to run for long enough to obtain full cover-
age.
For the combined heuristic though, it was harder to select a representative set, as
1) the suite of examples generated each time differed slightly, 2) it is much harder,
if not impossible, to know when all possible examples have been found. Thus, a few

1http://www.scipy.org

31

http://www.scipy.org

3. Methods and implementation

tests were carried out. Letting the generation run for a long time (several minutes)
50 times, and comparing the resulting sets of examples, making sure there were no
significant differences.

3.4.4 Selection of tasks

In order to properly test the heuristic, a good set of tasks for the students had to be
selected. The tasks had to be hard enough to not be trivial even without examples
for help, but at the same time be possible to finish in around 15 minutes. Ideally, one
would want the tasks to be generated randomly somehow, to avoid any human bias
in them. However, after experimenting with generating tasks using QuickCheck’s
generators, it quickly became evident that doing so was in effect redoing the thesis
all over again, as it would require a new sort of heuristic. This approach was thus
discarded, and the manual method was used instead. The randomly generated tasks
did serve as an inspiration-source for the constructed tasks though.

32

4
Results and discussion

In this chapter, the results found during the thesis are presented. First, the successful
integration into QuickCheck CI is described, showing some examples of how the final
version looks. Second, the findings from the work of developing and improving the
heuristics are presented, along with the results of the experiment carried out to test
the usefulness of the generated examples. Finally, some general observations made
so far are also presented, related to the experiences of working with QuickCheck
testing.

4.1 Integration

In order to not affect the running web server, the integration work was carried out
on a local copy of the server, running the same code on a virtual machine. The work
went by without any major difficulties, and the resulting changes did not require
any deep changes in the structure of the server or database, as most of the new
functionality could be added using the existing infrastructure.

4.1.1 Refactoring the FindExamples API

It was not only the web application that needed to be updated, the FindExamples
tool also needed some modification to work properly in QuickCheck CI. The most
challenging part was to come up with a way for the web server to derive the purpose
of an opaque property. The final solution, making the user add a module attribute for
each property, was the best compromise attainable. Even though it requires some
extra work and code from the user, it saves the server from needlessly executing
properties to find out whether or not they are able to generate examples, as that
was one of the original ideas to solve the problem. A further advantage of the chosen
approach is the simplicity of it, there is no extra code needed in the FindExamples
tool, and the check added to the web server is very straightforward.

4.1.2 The web interface

By upgrading the printing code within the FindExamples tool, the addition of the
new examples to the web interface was made much simpler. The web server uses

33

4. Results and discussion

Figure 4.1: The output from one of the examples from the banking program. It
shows the feature of the test by underlining and colouring the relevant commands.
This particular example illustrates the fact that the account must be created before
any money can be deposited to it.

the printing code from the tool to produce the output shown to the user. Figure 4.1
shows how a good example is displayed to the user, clearly showing why the sequence
of commands is an interesting example.
The web page keeps track and re-tests all examples found for each new build the
user makes, and one of the additions is the ability to recognize changed behaviour in
examples. A change in behaviour can be that the bad part of an example suddenly
passes, or that the feature of the test case changes from what it used to be. These
events are reported as failures to the user, and are thus clearly visible. Figure 4.2
shows what a changed example looks like after fixing a bug.
When the number of examples for a property grows, it becomes hard to keep track
of new ones in the overview (see Figure 4.3). To clearly mark when new examples
are found, the build in which they were first detected is tracked, and those examples
are shown in blue.

4.1.3 Integration of new heuristics

As the project focus was shifted more towards the development of heuristics, new
types of examples were created and required a few changes to the previous integ-
ration to work. In parallel with this development, the QuickCheck CI code was
updated to work with all of the new heuristic techniques, with the exception of the
cover-heuristic, as that uses the same coverage-tool used by QuickCheck CI for meas-
uring coverage of tests, and nesting of coverage collection is not supported.

4.2 Improvement of heuristics

Throughout the work of developing improvements to the heuristic of FindExamples,
many ideas were tested with varying amounts of success. The original delete-
heuristic continuously served as the basic benchmark for all new ideas. For them

34

4. Results and discussion

Figure 4.2: An example that has changed its feature after a bug in the model was
fixed from an earlier build. The reason for the bug was that the model did not check
that the user was logged in when creating an account.

Figure 4.3: An overview of the examples for a property in QuickCheck CI. Green
means that the example is passing, whereas blue is a passing test that was found in
the current build.

35

4. Results and discussion

to be considered promising, they either had to perform at least on par with the
original heuristic, or in some way produce new kinds of examples that were not
previously found. This section presents the results found when trying out the heur-
istics introduced in the previous chapter, discussing some of their strengths and
weaknesses.

4.2.1 The cover-heuristic

The simple idea of generating tests that together cover as much of the model code
as possible sounds like a good idea; if all code of the model is covered – all the
interesting behaviour must surely be covered? Sadly, this is not true, and beyond
being slower than the original heuristic, the examples generated are not any better
in the case of the current example programs, even in the runs where all testable
code is covered.
One example that shows this is a case of the bank program, where a user successfully
deposits money to the same account twice. This would be a good example to show,
as the expected behaviour would be that the resulting balance is the sum of the two
amounts deposited. However, the second call to deposit will execute the exact same
code as the first (the code is available in Appendix A.1), and any example with two
calls to deposit could be shrunk to one with a single call, as the coverage will be
equal.
Another type of example that is not generated by the cover-heuristic, is an example
where the bank is closed and reopened, after which a valid transaction is performed,
showing that the bank keeps its state after closing (it would be very unfortunate
otherwise). Such an example would be impossible for the cover-heuristic to find, as
the state of the system is exactly the same before and after the close/open sequence,
so any test case that contains such a sequence will be shrunk to one without it, still
covering the same expressions.
These results are consistent with those found in several studies where the use of
coverage as a target for test suites is dismissed [32]–[34]. In [33], the authors recom-
mend the usage of coverage only as a measure of adequacy, that is, code coverage
can be useful in pointing out parts of the code that are not sufficiently tested, but
it cannot guarantee the quality of tests.
Coverage based test generation as a heuristic on its own is thus discarded, based
on the fact that it is not able to find some of the important examples the original
heuristic is able to find, despite it reaching its theoretical maximum and achieving
an effective cover of 100%. However, a more advanced heuristic using coverage as a
component, for instance while also using the model state, could still be a successful
strategy, and would be an interesting approach to investigate further.
Despite not using coverage successfully as a way of finding examples, it still serves
as a useful benchmark of what other heuristics can achieve, for instance in the eval-
uation experiment, as coverage is the standard approach to measuring test quality
in industry.

36

4. Results and discussion

4.2.2 Modified command generation

The idea of Randoop-style command generation originally seemed like a good idea,
and even though it was successfully implemented and used along (almost) all of
the heuristics tried, there were a few issues with it. These issues mostly related to
shrinking, and were thus very hard to get to the bottom with. Debugging errors in
shrinking is rather difficult, especially when the generator depends on an internal
state. Even though most of the issues were cleared, there is some unexpected be-
haviour when shrinking commands generated for programs with re-used variables,
in particular the registry example (also mentioned in Section 2.3.3), where pids are
used multiple times as variables. Here, when shrinking, the index of the variable
(specifying which value to use in a later command) sometimes gets offset, and thus
may cause a faulty value to be used, resulting in a crash. For instance, a call to
register may get a boolean value instead of a pid, which causes an exception.
Because of this, it was not deemed safe to use the command server extension for the
heuristic being evaluated, but it may become useful in the future if the bug is fixed.
Unfortunately, the underlying reason for it has not been found, although it has been
determined that it is only provoked during shrinking, as there are no issues when
the shrinking step is skipped altogether.

4.2.3 The swap-heuristic

For the swapping heuristic, the results are somewhat mixed but generally positive.
While it is able to find some very good examples that the delete-heuristic is not
able to find, one could argue that the examples produced are a bit more convoluted
and hard to make sense of compared to the original delete-heuristic. One example
of this is that some examples are quite similar to those of the delete-heuristic, but
instead of deleting a command, the swap-heuristic simply invalidates it (not as in
a failing pre-condition, but as in an unsuccessful command that passes but has no
effect), making the resulting example harder to read than the corresponding delete
example. This is illustrated in the following example:

1. open() -> ok
2. create_user(u1, p1) -> {u1, p1}

~ 3. login(u1, p1) -> ok
4. create_account(a1, u1) -> {a1, p1}

Command 4 changes behaviour if command 3 is changed to:
1. open() -> ok
2. create_user(u1, p1) -> {u1, p1}

~ 3. login(u3, p1) -> ...
! 4. create_account(a1, u1) -> should not return {a1, u1}

Where the login in the second part will have no effect, and could just as well have
been deleted.
On the other hand, the swap-heuristic introduces a family of new examples that
the delete-heuristic does not find. This includes examples showing whether or not

37

4. Results and discussion

something can be done twice for different values. For instance, it is not possible to
create two users with the same name, but two users may have the same password.
By being able to modify a command down to a single argument, the swap-heuristic
is able to better show how each argument affects the behaviour of a program. For
instance, the sequence of commands:

1. open() -> ok
2. create_user(u1, p1) -> {u1, p1}
3. create_user(u2, p1) -> {u2, p1}

would not be generated by the delete-heuristic, as deletion will not change the
behaviour, whereas changing the first argument of command 2 to u2 does.
Another type of example that is found is where a command that sets up the system
contains arguments that affect the behaviour of the rest of the program. An example
of this is the following example from a model of a simple FIFO queue, where the
argument to new/1 determines the size of the queue:

~ 1. V1 = q:new(2)
2. q:put(V1, 0) -> ok
3. q:put(V1, 0) -> ok

Command 3 changes behaviour if command 1 is changed to:
~ 1. V1 = q:new(1)

2. q:put(V1, 0) -> ok
! 3. q:put(V1, 0) -> call not allowed

This example illustrates how the size of the queue affects the amount of data that
can be put into it, and would not be possible to show using the delete-heuristic.
There are however some disadvantages to this heuristic, one of them being the
amount of examples it generates. This is not only an issue regarding running times,
but also the fact that too many examples may overwhelm a human user. For the
banking program, giving it enough time, the swap-heuristic can find several hun-
dred examples, compared to around 20 for the delete-heuristic. Even after pruning
away more general examples (using code from MoreBugs), there is an unreasonable
amount of examples.
This among other things stops the swap-heuristic from being as useful on its own as
the delete-heuristic. Apart from the sheer amount of examples it generates, there
is also the obvious limitation of it not being able to modify zero-arity commands.
For instance, every time the original heuristic is run on the banking example, a set
of open() -> ok, x -> false examples are generated, where x is any command
that has open as a precondition, and thus deleting it will make them fail. These are
not possible to find with the swap-heuristic.

4.2.4 Extensions of the delete-heuristic

As described in Section 3.3.6, a few modifications were made to the original heuristic
too. Overall, these proved to be quite successful, as the extended version was able
to find a few examples that the original could not, mainly those showing how state

38

4. Results and discussion

is maintained. This is evident in both the bank and dets example programs, for
instance the previously mentioned close-open example for dets:

1. open_file(dets_table, [{type, bag}]) -> dets_table
2. insert_new(dets_table, {2, 0}) -> true
3. close(dets_table) -> ok
4. open_file(dets_table, [{type, bag}]) -> dets_table
5. lookup(dets_table, 2) -> [{2, 0}]

Deleting the commands [3,4] does not change the behaviour of the program:
1. open_file(dets_table, [{type, bag}]) -> dets_table
2. insert_new(dets_table, {2, 0}) -> true
5. lookup(dets_table, 2) -> [{2, 0}]

This example shows that the table maintains its contents after closing and re-
opening. The feature of this example consists of the first deleted command (close),
and the first successful command afterwards (lookup). The concept of successful
here comes from another extension, the idea of negative return values. By restrict-
ing the feature to only contain positive commands, the quality of the generated
examples is increased. Without the restriction, examples on the form similar to the
one above could be generated, but with an unsuccessful lookup instead, and thus
not showing anything of interest – there is no indication of whether or not the table
maintains its contents. Thus, the addition of negative return values is necessary for
the multi-deletion not to produce too many examples, some of which will not be
interesting. The usefulness of this extension thus heavily depends on whether or not
the user has implemented the necessary negative/1 callback function, as without
it, such bad examples may be generated.

4.2.5 The final heuristic

After much internal testing of these heuristics, it seemed the best results (in view
of the example programs described throughout this thesis) were obtained using the
combined heuristic, that is, both the extended delete- and swap-heuristic. This
heuristic seems to benefit from the strengths of both its components, and by merging
the resulting examples as described in Section 3.3.7, the amount of examples is
greatly reduced from the basic swap-heuristic.
The reason for this seems to be that the swap-heuristic generates many combinations
of the same components. Say a sequence of commands A can be modified into either B
or C by a single modification to a command. Then, the swap-heuristic could generate
the following examples: A->B,A->C,B->A,C->A,B->C,C->B, where -> indicates the
change of an argument into another sequence. When compacted, this set of up to 6
examples could be compacted down to the three components A,B,C, greatly reducing
the number of examples. Furthermore, since there may be many ways to modify
each command (several arguments, multiple values), the total number of possible
examples is even larger, and compacting them becomes important.
Another issue that is solved by using the compact representation of examples is
the avoidance of swap-examples that could have been shown by deletion instead
(as described in Section 4.2.3). This is done by simply ignoring the part of a swap-

39

4. Results and discussion

example that contains the negative version of the modified command, as that is likely
to be covered by a corresponding delete example where the unsuccessful command
is deleted completely instead.
By using the extended version of the delete-heuristic, the combined heuristic is able
to find examples of how state is handled that the original heuristic would not be
able to find; most importantly the state-preserving multi-deletions described earlier.
The swap-heuristic adds many new examples that are not possible to get with the
delete-heuristic, as described in Section 4.2.3.
Using the compact representation of examples, all the examples from the combined
method can be compared, and since the sets of examples from the different heuristics
may overlap in their components (the shorter version of a delete-example may be
part of a swap-example for instance), duplicates can be filtered out. This also
simplifies the printing of these examples, as there is less to print, and all are printed
in the same simple way that looks more like regular QuickCheck counterexamples.
To a user, the list of commands is interesting in itself, not the reason for why the
heuristic considers them interesting.

4.3 Evaluation results

As the last part of the work, the experiment to test the performance of the chosen
combined heuristic against the cover-heuristic was conducted. The cover-heuristic
can be seen as the naïve baseline implementation for generating representative ex-
amples.

4.3.1 Selection of examples

For the cover-heuristic, it was enough to set the number of tests high enough (over
10, 000) to obtain full effective cover (some parts of the code would never be covered,
for instance generators). The resulting test suite contained 22 examples.
For the combined heuristic, some more work was needed. First, the examples gen-
erated by the heuristic had to be deemed stable enough, by performing a test where
50 long runs were made. In total, 66 different examples were generated in the 50
runs, with the mean number of examples generated in each run being 53.2 (with a
standard deviation of 1.4). Of these 66 examples, 49 were generated in every run,
but there were a few outliers. Inspecting these manually, it was clear that they were
indeed quite similar, most of them being multiple sequences of deposit/withdraw,
of which there are many swap-examples that differ only very slightly in their reuse of
integers. To a human reader, it is obvious these are duplicated examples, but since
the heuristic cannot assume anything about the banking program, these cannot be
avoided, as the fact that the values differ may be significant in other programs. It
does seem though, that these sort of examples can take a while to find, explaining
why they do not turn up in each run like most of the other examples. The full
distribution of the appearance frequency of examples is shown in Table 4.1.

40

4. Results and discussion

Table 4.1: Results of testing the frequency at which examples appear when running
the combined heuristic 20 times, generating a total of 66 unique examples.

Appearance frequency Number of examples Percentage
n < 10% 5 7.6%

10% ≤ n < 25% 5 7.6%
25% ≤ n < 50% 5 7.6%
50% ≤ n < 75% 2 3.0%
75% ≤ n < 90% 0 0%
90% ≤ n < 100% 0 0%

n = 100% 49 74.2%

The results of this test agree with the general impressions of the examples dur-
ing development. Most examples remain the same across runs, with a few rare
outliers. In the sample test, and also often during development, the most rare
ones were the examples displaying “unchanged” behaviour, found by the extended
delete-heuristic.
With these results suggesting the combined heuristic was generating a rather stable
set of examples (apart from the variance in the humanly identifiable redundant
tests), the approach for selecting the set used for evaluation was fairly simple:
running the generation for long enough, specifically with eqc:numtests set to
10, 000.
The final sets of examples from both the cover- and combined heuristic can be found
in Appendix B.1 and B.2. There are 22 examples in the cover set, and 55 examples
from the combined heuristic.

4.3.2 Selection of tasks

As described in Section 3.4.4, the tasks were constructed manually, using randomly
generated sequences as a starting point, also incorporating failing preconditions (as
the QuickCheck generators do not generate such sequences). When constructing the
tasks, it was made sure that a few important scenarios were included:

• Failing preconditions
• Persisting state after close-open

• Users being logged out after closing the bank
• Several successful deposit and withdraw operations with a changing balance
• Using several users and accounts in the same task

These scenarios were chosen as particularly interesting, as they require a deeper
understanding of the banking program. The final set of 7 tasks can be found in
Appendix B.3, with command sequence length varying from 4 to 21.

41

4. Results and discussion

4.3.3 Experiment results

The result of the experiment was collected as a list of test scores for the two methods.
The raw data collected is displayed in Table 4.2. Information on the collected data
can be found in Table 4.3. The experiment was carried out with 22 participants,
corresponding to 11 results from each of the two groups. Overall, a majority of
the students finished all the tasks, and the number of answered tasks from each
group was not very different. Since there were that many more examples to look
through for the participants using the examples from the combined heuristic, one
could have thought they would struggle more to finish in the limited time available
(15 minutes), but this seemed to not be an issue.

Table 4.2: The number of points scored by each student in the evaluation experi-
ment. The maximum number of points possible to score was 69.

Coverage 53 54 30 32 22 39 32 16 58 34 59
The combined heuristic 58 58 67 56 48 52 46 45 36 39 53

Table 4.3: Statistics of the data collected during the evaluation experiment.

Coverage The combined heuristic
Number of samples 11 11
Mean 39 50.727
Standard deviation 14.846 9.067

Computed statistics
t-statistic 2.236
Degree of freedom 18.054
Pooled standard dev. 12.301
Cohen’s d 0.953

Given the data collected, the t-statistic was computed to be 2.236, and the degree
of freedom 18.054. Calculating the p-value for the t-distribution using scipy with
these values, the resulting p-value is 0.0395 < 0.05. Thus, the Welch t-test suggest
that there is a significant difference in the performance of the two groups, indicating
that the good examples from the heuristic perform better than those generated with
full coverage. Furthermore, the d-value of 0.953 suggest that the effect size of the
test is rather large. However, the sample size is still quite small, and the results
should therefore be seen purely as an indication, and larger sample sizes would be
needed to draw stronger conclusions from the results. Unfortunately, this was not
possible in the limited time frame of the thesis.
One initial thought that came up after reviewing the results of the experiment, along
with a few comments from the participants, was the fact that the students that
received the cover-examples had a hard time grasping the concept of calls not being
allowed due to preconditions. To test this, the scores were recalculated, disregarding
any points gained from commands with failing preconditions. The resulting statistics
did reduce the advantage of the combined heuristic, the mean score decreased to

42

4. Results and discussion

46.273 and 36 respectively. The resulting t-statistic was 2.067 with 17.895 degrees
of freedom, corresponding to a p-value of 0.0549 ≮ 0.05, and the d-value 0.881,
suggesting that the power of the test decreases in this case. However, considering
that the lack of pre-conditions essentially is a weakness in the cover-heuristic, and a
strength for the combined heuristic, these results aren’t necessarily fair either, and
not that much worse than the original results.

4.3.4 Threats to validity

Even though the experiment indicates that the combined heuristic performs better
than the basic cover-heuristic, one must consider a few important factors. The first,
and most important, is the small sample size, which weakens the strength of the
result. Another issue is the fact that the example program used is based on a real-
world application, and thus the command names are suggestive of their behaviour.
Furthermore, one could argue that the heuristic may be over-fitted to the banking
example, as it has been used as part of the continuous evaluation of the heuristics
during development. However, care has been taken to keep the heuristics useful in
as general a setting as possible. Finally, one could argue that the return values and
data used only involve very simple data-types, and more complex ones would be
needed for a more realistic evaluation. In the event of an experiment with a longer
time available for the students in the future, this should be mitigated by using a
more complex example that is not so relatable, and this example should not be used
in the development of the heuristic. Of course, if possible, the experiment should
be carried out with a larger sample size.

4.3.5 Observations during the experiment

During the evaluation experiment, one participant commented on the fact that it
was not clear from the examples that two users could be logged in at the same time.
This also showed that it was not entirely clear how the commands were run. Should
one consider them as run from a specific user, in which case it makes no sense to
login two users at the same time, or from the bank’s point of view, where it would
make sense to have multiple users logging in independently? Now, this also led to
some thoughts on whether the heuristic could actually find an example of two users
logging in, and it seems to not be very likely. The following is an example that
would show this behaviour:

1. open() -> ok
2. create_user(u1, p1) -> {u1, p1}
3. create_user(u2, p2) -> {u2, p2}
4. login(u1, p1) -> ok
5. login(u2, p2) -> ok

First of all, the delete-heuristic would not be able to find this example, as deleting
either of the login-commands would not affect the other. Furthermore, deleting
one of the create_user commands would affect the corresponding login, but the

43

4. Results and discussion

commands related to the other user would be shrunk away.
For the swap-heuristic, changing both the arguments of command 4 to {u2, p2}
would affect command 5, and thus generate the example, but the problem is that
the following example would get the same feature:

1. open() -> ok
2. create_user(u1, p1) -> {u1, p1}
3. login(u2, p2) -> false
4. login(u1, p1) -> ok

Changing the arguments of command 3 to {u1,p1} changes the behaviour of com-
mand 4, and the current abstraction code could not tell these two apart. Of course,
this suggests the need for further tuning of the swap-heuristic, and is definitely a
case to consider when developing the heuristic further.

4.4 General thoughts

This section presents some general interesting results found and insights gained
during the thesis, both related to the concept of good examples in particular and
property-based testing in general.

4.4.1 Features

When developing or extending heuristics, one of the most important design choices
is what to include in the feature data structure. As the feature is what controls
the way QuickCheck generates its feature-based test suite, getting it right is what
determines the examples that are found. It is very hard to get right though, as
most of the time, you will get precisely what you asked for, even though that is
not what was intended. For instance, if the feature of the multi-delete would be the
entire sequence of deleted commands, (abstracted to not account for specific variable
values) the result would be an infinite stream of examples, as new commands could
be added arbitrarily to obtain new examples with unique features. A better approach
is to just include the first command, which is how it was implemented in the final
version.

4.4.2 The duality of properties

When writing properties to be used during development and integration of Find-
Examples, it quickly became evident that there is no one way of doing it correctly.
Quite on the contrary, one must thoroughly consider the purpose of the testing be-
fore writing a state machine specification. The reason for this is that there are often
several ways, all valid, to write each pre- and post-condition, but also the input gen-
erators. One example of this is the account-creation operation in the bank-example.
One way to write it is to be very forgiving, and let commands be generated whenever

44

4. Results and discussion

the bank is open. This is good for finding odd errors, for example if a non-existing
user could create an account. However, when good examples are our goal, we are not
interested as much with the defensive cases, and would rather have the account be
created for a user that has been active before, and preferably also using the correct
password, as an account is useful to move forward in further tests. To do this, we
would want the command to only be generated when at least one user is logged in,
and thus we need another precondition.
This might seem like a good idea for getting more concise and focused testing, but
it turns out it can lead to some very confusing good examples found by the original
delete-heuristic. Consider the following example:

1. open() -> ok
2. create_user(u1, p1) -> {u1, p1}
3. login(u1, p1) -> ok
4. create_account(a2, u2) -> false

This is a valid example, it should not crash, even though the fourth command was
unsuccessful. This makes it a valid candidate for being a good example. Consider
now if we were to delete the third command. Intuitively, nothing should change,
the last call should still be unsuccessful, but it should not fail. But remember that
we needed a new precondition for the create_account/2 command, namely that
there must be a logged in user! So now, FindExamples is very likely to produce the
“good” example:

Deleting command 3 changes the behaviour of 4:
...

4. create_account(a2, u2) -> call not allowed

For a user, this makes no sense, as the intuitive behaviour would be that the call
to create_account would still return false. Therefore, one must be very careful to
craft the state machine specification to be reasonably forgiving, while still focusing
it enough to get decent data within the first 100 generated command sequences. It
may even be worth considering writing different modules for a single program. Using
undirected testing, unexpected behaviour can be tested, which also lets the heuristic
of FindExamples work freely to find good examples, for instance of how bad input is
handled. On the other hand more directed testing, with stricter preconditions and
generators, is more likely to find “deeper” bugs that require certain setup before
being triggered. Such testing also enables the finding of good examples involving
more hard-to-reach behaviour of the system.

4.4.3 Limitations of fully automated testing

Fully automated testing is very convenient for developers as it requires no extra
effort. During this thesis, it has become clear though, that the fact that the examples
must be generated completely automatically limits the quality of the examples found,
as the heuristics cannot know anything that is not explicitly stated through pre- or
post-conditions. That is, the heuristics cannot know how to interpret the return
values of commands. An attempt to increase the amount of information available

45

4. Results and discussion

was made through the extension of the delete-heuristic, by having the user provide
a function defining what values are deemed negative. Without this information, the
heuristic is very likely to generate examples where the “interesting” part is actually
a command that is unsuccessful.
An example of this is the standard behaviour of the banking example, where false
is returned for valid but unsuccessful commands. The reason for this is that we
want to make sure the program can handle such input without crashing, and not
testing it would mean we could miss such bugs when running the property for
tests. Even though the user understands that sequences of commands that all return
false are not very interesting, the heuristic cannot know that without the extra
negative function, and would thus consider those “good”. For instance, a sequence
ending with a successful withdraw operation is very likely to display some interesting
behaviour, whereas an unsuccessful one may contain no interesting information at
all. Thus, knowing which is which helps greatly in finding examples, especially in
finding unchanged behaviour after deleting a set of commands from a sequence.
However, for some programs, it may not be possible to statically define a function
that can decide whether a return value is positive or negative, as it may depend on
the context in which it was returned. In such cases, some extra annotation may be
necessary, where the user could define functions for deciding whether the running
of a command was positive or negative also given the context the command was
executed. Such an extension would likely require change to QuickCheck itself, as
it would have to be part of the state machine specification, involving passing the
state before each call to this function. For this reason, it is outside the scope of this
thesis.

46

5
Conclusions

This chapter includes the most important results found and conclusions drawn when
working with this project. Furthermore, it contains a section on possible ideas
for future work in this area that will not be investigated within the scope of this
thesis.

5.1 Integration

The prototype tool FindExamples has been successfully integrated into the Quick-
Check CI web service. The programmer’s interface to the tool has been greatly
simplified, making the tool much easier to use. Using the example generation is now
as easy as wrapping your property with another function call. Furthermore, the
integration makes the storing of and access to the examples generated much easier,
especially as a program is developed over time.
For QuickCheck CI, the integration is quite simple, it requires no new dependencies
(except for MoreBugs, which is likely to become part of regular QuickCheck anyway).
Also, since there were already examples present, albeit only counterexamples directly
from QuickCheck, the database does not need to be modified, thus greatly reducing
the effort needed to integrate it into the production system in the future.
Furthermore, the FindExamples tool was extended to also report bugs that it finds.
The previous version would not do anything about failing command sequences,
but as is explained in Section 3.2.2, if there are bugs that require specific pre-
computation, FindExamples may stumble upon such bugs as QuickCheck is unlikely
to find them given only the standard 100 runs.

5.2 Improvement of heuristics

Several new ideas for heuristics have been proposed, and a combination of them has
been selected as the most successful one. It comprises of an improved version of the
original delete-heuristic along with the new idea of a swap-heuristic. The improve-
ments include the ability to not only delete single commands, but also sequences
that do not affect the outcome of the rest of the program. The swap-heuristic finds
examples by changing the arguments of commands instead of deleting them alto-

47

5. Conclusions

gether. When combined, these two heuristics seem to perform rather well, and a
few new kinds of examples that had not been found with the original heuristic have
been found for the example programs used during development. This includes the
family of examples that show state preserving behaviour, for instance the fact that
a dets table retains its contents after closing and reopening it.

5.2.1 Evaluation

An experiment was carried out to verify the usefulness of the heuristic against the
most straightforward and obvious approach: coverage. By testing the very pur-
pose of the examples – conveying the behaviour of a program in a simple way –
this experiment indicates that the good examples chosen by the combined heuristic
outperform those chosen by generating a test suite with full expression coverage
of both the underlying code and the QuickCheck model. The conducted experi-
ment was quite small in size (22 participants), and should thus be seen only as an
indicative result.

5.3 Future work

While working on this project, many good ideas have come up that have been
impossible to realize due to the limited time available. This section presents some
of these ideas that would be good to follow up further and more thoroughly.

5.3.1 Presenting examples

Working with the examples in QuickCheck CI, it became clear that there could be
much work done in simply finding a better way of printing the examples. Throughout
this work, most of the printing has been done directly to the terminal, limiting the
flexibility of how examples could be printed. In a web application though, one could
imagine endless ways of presenting examples, or even groups of examples, as it is
very often the case that examples show some common prefix, and could thus be
presented together in some way. One example of an idea on how to print examples
is for the swap examples, where one could present them in a tree-like structure;

open() -> ok
create_user(u1, p1) -> ok
/ \

login(u1, p1) -> ok login(u1, p2) -> false
create_account(a1, u1) -> ok create_account(a1, u1) -> false

where the resulting behaviour of changing the password for user u1 is shown clearly.
Another idea that was originally proposed by Thomas Arts, is to extend QuickCheck
CI to be able to present examples generated by FindExamples in more than one
way. The more verbose type printing used now, with the example containing the

48

5. Conclusions

reason for it being interesting from the heuristic’s point of view, may not be of
interest to a user, instead they would rather only see a set of regular examples
(command sequences) in the common case, and only see the longer representation
on demand, and also be able to find the corresponding full example containing the
reason for it being considered interesting. This could include some way of linking
together different examples that are similar, enabling the user to browse through the
examples. As this would require deeper changes to the way examples are handled
in QuickCheck CI, it is beyond the scope of this thesis, but it would be a nice way
of showing the examples.

5.3.2 Heuristics

There have been many ideas for new or extended heuristics throughout this thesis,
and unfortunately there has not been enough time to further investigate all of
them.
One example of this is a possible extension to the idea of combining heuristics, by in-
stead of running the heuristics basically as they are (in that as soon as a new feature
is found, it is returned), one could imagine using an evolutionary algorithm, more
specifically a genetic algorithm, that could evolve sequences of commands to find
good examples. Genetic algorithms are usually used in optimization problems where
the input space is too large for analytical optimization. However, it has also been
used as a method for random testing [35], [36]. The regular operations of genetic
algorithms are easily applicable to command sequences, where each sequence can be
seen as a chromosome, and each command a gene. It would thus be fairly straight-
forward to implement crossover and mutation, and the initialization is already fully
implemented in QuickCheck as command generators. The only problem, and it is
the big one, is to develop a fitness function for a chromosome, that is, a command
sequence. This problem is similar to the very problem this thesis seeks to solve, but
this approach would make the combination of individual heuristics simpler, as one
could quantify and weigh the results of different heuristics together instead of the
more binary approach used today.
Another idea that has been discussed is the use of the model state to find examples.
Often, the fact that the state is changing as the result of a command indicates that
the command was in some way interesting. However, it is not trivial to devise a
strategy for deciding what changes to the state are actually interesting, and the fact
that the state changes might say nothing at all. One could imagine programs where
every call updates the state in some way, for example by incrementing a counter,
in which case only looking at whether or not the state is changing will not work.
It would however be interesting to look at combining this idea with some other
heuristic (for instance cover) and see what kind of examples are found.

49

5. Conclusions

50

References

[1] K. Claessen and J. Hughes, “QuickCheck: A Lightweight Tool for Random
Testing of Haskell Programs”, in Proceedings of the Fifth ACM SIGPLAN
International Conference on Functional Programming, New York, NY, USA,
2000, pp. 268–279.

[2] T. Arts, J. Hughes, J. Johansson and U. Wiger, “Testing telecoms software
with Quviq QuickCheck”, in Proceedings of the 2006 ACM SIGPLAN work-
shop on Erlang, ACM, 2006, pp. 2–10.

[3] D. Stewart and S. Janssen, “XMonad: A Tiling Window Manager”, in Pro-
ceedings of the ACM SIGPLAN workshop on Haskell, 2007.

[4] D. Roundy, “Darcs: Distributed Version Management in Haskell”, Haskell ’05:
Proceedings of the 2005 ACM SIGPLAN workshop on Haskell, pp. 1–4, 2005.

[5] T. Arts, J. Hughes, U. Norell and H. Svensson, “Testing AUTOSAR software
with QuickCheck”, in 2015 IEEE Eighth International Conference on Software
Testing, Verification and Validation Workshops (ICSTW), IEEE, 2015, pp. 1–
4.

[6] A. F. Yamashita, A. Bergqvist and T. Arts, “Experiences from testing a ra-
diotherapy support system with QuickCheck”, in Tests and Proofs : Papers
Presented at the Second International Conference TAP 2008 Bernhard Beckert
Reports of the Faculty of Informatics, 5, 2008.

[7] Prowess: property based testing for web-services. [Online]. Available: http:
//www.prowessproject.eu (visited on 16/03/2016).

[8] S. L. Peyton Jones, J. Hughes and J. Launchbury, “How to give a good research
talk”, ACM SIGPLAN Notices, vol. 28, no. 11, pp. 9–12, 1993.

[9] T. Y. Chen, H. Leung and I. K. Mak, “Adaptive Random Testing”, Advances
in Computer Science - ASIAN 2004, pp. 3156–3157, 2005.

[10] P. Godefroid, M. Levin and D. Molnar, “Automated whitebox fuzz testing”,
NDSS, vol. 8, pp. 151–166, 2008.

[11] C. Cadar, P. Godefroid, S. Khurshid, C. S. Pasareanu, K. Sen, N. Tillmann
and W. Visser, “Symbolic execution for software testing in practice: prelimin-
ary assessment”, 2011 33rd International Conference on Software Engineering
(ICSE), pp. 1066–1071, 2011.

[12] K. Sen, D. Marinov and G. Agha, “CUTE : A Concolic Unit Testing Engine
for C”, Program, vol. 30, pp. 263–272, 2005.

[13] K. Beck, Extreme programming explained: embrace change. Addison-Wesley,
2000.

51

http://www.prowessproject.eu
http://www.prowessproject.eu

References

[14] A. M. Turing, “On computable numbers, with an application to the entsheidung-
sproblem”, Journal of Math, vol. 58, no. 1936, pp. 345–363, 1936.

[15] A. Gerdes, J. Hughes, N. Smallbone and M. Wang, “Linking unit tests and
properties”, in Proceedings of the 14th ACM SIGPLAN Workshop on Erlang,
ACM, 2015, pp. 19–26.

[16] M. Wynne and A. Hellesoy, The cucumber book: behaviour-driven development
for testers and developers. Pragmatic Bookshelf, 2012.

[17] G. Fink and M. Bishop, “Property-Based Testing ; A New Approach to Testing
for Assurance”, Software Engineering Notes, vol. 22, no. 4, p. 74, 1997.

[18] J. W. Duran and S. C. Ntafos, “An evaluation of random testing”, IEEE
Transactions on Software Engineering, vol. SE-10, no. 4, pp. 438–444, 1984.

[19] C. Pacheco, S. K. Lahiri, M. D. Ernst and T. Ball, “Feedback-directed random
test generation”, Proceedings - International Conference on Software Engin-
eering, pp. 75–84, 2007.

[20] P. Godefroid, N. Klarlund and K. Sen, “DART: Directed Automated Random
Testing”, in Proceedings of the ACM SIGPLAN 2005 Conference on Program-
ming Language Design and Implementation, Chicago, IL, USA, 2005, pp. 213–
223.

[21] T. a. Henzinger, R. Jhala, R. Majumdar and G. Sutre, “Software verification
with blast”, in Model Checking Software, 2003, pp. 235–239.

[22] D. Beyer, A. J. Chlipala, T. a. Henzinger, R. Jhala and R. Majumdar, “Gen-
erating tests from counterexamples”, Proceedings - International Conference
on Software Engineering, vol. 26, pp. 326–335, 2004.

[23] T. Arts, N. Smallbone, R. Taylor and S. Thompson, “D3.1 Interface com-
pliance tools and techniques”, Prowess: Property Based Testing of Web ser-
vices: EU-ICT Specific targeted research project (STREP) ICT-2011-317820,
pp. 1–39, 2011. [Online]. Available: http://www.prowessproject.eu/wp-
content/uploads/2012/10/Prowess_D3-1.pdf.

[24] N. Smallbone and M.Wang, “D5.4 Linking unit tests and properties”, Prowess:
Property Based Testing of Web services: EU-ICT Specific targeted research pro-
ject (STREP) ICT-2011-317820, no. March, 2014. [Online]. Available: http:
//www.prowessproject.eu/wp-content/uploads/2012/10/Prowess_D5-
4.pdf.

[25] R. Carlsson, “Parameterized modules in Erlang”, Proceedings of the 2003 ACM
SIGPLAN workshop on Erlang, pp. 29–35, 2003.

[26] J. Hughes, “The design of a pretty-printing library”, in Advanced Functional
Programming, J. Jeuring and E. Meijer, Eds., Springer-Verlag, 1995, pp. 53–
96.

[27] C. Pacheco and M. D. Ernst, “Randoop: Feedback-Directed Random Testing
for Java”, Companion to the 22nd ACM SIGPLAN conference on Object ori-
ented programming systems and applications companion - OOPSLA ’07, vol.
5, p. 815, 2007.

[28] Q. Yang, J. J. Li and D. M. Weiss, “A survey of coverage-based testing tools”,
Computer Journal, vol. 52, no. 5, pp. 589–597, 2009.

52

http://www.prowessproject.eu/wp-content/uploads/2012/10/Prowess_D3-1.pdf
http://www.prowessproject.eu/wp-content/uploads/2012/10/Prowess_D3-1.pdf
http://www.prowessproject.eu/wp-content/uploads/2012/10/Prowess_D5-4.pdf
http://www.prowessproject.eu/wp-content/uploads/2012/10/Prowess_D5-4.pdf
http://www.prowessproject.eu/wp-content/uploads/2012/10/Prowess_D5-4.pdf

References

[29] A. Arcuri and L. Briand, “A Hitchhiker’s guide to statistical tests for assessing
randomized algorithms in software engineering”, Software Testing Verification
and Reliability, vol. 24, no. 3, pp. 219–250, 2014.

[30] G. D. Ruxton, “The unequal variance t-test is an underused alternative to
Student’s t-test and the Mann-Whitney U test”, Behavioral Ecology, vol. 17,
no. 4, pp. 688–690, 2006.

[31] S. Nakagawa and I. C. Cuthill, “Effect size, confidence interval and statistical
significance: A practical guide for biologists”, Biological Reviews, vol. 82, no.
4, pp. 591–605, 2007.

[32] H. Zhu, P. A. V. Hall and J. H. R. May, “Software unit test coverage and
adequacy”, ACM Computing Surveys (CSUR), vol. 29, no. 4, pp. 366–427,
1997.

[33] G. Gay, M. Staats, M. Whalen and M. P. E. Heimdahl, “The risks of coverage-
directed test case generation”, IEEE Transactions on Software Engineering,
vol. 41, no. 8, pp. 803–819, 2015.

[34] L. Inozemtseva and R. Holmes, “Coverage is not strongly correlated with test
suite effectiveness”, Proceedings of the 36th International Conference on Soft-
ware Engineering, pp. 435–445, 2014.

[35] J. H. Andrews, T. Menzies and F. C. H. Li, “Genetic algorithms for random-
ized unit testing”, IEEE Transactions on Software Engineering, vol. 37, no. 1,
pp. 80–94, 2011.

[36] L. Baresi, P. L. Lanzi and M. Miraz, “TestFul: An evolutionary test approach
for Java”, ICST 2010 - 3rd International Conference on Software Testing,
Verification and Validation, pp. 185–194, 2010.

53

References

54

A
Appendix A

This appendix contains the source code for the banking example. The first module
contains the actual program code, whereas the second contains the QuickCheck state
machine specification used to test the program. Both of these modules are available
in full from: https://github.com/sebiva/quickcheck-ci-test.

A.1 bank.erl

The following is a part of the implementation of a simple banking program used for
testing. The actual implementation is a gen_server, which is needed to maintain
the state, but as that is not of interest to the examples, that part of the code has
been omitted here.

1 -module(bank).
2 -record(state, {open = false, accounts = [], customers = [], logged_in = []}).
3 -compile(export_all).
4 -behaviour(gen_server).
5

6 init(_Args) ->
7 {ok, #state{}}.
8

9 open(State) when not State#state.open ->
10 {State#state{open=true}, ok};
11 open(State) ->
12 {State, false}.
13

14 close(State) when State#state.open ->
15 {State#state{open=false, logged_in=[]}, ok};
16 close(State) ->
17 {State, false}.
18

19 create_user(Name, Pwd, State) ->
20 User = {Name, Pwd},
21 case user_exists(Name, State) of
22 false ->
23 {State#state{customers = [User | State#state.customers]}, User};
24 _ ->

I

https://github.com/sebiva/quickcheck-ci-test

A. Appendix A

25 {State, false}
26 end.
27

28 user_exists(Name, State) ->
29 case lists:keyfind(Name, 1, State#state.customers) of
30 false -> false;
31 _ -> true
32 end.
33

34 create_account(AccountName, UserName, State) ->
35 Account = {AccountName, UserName},
36 case logged_in(UserName, State) of
37 true ->
38 Accounts = State#state.accounts,
39 case lists:filter(fun({{A, U}, _B})
40 -> {A, U} == Account end, Accounts) of
41 [] -> {State#state{accounts = [{Account, 0} | Accounts]}, Account};
42 _ -> {State, false}
43 end;
44 false -> {State, false}
45 end.
46

47 logged_in(Name, State) ->
48 lists:member(Name, State#state.logged_in).
49

50 login(Name, Pwd, State) ->
51 case lists:member({Name, Pwd}, State#state.customers) of
52 false -> {State, false};
53 true ->
54 case logged_in(Name, State) of
55 true -> {State, false};
56 false -> {State#state{logged_in=[Name|State#state.logged_in]}, ok}
57 end
58 end.
59

60 logout(Name, State) ->
61 case lists:member(Name, State#state.logged_in) of
62 false -> {State, false};
63 _ -> {State#state{logged_in=State#state.logged_in -- [Name]}, ok}
64 end.
65

66 pwd_ok(User = {Name, _Pwd}, State) ->
67 lists:member(User, State#state.customers) andalso logged_in(Name, State).
68

69 deposit(Name, Pwd, Account, Amount, State) ->
70 case pwd_ok({Name, Pwd}, State) of
71 true ->
72 case lists:keyfind({Account, Name}, 1, State#state.accounts) of
73 OldAccount = {N, Balance} ->

II

A. Appendix A

74 NewBalance = Balance + Amount,
75 {State#state{accounts=(State#state.accounts -- [OldAccount]) ++
76 [{N, NewBalance}]}, NewBalance};
77 _ -> {State, false}
78 end;
79 false -> {State, false}
80 end.
81

82 withdraw(Name, Pwd, Account, Amount, State) ->
83 case pwd_ok({Name, Pwd}, State) of
84 true ->
85 case lists:keyfind({Account, Name}, 1, State#state.accounts) of
86 OldAccount = {N, Balance} when Balance >= Amount ->
87 NewBalance = Balance - Amount,
88 {State#state{accounts=(State#state.accounts -- [OldAccount]) ++
89 [{N, NewBalance}]}, NewBalance};
90 _ -> {State, false}
91 end;
92 false -> {State, false}
93 end.

A.2 bank_eqc.erl

To test the banking code, the following QuickCheck model was used. It contains all
the code needed to model the behaviour of the bank, and the property used both
to run QuickCheck and generate examples with FindExamples. Note that the API
functions of the bank module do not match those from Section A.1, as they are calls
to gen_server wrappers that handle the extra State argument.
This listing includes the properties for both the combined, cover- and swap-heuristic.

1 -module(bank_eqc).
2 -compile(export_all).
3 -compile({parse_transform, eqc_cover}).
4 -include_lib("eqc/include/eqc.hrl").
5 -include_lib("eqc/include/eqc_statem.hrl").
6 -record(state, {open = false :: boolean(),
7 users = [] :: [{atom(), atom()}],
8 accounts = [] :: [{atom(), atom(), integer()}],
9 logged_in = [] :: [atom()] }).

10

11 %%%%% Generators
12

13 -define(LOW, 1).
14 -define(HIGH, 5).
15

16 -define(NAMES, [{?LOW, u1}, {?LOW, u2}, {?LOW, u3}]).
17 -define(PWDS, [{?LOW, p1}, {?LOW, p2}, {?LOW, p3}]).

III

A. Appendix A

18 -define(ACCOUNTS, [{?LOW, a1}, {?LOW, a2}, {?LOW, a3}]).
19

20 negative(false) -> true;
21 negative({’EXIT’, _}) -> true;
22 negative(_) -> false.
23

24 name() -> frequency(?NAMES).
25 name(S) ->
26 InState = [{?HIGH, Name} || {Name, _} <- S#state.users],
27 frequency(InState ++ ?NAMES).
28 pwd() -> frequency(?PWDS).
29 pwd(S) ->
30 InState = [{?HIGH, Pwd} || {_, Pwd} <- S#state.users],
31 frequency(InState ++ ?PWDS).
32 account() -> frequency(?ACCOUNTS).
33 account(S) ->
34 InState = [{?HIGH, Account} || {Account, _, _} <- S#state.accounts],
35 frequency(InState ++ ?ACCOUNTS).
36

37 %%%%% State machine specification
38

39 initial_state() ->
40 #state{}.
41

42 %%%%% Open
43 open_args(_S) -> [].
44 open() -> bank:open().
45 open_pre(S) -> not S#state.open.
46 open_next(S, _R, []) -> S#state{open = true}.
47 open_post(_S, [], R) -> R == ok.
48

49 %%%%% Close
50 close_args(_S) -> [].
51 close() -> bank:close().
52 close_pre(S) -> S#state.open.
53 close_next(S, _R, []) -> S#state{open = false, logged_in = []}.
54 close_post(_S, [], R) -> R == ok.
55

56 %%%%% Create user
57 create_user_args(_S) ->
58 [name(), pwd()].
59

60 create_user(Name, Pwd) ->
61 bank:create_user(Name, Pwd).
62

63 create_user_next(S, _R, [Name, Pwd]) ->
64 case create_user_ok(S, Name) of
65 false -> S;
66 _ -> S#state{users = [{Name, Pwd} | S#state.users]}

IV

A. Appendix A

67 end.
68

69 create_user_pre(S) ->
70 S#state.open.
71

72 create_user_post(S, [Name, Pwd], R) ->
73 case create_user_ok(S, Name) of
74 true -> R == {Name, Pwd};
75 _ -> R == false
76 end.
77

78 create_user_ok(S, Name) ->
79 case lists:keyfind(Name, 1, S#state.users) of
80 false -> true;
81 _ -> false
82 end.
83

84 %%%%% Create account
85 create_account_args(S) ->
86 [account(S), name(S)].
87

88 create_account(AccountName, Name) ->
89 bank:create_account(AccountName, Name).
90

91 create_account_next(S, _R, [AName, UName]) ->
92 case create_account_ok(S, {AName, UName}) of
93 true -> S#state{accounts = [{AName, UName, 0} |
94 S#state.accounts]};
95 false -> S
96 end.
97

98 create_account_pre(S) ->
99 S#state.open.

100

101 create_account_post(S, [AName, UName], R) ->
102 Account = {AName, UName},
103 case create_account_ok(S, Account) of
104 true -> R == Account;
105 false -> R == false
106 end.
107

108 create_account_ok(S, {AName, Name}) ->
109 logged_in(Name, S) andalso
110 lists:filter(fun({AN, UN, _B}) ->
111 AN == AName andalso UN == Name
112 end, S#state.accounts) == [].
113

114 %%%%% Login
115 login_args(S) ->

V

A. Appendix A

116 [name(S), pwd(S)].
117

118 login(Name, Pwd) ->
119 bank:login(Name, Pwd).
120

121 login_pre(S) ->
122 S#state.open.
123

124 login_next(S, _R, [Name, Pwd]) ->
125 case pwd_ok(Name, Pwd, S) of
126 false -> S;
127 true -> case logged_in(Name, S) of
128 true -> S;
129 false -> S#state{logged_in = [Name | S#state.logged_in] }
130 end
131 end.
132

133 login_post(S, [Name, Pwd], R) ->
134 case R of
135 false -> logged_in(Name, S) orelse
136 not exists(Name, S) orelse
137 not pwd_ok(Name, Pwd, S);
138 ok -> not logged_in(Name, S) andalso
139 pwd_ok(Name, Pwd, S)
140 end.
141

142 %%%%% Logout
143 logout_args(S) ->
144 [name(S)].
145

146 logout(Name) ->
147 bank:logout(Name).
148

149 logout_pre(S) ->
150 S#state.open.
151

152 logout_next(S, _R, [Name]) ->
153 case logout_ok(S, Name) of
154 true -> S#state{logged_in = S#state.logged_in -- [Name]};
155 false -> S
156 end.
157

158 logout_post(S, [Name], R) ->
159 case logout_ok(S, Name) of
160 true -> R == ok;
161 false -> R == false
162 end.
163

164 logout_ok(S, Name) ->

VI

A. Appendix A

165 lists:member(Name, S#state.logged_in).
166

167 %%%%% Deposit
168 deposit_args(S) ->
169 [name(S), pwd(S), account(S), choose(1, 20)].
170

171 deposit(Name, Pwd, Account, Amount) ->
172 bank:deposit(Name, Pwd, Account, Amount).
173

174 deposit_pre(S) ->
175 S#state.open.
176

177 deposit_next(S, _R, [Name, Pwd, Account, Amount]) ->
178 case deposit_ok(S, Name, Pwd, Account) of
179 OldAcc = {AN, UN, Bal} ->
180 NewBal = Bal + Amount,
181 S#state{accounts=(S#state.accounts--[OldAcc])++[{AN, UN, NewBal}]};
182 false -> S
183 end.
184

185 deposit_post(S, [Name, Pwd, Account, Amount], R) ->
186 case deposit_ok(S, Name, Pwd, Account) of
187 false -> R == false;
188 {_, _, Bal} -> R == (Bal + Amount)
189 end.
190

191 deposit_ok(S, Name, Pwd, Account) ->
192 case logged_in(Name, S) andalso pwd_ok(Name, Pwd, S) of
193 true -> case lists:filter(fun({AN, UN, _B}) ->
194 AN == Account andalso UN == Name end,
195 S#state.accounts) of
196 [OldAcc] -> OldAcc;
197 _ -> false
198 end;
199 false -> false
200 end.
201

202 %%%%% Withdraw
203 withdraw_args(S) ->
204 [name(S), pwd(S), account(S), choose(1, 20)].
205

206 withdraw(Name, Pwd, Account, Amount) ->
207 bank:withdraw(Name, Pwd, Account, Amount).
208

209 withdraw_pre(S) ->
210 S#state.open.
211

212 withdraw_next(S, _R, [Name, Pwd, Account, Amount]) ->
213 case withdraw_ok(S, Name, Pwd, Account, Amount) of

VII

A. Appendix A

214 OldAcc = {AN, UN, Bal} ->
215 NewBal = Bal - Amount,
216 S#state{accounts=(S#state.accounts--[OldAcc])++[{AN, UN, NewBal}]};
217 false -> S
218 end.
219

220 withdraw_post(S, [Name, Pwd, Account, Amount], R) ->
221 case withdraw_ok(S, Name, Pwd, Account, Amount) of
222 false -> R == false;
223 {_, _, Bal} -> R == (Bal - Amount)
224 end.
225

226 withdraw_ok(S, Name, Pwd, Account, Amount) ->
227 case logged_in(Name, S) andalso pwd_ok(Name, Pwd, S) of
228 true -> case lists:filter(fun({AN, UN, _B}) ->
229 AN == Account andalso UN == Name end,
230 S#state.accounts) of
231 [OldAcc = {_AN, _UN, Bal}] when Bal >= Amount -> OldAcc;
232 _ -> false
233 end;
234 false -> false
235 end.
236

237 logged_in(Name, S) ->
238 lists:member(Name, S#state.logged_in).
239

240 exists(Name, S) ->
241 lists:member(Name, lists:map(fun({N,_P}) -> N end, S#state.users)).
242

243 pwd_ok(Name, Pwd, S) ->
244 lists:member({Name, Pwd}, S#state.users).
245

246 %%%%% Properties
247

248 prop_bank() ->
249 ?FORALL(SwapCmds, ex_swap:gen_swapcommands(?MODULE),
250 begin
251 Commands = ex_swap:get_commands(SwapCmds),
252 gen_server:start({global, bank}, bank, [], []),
253 {H, S, Res} = run_commands(?MODULE, Commands),
254 catch gen_server:stop({global, bank}),
255 find_examples:generate_examples(?MODULE, SwapCmds, H, Res,
256 pretty_commands(?MODULE, Commands, {H, S, Res},
257 aggregate(command_names(Commands),
258 Res == ok)))
259 end).
260

261 prop_cover() ->
262 ?FORALL(Commands, commands(?MODULE),

VIII

A. Appendix A

263 begin
264 gen_server:start({global, bank}, bank, [], []),
265 Prop = fun(_H, _S, Res) ->
266 catch gen_server:stop({global, bank}),
267 Res == ok
268 end,
269 ex_cover:ex_coverage(?MODULE, Commands, Prop)
270 end).
271

272 prop_swap() ->
273 ?FORALL(SwapCmds, ex_swap:gen_swapcommands(?MODULE),
274 begin
275 Cmds = ex_swap:get_commands(SwapCmds),
276 gen_server:start({global, bank}, bank, [], []),
277 {H, _S, Res} = run_commands(?MODULE, Cmds),
278 catch gen_server:stop({global, bank}),
279 ex_swap:interesting(?MODULE, SwapCmds, H, Res)
280 end).

IX

A. Appendix A

X

B
Appendix B

In this appendix, the examples and tasks handed out to the students during the
evaluation experiment are presented in full. The following sections explain their
content, while the actual examples and tasks can be found on subsequent pages, as
they are shown as they were given to the students, in full page format (apart from
the headings that have been changed to show which is which).

B.1 Cover examples

This set of examples was generated by the cover-heuristic, running it long enough
to obtain full coverage of both the bank code itself and the model.

B.2 Examples from the combined heuristic

The second set of examples covers two pages, and is the compacted form of the
examples obtained by running the final combined heuristic with eqc_numtests set
to 10, 000 (the feature based testing works by generating new examples until it
cannot find any new features in the given limit, so the actual number of tests is
likely to be several orders of magnitude larger).

B.3 Tasks for the students to fill in

This is the set of tasks that the students were given to solve. It includes an example
of how the answers are supposed to be entered, as well as a short introduction along
with some instructions. Furthermore, a few pointers were given before starting:

• The examples are sorted by the name of the last command in them, to enable
quicker searching.

• The arguments to the commands in the tasks all have the correct types, so
there is no need to check for the ordering of commands (u1 is always a user
and so on).

• A second reminder for them to rather put a question mark than guess.

XI

Cover examples

bank eqc:close/0

1 open() → ok

2 close() → ok

bank eqc:create account/2

1 open() → ok

2 create account(a3, u1) → false

1 open() → ok

2 create user(u2, p2) → {u2, p2}
3 login(u2, p2) → ok

4 create account(a2, u2) → {a2, u2}

1 open() → ok

2 create user(u2, p1) → {u2, p1}
3 login(u2, p1) → ok

4 create account(a2, u2) → {a2, u2}
5 create account(a2, u2) → false

bank eqc:create user/2

1 open() → ok

2 create user(u1, p2) → {u1, p2}

1 open() → ok

2 create user(u1, p1) → {u1, p1}
3 create user(u1, p2) → false

bank eqc:deposit/4

1 open() → ok

2 deposit(u1, p2, a3, 1) → false

1 open() → ok

2 create user(u3, p2) → {u3, p2}
3 deposit(u3, p2, a2, 1) → false

1 open() → ok

2 create user(u2, p3) → {u2, p3}
3 login(u2, p3) → ok

4 deposit(u2, p3, a1, 1) → false

1 open() → ok

2 create user(u1, p3) → {u1, p3}
3 login(u1, p3) → ok

4 deposit(u1, p1, a1, 1) → false

1 open() → ok

2 create user(u1, p2) → {u1, p2}
3 login(u1, p2) → ok

4 create account(a2, u1) → {a2, u1}
5 deposit(u1, p2, a2, 1) → 1

bank eqc:login/2

1 open() → ok

2 login(u2, p3) → false

1 open() → ok

2 create user(u2, p1) → {u2, p1}
3 login(u3, p3) → false

1 open() → ok

2 create user(u2, p3) → {u2, p3}
3 login(u2, p3) → ok

1 open() → ok

2 create user(u2, p2) → {u2, p2}
3 login(u2, p2) → ok

4 login(u2, p2) → false

bank eqc:logout/1

1 open() → ok

2 logout(u2) → false

1 open() → ok

2 create user(u2, p3) → {u2, p3}
3 login(u2, p3) → ok

4 logout(u2) → ok

bank eqc:open/0

1 open() → ok

bank eqc:withdraw/4

1 open() → ok

2 withdraw(u3, p2, a3, 1) → false

1 open() → ok

2 create user(u1, p3) → {u1, p3}
3 login(u1, p3) → ok

4 withdraw(u1, p3, a2, 1) → false

1 open() → ok

2 create user(u2, p3) → {u2, p3}
3 login(u2, p3) → ok

4 create account(a3, u2) → {a3, u2}
5 withdraw(u2, p3, a3, 1) → false

1 open() → ok

2 create user(u1, p2) → {u1, p2}
3 login(u1, p2) → ok

4 create account(a1, u1) → {a1, u1}
5 deposit(u1, p2, a1, 1) → 1

6 withdraw(u1, p2, a1, 1) → 0

Good examples

bank eqc:close/0

1 close() → call not allowed

1 open() → ok

2 close() → ok

1 open() → ok

2 close() → ok

3 open() → ok

4 close() → ok

bank eqc:create account/2

1 create account(a2, u2) → call not allowed

1 open() → ok

2 create account(a2, u2) → false

1 open() → ok

2 create user(u2, p2) → {u2, p2}
3 create account(a1, u2) → false

1 open() → ok

2 create user(u3, p2) → {u3, p2}
3 login(u3, p2) → ok

4 create account(a3, u3) → {a3, u3}

1 open() → ok

2 create user(u3, p2) → {u3, p2}
3 login(u3, p2) → ok

4 create account(a3, u3) → {a3, u3}
5 create account(a2, u3) → {a2, u3}

1 open() → ok

2 create user(u1, p2) → {u1, p2}
3 login(u1, p2) → ok

4 create account(a2, u1) → {a2, u1}
5 create account(a2, u1) → false

1 open() → ok

2 create user(u3, p1) → {u3, p1}
3 login(u3, p1) → ok

4 logout(u3) → ok

5 create account(a3, u3) → false

bank eqc:create user/2

1 create user(u1, p2) → call not allowed

1 open() → ok

2 create user(u1, p2) → {u1, p2}

1 open() → ok

2 create user(u2, p2) → {u2, p2}
3 create user(u3, p2) → {u3, p2}

1 open() → ok

2 create user(u3, p2) → {u3, p2}
3 create user(u2, p1) → {u2, p1}

1 open() → ok

2 create user(u2, p2) → {u2, p2}
3 create user(u2, p1) → false

1 open() → ok

2 close() → ok

3 open() → ok

4 create user(u1, p2) → {u1, p2}

bank eqc:deposit/4

1 deposit(u1, p1, a2, 1) → call not allowed

1 open() → ok

2 deposit(u1, p1, a2, 1) → false

1 open() → ok

2 create user(u2, p2) → {u2, p2}
3 login(u2, p2) → ok

4 deposit(u2, p2, a1, 1) → false

1 open() → ok

2 create user(u2, p2) → {u2, p2}
3 login(u2, p2) → ok

4 create account(a2, u2) → {a2, u2}
5 deposit(u2, p2, a1, 1) → false

1 open() → ok

2 create user(u3, p1) → {u3, p1}
3 login(u3, p1) → ok

4 create account(a3, u3) → {a3, u3}
5 deposit(u3, p1, a3, 1) → 1

1 open() → ok

2 create user(u2, p2) → {u2, p2}
3 login(u2, p2) → ok

4 create account(a1, u2) → {a1, u2}
5 deposit(u2, p2, a1, 1) → 1

6 deposit(u2, p2, a1, 2) → 3

1 open() → ok

2 create user(u1, p1) → {u1, p1}
3 login(u1, p1) → ok

4 create account(a2, u1) → {a2, u1}
5 logout(u1) → ok

6 deposit(u1, p1, a2, 1) → false

1 open() → ok

2 create user(u1, p1) → {u1, p1}
3 login(u1, p1) → ok

4 create account(a2, u1) → {a2, u1}
5 close() → ok

6 open() → ok

7 deposit(u1, p1, a2, 1) → false

1 open() → ok

2 create user(u3, p2) → {u3, p2}
3 login(u3, p2) → ok

4 create account(a3, u3) → {a3, u3}
5 deposit(u3, p2, a3, 2) → 2

6 withdraw(u3, p2, a3, 2) → 0

7 deposit(u3, p2, a3, 2) → 2

1 open() → ok

2 create user(u2, p2) → {u2, p2}
3 login(u2, p2) → ok

4 create account(a1, u2) → {a1, u2}
5 deposit(u2, p2, a1, 2) → 2

6 withdraw(u2, p2, a1, 2) → 0

7 deposit(u2, p2, a1, 1) → 1

1 open() → ok

2 create user(u3, p1) → {u3, p1}
3 login(u3, p1) → ok

4 create account(a3, u3) → {a3, u3}
5 logout(u3) → ok

6 login(u3, p1) → ok

7 deposit(u3, p1, a3, 1) → 1

1 open() → ok

2 create user(u1, p1) → {u1, p1}
3 login(u1, p1) → ok

4 create account(a2, u1) → {a2, u1}
5 close() → ok

6 open() → ok

7 login(u1, p1) → ok

8 deposit(u1, p1, a2, 1) → 1

(Continued on next page)

bank eqc:login/2

1 login(u2, p2) → call not allowed

1 open() → ok

2 login(u2, p2) → false

1 open() → ok

2 create user(u2, p2) → {u2, p2}
3 login(u1, p1) → false

1 open() → ok

2 create user(u2, p2) → {u2, p2}
3 login(u2, p2) → ok

1 open() → ok

2 create user(u3, p2) → {u3, p2}
3 login(u3, p2) → ok

4 login(u3, p2) → false

1 open() → ok

2 create user(u2, p2) → {u2, p2}
3 close() → ok

4 open() → ok

5 login(u2, p2) → ok

1 open() → ok

2 create user(u3, p2) → {u3, p2}
3 login(u3, p2) → ok

4 logout(u3) → ok

5 login(u3, p2) → ok

bank eqc:logout/1

1 logout(u1) → call not allowed

1 open() → ok

2 logout(u1) → false

1 open() → ok

2 create user(u2, p2) → {u2, p2}
3 logout(u2) → false

1 open() → ok

2 create user(u2, p1) → {u2, p1}
3 login(u2, p1) → ok

4 logout(u2) → ok

1 open() → ok

2 create user(u3, p1) → {u3, p1}
3 login(u3, p1) → ok

4 logout(u3) → ok

5 logout(u3) → false

1 open() → ok

2 create user(u2, p2) → {u2, p2}
3 login(u2, p2) → ok

4 close() → ok

5 open() → ok

6 login(u2, p2) → ok

7 logout(u2) → ok

bank eqc:open/0

1 open() → ok

1 open() → ok

2 open() → call not allowed

1 open() → ok

2 close() → ok

3 open() → ok

bank eqc:withdraw/4

1 withdraw(u3, p1, a2, 1) → call not allowed

1 open() → ok

2 withdraw(u3, p1, a2, 1) → false

1 open() → ok

2 create user(u2, p2) → {u2, p2}
3 login(u2, p2) → ok

4 create account(a1, u2) → {a1, u2}
5 withdraw(u2, p2, a1, 1) → false

1 open() → ok

2 create user(u3, p2) → {u3, p2}
3 login(u3, p2) → ok

4 create account(a2, u3) → {a2, u3}
5 deposit(u3, p2, a2, 3) → 3

6 withdraw(u3, p2, a2, 2) → 1

1 open() → ok

2 create user(u2, p2) → {u2, p2}
3 login(u2, p2) → ok

4 create account(a2, u2) → {a2, u2}
5 deposit(u2, p2, a2, 2) → 2

6 withdraw(u2, p2, a2, 1) → 1

1 open() → ok

2 create user(u1, p2) → {u1, p2}
3 login(u1, p2) → ok

4 create account(a1, u1) → {a1, u1}
5 deposit(u1, p2, a1, 1) → 1

6 deposit(u1, p2, a1, 2) → 3

7 withdraw(u1, p2, a1, 3) → 0

1 open() → ok

2 create user(u1, p2) → {u1, p2}
3 login(u1, p2) → ok

4 create account(a2, u1) → {a2, u1}
5 deposit(u1, p2, a2, 1) → 1

6 logout(u1) → ok

7 withdraw(u1, p2, a2, 1) → false

1 open() → ok

2 create user(u3, p2) → {u3, p2}
3 login(u3, p2) → ok

4 create account(a3, u3) → {a3, u3}
5 deposit(u3, p2, a3, 3) → 3

6 withdraw(u3, p2, a3, 2) → 1

7 withdraw(u3, p2, a3, 3) → false

1 open() → ok

2 create user(u3, p2) → {u3, p2}
3 login(u3, p2) → ok

4 create account(a3, u3) → {a3, u3}
5 deposit(u3, p2, a3, 2) → 2

6 withdraw(u3, p2, a3, 2) → 0

7 withdraw(u3, p2, a3, 1) → false

1 open() → ok

2 create user(u3, p2) → {u3, p2}
3 login(u3, p2) → ok

4 create account(a3, u3) → {a3, u3}
5 deposit(u3, p2, a3, 2) → 2

6 withdraw(u3, p2, a3, 1) → 1

7 withdraw(u3, p2, a3, 2) → false

1 open() → ok

2 create user(u1, p2) → {u1, p2}
3 login(u1, p2) → ok

4 create account(a3, u1) → {a3, u1}
5 deposit(u1, p2, a3, 1) → 1

6 logout(u1) → ok

7 login(u1, p2) → ok

8 withdraw(u1, p2, a3, 1) → 0

Tasks for filling in
Given the examples on the attached sheet of paper, your task is to fill in the correct return values
for all the calls in the following sequences. A few pointers:

• All examples start over from the same initial state of the bank server

• If the use of a command is not allowed, ”call not allowed” is put as the return value

• Mark any fields were you do not know the return value with a ’?’ rather than taking a wild
guess.

Thank you very much for helping me by participating!

The first task is already filled in, and serves as an
example of how the tasks should be solved:

1 create user(u1, p1) → call not allowed

2 open() → ok

3 create user(u1, p1) → {u1, p1}
4 cmd you are unsure about() → ?

5 withdraw(u1, p1, a1, 42) → false

1 open() →
2 create user(u2, p3) →
3 login(u2, p3) →
4 deposit(u2, p3, a1, 3) →
5 logout(u3) →

1 close() →
2 open() →
3 open() →
4 close() →

1 open() →
2 create user(u1, p3) →
3 create user(u2, p3) →
4 create account(a2, u1) →
5 close() →
6 deposit(u1, p3, a2, 5) →

1 open() →
2 create account(a1, u2) →
3 create user(u3, p2) →
4 login(u3, p2) →
5 create account(a1, u3) →
6 create user(u2, p1) →
7 deposit(u3, p2, a1, 4) →
8 withdraw(u3, p2, a1, 3) →
9 withdraw(u3, p2, a1, 2) →

1 open() →
2 create user(u1, p1) →
3 create user(u2, p2) →
4 login(u1, p1) →
5 create account(a2, u1) →
6 close() →
7 deposit(u1, p1, a2, 7) →
8 open() →
9 deposit(u1, p1, a2, 9) →
10 withdraw(u1, p1, a2, 2) →

1 open() →
2 create user(u1, p1) →
3 login(u1, p1) →
4 create user(u2, p1) →
5 logout(u2) →
6 create account(a1, u1) →
7 login(u2, p1) →
8 deposit(u1, p1, a1, 8) →
9 create account(a2, u2) →
10 deposit(u1, p1, a2, 1) →
11 deposit(u1, p1, a1, 2) →
12 create user(u1, p3) →
13 withdraw(u1, p1, a1, 4) →
14 deposit(u2, p1, a2, 16) →

1 open() →
2 create user(u1, p1) →
3 create user(u2, p1) →
4 close() →
5 create account(a1, u1) →
6 open() →
7 create user(u2, p1) →
8 login(u2, p1) →
9 login(u1, p1) →
10 create account(a1, u2) →
11 deposit(u2, p1, a1, 3) →
12 deposit(u2, p1, a1, 6) →
13 deposit(u1, p1, a1, 7) →
14 withdraw(u2, p1, a1, 1) →
15 deposit(u2, p1, a1, 3) →
16 withdraw(u2, p1, a1, 7) →
17 withdraw(u2, p1, a1, 5) →
18 close() →
19 withdraw(u2, p1, a1, 1) →
20 open() →
21 withdraw(u2, p1, a1, 1) →

	Contents
	List of Figures
	List of Tables
	List of Code Listings
	Introduction
	Background
	Purpose
	Limitations
	Related work

	Theory
	Stateless testing
	Stateful testing and state machines
	FindExamples
	QuickCheck CI

	Methods and implementation
	Study of the systems
	Integration
	Improvement of heuristics
	Evaluation of heuristics

	Results and discussion
	Integration
	Improvement of heuristics
	Evaluation results
	General thoughts

	Conclusions
	Integration
	Improvement of heuristics
	Future work

	References
	Appendix A
	bank.erl
	bank_eqc.erl

	Appendix B
	Cover examples
	Examples from the combined heuristic
	Tasks for the students to fill in

