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Abstract
The continuous advancements in optical communication channels have propelled
the development of new error-correcting codes, e.g., staircase codes, which belong
to a class of hard-decision algebraic codes. The staircase code is a new in-line
error-correcting code that promises near-capacity performance. In this Master’s
Thesis BCH component codes and staircase codes are analysed in MATLAB. A
bit-parallel BCH component code decoder is described in VHDL and synthesised
in a 28-nm fully-depleted silicon-on-insulator (FD-SOI) library. Based on synthesis
and simulation, the area and power consumption of staircase decoders for 100 Gbps
throughput are estimated.

Keywords: staircase-decoder, 28nm-technology, error-correcting codes, forward error
correction, BCH-decoder, MATLAB, VHDL.
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1
Introduction

In the digital world of today the importance of reliable data transmission has never
been greater, received data is expected to be an exact copy of the transmitted data.
Unfortunately this is not always the case since the received data is often to a lesser
or greater extent erroneous. The cause of the errors is often the channel noise [1].

One way of ensuring that correct data is received is to resend the same data if the
previous transmit resulted in an erroneous receive, this method is called automatic
repeat request (ARQ). However, the effectiveness of this method (when it comes
to reliable data transmission) is at the expense of decreased channel throughput
and increased transmission time [2]. Another commonly used method is forward
error-correction (FEC), that in addition to detecting the errors also tries to correct
them. This is done by utilisation of error-correcting codes [1]. The basic idea
behind forward error-correction is the addition of redundant symbols to the input
data so that the errors, which are a product of a noisy channel, can be corrected
at the receiving end. To achieve this FEC will employ an encoder and a decoder.
The encoder will take the source data and add redundant data to it before sending
it through the channel. At the receiving end the decoder will make use of the
redundancy to correct the errors induced by the channel [3].

In a 1948 paper, A Mathematical Theory of Communication, American mathe-
matician C. E. Shannon, demonstrated that it is possible to send data through a
channel with a small probability of error if the data rate is smaller than or equal
to the channel capacity [4]. In brief this means that in theory, data rate needs
not to be sacrificed for the sake of the reliable data transmission. Shortly there-
after in 1950 Richard Hamming, also an American mathematician, introduced the
Hamming code, the first error-correcting code, which has revolutionised the field of
error-correcting codes in data communications [5, 3].

The two aforementioned historical events have prompted the search for the per-
fect error-correcting code deemed possible by Shannon’s theorem. Since then many
error-correcting codes have been developed, two of the most popular being the Bose-
-Hocquenghem-Chaudhuri (BCH) codes and Reed-Solomon codes [6]. However, the
development of new and more advanced communication mediums like optical fi-
bre has also increased the performance demands on the error-correcting codes, and
meeting those continuously increasing demands in terms of low bit error rate and
high throughput is becoming more and more challenging [7, 8].

One of the recent additions amongst error-correcting codes is the low-density
parity-check (LDPC) code [9] that facilitates transmissions up to 10 Gbps. Fibre-
optic communication systems offer transmission rates in the 100 Gbps range and
require bit-error rates below 10−15, 3 dB shy of the Shannon limit at the required

1



1. Introduction

bit rate RS-LDPC (LDPC implemented with Reed-Solomon codes) is simply not
good enough [8]. It was soon found that the performance of the LDPC code could
be greatly improved if it was combined with algebraic component codes, which led
to a birth of a new class of error-correcting codes, the staircase codes [8], which
outperformed all other error-correcting codes recommended by the ITU-T G.975.1
(Telecommunication Standardisation Sector) [10]. Staircase codes are therefore rele-
vant for further study and possible implementation in hardware in order to evaluate
the power consumption and performance of the design. The only (known to us)
hardware implementation (on an FPGA) of staircase codes resulted in a perfor-
mance within 0.56 dB of the Shannon limit at 10−15 [8].

To the best of our knowledge research for staircase code ASIC implementation
has not been published, nor have any numbers on power consumption been pre-
sented in the scientific literature or publications. The aim for this thesis work is
therefore to develop and implement a hard-decision staircase decoder using a 28-nm
process technology, for power and performance analysis. In the process of evaluating
the synthesised decoder’s power and performance characteristics, the coding perfor-
mance and practically relevant code parameters will be evaluated in the MATLAB
simulation environment beforehand. Due to limited time of a master thesis project,
the place-and-route and manufacturing of the chip is out of the scope for this thesis
work.

1.1 Methodology
The staircase decoder is expected to be used in high-speed fibre-optic communica-
tion systems. It must therefore satisfy the performance requirements stated by the
Optical Transport Network (OTN) standard (ITU-T G.709), from which it can be
deduced that a successfully implemented decoder must have a bit error rate (BER)
below 10−15 at a bit rate above 10 Gbps [8, 11].

To get a better understanding of the staircase decoder as well as to ensure that
it meets the throughput and coding gain performance requirements of the OTN
standard [8, 11], the thesis work starts with an exploratory phase. In this phase, see
Chapter 2, we study theory and coding concepts, e.g., linear and cyclic codes and
decoders, in relevant literature, mainly textbooks and articles.

In Section 3.1, we carry out modelling and simulation of very basic error-correcting
codes in MATLAB, which helps us obtain a general understanding of how different
error-correcting codes perform. This is done in parallel with the literature studies.

In Section 3.3 the next step, which is to build (in MATLAB) the staircase code
itself and compare the performance of the staircase code to that of the product code,
is described. For the product code, the coding is performed both column- and row-
wise. Looking at the overall performance of the staircase code we then can verify
that staircase codes perform better compared to product codes. In the end-phase of
the staircase code implementation and study in MATLAB, we start manual BCH
block code implementation and study, where the aim is to verify some of the recently
published algorithms. The detailed MATLAB implementation in Section 3.2 also
helps to guide the concurrent VHDL design in Section 4.1.1.

We prove the concept of the staircase codes in MATLAB, and start with the

2



1. Introduction

hardware implementation phase in Chapter 4. The hardware implementation phase
is started with the implementation of the BCH decoder, after which we implement
the staircase architecture. The successfully implemented staircase decoder is then
synthesised and analysed in a 28-nm fully-depleted silicon-on-insulator (FD-SOI)
process technology.
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2
Theory

This chapter covers the theory and terminology of coding theory and concepts.
We start off by introducing the error-control principle and forward error-correction
(FEC) technique, after which some preliminary theory on finite fields is provided.

The theory behind BCH block code is briefly described, along with the compo-
nents upon which the BCH block code is built on.

2.1 Introduction to Error-Correction Codes
The digital data bandwidth used in communication or audio-video systems is rapidly
increasing [12]. The advantage of digital signals over analog signals is that they are
more reliable in a noisy environment, since for each symbol the detector in a digital
system only needs to detect either a ’1’ or a ’0’ [2].

If the data are carried over a noisy environment and the strength of the noise
is enough to change value of the original data symbols, then the detector might
make an erroneous decision. However, if the data is coded, by adding appropriate
check (redundant) symbols to the data symbols, the receiver (including detector and
decoder) can detect, and possibly correct certain errors, making the signal reception
more reliable. Adding redundant check symbols to data symbols is called error-
control coding [2]. It is often referred to as a FEC technique, which is widely used in
digital and real-time communication systems. FEC implies that the error-correcting
code is applied to the data prior to transmission, and bit errors occurring during
transmission are corrected at the receiving end of the system. One of the advantages
of FEC, when compared to other error-control techniques using retransmission (e.g.,
automatic repeat request – ARQ), is that the channel-utilisation efficiency for the
FEC is constant and depends only on the code-rate of the FEC code that is used.
One of the disadvantages however is that if the number of bit errors is higher than
the error-correcting capability of the FEC decoder, then the uncorrected bit errors
will remain in the decoded data [2].

Based on the error-correcting capability of the code, the FEC code will correct
a specified number of bit errors caused by the transmission channel by utilising the
redundant bits added to the data by the encoder. By applying FEC before transmit-
ting the data over a noisy channel, the bit-error probability of the transmitted data
is reduced, thus increasing channel capacity and reducing both cost and required
transmission power. For example, due to gained power and cost savings FECs are
widely used in satellite-communication systems [2].

One important characteristic of the FEC code, which expresses the transmission
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2. Theory

power advantage of FEC, is the coding gain. Coding gain is defined as reduction of
the ratio of energy per information bit (Eb) to noise power density (N0)— Eb/N0
compared to the uncoded system. The coding gain at a specific bit-error rate (BER)
is calculated as the difference of required Eb/N0 between the uncoded and coded
systems, where BER is the ratio of occurred bit errors over transmitted bits during
the studied period of time [2].

The type of errors that occur in the system (e.g., digital communication or record-
ing system) is one of the characteristics that needs to be considered when choosing
an appropriate error-control or FEC code. Upon choosing an appropriate FEC code,
the occurrence of different types of errors should be considered, i.e., whether they
are random, burst or byte errors. Random errors take place independently for each
information symbol. Burst errors occur over a contiguous sequence of information
symbols. Byte errors occur in number of bits confined to one byte. In some sce-
narios a combination of two of the three types may occur, where byte error can be
considered as the more restricted case of a burst error. For each error type there
exist codes for effectively detecting and/or correcting that particular type of error,
however a code which is designed to detect and/or correct one type of error may not
be effective for other types [2].

Other characteristics for consideration when choosing a FEC code are the error-
correction capability, the number of redundant symbols, code-rate and the size, com-
plexity and speed of the decoder. When implementing a decoder, the three last
properties are part of the design trade-offs that have to be made. An example of
a trade-off is choosing between two codes with the same error-correction capabil-
ity, where one (e.g., smaller) code has lower code-rate while another (e.g., larger)
code has higher code-rate. This trade-off in the example of two arbitrary code
classes is illustrated in Fig. 2.1. For example, compared to a class A code, class B
code has higher code-rate, yielding higher efficiency. For the codes with the same
error-correction capability, the higher the code-rate, the higher the efficiency, as
there is less space for redundancy (symbols) needed. However, codes that are effi-
cient in terms of code-rate and coding gain typically need a complicated decoder,
which operates at a relatively low speed. Therefore, when deciding if a simple or a
fast decoder is required, code-rate and coding gain must be traded off to a certain
extent. The problem of selecting a code can be solved by finding an acceptable
trade-off between requirements for error-correction capability, code-rate, hardware
implementation size, and speed of the decoder [2].

5
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Code rate

Error-
correction
capability

Small

Large

High Low

Code class A

Code class B

Theoretical limit

Figure 2.1: Error-correction capability and code-rate trade-off

2.1.1 Model of a Digital Communications System
Error-control coding techniques are applied on digital communication channels for
detecting and/or correcting occurred errors. In Fig. 2.2, the transmitted message is
a sequence of binary symbols of length k and denoted by u = (u1, u2, ..., uk), where
for any element i the values in vector u are ui =’0’ or ’1’.

Message
Encoder

ReceiverDecoder

Transmitter
Codeword

Received
vector

Estimated
message

u x

Noise

yû 

0111 0111010

0010000

01010100111

Figure 2.2: Model of digital communication system

The useful information message is input to an encoder, where the codeword is
generated. The codeword is a binary sequence of length n, which is denoted by

6



2. Theory

x = (x1, x2, ..., xn), where xi = 0 or 1 and n > k. The mapping of the encoder
enables detection and/or correction of errors at the receiving-end. As a result the
number of overall symbols is increased from k to n, where the ratio of k/n is called
code-rate and denoted by R.

There are two types of encoding methods: the first one, where each codeword
is generated from one block of k message symbols, is called block encoding. The
block encoder does not hold any information about a message block after an encoding
operation has been completed. The second type of encoding, where each codeword is
generated from several consecutive message blocks, is called convolutional encoding
[2].

Assuming block encoding is applied, let the set of all possible codewords generated
by the encoder be C = x1, x2, ..., xM , where M = 2k is the number of possible
messages. The set C is called a code [2].

The codeword from the encoder is transmitted on the channel and the receiving-
end of the channel obtains the binary message sequence of length n, y = (y1, y2, ..., yn),
called the received vector. From the received vector y, the decoder estimates the
transmitted codeword x and delivers the estimated codeword x̂, or equivalently the
estimated message û to the destination. In some cases, the decoder may only evalu-
ate whether or not an error occurred on the channel (e.g., cyclic redundancy check
- CRC) [2]. Decoding methods can be divided into two classes: hard-decision (HD)
and soft-decision decoding (SD). Hard-decision decoding is where the receiver decides
whether each transmitted symbol was a ’0’ or a ’1’ in the received binary sequence
vector y. Soft-decision decoding on the other hand generates some multi-valued in-
formation on each received symbol and the decoder recovers the message from the
multi-valued or (more than 2 level) quantised received vector y. The SD decoding is
not only using binary decision of value being ’1’ or ’0’, but also the reliability of that
decision. SD decoding method usually provides a better coding gain than the HD
method, but it is not easy to implement in the optical communication technology
due to high complexity of the decoding algorithm and high computational expense
of obtaining the reliability information about the decision [13].

In the noiseless channel, the received vector y is equal to the transmitted codeword
x. In the noisy channel however, y may differ from x, so the received vector can be
expressed as

y = x+ e, (2.1)

where e = (e1, e2, ..., en) represents the effect of the channel noise. Vector e is called
the error vector. Similarly for the received vector y, in the case of soft-decision
decoding, e is an analog or multiple-valued vector and in the case of hard-decision
decoding, e is a binary vector, where each bit in vector e represents whether or not
an error occurred on the transmitted bit. In hard-decision decoding, the addition
in Eq.2.1 is performed by modulo 2 addition or effectively with an exclusive OR
gate [2]. Although, SD decoding can offer higher coding gain, the more high-speed
operation oriented and less computations demanding [14] HD decoding method will
be used in this thesis project and considered to be used from now on.
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2. Theory

2.2 BCH Codes
Bose-Hocquenghem-Chaudhuri (BCH) codes were developed twice, first by Hoc-
quenghem in 1959 and then by Bose and Chaudhuri in 1960, and have since become
the most influential amongst the error-correcting codes [6, 2]. The efficiency of the
binary BCH codes, especially in correcting random errors, makes them suitable in
the implementation of staircase codes [15].

BCH codes are cyclic codes (see Def. 2.2.1), that can be both binary and non-
binary [3]. Binary BCH codes, which due to reduced hardware complexity are of
interest to us, are codes with elements in GF(2m) (see Sec. 2.2.1), where m is a
positive integer [6, 16].

Definition 2.2.1. If a codeword is an element of C, then every cyclic shift of the
codeword will produce another codeword that is also an element of C [6].

BCH codes as well as other error-correcting codes are characterised by their code
parameters. The parameters n and k signify the length of the message and the
codeword respectively, the (n,k)-values are often prefixed in the code name, e.g.,
(n,k) BCH code. d is the distance between two codewords, i.e, the number of
positions where two codewords belonging to the same code differ. The parameter t
defines the error-correcting capability of the code [17]. For the BCH codes following
is true [6]:

n = 2m − 1

n− k ≤ mt

dmin ≥ 2t+ 1

Code parameters can give us a first glance at the efficiency of the error-correcting
code. For example assume a (15,7) BCH code, from the n,k values we can conclude
(15− 7 ≤ 4t) that t = 2, i.e., the (15,7) code can correct up to two erroneous bits.

To ease the understanding of the mathematical concepts used in the BCH codes
the following section gives a quick introduction to algebra.

2.2.1 Galois Field (GF)
Use of algebra is quite common in the field of error-correcting codes, reason for
that is the usefulness of the algebraic alphabet when it comes to doing the basic
mathematical operations like addition, subtraction, multiplication and division on
error-correcting codes [16]. Because of this an introduction is given on basic algebraic
concepts like fields, Galois field in particular.

If elements of a set can be added, subtracted, multiplied and divided with each
other and if the resulting elements of these operations can be found in the same
set, all of these elements are then part of a field, assuming that both addition and
multiplication have commutative, associative, and distributive properties.

A Galois field, GF(q), is like any other algebraic field with the exception that q
must be a prime number or a power of prime number [6]. The previously mentioned
binary Galois field, GF(2m), consists of binary elements of size m.

8



2. Theory

The elements of the Galois field, during the decoding, will be operated on using bi-
nary addition and multiplication. Addition and multiplication in binary Galois field
are modulo-2 operations, where modulo-2 addition corresponds to XOR-operation
and modulo-2 multiplication to an AND-operation [1]. Examples of multiplication
and addition are brought in Table 2.1.

Table 2.1: Examples of addition and multiplication tables

⊕ 0 1
0 0 1
1 1 0

⊗ 0 1
0 0 0
1 0 1

From now on we are going to use the greek letter α (alpha) to denote the el-
ements of the Galois field. Elements of the Galois field are all powers of α (i.e.,
α0, α1, α2, ...αq−2) and are constructed using the primitive polynomial p(x), which
is the first irreducible polynomial for Galois field of order q that has a root in α [6].

GF table contains all elements of the GF(2m). The first element of the GF table
is α0(1) and is represented by binary ’1’. Bit ’1’ is then shifted one bit to the right
(assuming that the leftmost bit is the LSB) until MSB is ’1’. The (m+ 1)th element
of the GF table (or αm) is deduced from the primitive polynomial by utilising the
statement that the primitive polynomial has a root in α, (i.e., p(α) = 0). The
element after, which is αm+1 is naturally deduced by multiplying previous element
with α, i.e., αm+1 = α(αm), and so forth.

To get a better understanding of the construction of GF tables, let us do just
that and construct a GF(24) table as seen in Table 2.2. The primitive polynomial
for m = 4 is p(α) = 1 + α + α4. The first element of the table is naturally ”1000”,
shifting one bit to the right will give us the second element which is ”0100”, the
third element is ”0010”, and so forth until we reach the 5th element which is α4. To
deduce α4 a primitive polynomial is used:

p(α) = 1 + α + α4 = 0⇒ α4 = 1 + α

By multiplying α4 by α we will get α5:

α5 = (α)(α4) = (α)(1 + α) = α + α2

Table 2.2: Example of constructing a Galois field – GF(24) table

Vector Polynomial
1000 α0 = 1

XOR 0100 α1 = α
1100 α4 = 1 + α

Vector Polynomial
0100 α1 = α

XOR 0010 α2

0110 α5 = α + α2

Multiplication by α is continued until we reach the last element of the GF table:

α6 = (α)(α5) = (α)(α + α2) = α2 + α3

9



2. Theory

α7 = (α)(α6) = (α)(α2 + α3) = α3 + α4 = 1 + α + α3

...

A Galois field table for GF(24) is shown in Table 2.3.

Table 2.3: Galois field table for GF(24) constructed with p(x) = 1 + x+ x4 (1100)

Polynomial representation Vector representation (LSB → MSB)
α0 = 1 1000
α1 = α 0100
α2 0010
α3 0001
α4 = 1 + α 1100
α5 = α + α2 0110
α6 = α2 + α3 0011
α7 = 1 + α + α3 1101
α8 = 1 + α2 1010
α9 = α + α3 0101
α10 = 1 + α + α2 1110
α11 = α + α2 + α3 0111
α12 = 1 + α + α2 + α3 1111
α13 = 1 + α2 + α3 1011
α14 = 1 + α3 1001

2.2.2 Finite-Field Multiplication in Polynomial Basis
Finite-field multiplication is of great relevance in this project, we will therefore begin
this section with a short elaboration on why this is the case.

Due to the multiplication between two primitive elements αi ·αj = αi+ j, where
modulo 2m − 1 is performed on the resulting power, the extra overhead from con-
version of representation (e.g. lookup tables) would increase the overall system
complexity. Using polynomial basis (PB) multiplication enables more coherent rep-
resentation of finite field elements through out the design.

First let us define a monic irreducible polynomial P (x) = xm + ∑m−1
i=0 pix

i of
degree m, where pi ∈ GF(2m) for i = 0, 1, . . . ,m−1. Also let α ∈ GF(2m) be root of
P (x), where for example P (α) = 0. The acquired set 1, α, α2, . . . , αm−1 is referred to
as the polynomial or standard basis, where each element of GF(2m) can be expressed
with respect to the polynomial basis (PB). Let there be an element A in GF(2m)
for which the PB representation is A = ∑m−1

i=0 aiα
i, where ai ∈ 0, 1 and ais are the

coordinates. The α coordinates are denoted in vector notation (in small, bold font)
as a = [a0, a1, a2, . . . , am−1]T, where T denotes transposition. This GF(2m) element
A in vector notation can be written as A = αT a, where α = [1, α, α2, . . . , αm−1]T . Let
a binary polynomial S of degree ≤ 2m− 2 that is the result of direct multiplication
of the PB representation of two GF(2m) elements A and B, as shown in Eqs. 2.2
and 2.3 [18, 19].

10
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S = (
m−1∑
i=0

aiα
i)(

m−1∑
j=0

bjα
j) =

2m−2∑
k=0

skα
k, (2.2)

sk = (
∑

i+j=k

aibj), 0 ≤ i, j ≤ m− 1, 0 ≤ k ≤ 2m− 2 (2.3)

The resulting product C = A ·B can be expressed as a modulo reduction:

C ,
m−1∑
i=0

ciα
i ≡ S mod P (α) ≡ AB mod P (2.4)

In a previous study by Mastrovito [19], it is shown that using Eqs. 2.2 and
2.4 the product coordinates cis, which are calculated in terms of ais, bis, and the
irreducible polynomial P (x); these coordinates can be calculated using the following
matrix equation:

c = Fb (2.5)

In Eq. 2.5 vectors b = [b0, b1, b2, . . . , bm−1]T and c = [c0, c1, c2, . . . , bm−1]T are as-
sociated with B and C respectively [18]. In Eq. 2.5 vectors b = [b0, b1, b2, . . . , bm−1]T
and c = [c0, c1, c2, . . . , bm−1]T are associated with B and C respectively. The full
definition of the product matrix F = [fi,j]m−1

i,j=0 can be found in [20].
Previously the three coefficient vectors a, b, c, of the degreem elements in GF(2m)

were defined. Next, let us define three polynomials as shown in Eq. 2.6 and in Eq
2.7 coefficient vectors to polynomials are shown.

d(x) = a(x)b(x) = d0 + d1x+ ...+ d2m−2x
2m−2,

d(L) = d0 + d1x+ ...+ dm−1x
m−1,

d(H) = dm + dm+1x+ ...+ d2m−2x
2m−2

(2.6)

d = [d0 + d1 + ...+ d2m−2]T ,
d(L) = [d0 + d1 + ...+ dm−1]T ,

d(H) = [dm + dm+1 + ...+ d2m−2]T
(2.7)

The previous work carried out by Barreto et al. in [21] shows the reduction of
the polynomial multiplication d(x) using an (m × m − 1) reduction matrix Q and
how to obtain the field product c(x), also shown in Eq. 2.8 [22, 18, 20].

c = d(L) + Q · d(H) (2.8)

11



2. Theory

2.2.3 BCH Decoder
To decode BCH codes a BCH decoder is needed, see Fig 2.3. Input to the BCH
decoder is the message received from the channel, r(x).

First step in the decoding process is the computation of the syndromes. Syn-
dromes serve only as error indicators, i.e., they will notify us of error occurrence but
not of position of the error(s).

To be able to correct the erroneous bits, we need to know the position of those.
By utilising the computed syndrome, an error-location polynomial, λ(x), can be
calculated using the Berlekamp Massey algorithm (BMA) [3].

Error positions are roots of the error-location polynomial and are found with
Chien search, see Sec. 2.2.3.3. Output of the Chien search is an error position
vector, e(x), that indicates position(s) of erroneous bit(s) with a one [3, 1].

Syndrome BMA Chien Searchs(x) λ(x)r(x) e(x)

Figure 2.3: Overview of the decoding steps of a BCH decoder

2.2.3.1 Syndrome Calculation

As previously mentioned, syndromes are not only used as error indicators but also
as input data to the BMA. Syndromes are calculated according to Eq. 2.9, where r
is the received message and HT is the transposed parity check matrix [15].

S = rHT (2.9)

The parity check matrix for the multiple-error-correcting BCH decoder, with the
error-correcting capability of t, is defined as [2]:

H =



αn−1 αn−2 . . . α2 α 1
α2(n−1) α2(n−2) . . . α4 α2 1
α3(n−1) α3(n−2) . . . α6 α3 1

... ... . . . ... ... ...
α2t(n−1) α2t(n−2) . . . α4t α2t 1


In total 2t number of syndrome elements are calculated and sent to the BMA.
Following is the calculation for the ith syndrome element [15]:

Si = r(αi) =
n−1∑
j=0

rjα
ji

12
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Si =
[
r0r1r2 . . . rn−1

]


α0i

α1i

α2i

...
α(n−1)i


It should be noted that the elements of syndrome S = (S1, S2, . . . , S2t), are all
elements of Galois field.

2.2.3.2 Berlekamp Massey Algorithm, BMA

The BMA [23, 24] is used for solving Toeplitz systems of linear equations of form,
e.g., Ax = b, where A is diagonal-constant matrix/Toeplitz matrix. BMA is used for
solving error-locator polynomial (ELP) Λ(x) and error evaluator polynomial (EEP)
Ω(x), which are also referred to key equation components. For example in the case of
the Reed-Solomon (RS) codes, knowing that there is an error in a m-bit codeword,
is not sufficient, while the location and the size of the error(s) are unknown. In the
case of BCH codes, the size of the error is always known and of size binary 1 and
therefore only the error-location is needed for error-correction.

Error-locator polynomial Λ(x) of degree dependant on number of errors e and
error-locator polynomial Ω(x) of degree at most e− 1 can be defined as [25]

Λ(x) =
e∏

j=1
(1−Xjx) = 1 + λ1x+ λ2x

2 + ...+ λex
e

and
Ω(x) =

e∑
i=1

YiX
m0
i

e∏
j=1,j 6=i

(1−Xjx).

By convention [25], the error values Y1, Y2, ..., Ye being either ’1’ or ’0’, have corre-
sponding error-locations of X1 = ai1 , X2 = ai2 , ..., Xe = aie , where the error have
occurred. Both Λ(x) and Ω(x) are related to syndrome polynomial S(x) through
the key equation

Λ(x)S(x) ≡ Ω(x)mod x2t.

When solving the key equation both Euclidean and BM algorithms can be used. If
the number of errors is less than the error-correction capability of the code (e ≤ t),
then aforementioned two algorithms find Λ(x) and Ω(x). However, if e > t then the
algorithms almost always fail to find the Λ(x), Ω(x) polynomials.

For this thesis, BMA was considered, due to possible hardware efficient imple-
mentations [26, 27]. BMA iteratively solves key equation

Λ(r, x)S(x) ≡ Ω(r, x)mod xr,

where r = 1, 2, ..., 2t. It can be seen that for t error-correction capability, the code
has 2t syndromes and it takes 2t clock cycles to find both the ELP and the EEP
[25].

13
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BMA actually solves a more general problem, of finding the least common multiple
of a given sequence. For example, given a sequence E – E0, E1, E2, ..., EN−1 of length
N, the BMA finds the recursion

Ei = −
L∑

j=1
ΛjEi−j,where i = L, ..., N − 1,

for the smallest value of L. The r-th iteration gives the shortest recursion of (Λr(x), Lr)
for producing the first r terms of the E sequence, where Lr = deg(Λr(X)). The pro-
duced shortest recursion can be written as

Ei = −
Lr∑

j=1
Λr

jEi−j,where i = Lr, ..., r − 1

having Λr
0 = 0 [28].

2.2.3.3 Chien Search

By locating the roots of the Λ polynomial that we get from BMA, we can find
position(s) of the erroneous bits. This is done by employment of the Chien search
algorithm, which is an iterative process in which x in Λ(x) is iteratively replaced by
elements of the finite field, 1, α, α2, ..., αn−1. αi (0 ≤ i ≤ n − 1) is a root of the Λ
polynomial if Λ(αi) = 0 [6, 1].

For example, let us assume that Λ(x) = 1 + α13x + x2 is the received error-
location polynomial for (15, 7) BCH code. Chien search algorithm would start off
by substituting x with the first element of the Galois field, i.e., α0 = 1.

Λ(1) = 1 + α131 + 12 = 1 + α13 + 1 = α13

Since Λ(1) 6= 0, we can conclude that 1 is not a root of the given error-location
polynomial. It should be noted that two instances of the same element, in this case
1, will cancel each other out. This is because addition in Galois field, as mentioned
in Section 2.2.1, is an XOR function. Next element to substitute x is α1 = α, but
since we know that roots of this particular error-location polynomial are at α4 and
α11, let us speed up the search process and prove that substituting x with either α4

or α11 will result in Λ = 0.

Λ(α4) = 1 + α13α4 + (α4)2

= 1 + α13+4 + α4×2

= 1 + α17 + α8

= 1 + α2 + 1 + α2

= 0

Chien search is a simple but effective algorithm, however it is quite considerable in
size when implemented in hardware [1, 15], more about that in Chapter 4.
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2.3 Product Code
In this section one of the techniques upon which the staircase code concept is based
on – the combination of several existing codes – is discussed. The product code is
a long code built from short component codes. Compared to the long length block
codes, product code is a better performing code due to the cross parity check [6] and
low circuitry overhead, since for the similar coding gain the component codewords
for product code can be of lower error-correction capability [27].

Assume that both C1 and C2 are (n1, k1, d1)-, (n2, k2, d2)-systematic codes. To
construct a product code C from C1 and C2 (i.e., C = C1 × C2) with parameters
(n1n2, k1k2, d1d2), the following steps need to be taken:

1. Information symbols (messages) – k1k2 need to be arranged in a (k1 × k2)
matrix A.

2. A (n1×n2) matrix B needs to be constructed, so that the upper-left corner of
matrix B is matrix A, see Fig. 2.4.

A

Check
on
rows

Check
on

columns

Check
on

checks

k2

n2

n1

k1

Figure 2.4: Two-dimensional [n1n2, k1k2] product code

From Fig. 2.4 it can be concluded that the first row of A is message k2 of C2,
while the first column of A is message k1 of C1. Resulting minimum distance d of
product code C satisfies d = d1d2[3].

2.4 Binary Convolutional Codes
If block coding is a memory-less operation, meaning that codewords are indepen-
dent from each other, then convolutional codes have memory in a sense that not
only do the convolutional codes depend on the current input information, but also
on previous inputs or outputs. The binary convolutional code processes binary se-
quences or information serially — in bit-by-bit or continuously — block-by-block
manner. Due to the information dependency between consecutive bits or blocks,
the convolutional encoder/decoder is a sequential circuit or a finite-state machine,
where the state of the encoder/decoder is defined as the contents of the memory. In
finite-state-machine, the decoding can be described in a transition table, indicating
the relation between the input and the current output, based on the previous and
current state [3].
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2.5 Staircase Codes
The high-rate binary staircase code is as mentioned earlier a new class of FEC which
combines ideas from convolution and block coding [8]. Due to limited amount of com-
putations that can be spent on the error-correction decoding, the hard bit flipping
(hard-decision) decoding brings advantages (e.g., reduced optimisation complexity,
efficient hardware implementation) in high-speed operation of optical transceivers
[14, 7]. As a form of spatially coupled codes on graphs, the staircase codes, designed
for optical communication, were recently also proposed to the optical communication
standard ITU G.975.1 [14].

Staircase code is a new class of FEC codes, that can be considered as a hybrid of
both convolutional and block codes. From the block codes, the idea of combining
existing codes in a product-like manner is merged with the idea of block-to-block
dependency from the convolutional codes that one block depends on the decoding of
another block. In other words, the staircase code obtains the product-like structure
from the block codes and the block-to-block dependency — the memory from the
convolutional codes. Staircase codes take advantage of the streaming nature of the
communication over optical transport networks (OTNs), where data is input to the
decoder at a constant rate, which allows the overall code to have an indeterminate
block length [7].
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Analysis of Staircase Codes

Before the actual hardware implementation of the staircase decoder, we have to
make sure that the decoder meets the specified requirements (mentioned in previous
chapter). Section 3.4 describes the implementation of the staircase codes in MAT-
LAB and reasons behind the parameter selection, along with performance evaluation
of the staircase decoder. The purpose of the MATLAB implementation was not only
to get the performance numbers, but also to further improve the understanding on
how to implement the staircase decoder in VHDL.

Chapter 4 on the other hand describes the hardware implementation phase (in
a 28-nm FD-SOI technology), from writing and implementing the functional blocks
in VHDL to synthesis of the VHDL code. Here, the power and performance data
gained from the synthesis is accounted for. This phase was started with the im-
plementation of a simpler staircase design (e.g., constant parameters) after which
further improvements were implemented (e.g., optimisation and parameterisation of
the code).

3.1 BCH Code Parameters
Since one of the main components of the staircase codes is the BCH block code de-
coder, we studied the behaviour of the hard-decision BCH binary cyclic codes when
changing the decoder parameters, like different codeword sizes and error-correction
capabilities (n-, t- values respectively). For BCH code parameter and coding gain
study, MATLAB built-in functions were used.

An additive white Gaussian noise (AWGN) channel was simplified for the use
case of hard-decision decoding, where an error either occurred or not. The AWGN
was simulated by using a Binary Symmetric Channel with the crossover probability,
calculated according to Eq. 3.1, where Eb/N0 is energy bit to noise spectral density
ratio, R is code-rate and Q is the tail probability of the standard normal distribu-
tion. Noise was added to the data a using binary symmetric channel with crossover
probability Pb.

Pb = Q

√
2Eb
N0 ·R

(3.1)
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3. Analysis of Staircase Codes

Figure 3.1: Comparison of BCH codes with different parameters

BCH code simulations with different parameter values are shown in Fig. 3.1,
from which it can be concluded that the coding gain is better for larger codes with
similar or constant code rates, which could be attributed to larger t values. Also, for
constant error-correction capability, t, the coding gain was better for larger codes.

From these observations we estimated which BCH block parameters that were
best suited for the staircase code. However, observations from the MATLAB sim-
ulations together with findings from a previous study by Zhang and Kschischang
[29], resulted in a consensus of choosing codes with block length of n = 255, 511
with t-values of t = 3, 4, 5.

3.2 BCH Code Components
To speed-up MATLAB simulations, built-in encoder and decoder MATLAB-functions
were used during the performance testing of the hard-decision staircase decoder. Ad-
ditionally a BCH decoder utilising non-built-in decoding functions was used to verify
the syndrome calculation algorithm, error-locator polynomial generation algorithm
and Chien search algorithm.

A self-written MATLAB code for syndrome generation was used to generate syn-
dromes of random input data, which was then used as input stimuli for the syndrome
component test bench. The generated syndromes were also used for comparison to
the outputed syndromes of the VHDL code. In the case of data mismatch the test
bench would issue a report of data mismatch and stop the simulation.
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The MATLAB simulations were more extensively used for the BMA block design
and verification. Due to optimisations for the binary BCH codes and resulting
smaller logic size, simplified inverse-free Berlekamp-Massey (SiBM) algorithm was
used for generating error-locator polynomial, which it does in t cycles [26, 30]. Two
main optimisations of reconfigured systolic architecture (RiBM) [25, 30, 31] are
utilised in the SiBM algorithm. The first optimisation is that due to discrepancy in
odd iterations being always 0, the odd iterations of the Berlekamp-Massey algorithm
can be skipped for BCH codes [32]. The second optimisation is due to fact that the
error-evaluator polynomial Ω(x) is not needed, since for binary BCH codes the error
value is always 1. The pseudo-code describing the SiBM algorithm is shown in
Algorithm 1 [26, 30].

Algorithm 1 Simplified inverse-free Berlekamp-Massey
Input: Sj(j = 0, 1, 2, ..., 2t− 2)
Initialisation: δ2t(0) = 1, δ2t−1(0) = 0, θ2t(0) = 1, θ2t−1(0) = 0, δi(0) = θi(0) =
Sj(j = 0, 1, 2, ..., 2t− 2), k(0) = 0, γ(0) = 1
for i = 0 step 1 to t− 1 do
Step 1:
δj(i+ 1) = γ(r)δj+2(i) + δ0(i)θj+1(i)(j = 0, 1, 2, ..., 2t)
Step 2:
if δ0(i) 6= 0 and k(i) ≥ 0 then
θj(i+ 1) = δj+1(i)(j 6= 2t− 2− 2i, 2t− 3− 2i)
γ(i+ 1) = δ0(i)
k(i+ 1) = −k(i)

else
θj(i+ 1) = θj(i)(j 6= 2t− 2− 2i, 2t− 3− 2i)
γ(i+ 1) = γ(i)
k(i+ 1) = k(i) + 1

end if
θj(i+ 1) = 0(j = 2t− 2− 2i, 2t− 3− 2i)

end for
Output:
λ0 = δ0(t), λ1 = δ1(t), ..., λt = δt(t)

Due to syndrome S2t−1 taking effect at the (2t− 1)-th iteration, according to the
algorithm, the last syndrome can be excluded. During the i-th iteration, both the
discrepancy polynomial updates in Step 1 – coefficients of the j-th; and Step 2 –
coefficients of the (j+1)-th are computed simultaneously. After t iterations, the first
t+ 1 discrepancy coefficients – δ0, ..., δt are answer to t+ 1 error-locator coefficients
λ0, ..., λt – error-locator polynomial.

The pseudo-code [26, 30] in Algorithm 1 was used as reference for implementing
the SiBM function in MATLAB, which was simulated and compared to built-in
decoding function to verify the functionality, see Fig. 3.2.
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Figure 3.2: Comparison of coding gain for different BCH implementations in MAT-
LAB, where the red line is BER of an uncoded data sent through the channel

From Fig. 3.2 it can be concluded that the both functions give very similar results,
which reassures that the SiBM block was correctly implemented in MATLAB.

3.3 BCH Product Code
From the articles it can be deduced that the correctly implemented staircase codes
should perform better than the product code [8, 29]. Therefore as a reference point
for evaluating staircase code performance, a BCH product code was written and
simulated in MATLAB. Simple row-by-row and column-by-column encoding and
decoding algorithms were used. Due to the product code algorithm being subopti-
mal, simulations for evaluating coding gain and coding performance were necessary.
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Figure 3.3: Comparison block code and product code

An example of a n = 511, t = 5 code is shown in Fig. 3.3. When simulating
the product code, no iterative decoding was used, due to diminishing returns, the
inner code (e.g., C1) cannot fix the outer code’s (e.g C2) parity bits. Fig. 3.3
shows that the coding performance of the product code is better than the compared
block code, using the same codeword parameters, which is to be expected, since
the redundancy/parity bit overhead is increased in the case of the product codes.
From the figure, the coding gain at bit-error rate of 2 · 10−4 for the block code is
evaluated to be about 2.1 dB and coding gain for the product code is about 2.7 dB.
The obtained results give good basis for evaluating the staircase code.

3.4 Hard-decision BCH Staircase Code
The staircase code consists of blocks B and BT (where BT is the transposed data
block) connected together in a staircase fashion seen in Fig. 3.4. All blocks are of
the same size, i.e., m×m, where m = (n− 1)/2.
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Figure 3.4: Illustrative model of the staircase codes

During the encoding, two blocks and (depending on the constellation of the
blocks) a row (B+BT) or a column (BT+B) of zeros (needed to reach the length of
n) are concatenated and then encoded, see Fig. 3.4. The result of this concatenation
is of size m×n, where m is the number of codewords of length n. The flow diagram
for the staircase encoder is shown in Fig. 3.5.

Once all of the blocks are encoded, they are sent through the channel (described
in Section 3.1). Last encoded block is the first block that is decoded, i.e., if the
encoding is done down the staircase, the decoding should be done up the staircase
and vice versa.

Staircase codes use a sliding window approach, which offers more accurate de-
coding through utilisation of the data of all of the blocks in the window combined
with iterative decoding. Once a block is decoded correctly or the iteration bound
is reached the sliding window will slide one step down the staircase, shown in Fig.
3.6, and the process is repeated.

RandomDataBlock
(Generates random data 
(bits) of size mx(m-r) for 

a block of size mxm)

ConcatenateAndPadH
(Concatenates two blocks 
(BT and B) and pads first 

column with zeros)

Is the first 
block BT?

ConcatenateAndPadV
(Concatenates two blocks (B 
and BT) and pads first row 

with zeros)

BCHEncoder
(Encodes the 

concatenated blocks 
using the BCH encoder)

Yes

No

Figure 3.5: MATLAB model of the staircase encoder
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Figure 3.6: Example of the Staircase sliding window

After the channel, the decoding process is started by decoding the blocks placed
in the sliding window of the staircase code. Once inside the window the syndrome for
every block is checked. A MATLAB model of the syndrome check is shown in Fig.
3.7. The GeneratorMatrix function generates a generator matrix using the (n,k)
values as input. The built-in MATLAB function gen2par generates a parity-check
matrix using the generator matrix as input. Each parity-check vector is ANDed with
the received message r(x), if the number of ones in the resulting vector is 0 or an even
number (i.e., if the result of the bitwise XORing of the vector is 0) the syndrome for
that parity-check vector is equal to 0, otherwise 1. Syndrome checks for all of the
parity-check vectors must be zero for the received message to be identified as error
free.

Looking at the location of the parity bits in each block shown in Fig. 3.4 and
the sliding window in Fig. 3.6 we can conclude that each block except for the first
(all zero block) and the last, which are both discarded in the end, are decoded a
minimum of two times.
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Figure 3.7: MATLAB model of the syndrome check
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3.5 Performance of the Staircase Code
In the following section the three different versions of staircase code, written in
MATLAB, are described and the results shown. The three versions of staircase code
are:

1st version utilises the window size that changed dynamically from 2 to 4 blocks
2nd version uses fixed window length of 4
3rd version uses fixed window length of 6
The algorithm for the 1st version of the staircase code can be described as follows.

When decoding is started, the decoder takes in one block B1 and appends an all zero
block B0 to it. The resulting two blocks can then be decoded, where the decoding
is performed until the iteration bound or the syndrome for the (first) two blocks is
zero, meaning the decoding was successful (given that occurred errors e ≤ t). If the
decoding was successful, the data in the first block B0 could be sent out and a new
block B2 is then appended to B1, but due to first block from the initialisation being
all-zero block, it is disregarded. However, if the decoding for the first two blocks was
unsuccessful, meaning that the syndrome for the two first blocks at iteration bound
was not zero (S1 6= 0), a new block B3 is appended to the two blocks. Those three
blocks are then decoded in similar manner, where during one decoding iteration, first
B3, B2 are decoded, and then B2, B1 are decoded. Again the decoding is flagged
being successful if the syndrome in the first block B0 is zero (S1 = 0), if not, B4 is
appended to the first three blocks.

When window size of 4 is achieved and the decoding fails (S1 6= 0), the first block
is written out as is and a new block B5 is taken in. In the initial case, the B0 would
still be disregarded, due to not containing any transmitted data. Although, upon
decoding failure for the first block containing useful data, a flag can be appended
to that written out block, notifying the system that the data is corrupt.

The idea of the 1st version of the staircase code was that, depending on the
syndromes of consecutive first blocks being equal to zero (S1 = 0;S1 = S2 = 0;S1 =
S2 = S3 = 0), more than one block can be written out, decreasing the effective
window length, while at the same time after each decoding iteration, only one new
block at a time is appended to the existing blocks.

In the hardware implementation, it is more beneficial to keep a static staircase
window size, as it simplifies the control algorithm and overall hardware complexity.
Also, if the window size is kept constant and if more than one consecutive syndrome
after the decoding iteration are equal to zero (e.g., S1 = S2 = 0;S1 = S2 = S3 = 0),
then more than one new data block can be added into the window. This also allows
for the speed up of both MATLAB simulations as well as hardware implementation
(though a larger input buffer is needed). Therefore a simplified version of hard-
decision BCH staircase decoder was implemented in MATLAB.

The 2nd version of the staircase decoder used a fixed window length of 4 and
the 3rd version used a fixed window of 6. Both the fixed window and the dynamic
window size codes performed similarly regarding the coding performance. Although
due to fixed window simulations being faster and having more relevance to hardware
implementation, the fixed window implementation is considered from here on as the
primary algorithm to be used. The comparison between the block, product and
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staircase codes is seen in Fig. 3.8.
As expected, the staircase code takes full advantage of the iterative decoding, as

every new block can improve the decoding of the previous blocks in the staircase
window. The staircase code with a 6-block window performed better than the 4-
block window, which is to be expected. In the case of the 6-block window, by having
more blocks in the window, the likelihood of successful decoding for the last block(s)
by the additional new blocks in the window is improved. The observed results on
the staircase window length are also in accordance with previous study by Smith et
al. [8].

Figure 3.8: Comparison block code, product code and staircase codes with fixed
window size of 4 and 6 blocks

3.6 Error Floor
In the case of iteratively decoded codes, an error floor is the occurrence probability
of a particular error pattern that limits the maximum achievable BER to a certain
level. For iteratively decoded product-like codes, those certain error patterns causing
the decoder to fail are often called stall patterns [8]. Stall pattern refers to a state in
which no (valid error-correcting) updates can be made by the decoder and thereby
effectively stalling error-correcting capability of the decoder. A stall pattern can
be defined as [8]: a set s of codeword positions, for which every row and column
involving positions in set s has minimum t+1 positions in the same set s. Although
stall patterns can be corrected, e.g., incorrect decoding that by accident causes one
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or more bits to be corrected; it is assumed here, in order to evaluate a possible error
floor, by the worst-case criteria that all the stall-patterns are uncorrectable. The
staircase code has continuous, successive nature, which requires (possibly multiple)
consecutive blocks to be accounted for stalling patterns [8].

A minimal stall pattern can be declared as exactly t+ 1 rows and columns with
positions in set s. More about the proof of the number of minimal error pattern
sets that can be assigned to a block can be read from [8]. For the staircase code,
the number of minimal stall pattern sets that can be assigned to a block is defined
as

(
a

t+1

)
(
(

2a
t+1

)
−
(

a
t+1

)
). The size of the minimal stall pattern set is defined as

Smin = (t+ 1)2 , where a = nc

2 [8, 33].
The probability of positions in minimal stall pattern s being erroneous and caused

by transmission errors is p(t+1)2 . In some cases the errors in minimal stall pattern
s could besides transmission errors also be caused by incorrect decoding(s), leading
at some point in time during decoding to simultaneously erroneous positions in s.
For fixed sets of s and l, where 1 ≤ l ≤ (t + 1)2, there are

(
(t+1)2

l

)
ways in which

(t+ 1)2 − l positions in set s can be received as being erroneous [8].
The error floor for generalised product codes can be approximated by

BERfloor = sminMpsmin

B

where
B = a2 = n2

c

4
is defined as the number of bits in one of the staircase blocks [33]. Based on the
previous studies in [8, 33], it is approximated that the error floor for the BCH
component codes used in this thesis should stay way below the ≈ 10−15.
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Implementation of Staircase Codes

In this chapter the hardware implementation and ASIC synthesis is covered. The
staircase code synthesis using a a 28-nm fully-depleted silicon-on-insulator (FD-
SOI) process technology library allows us to extract the timing, area and power
consumption of the design. Based on the timing, also the throughput of the staircase
decoder can be estimated.

4.1 Staircase Components

4.1.1 BCH Decoder
Input to the BCH decoder is the received message, Rx, and the output is the decoded
message, RxDecoded. To avoid delays, the BCH decoder will execute all three of the
BCH decoder computations (Syndrome, BMA and Chien search) but also the final
XOR function simultaneously, see Fig. 4.1. In addition to that Syndrome and Chien
search are implemented concurrently, which is evident looking at the block diagram
shown in Fig. 2.3, since neither syndrome- nor Chien search component have a clock
input.
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RxDecoded

Syndromes

clk

reset

Galois Field 
Table

BCH Decoder

Constants

GF(x)

t
m
n

Figure 4.1: Block diagram of the BCH decoder

The final step of the BCH decoder is the XORing of the ErrorPosition vector
(from the Chien search) with the received message. The ErrorPosition vector is of
the same length as the received message with binary ’1’ on the error position(s),
and binary ’0’ on all other positions.

For example, assume that an all zero codeword of length 15 is sent through the
channel, and R(x) = x3 +x5 +x12 or in binary R = 000101000000100 is received. We
can see that three bits (on positions 4, 6, and 13) have been flipped, which means that
the error position vector will have binary ones in those positions, i.e., ErrorPosition
= 000101000000100. XORing the received message with the ErrorPosition vector
will result in the original codeword.

Table 4.1: XORing R(x) = x3 + x5 + x12 with ErrorPosition= x3 + x5 + x12 will
result in all zero vector, which is the original message

Rx 0 0 0 1 0 1 0 0 0 0 0 0 1 0 0
ErrorPosition 0 0 0 1 0 1 0 0 0 0 0 0 1 0 0
RxDecoded 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

It should be noted that an assumption is made that this is a (15,5) BCH-code
with error-correcting capability of three bits (t=3), which means that all three errors
are detected and corrected by the BCH decoder.
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4.1.1.1 Syndrome Calculation

Fig. 4.2 shows the block diagram of the syndrome component. The method used
to generate syndromes is explained in Section 2.2.3.1. Input to the syndrome com-
ponent is Rx, which is a vector of size n, and the output is Syndromes, which is a
matrix of size 2t×m. Elements of the Galois field are fetched from the Galois field
table as shown in Fig. 4.2.

(r0)(α0i)

(r1)(α1i)

(rn-1)(α(n-1)i)

XOR

Syndrome_subcomp i=1

S(i-1)

r0

r1

rn-1

Galois Field Table

(r0)(α0i)

(r1)(α1i)

(rn-1)(α(n-1)i)

XOR
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S(i-1)

r0

r1

rn-1

Rx

α(n-1)i

α1i

α0i

α0i

α1i

α(n-1)i

Syndrome

Syndromes

Figure 4.2: Block diagram of the Syndrome calculation
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4.1.1.2 BMA

The SiBM algorithm, as discussed in Section 3.2, was chosen to be used in the BMA
block of the BCH decoder. The hardware design was based on the block diagram
in Fig. 4.3 showing the architecture [26, 30]. The 2t registers δ and θ registers are
initialised according to Algorithm 1, where indexes i and i+1 denote current and
operation cycle respectively.

δ0

Ѳ1

PE(0)

δ2n

Ѳ2n+1

PE(2n)
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Ѳ2t-1

PE(2t-2)
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 0 
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C1(1,i) C1(2n+1,i) C1(2t-1,i)

CNTL
δ0(i)

δ0(i)

δ0(i) ɣ(i) C0(i)

C0(i)

δ0(i) ɣ(i)

ɣ(i)

C0(i)

Figure 4.3: Block diagram of SIBM architecture

The original (no folding applied) SiBM architecture, without counting the control
logic (CNTL), needs 2t finite field adders (FFA), 4t finite field multipliers (FFM),
2t+1 registers and 2t multiplexers for hardware. The block diagram for the process-
ing element (PE) in SiBM is shown in Fig. 4.4.
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Figure 4.4: Block diagram of processing element architecture
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Figure 4.5: Block diagram of control (CNTL) unit architecture

Block diagram of the control logic (CNTL) is shown in Fig. 4.5 [26, 25, 30]. The
control unit computes bitwise OR of the m-bit δ(i) vector in order to determine
whether the discrepancy δ(i) is a nonzero value. If discrepancy is nonzero, then no
change is necessary to the current state of the polynomial, otherwise the polynomial
will be altered so that the discrepancy would become zero. The bitwise OR can be
solved using m− 1 two-input OR gates arranged in a binary tree of depth dlog2 me.
The counter k(i) is implemented in twos-complement representation and therefore
results in k(i) ≤ 0 if and only if the MSB is ’0’. The twos-complement arithmetic
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addition in CNTL block is k(i + 1) = k(i) + 1, whereas negation complements all
bits in k and then adds one, i.e., k(i+ 1) = −k(i) + 1 [25].

The additional control signal C1 is implemented as a shifter with 2t bits and
where the contents shift 2 bits towards LSB at every iteration. The C1 register is
initialised as (2t− 2) and (2t− 3) -th bits ′1′, others ′0′. [26].

As previous studies have shown, the SiBM algorithm when compared to both
reformulated inverse-free BM (riBM) and reconfigured systolic architecture (RiBM),
gives about 1/3 reduction in number of processing elements and also halves the
needed iteration clock cycles.

One of the more complicated operations carried out in the SiBM is the finite-field
multiplication between two GF(2m) polynomials. For the concise implementation of
the SIBM algorithm, it was decided to keep coherent PB representation throughout
the SiBM block. Keeping the GF(2m) in PB representation yielded in relatively
easy addition operation of logical XOR or modulo 2 addition. On the other hand
multiplication in the PB representation requires more complicated logic for bit-
parallel operation.

For flexibility of the decoder, the multiplier needed to be easily implementable
for any field and also due to possible large degrees of m, the multiplier needed to be
area efficient. The bit-parallel FFM algorithm by Reyhani-Masoleh and Hasan was
chosen [18], as it was shown to need fewer routed signals than Mastrovito algorithm
[19] and thus making it useful for VLSI design. Given multiplier is using optimisation
and reformulation of the PB multiplication from Mastrovito’s multiplier, achieving
multiplier algorithm in terms of the reduction matrix Q that can be applied to any
field (GF(2m)) defining irreducible polynomial [18].

The gate-level schematic of a bit-parallel multiplier for minimal polynomial of
m=4 is shown in Fig. 4.6. As can be seen, a multiplier requires m2 AND and m2−1
XOR gates, which meets the gate count expectations for trinomial in. Although it
must be mentioned that the XOR gate count can vary depending of the used irre-
ducible polynomial class, e.g., trinomials, all-one polynomials (AOPs) and equally
spaced polynomials (ESPs) [18].
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Figure 4.6: Gate-level schematic of bit-parallel polynomial basis (PB) multiplier
for trinomial with P (x) = x4 + x+ 1

4.1.1.3 Chien Search

Fig. 4.7 shows the block diagram of the Chien search. The method used for gener-
ation of the error-location polynomial is explained in Section 2.2.3.3. Input to the
component is the ErrorLocPol which is a matrix of size (t+ 1)×m.

To showcase the matrix representation of the error-location polynomial in the
implementation let us use Λ(x) = α4 + x2 + α8x3, as an example. Since this error-
location polynomial is taken from an (15,5) BCH-code with an error-correcting ca-
pability of three bits (t=3), the size of the matrix is 4× 4.

Table 4.2: Matrix representation of Λ(x) = α4 + x2 + α8x3

0 0 1 1
0 0 0 0
0 0 0 1
0 1 0 1

Error-location polynomial received from the BMA has the following form:

Λ(x) = αc1 + αc2x+ αc3x
2 + · · ·+ αt+1x

t

and each row represents a αc-value starting from αc1.
From Fig. 4.7 it can be concluded that the finite field multiplicators (FFM) are

used for multiplications in GF, and that the elements of the GF are fetched from
prestored GF-table.
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As was previously mentioned the output of the Chien search component is an
ErrorPosition vector of size n with binary ’1’ on the error position(s) and binary ’0’
on all other positions.

4.1.2 Circular Buffer
The encoded blocks of data are sent through the channel and with each rising edge
of the clock one block, starting with the block that is encoded last, will be sent to
the circular buffer until the buffer is full, shown in Fig. 4.8. The circular buffer
has a storing capacity of six blocks, and is a representation of the sliding window of
Section 3.4.

B5

B4

B3B2

B1

B6

ChannelB3B4

B5B6

B7

B1B2
Circular
Buffer

Figure 4.8: Circular buffer

The circular buffer is a first-in first-out (FIFO) dual-port memory. To keep track
of the memory slots two address counters are used (hence the attribute dual-port),
where one counter will keep track of the read data, while the other of the written
data [34]. A circular buffer is used to avoid shifting the data since the last encoded
block is the first one saved and eventually decoded. Shifting of data is associated
with increasing power consumption, and is therefore to be avoided if possible.

The number of successfully decoded blocks is also the number of available slots
in the buffer, since the successfully decoded blocks are sent through and the now
empty memory slots are filled with new blocks arriving from the channel.

4.1.3 Staircase Control Logic
Control logic in the staircase decoder controls the decoder module and the data-flow
from and back to the circular buffer. Control logic chooses which of the two data
blocks from the circular buffer that is being transposed; how the blocks and zero-
padding are concatenated; and read into the decoder module. From the decoder
module, the control logic monitors which of the codeword syndromes that are zeros
and thus further decoding can be skipped. Also an important task for the control
logic is to have a row and column based mapping of the zero-syndrome codewords
as illustrated in Fig. 4.9.
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Zero syndrome codeword

Zero syndrome codeword
Zero syndrome codeword

t< errors1/0 1/0 1/0

Figure 4.9: Mapping of row and column-wise zero syndromes for two adjacent
decoding operations

In Fig. 4.9, it is shown how the zero-syndrome rows are mapped and kept in mem-
ory and once a new decoding operation is started, bit-flips for previously detected
zero-syndrome columns will be disregarded, as marked with X -s. This granular con-
trol over zero-syndrome rows and columns complicates the design for the control
logic, while on the other hand it improves the decoding performance, as next block
in line cannot introduce errors to already fixed rows/columns.
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In the following chapter the hardware power consumption, timing and area of dif-
ferent staircase decoders are discussed.

The hardware synthesis was carried out using Cadence Encounter RTL Compiler
(RC) environment and the slow-slow (SS), 0.9V, 125◦C, 28-nm fully depleted silicon
on insulator (FD-SOI) process technology library. The library uses nominal supply
voltage and high operating temperature, which should give realistic power consump-
tion of the circuit, along with SS corner, which gives pessimistic delay performance
and thus the overall synthesis results are for relatively robust design.

5.1 BCH Decoder
When analysing the BCH decoder synthesis reports, the area in Table 5.2 was taken
as the total area, where cell and net area are combined. When estimating the power
consumption of the design, the circuit netlist was utilised and a simulation was run
using a testbench and 10, 000 codewords as test vectors, where Eb/N0 was chosen
so that no uncorrectable errors occurred, i.e., occurred errors ≤ t. The erroneous
bit-flip probability for the channel, when generating test-vectors for the simulation,
was chosen so that the decoder would operate at the Eb/N0 region right of the code
Eb/N0 at BER of 10−15. The operating region was estimated from the code graphs
produced in MATLAB.

When comparing how the scaling of the decoder code size impacts the area, a
difference was noted between the SiBM block and the Chien search (CS), which can
be explained by the parameter the component scales with. Namely, the SiBM scales
with the parameters t and m, whereas the CS block scales with the parameters n
and t.

The first synthesis analysis was carried out for the same clock delay constraint
of 900 ps. This clock delay constraint was chosen as a baseline due to largest
considered n = 511, t = 5 code size decoder requirement for achieving 100 Gbps
data throughput.

Since the syndrome and Chien search blocks are parallel, while SiBM block is
sequential, registers at the input and output were needed in order to correctly evalu-
ate the timing throughout the BCH decoder design. However, those added registers
at the input and output account for extra power consumption (see Table 5.1).
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Table 5.1: BCH component code decoder synthesis results for the same timing
requirement of 900 ps, where design hierarchy ungrouping is disabled

Parameter n=15, t=3 n=255, t=5 n=511, t=5
SC area 142 µm2 6654 µm2 15362 µm2

BM area 1529 µm2 7880 µm2 9153 µm2

CS area 704 µm2 67591 µm2 166926 µm2

Total area 2688 µm2 86611 µm2 200596 µm2

Critical path SiBM SiBM and CS SiBM and CS
Clock delay 900 ps 900 ps 900 ps
Timing slack + 249 ps 0 ps 0 ps

In Table 5.1, the hardware component grouping is disabled, so that no hardware is
reused or shared between different parts of the design. This is useful when comparing
the area scaling of different code size decoder sub-blocks (e.g., syndrome, SiBM,
Chien search).

Additionally, the Cadence Encounter software can optimise the design by un-
wrapping/ungrouping the original design hierarchy, so that the circuit area can be
reduced as shown in Table 5.2. For example, the re-usage of software modules is the
reason why syndrome block is not showing up on the synthesis reports, as the syn-
drome block can be constructed by reusing the hardware blocks from Chien search
and SiBM blocks. Hardware design ungrouping will from now on be considered as
a default setting. This is also a reason why the synthesis reports provided here will
only cover the total decoder area and power results. Due to the hardware ungroup-
ing, there is no distinct and intact blocks remaining (e.g., Syndrome, SiBM, Chien
search), since some of the hardware is shared in the design. Comparing two decoders
with the same parameters, an 29% - 50% area decrease can be observed when un-
grouping in Cadence Encounter is enabled. The aforementioned design optimisation
through hardware sharing points towards a highly regular design (as seen previously
in Section 4.1.1), which the tool’s heuristics and optimisation algorithms are able to
leverage. Although, it was noted that for the same decoder size of n = 255, t = 5 and
clock delays of 440 ps and 450 ps, the area reduction was greater (50%) compared
to the same decoder with looser timings of 900 ps (29%).

Table 5.2: BCH component code decoder synthesis results for the same timing
requirement of 900 ps, with design ungrouping enabled

Parameter n=15, t=3 n=127, t=5 n=255, t=5 n=511, t=5
Total area 1736 µm2 20665 µm2 61975 µm2 −−− µm2

Total power 549 µW 3.25 mW 6.98 mW — mW
Clock delay 900 ps 900 ps 900 ps 900 ps
Timing slack +192 ps 0 ps 0 ps 0 ps

For one of the synthesis runs, for the n = 255 and t = 5 code, the clock delay
constraint was set to 440 ps, which would result in a 97.7 Gbps throughput. From
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Table 5.4 it can be seen that for achieving high throughput with smaller code size,
there is a trade off in terms of power and area.

Although using clock delay constraint of 440 ps leaves the throughput just short of
100 Gbps, the results are still valid for feasibility analysis for usage as a component
code in the staircase codes. The synthesis for clock delay constraint lower than 440
ps resulted in a negative slack and wasn’t therefore successful.

Table 5.3: n = 255, t = 5 BCH component code decoder synthesis results for the
timing requirements of 450 and 440 ps, with design hierarchy ungrouping disabled

Parameter n=255, t=5 n=255, t=5
SC area 11294 µm2 12313 µm2

BM area 8974 µm2 9561 µm2

CS area 90684 µm2 103366 µm2

Total area 114962 µm2 129238 µm2

Clock delay 450 ps 440 ps

Table 5.4: n = 255, t = 5 BCH component code decoder synthesis results for the
timing requirements of 450 and 440 ps, where design hierarchy ungrouping enabled

Parameter n=255, t=4 n=255, t=5 n=255, t=5
Total area 44451 µm2 60390 µm2 63044 µm2

Total power 9.81 mW 13.61 mW 14.25 mW
Clock delay 550 ps 450 ps 440 ps
Throughput 101.4 Gbps 95.5 Gbps 97.7 Gbps

From the synthesis results of the BCH decoder it can be seen that for code of
n = 255 and t = 5, the 100 Gbps is unfeasible, as it falls short of 100 Gbps and
would result in fairly high power density for the circuit. The SiBM would need fewer
cycles for computing the ELP if code with low error-correcting capability was used,
thus increasing the BCH decoder throughput. It is estimated that a clock delay of
557ps is required to achieve 100 Gbps with n = 255, t = 4 code. From the attained
results we know that this is achievable.

For the upcoming synthesis, the timing requirement for larger codes of code size
n = 511 and n = 255 will be adjusted accordingly to fulfill the 100 Gbps throughput
requirement. For smaller codes, e.g., code n = 15, t = 3, the clock delay of the circuit
should be around 16 ps (62.5 GHz) and for n = 127, t = 5 – 254 ps (3.94 GHz)
in order to achieve 100 Gbps throughput, which makes achieving high throughput
with small codes unfeasible.

5.2 Staircase Decoder Analysis
The hardware synthesis reports for BCH decoder are shown in the Tables 5.2 and 5.4.
Based on the synthesis results, it is possible to estimate the staircase decoder size
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and power consumption. As there are two staircase decoder architecture corner cases
in terms of possible degree of parallelism, we also provide two different estimation
schemes in Tables 5.5 and 5.6 respectively. Based on the estimates for the whole
staircase, the final degree of concurrency can be decided on, e.g., component code
decoder for every other, every fifth or every tenth codeword. The estimation formulas
for the whole staircase decoder architecture are provided for both 4 and 6 blocks
in the staircase, as well as for n

2 and one component decoder as parallel and serial
block decoder respectively.

Table 5.5: Staircase decoder complexity estimation for higher level of block decoder
parallelism

Circular buffer (6 or 4)× n× n
Decoder n

2 ×BCH_decoder(n)
Staircase CNTL logic n× SiBM_CNTL(m)

In total (6 or 4)× n4

2 ×BCH_decoder(n)× SiBM_CNTL(m)

Table 5.6: Staircase decoder complexity estimation for lower level of block decoder
parallelism

Circular buffer (6 or 4)× n× n
Decoder BCH_decoder(n)

Staircase CNTL logic SiBM_CNTL(m)
In total (6 or 4)× n3 ×BCH_decoder(n)× SiBM_CNTL(m)

By prioritising the requirement for the throughput analysis, staircase decoder size
and power consumption will first be carried out on the fully parallel architecture,
where there is a decoder for every codeword in the block. As shown in Table 5.7,
the staircase decoder throughput can be calculated as

BCH throughput× n−1
2

(window size− 1)× iteration bound ,

where the iteration bound is equal or larger than size of the staircase window. In
the following it is assumed that the iteration bound is equal to a staircase window
size, as it allows the possible error correction to propagate through the decoding
window once.
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Table 5.7: Staircase decoder size estimation, when there is a component decoder
for every codeword in decoded block

Parameter n=255, t=4 n=255, t=5 n=255, t=5
Total area 5.65 mm2 7.67 mm2 8.01 mm2

Total power 1.25 W 1.73 W 1.81 W
Clock delay 550 ps 450 ps 440 ps

Throughput for
window length 4 1073.1 Gbps 1010.7 Gbps 1034.0 Gbps

Throughput for
window length 6 429.3 Gbps 404.3 Gbps 413.6 Gbps

As shown in the table, the high throughput of 100 Gbps for the staircase decoder
is achievable, furthermore, it is possible to reduce the design area by trading some
of the excess throughput. In Table 5.8 the staircase decoder size is estimated for a
semi-parallel design, where there is a BCH decoder for every fourth code row.

Table 5.8: Staircase decoder size estimation 6 block window size and semi-parallel
design, when there is a component decoder for every fourth codeword in decoded
block

Parameter n=255, t=4 n=255, t=5 n=255, t=5
Total area 1.4 mm2 1.9 mm2 2.0 mm2

Total power 314 mW 436 mW 456 mW
Throughput for
window length 6 107.3 Gbps 101.1 Gbps 103.6 Gbps

In Table 5.9 the staircase decoder size is estimated for the 4 block window and
decoder is for every tenth codeword in the block being decoded The following semi-
parallel architecture would give closest throughput to fulfilling the 100 Gbps require-
ment along with area and power consumption reduction.

Table 5.9: Staircase decoder size estimation 4 block window size and semi-parallel
design, when there is a component decoder for every tenth codeword in decoded
block

Parameter n=255, t=4 n=255, t=5 n=255, t=5
Total area 0.6 mm2 0.8 mm2 0.8 mm2

Total power 128 mW 177 mW 185 mW
Throughput for
window length 4 107.3 Gbps 101.1 Gbps 103.4 Gbps
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6
Discussion

In the following sections an overview of observations made throughout the project
are provided, along with limitations and future work regarding the project.

6.1 Observations
From the MATLAB analysis we can conclude that the staircase code provides good
results in comparison with product code, which is also in line with articles on stair-
case codes [29, 8, 8]. Additionally it was observed from the MATLAB analysis that
the inclusion of the single row/column-based syndrome check and effective handling
of the incorrect error-corrections is necessary for reaching the expected low coding
gain at low BER of 10−15. Since MATLAB simulations for the staircase code are
computation heavy, emulation on an FPGA is required in order to reach the low
BER of 10−15.

From the hardware implementation and synthesis, it can be concluded that not
only does the parallel BCH decoder implementation facilitate the expected through-
put, it also exceeds it. The component code level parallelism allows for fine tuning
of the staircase decoder design in terms of area, power consumption and coding
performance, thus giving wide degree of design choices.

6.2 Limitations
Fully parallel implementation requires a highly optimised design, a significant design
time, and quite large area, which could be problematic for emulating long staircase
codes on an FPGA.

6.3 Future Work
As the project ended up involving a bit-parallel BCH decoder implementation in
hardware, the given time for Master thesis project fell short of achieving all the
expected goals, e.g., staircase decoder hardware implementation.

Regarding the simulation and analysis tools it is proposed that the MATLAB
staircase decoder model is improved to leverage parallel code execution and there-
fore reduce run times. Additionally the row and column wise syndrome mapping
would be of benefit in the implemented staircase decoder model in MATLAB. The
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6. Discussion

aforementioned two proposals would make it feasible to evaluate the coding perfor-
mance at low BER before FPGA emulation.

Future work proposed regarding the hardware would be to continue the imple-
mentation of the staircase decoder, mainly the control logic, also to emulate the
hardware implementation on an FPGA in order to evaluate the achieved coding
performance at a low BER of 10−15. The hardware implementation of the BCH de-
coder could be even more improved. For example the BMA block in BCH decoder
could be further optimised by using Further-optmised inverse-free BM (FiBM) al-
gorithm, opposed to SiBM, which would decrease the needed logic by about 25%
[26].
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7
Conclusion

In this Master’s Thesis we have implemented and analysed both the BCH component
codes and the staircase codes in MATLAB. We have also implemented the BCH
decoder in hardware, and synthesized it in 28-nm fully-depleted silicon-on-insulator
(FD-SOI) library.

Even though the staircase decoder has not been implemented, power and perfor-
mance numbers of the decoder have been presented. The presented numbers are an
estimation made possible by successful implementation, synthesis and analysis of the
BCH decoder. Of course the estimation is still just that and validity of the numbers
needs to proved by implementation and then synthesis of the staircase decoder. The
validation of the estimated performance numbers would be made possible through
emulation of the implemented staircase decoder on an FPGA.

By analysing the estimated performance numbers we can for now conclude that
the performance requirements stated by the OTN are surpassed by the staircase
decoder, possibly making the staircase codes de facto error-correcting code for high-
speed fibre-optic communication systems.
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