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Abstract

Monadic Intermediate Language for Modular and Generic Compilers
DMYTRO LYPAI
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg

Mostmodern compilers performanumber of sophisticatedprogramanalyses and transformations,
with their correctness and safety being of extreme importance. Intermediate representations used
in compilers play a crucial role in defining how these procedures will be performed: what is possi-
ble to express and a level of effort required. A variety of computational effects present in modern
programming languages imposes additional challenges on compiler writers.
This thesis starts with a brief introduction to monads and monad transformers and their relation
to programming languages. A survey of the existing intermediate languages based on monads as
well as highlights of the current developments in programming with effects are presented.
It continues with the main contribution of this work: Monadic Intermediate Language (MIL),
which is a statically and explicitly typed functional language, which uses monads and monad
transformers to express different computational effects and their combinations. To evaluate the
designed intermediate language, two source languages representing two major programming
paradigms: object-oriented and functional, have been designed and compilers targetingMIL have
been implemented. Strengths and weaknesses of MIL uncovered during the implementation of
the source programming languages are described in detail.
We conclude with describing code transformations and optimisations implemented for MIL, in-
cluding very general effect-independent algebraic equivalences, such as, for example, monad laws,
as well as a number of effect-dependent transformations. Relations to some of the well-known
state-of-the-art optimisation techniques are outlined.
The ideas described in this thesis are implemented as three separate Haskell packages (mil, fun-
lang and oolang), which are open source and freely available online.

Keywords: compilers, intermediate representations, intermediate languages, computational effects, monads,
monad transformers
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Chapter 1

Introduction

The vast majority of modern compilers follow more or less the same structure known for many
years, which is called compiler pipeline. Compiler pipeline is a chain of phases, which together form
the compilation process. They can be divided into two big parts: analysis and synthesis. Analysis
(often referred to as the front end of the compiler) works with a program in a source language.
Different analysis phases collect information about the source program and build it’s representa-
tion together with checking different properties, such as lexical and grammatical structure, correct
usage of data types etc. Synthesis (often called the back end of the compiler) uses information pro-
duced during the analysis to generate a program in a target language, usually performing a lot of
program transformations and optimisations along the way [Aho et al., 2006]. A typical compiler
pipeline is pictured in Figure 1.1. These phases do not necessarily happen one after another in a
sequence, some of them might be combined, for example, but it is a convenient way of thinking
about a compiler structure.

Figure 1.1: Compiler pipeline

One of the central parts of many compilers and, in particular, optimising compilers is their in-
termediate representation(s) (IR) or intermediate language(s) (IL). Intermediate representation is a data
structure that represents the program being compiled during the compilation process. Many inter-
mediate representations are also called languages, because they have a symbolic representation.
For this reason we will mostly use the term intermediate language in this text. One of the sim-
plest examples of an IL is a syntax tree built by parsing and desugaring a program in a source
language (substituting convenient, but not essential language constructs with more basic ones).
Well-designed intermediate language should allow to abstract away unnecessary details while ex-
pressing the necessary ones at certain compilation stages. It should be fairly easy to produce as
well as translate further. Many compilers use several different ILs, where they diverge from the
source language and resemble a compilation target’s language or architecture more and more as
compilation progresses. Some ILs are quite independent of both the source and the target, which
allows them to be used in retargetable compilers (compilers which can generate code for several
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CHAPTER 1. INTRODUCTION 2

different target languages/architectures) by combining different front ends and back ends which
work with the same IL [Aho et al., 2006].
Amajor task performed bymostmodern industrial compilers is code optimisation. Compiler writ-
ers try to make compiled programs perform as good as possible regarding certain properties. The
most common optimisations target code execution speed (performance), code size and it’s energy
efficiency (which becomes increasingly important given the advances in development of mobile
devices and their ubiquity). Code optimisation is also a very complex task, since it needs to achieve
good results, but evenmore importantly, not to change program’s observable behaviour. Combin-
ing these two aspects is extremely difficult given a myriad of effects that modern programming
languages allow to perform. It includes, but is not limited to input/output, throwing exceptions,
modifying state, non-termination. Since IL is a compiler’s main source of information about the
program being compiled (together with some other data collected during the analysis) as well as
the object the compiler transforms to finally produce the target program, it can play a significant
role in the optimisation process.
This work tries to design an intermediate language based on monads and monad transformers to
allow powerful transformations and optimisations in the presence of effects. The problem with
many ILs is that a lot of valuable information about programs is not captured in the IL itself, but
instead a compiler needs to track this information somehow. One of the examples is the effects
a program may perform. The compiler has to infer information about effects in order to decide
whether it is safe to perform certain optimisations or not and then record this in some separate
data structures. Moreover, these data structures need to be updated as transformations happen.
Having an IL based on monads we can encode effects right in the program and apply algebraic
properties and laws to perform code transformations.
Another areawhich this thesis tries to address is providing a flexible and genericway of expressing
parts of programming language semantics by combining monads using monad transformers. In
a usual setting to change the semantics of a programming language, one needs to rewrite the
code generation part of the compiler for this language. As it will be described later, with monad
transformers it is possible to change certain parts of the semantics by just changing the order in
which monads are combined.
Finally, this work attempts to implement a programming library for working with the introduced
intermediate language and a set of effect-aware code transformations and optimisations, which
can be reused by compiler writers targeting the designed IL. To evaluate and examplify the usage
of the intermediate language, two programming languages (object-oriented and functional) are
designed and compilers for them, which target the IL are implemented.
If we consider the current state of compiler technology, we can see that there are quite many dif-
ferent intermediate languages that are in use. Some of the most notable are:

• Three-address code (TAC or 3AC). A simple language, which is based on the idea, that there
is at most one operator on the right-hand side of an instruction. This implies that all instruc-
tions are quite simple (for example, there are no built-up arithmetic expressions), which is
beneficial for optimisation and target code generation [Aho et al., 2006].

• Languages based on static single assignment form (SSA) [Alpern et al., 1988], the main idea
of which is that every variable in a program is assigned exactly once. It is similar to TAC in
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the way that the result of every operation is bound to a variable. One of the main benefits
of the SSA form is that many useful and powerful optimisations can be expressed in simple
and efficient ways [Cytron et al., 1991].

• Compilers for functional languages often use CPS (continuation-passing style) as an inter-
mediate language [Appel, 2007]. CPS is a style of programming where functions take an
extra argument called continuation. Continuation is a function, which has one parameter
and is called with the return value of the function that is given the continuation as an ar-
gument. It has been shown that there is a correspondence between CPS-based intermediate
languages and the SSA form, however they are not equivalent: “some CPS programs cannot
be converted to SSA” [Kelsey, 1995].

• A-normal form (ANF) introduced by Sabry and Felleisen [Sabry and Felleisen, 1992] and fur-
ther developed in [Flanagan et al., 1993] is a notation that resembles CPS. ANF requires all
arguments to functions to be trivial (constants, lambda abstractions and variables) and that
the result of any non-trivial expression is let-bound or is returned from a function. ANF is es-
sentially a different notation for the same idea as the one behind the SSA form [Kelsey, 1995],
[Appel, 1998].

• Intermediate languages based onmonads. These will be described inmore detail in the later
chapters.

There are several specific examples of ILs used in industrial compilers that are worth mentioning
here, namely:

• Core, STG and C-- (Cmm) in GHC (The Glasgow Haskell Compiler). Core is a simple
functional language (much smaller than Haskell) that is used for optimisations and further
code generation [Eisenberg, 2015]. STG is an intermediate language produced from Core
and it’s intention is to define how to efficiently implement Haskell on standard hardware
[Peyton Jones, 1992]. C-- is a C-like portable assembly language [Peyton Jones et al., 1999]
and is an example of the three-address code.

• Register transfer language (RTL) in GCC (GNU Compiler Collection) is a low-level inter-
mediate language with a syntax inspired by Lisp lists (https://gcc.gnu.org/onlinedocs/
gccint/RTL.html). It is a language for an abstract machine with virtual (pseudo) registers
and is another example of the three-address code. RTL is based on the idea described in
[Davidson and Fraser, 1980].

• LLVM Intermediate Representation. It is a language used in the LLVM compiler infrastruc-
ture (http://llvm.org), which aims to provide a language independent compiler toolchain
with a number of optimisations. LLVM IR is a language for an abstract machine with an
infinite set of registers, it makes use of SSA form, has a simple type system, and abstracts
away some low-level details such as a calling convention [Lattner and Adve, 2004].

The IL designed as a part of this work is quite different frommost of the ILs described above. None
of thementioned ILs encodes different program effects and they don’t try to allow to express parts
of the language semantics on the high level either. Probably, the closest IL to the one we present
is GHC Core, which is also a rather high level functional language.
A lot of inspiration and intuition for this work comes from the Haskell programming language
[Marlow, 2010], thus some familiarity with Haskell is assumed.

https://gcc.gnu.org/onlinedocs/gccint/RTL.html
https://gcc.gnu.org/onlinedocs/gccint/RTL.html
http://llvm.org


Chapter 2

Monads, semantics and functional
programming

This chapter introduces monads – the central concept of this thesis. Applications of monads
in semantics and functional programming are described. At the end, we talk about a way to
combine different monads – monad transformers. More details in relation to this work is left for
one of the following chapters.

2.1 Monads introduction
Monad is quite an overloaded word. It is used in philosophy, linear algebra, music, biology and
probably some other areas. Monads related to this work is a concept, which comes from category
theory. But here it is more useful to use a definition adopted in functional programming.
Monad is a triple of a type constructor M and two operations: bind and return. Type constructor M
has one type parameter. In Haskell, the monad concept is represented by a type class, which also
has some additional operations. Monad operations have the following types:

return :: a→ M a

bind :: M a→ (a→ M b)→ M b

The return operation takes a value of type a and returns a monadic computation that just returns
that value and does not do anything else. The bind operation takes a monadic computation that
can produce a value of type a and a function that can consume that value and give a computation
of type M b. So, bind gives a way to apply such a function to a computation of type M a to get a
computation of type M b. Since bind is very often used as an infix operator, it’s type usually has
the argument before the function.
Monad operations must satisfy the following three laws:

4
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• Left identity:
bind (return x) f = f x

It means that feeding the result of the return computation which just returns a value to
function f is the same as just applying function f to that value.

• Right identity:
bind m return = m

This law means that computing the result of m and then returning that result is the same as
just computing m.
Both identity laws can be connected to the identity laws for multiplication with 1 and addi-
tion with 0.

• Associativity:
bind (bind m f) g = bind m (λx→ bind (f x) g)

Associativity law has a similar idea to associativity laws in arithmetic, namely that the order
of parentheses does not matter [Wadler, 1995].

2.2 Examples of monads
In this section we are going to look at examples of several monads.

• The simplest of all monads is the Identitymonad. It does not decorate computations with
any effect or information. The bind operation for the Identity monad is basically just a
function application. We provide a definition of Identity in Haskell below:

newtype Identity a = Identity a

instance Monad Identity where
return = Identity
(Identity x) >>= k = k x

It might not seem very useful at first, but the Identity monad helps to combine several
monads by being a base on top ofwhich others build up. It is also usefulwhen a computation
is abstracted over a monad and a user of the computation does not want to use any specific
effects with this computation, so she can choose the Identitymonad as themonad instance
in this case.

• The next example is the State monad for stateful computations. Since in most functional
languages immutability is encouraged by default, the usual technique to deal with state is
to pass it around as function arguments. One of the possible Statemonad implementations
pretty much makes this technique implicit. Here is such an implementation in Haskell:
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newtype State s a = State (s -> (a, s))

instance Monad (State s) where
return x = State (\s -> (x, s))
(State h) >>= f = State (\s -> let (a, s') = h s

(State g) = f a
in g s')

One can think about a stateful computation as taking a state and producing a value and the
new state. This is what the type definition above captures. The return function produces a
stateful computation that just gives the given value back without modifying the state. The
bind operation chains stateful computations together and passes the result and states be-
tween them.
There are usually some useful operations associated with a monad. For the State monad
those are, for example, get and put, which are used to read andwrite the state value, respec-
tively. Below is an example of their implementation in Haskell:

get :: State s s
get = State (\s -> (s, s))

put :: s -> State s ()
put x = State (\s -> ((), x))

• Another ubiquitous effect is error (exception) handling. A monad which can be used to
capture this effect is the Eithermonad:

data Either e a = Left e | Right a

instance Monad (Either e) where
return = Right
Right x >>= f = f x
Left e >>= f = Left e

Data constructor Left represents an error (represented by a value of type e) that occured
during the computation, while Right denotes a successful computation with a value of type
a as the result. In the Eithermonad return is simply Right. The bind operation passes the
result of a successful computation to the next one, but in the case of an error, it stops and
just propagates the error further.
Examples of useful operations for the Eithermonad are throwError and catchError. The
former is used to produce an error value, and the latter allows to handle an error value and
potentially produce some other value:

throwError :: e -> Either e a
throwError = Left
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catchError :: Either e a -> (e -> Either e a) -> Either e a
catchError (Left e) h = h e
catchError (Right a) _ = Right a

• Very famous in the Haskell world IO is also an example of a monad. We will skip a repre-
sentation of the IOmonad in Haskell, but one can think about it as a Statewith “real world”
as a storage. Since IO wraps arbitrary side-effects and interaction with the outside world,
considering such a computation as the one that changes some very global state (of theworld)
is a rather useful metaphor.

2.3 Monads in semantics
One of the first applications of monads to programming languages was done by Eugenio Moggi.
Moggi applied monads to structure the denotational semantics of programming languages
[Moggi, 1991]. He was studying the notions of computations such as partiality, nondeterminism,
side-effects, exceptions, continuations, interactive input and interactive output and proving
equivalence of programs with those effects using a calculi based on a categorical semantics. There
is also a “modular approach” to denotational semantics proposed in [Moggi, 1990].

2.4 Monads in Haskell
Later, following and building on top of Moggi’s work, Philip Wadler incorporated monads as a
way of structuring pure functional programs in Haskell. First, monads were used to combine in-
put/output and lazy evaluation, and then they became an integral part of Haskell and are used for
expressing state manipulation, error handling, environment reading, collecting output, nondeter-
minism, continuations and other [Wadler, 1990], [Peyton Jones and Wadler, 1993], [Wadler, 1995].
Monads were also successfully used for building parsers [Hutton and Meijer, 1998] and working
with concurrency using Software Transactional Memory [Harris et al., 2005].
Nowadays, monads is a very important and popular programming pattern in Haskell. They are
used extensively for awide variety of applications, for example backtracking [Kiselyov et al., 2005]
and parallelism [Marlow et al., 2011] among others.

2.5 Monad transformers
Monad transformer is a type constructor Twhich takes a monad M and returns a monad, or in other
words, if M is a monad, so is T M [Liang et al., 1995].
Monad transformers are used to add new operations to a monad without changing the compu-
tation in that monad, for example state manipulation can be added to collecting ouput. They
also compose easily, meaning that it is possible to apply a monad transformer to another monad
transformer. The resulting structure is usually called monad transformer stack. There is one caveat,
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though, namely, that effects produced by some of the monad transformer/monad combinations
depend on the order in which they are combined.
Monad transformer comes with lift operation, which embeds a computation in monad M into
monad T M. It has the following type:

lift :: M a→ T M a

The main intention for lift is to be used to specify on which level a certain monadic operation is
performed.
Monad transformers must satisfy the following two laws:

• Lifting a monadic computation which only does return results in the same monadic com-
putation.

lift . return = return

• Lifting a sequence of monadic computations is the same as lifting them individually and
then combining lifted computations in the new monad.

lift (bind m k) = bind (lift m) (lift . k)

Monad transformers and their application to building modular interpreters are introduced and
described in detail in [Liang et al., 1995].
To give a better understanding of monad transformers, we provide several examples of them:

• StateT s m is a transformer that adds an effect of a stateful computation to monad m. An
implementation in Haskell could be the following:

newtype StateT s m a = StateT (s -> m (a, s))

Using the StateT monad transformer and the Identity monad, State s monad can be
expressed as StateT s Identity.
Every monad transformer also has to be an instance of Monad, but we will skip these defi-
nitions here. They would be quite similar to the example definitions in the “Examples of
monads” section above, but a bit more involved.
To make StateT a monad transformer in Haskell, we need to make it an instance of the
MonadTrans type class, which contains the lift operation (note the Monad constraint in the
type of lift):

class MonadTrans t where
lift :: (Monad m) => m a -> t m a

instance MonadTrans (StateT s) where
lift m = StateT (\s -> do

a <- m
return (a, s))
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The do block above uses the underlyingmonad’s bind and return and just returns the given
state together with the underlying computation’s result.

• ErrorT e m adds a notion of failure to monad m. One way to represent it is using the Either
data type:

newtype ErrorT e m a = ErrorT (m (Either e a))

instance MonadTrans (ErrorT e) where
lift m = ErrorT (do

a <- m
return (Right a))

To make the computation m to be an ErrorT computation we just bind its result in the un-
derlying monad and then return the result as success using Right.

• ReaderT r m adds a layer of interaction with a read-only environment of type r:

newtype ReaderT r m a = ReaderT (r -> m a)

By analogy with State above, Reader rmonad is ReaderT r Identity.
lift implementation below returns a computation in ReaderT, which just disregards the
given environment and gives back the computation in the underlying monad:

instance MonadTrans (ReaderT r) where
lift m = ReaderT (\r -> m)

One of the disadvantages of monad transformers for practical programming is the problem of
lifting. When one has a stack of several monad transformers and wants to use an operation that
is defined with the type containing only one of them, like get or put for StateT, for example, it
is not possible to just use them directly (unless StateT is on top) because the types do not match.
In this case lifting needs to be used, to add necessary layers on top of a computation in one of the
monads deeper down in the stack. There are attempts to solve the lifting problem, for example by
using type classes to abstract different types of computations and use these abstractions instead
of specific monad transformers. This idea is based on [Jones, 1995] and incorporated in Haskell
packages like mtl. It is rather convenient for a user, but has quite an overhead for a library writer,
because the number of instances that needs to be provided is quadratic to the number of monads
[Liang et al., 1995]. Another, more recent idea, is presented in [Jaskelioff, 2009], where “a uniform
lifting through any monad transformer” is defined. There is also work on an alternative to monad
transformers based on algebraic effects and effect handlers being done. This approach is covered in
more details in the following chapter.
As it was mentioned earlier, the order in which different monads are combined can be significant.
If it is the case, then it is said that these two effects do not commute. Probably, the most famous
example is the ordering of State and Error. One can see this by “unrolling” the types:
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• StateT s (ErrorT e Identity) a⇒ s -> ErrorT e Identity (a, s)⇒
⇒ s -> Identity (Either e (a, s))⇒ s -> Either e (a, s)

• ErrorT e (StateT s Identity) a⇒ StateT s Identity (Either e a)⇒
⇒ s -> Identity (Either e a, s)⇒ s -> (Either e a, s)

In the first case, when StateT is on top of ErrorT the semantics of a computation is that it either
fails and returns an error or it succeeds and returns a value and a new state. One can think of
this as a kind of rollback. On the other hand, in the second case, when the order is reversed, the
computation always returns a new state, regardless of whether it gives an error or a result.



Chapter 3

Related work

Usage of monads in compiler’s intermediate languages is quite unexplored. At the same time,
nowadays the interest in reasoning about effects of a program and their control is significant.
First, we will look at several intermediate languages which use monads. Then we will describe
examples of monad transformers’ usage to achieve modularity with effects. And finally we will
cover some related work in programming with effects, which may serve as a source of inspiration
for intermediate languages as well as reasoning about program effects in general.

3.1 Intermediate languages based on monads

3.1.1 Common IL for ML and Haskell

First, we will describe some of the ideas behind an intermediate language proposed in “Bridging
the gulf” [Peyton Jones et al., 1998]. The main intention of the work was to design a common in-
termediate language for compiling ML [Milner et al., 1997] and Haskell [Marlow, 2010] program-
ming languages. One of the main differences between these two languages is that ML has strict
evaluation and Haskell is a lazy language. In addition to this, Haskell is a pure language, while
ML is not. Therefore, the main challenge was to have an IL that will work equally well for both.
Note that this setting and the problem are slightly different from what this thesis tries to address,
but nevertheless it is still very interesting to see one of the not somanymonadic ILs and the consid-
erations authors had when designing it. Certain ground rules for an IL are given, namely: ability
to translate both core ML and Haskell, explicitly typed with a type system that supports poly-
morphism (a variant of System F [Girard, 1986]), well-defined semantics, efficiency of compiled
programs comparable to those produced by good ML and Haskell compilers. Authors propose
two designs of such an IL. Both of them are based on monads. The idea behind the first IL is
to be explicit about things that are usually implicit in the IL, but are explicit in the denotational
semantics of it. There are two monads in this IL, lifting (for denoting possibly-diverging compu-
tations) and the combination of lifting with the state transformer ST (to distinguish between pure
and stateful computations). The main reason for using the lifting monad is to express whether a
function takes an argument, which is evaluated or not. Semantics of the monads is made implicit

11
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in the language. Unfortunately, the first proposed design turned out to be vague about the timing
and degree of evaluation and solutions to these in the presence of polymorphism are complicated
and therefore, authors conclude that it is unsuitable as a compiler IL. The second IL design intro-
duces a distinction between value types (for variables) and computation types (for expressions),
let expression becomes eager and new syntactic forms (evaluation suspension and forcing) are in-
troduced, thus making the control of evaluation explicit. The Liftmonad becomes implicit (and
covered by types distinction and new syntactic forms) and so there is only the STmonad left. Still
having this monad explicit allows to express that certain computations are free from side-effects
and perform useful transformations based on this information, which is recorded in the program
itself. The second design seems to address the problems found in the first one, but as the authors
highlight, the ability of the first IL design to capture certainly-terminating computations is very
useful and they would like to incorporate it into the second design. The problem of combining
monads was not addressed in “Bridging the gulf”. Several monad transformation rules are given,
but they were not in the main focus of this paper.

3.1.2 Optimizing ML using a hierarchy of monadic types

Next, we will look at an intermediate language from “Optimizing ML Using a Hierarchy of
Monadic Types” [Tolmach, 1998]. The main property of this IL is that it has a fixed hierarchy of
monadic types (every next monad includes the effects of the previous ones):

• ID (for pure, terminating computations)
• LIFT (for potentially non-terminating computations)
• EXN (for computations that may raise an exception)
• ST (for stateful computations).

In addition to the classical monad operations (bind and return), an embedding operation named
up is introduced, which corresponds to the lift operation for monad transformers, introduced in
the previous chapter. An interesting decision problem about the combination of state and excep-
tion arises (it is an example of a general problem of monad transformers’ composition mentioned
in the previous chapter). The author chooses exception handling that does not alter the state (as
opposed to reverting the state on exception handling). There is a number of generalised monad
laws and code motion laws for monadic expressions given in the paper. Another valuable con-
tribution of Tolmach’s work is a monad inference algorithm for computing the minimal monadic
effect of subexpressions, which allows to perform many more useful transformations comparing
to assigning the maximal effect. The author makes several supporting claims for a monadic inter-
mediate language: its usage in organising and justifying a variety of optimising transformations
in the presence of effects, reflecting the results of the effect inference in the program itself as well
as keeping them up to date as different optimisations progress (as opposed to using some separate
data structure for this). At the time of the paper’s appearance there was no evidence on whether
the results help to achieve any significant performance improvements for generated ML code, but
some measurements were ongoing. At the time of this thesis writing no published results of these
measurements have been found.
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3.1.3 MIL-lite

The next work we are going to describe is an intermediate language MIL-lite from “Monads, Ef-
fects and Transformations” [Benton and Kennedy, 1999]. MIL-lite is a fragment of the monadic
intermediate language used in the MLj compiler. A big part of the paper is devoted to seman-
tics of effects, but we are going to concentrate on the IL design and the approach to expressing
effects. Most terms of the language are straight-forward terms found in functional languages.
MIL-lite is quite minimal and some syntactic sugar is expressed in terms of this core. There is
a novel construct that is introduced: try-catch-in. One can view it as a blend of monadic bind
(let) and exception handling. The authors claim that this new construct is suitable for express-
ing many optimising transformations and is very general. let expression is actually expressed in
terms of try-catch-in. A distinction between value types and computation types is made similarly
to [Peyton Jones et al., 1998]. A computation type is effectively a value type with effects. The fol-
lowing effects are covered:

• non-termination
• allocating a new reference
• reading from a reference
• writing to a reference
• raising an exception

Note how fine-grained the effects for stateful computations are. Effects are combined using sets
and inclusion of these sets introduces a subtyping relation. All possible exceptions are also in-
cluded in the set of effects. Authors provide a number of effect-independent and effect-dependent
equivalences and use the reasoning about semantics of effects to prove some of them.

3.1.4 The GRIN project

The last intermediate language described in this section is the one from “The GRIN project”
[Boquist and Johnsson, 1997]. GRIN (Graph Reduction Intermediate Notation) is a monadic
intermediate code that is used in a back end of a compiler for lazy functional languages. GRIN
resembles three-address code mentioned in the Introduction. For the monadic part, it has unit
operation and ; (semicolon) as a monadic bind. Themonad is a kind of State monadwith a heap as
an underlying storage. There are store, fetch and update operations in the monad. The authors
highlight that the monadic structure gives GRIN a very “functional flavour” and therefore a nice
setup for doing analysis and transformations.

3.2 Monad transformers and modular effects
In this sectionwewill look at work that has been done in the area ofmonad transformers and using
them to combine different effects. Note that in these cases monad transformers are used mainly
in the implementation language, rather than in an IL, as described below. It is a bit different area
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of monad transformers’ application compared to this thesis, but it still serves as a great source of
inspiration.
Probably, one of the most influential papers in this area is “Monad Transformers and Modular In-
terpreters” [Liang et al., 1995]. It describes how to structure an interpreter for a programming lan-
guage, where language features are “pluggable” and the evaluation of each feature is implemented
separately (in different type class instances inHaskell, in this case). Features have a strong relation
to the effects performed (where effects correspond tomonad transformers). By adjusting the order
of monad transformers in the stack, one can choose different semantics of the language. Another
key idea that allows this kind of implementation is extensible union types, which is used to specify
different parts of the language’s AST (abstract syntax tree) in a modular way. A continuation of
this work “Modular Denotational Semantics for Compiler Construction” [Liang and Hudak, 1996]
applies the results to define a modular monadic semantics and use it for a compiler. Authors de-
scribe usage of monad laws to transform programs and reason about them.
What was not addressed in the work described above in particular is more low-level code gen-
eration. So, later, Harrison and Kamin in [Harrison and Kamin, 1998] demonstrate a compiler
structured in blocks for every feature, where a block is a compilation semantics for a feature and
its associated monad transformers. They use partial evaluation of monadic expressions to gener-
ate code. Harrison’s thesis extends this work and includes correctness proofs for such compilers
[Harrison, 2001].
Another notable work on modular compilers is by Day and Hutton [Day and Hutton, 2012]. To
structure the language’s syntax in a modular way, the authors used an approach know as “data
types á la carte” [Swierstra, 2008], which is somewhat similar to extensible union types mentioned
earlier. On top of this they build a modular evaluator using monad transformers, but the decision
about the underlyingmonad, towhich transformers are applied is deferred until the application of
top-level evaluation function. Then a modular compiler for a stack machine is described. The in-
teresting point here is that the compilation scheme does not utilise a monad, since the compilation
process itself is not connected to program effects. The authors conclude with a modular virtual
machine that can execute compiled code.

3.3 Programming with effects
There is a growing interest in bringing controlled and expressive effects into programming lan-
guages. This section is by no means a comprehensive survey of the current state of effect systems,
supporting libraries and programming languages, but rather a few examples of different direc-
tions that are being explored.

3.3.1 Koka programming language

First, we will look at the Koka programming language [Leijen, 2013], which is a function-oriented
language with JavaScript-like syntax. One of the main features of Koka is that the effect of every
function is automatically inferred. The supported effects are the following:
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• total (pure mathematical functions)
• exn (throwing exceptions)
• div (non-termination)
• ndet (non-deterministic functions)
• alloc < h > (memory allocation in a heap h)
• read < h > (reading of a heap h)
• write < h > (writing to a heap h)
• io (input/output operations)

The effect system is based on rowpolymorphism. This enables the fact that effects can be combined
into rows, for example< exn, div >means that a function can throw an exception and can diverge,
which is basically the Haskell’s notion of purity, but more than that, effects can be polymorphic,
like < exn, div|E >, where E is an effect variable.

3.3.2 Polymonads

One of the most recent ideas in expressing effects is a polymonad, which is a generalisation of mon-
ads [Hicks et al., 2014]. The main idea is that polymonads give the monadic bind a more general
type:

polyBind :: L a→ (a→ M b)→ N b

Comparing to the monadic bind:

bind :: M a→ (a→ M b)→ M b

Polymonadic bind allows to compose computations with three different types instead of one. Sim-
ilar tomonads, polymonadsmust satisfy a number of laws. Polymonads allow to express different
type and effects systems and information flow tracking, as an example.
An interesting example of what polymonads can model is contextual effects. Hicks et al. describe
them as effects “which augment traditional effects with the notion of prior and future effects of
an expression within a broader context”. An example they give is a system where memory is
partitioned into regions and read and write operations have a region as part of their effect. Then
a sequence of read operations, for example, can capture which regions were read before and after
every operation.

3.3.3 Eff programming language

The next example of programming with effects is another programming language, called Eff
[Bauer and Pretnar, 2012]. In Eff effects are viewed as algebraic operations and they together
with their handlers have first-class support. This is an approach known as algebraic effect handlers
introduced by Plotkin and Power [Plotkin and Power, 2003]. The language is statically typed and
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supports parametric polymorphism and type inference. In addition to the usual types, Eff also has
effect types and handler types. An effect type denotes a collection of related operations, a handler
type describes that handlers work on computations of one type and produce computations of
some other type. There are several specific language constructs in Eff, namely instantiation of
an effect instance (new ref or new channel, for example), operation, which can be applied when
bundled with an effect instance, and handler, which is somewhat reminiscent to the pattern
matching constructs found in functional languages. It defines which computation to perform
depending on the evaluation of another computation, which can result in a value or an effect
operation. This is the place where the semantics of different effects is defined. A handler can be
applied to a computation using the with − handle construct, which reminds the try − catch
construct in many languages. The last of these specific constructs is a resource, which allows to
create an effect instance that is associated with the resource. In this case resource describes how
to handle different operations for this effect instance by default as well as defining an initial
state. The language constructs, its type system and denotation semantics is layed out in the paper.
The authors also provide many interesting examples, ranging from stateful computations to
transactions, backtracking and cooperative multithreading. Unfortunately, the Eff’s type system
does not capture effects in the types and it is highlighted in the paper that the language would
benefit from a system that provides a static analysis of effects.

3.3.4 Algebraic effects and dependent types

Another example of programming with effects based on algebraic effects and inspired by the Eff
programming language is described in [Brady, 2013b], which introduces Effects – a library for
the Idris programming language [Brady, 2013a]. In the general case, there is a type EffM that de-
scribes a program using some computation context (which can be a monad, for example, but it does
not have to be), lists of input and output effects as well as the program’s return type. Program-
ming using Effects from a user point of view is quite alike monadic programming in Haskell,
since, for example, monadic do-notation is used. Each effect is associated with a resource, which
can denote storage for stateful computations, for example. To run an effectful computation one
must specify an initial value of the resource. To solve the problem similar to the one solved by
lifting in monad transformers, Effects uses labelled effects to resolve the ambiguity. An effect is
usually implemented as an algebraic data type (ADT) as well as an implementation of the han-
dler for this effect. Handlers can be implemented for specific contexts as well as for the general
case. The author highlights that monads and monad transformers can express more concepts, but
Effects capture many useful use cases. Implementation of common effects and examples of their
usage as well as the library implementation in Idris are described in details in the paper.

3.3.5 Extensible effects

The last in this chapter is an example of a library-based approach. Extensible effects is a library
for the Haskell programming language [Kiselyov et al., 2013]. It is positioned as an alternative to
monad transformers. The central concept of this library is a monad Eff r, where r is a type param-
eter that represents an open union of individual effects, that are combined (r stands for “requests”).
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One of the main ideas behind the library is that effects come from communication between a client
and an effect handler (authority), which is quite similar to the algebraic effect handlers approach.
The implementation is described in detail in the paper together with the examples of implementa-
tion of different effects as a user code (meaning, it can be done outside of the library). The authors
provide a detailed analysis of monad transformers and problems with their expressiveness. One
of the highlights of differences from monad transformers is that effects of the same type can be
combined and as opposed to monad transformers, no explicit lifting is needed, appropriate op-
erations are found by types. Another difference is that the order of effects is chosen only when
running a computation, not when defining the computation and in addition to that handled ef-
fects are subtracted from the type. The authors claim that their framework subsumes the Monad
Transformers Library (MTL) in Haskell and allows to express computations, that are not possible
with MTL.
It isworthmentioning that algebraic effect handlerswhile having a good story ofmodularity suffer
from performance problems (compared to monad transformers). As Wu and Schrijvers point out
in [Wu and Schrijvers, 2015], modularity comes from the fact that syntax and semantics of effects
are separated and so different handlers implementing different semantics can be provided for the
same syntax tree. At the same time, “the construction and traversal of intermediate trees is rather
costly”. The work described in [Wu and Schrijvers, 2015] attempts to address this problem by
trying to fuse several handlers into a single one and thus improving the performance.
There is also a follow up work on “Extensible effects” aimed at improving the algorithmic effi-
ciency of the library and its simplification [Kiselyov and Ishii, 2015].
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Monadic Intermediate Language (MIL)

In this chapter we present the main part of this thesis – Monadic Intermediate Language. First,
the language overview and some examples are given. Then we specify its grammar, the type
system and describe representation of effects in detail. After this, some parts of the Haskell im-
plementation are described. We conclude with a discussion and some comparison to the related
work.

4.1 Overview
As was described in the Introduction, the main goal of this thesis is to design a compiler IL pow-
erful enough to be used in compilers for modern programming languages and support reasoning
about programs with effects and their transformation for the purpose of optimisations. Monadic
Intermediate Language (MIL) is the result of this effort.
MIL is a rather small strict functional language. Its type system is based on System F (or polymor-
phic lambda calculus) [Girard, 1986]. Effects are modelled with monads, andmonad transformers
are used to combine the monads. MIL also has a number of additional features allowing to more
easily express many features found in modern programming languages.

4.2 MIL by example
In this section we will look at some examples to get the feel for MIL syntax. Some common termi-
nology will also be established.

4.2.1 Data types

MIL supports simple algebraic data types (ADTs), found in many statically typed functional pro-
gramming languages. Here are the examples of the usual definitions of Bool and List data types:

18
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type Bool = True | False;

type List A = Nil | Cons A (List A);

Here, Bool and List are also called type constructors. List type is parameterised, it takes one type
parameter A, which can be instantiated with any type. We say that type Bool has kind * (star) and
type List has kind * => * meaning that it takes a type and returns a type (hence the name type
constructor). Kinds can be thought of as types of types. Type Bool has two data constructors: True
and False. List also has two data constructors: Nil for empty list and Conswhich carries a value
of type A and a list. This means that List data type is recursive.
Every data constructor can be used as a function. For example, True has just type Bool (because
it does not have any other data associated with it, so it is just a value of type Bool), Cons has type
forall A . A -> List A -> List A, meaning that for any type A (A has kind *) it can be applied
to a value of type A and a value of type List A producing List A. Data constructors can also be par-
tially applied. There is some simplicity to the fact, that data constructors are treated pretty much
in the same way as variables and functions, both for MIL users and for the MIL implementation.

4.2.2 Functions and expressions

Simple functions in MIL can be definied as follows:

intId : Int -> Int = \(i : Int) -> i;

MIL is explicitly typed (there is no type inference like in Haskell or ML), so the types of functions
and variable binders must be specified. In this example, intId is the identity function for integers,
it has the type Int -> Int (it takes an integer and returns an integer). The body of the function is
a lambda expression.
Polymorphic functions look like this:

id : forall A . A -> A = /\A . \(x : A) -> x;

This is a polymorphic version of the identity function, whichworks on any type. It has a universally-
quantified type (using forall keyword). The body of the function is the so-called “big lambda” or
“type lambda”, which introduces a type variable A (and forall A in the type) and then a lambda
expression, where the variable binder for x uses the type variable A.
Functions are applied using juxtaposition (placing arguments next to functions using a whites-
pace). Square brackets are used for type application (instantiating a type variable in a forall type).
For example, applying id to True:

true : Bool = id [Bool] True;
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MIL has built-in tuples to be able to group values of different types together. Tuples can be empty
as well.

empty : {} = {};

tuple : {Int, Bool, Float, Char} = {1, True, 1.23, 'c'};

The example above also demonstrates integer, floating point and character literals.

4.2.3 Bind and Return

The bread and butter of MIL is monadic bind and return. The following example uses bind (let
... in expression) to bind the result of read_char built-in function to the variable c and then
return it in the IOmonad (return needs to be annotated with a monad):

let (c : Char) <- read_char
in return [IO] c

4.2.4 Lifting

Another crucial piece is the monad transformer lift operation. The following example de-
mostrates how to lift a computation in the IOmonad into a combination of State and IOmonads:

lift [IO => State ::: IO] return [IO] unit

The lift construct expects any MIL expression after monads (which are provided inside the
square brackets). The typing rules and details ofmonads combinationwill be covered in the “Type
system” section.

4.2.5 Pattern matching

MIL supports simple pattern matching with case expression. An expression which we match on
(scrutinee) is evaluated and checked against patterns in the order they are written. For the first
successful match the right-hand side (after =>) of the corresponding case alternative is the result of
the case expression.

case x of
| True => 0
| False => 1

end

Possible patterns are literals, variable binders, data constructors (with variable binders for their
data elements), tuples (with variable binders for elements) and the default pattern (underscore),
which matches anything. Patterns cannot be nested.
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4.2.6 Recursive binding

Recursive bindings inside a function can be introduced using let rec expression. It can specify
several bindings (which can be mutually recursive) at once. The result of let rec expression is a
value of the body expression (after in).

let rec
(isEven : Int -> Bool) <- \(i : Int) -> ... isOdd ...;
(isOdd : Int -> Bool) <- \(i : Int) -> ... isEven ...

in isEven 4

Although let rec has a quite similar syntax to the let expression, they should not be confused.
The let expression being amonadic bind can have only one variable binder and requires its binder
and body expressions to have monadic types. The let rec expression should be used purely for
introducing one recursive binding or several mutually recursive bindings at once. One use case
for it will be described in one of the following chapters.

4.2.7 Built-in data types and functions

MIL has several built-in types: Unit (which has only one value, which is the unit literal), Bool
(defined as in one of the data type examples earlier), Int (for arbitrary integers), Float (for double
precision floating point numbers), Char (for characters) and Ref (for reference cells).
MIL also provides a number of built-in functions. Here is the list with most of them and their
types:

read_char : IO Char
print_char : Char -> IO Unit
new_ref : forall A . A -> State (Ref A)
read_ref : forall A . Ref A -> State A
write_ref : forall A . Ref A -> A -> State Unit
throw_error : forall E . forall A . E -> Error E A
add_int : Int -> Int -> Int
add_float : Float -> Float -> Float
sub_int : Int -> Int -> Int
sub_float : Float -> Float -> Float
mul_int : Int -> Int -> Int
mul_float : Float -> Float -> Float
div_int : Int -> Int -> Error Unit Int
div_float : Float -> Float -> Error Unit Float
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4.3 Grammar
In this section the full grammar of MIL is outlined. The following tokens are used: upper for an
upper case letter, lower for a lower case letter, alphanum for a possibly empty sequence of alpha-
numeric characters and an underscore. The details of integer, floating point and character literals
are omitted. They are more or less what is found in most modern programming languages. {pat}
denotes zero or more repetitions of pat, {pat}+ is used for one or more repetitions and [pat] for an
optional pat.

program → {typedef } {fundef } top-level definitions
typedef → type upperid {typevar} = condefs ; type definition
fundef → lowerid : srctype = expr ; function definition
condefs → condef {| condefs} data constructor

definitions
condef → upperid {atomsrctype} data constructor

definition
srctype → appsrctype application type

| appsrctype -> srctype function type
| forall typevar . srctype universally-quantified

type
| appsrctype ::: appsrctype monad cons

appsrctype → atomsrctype atomic type
| appsrctype atomsrctype type application

atomsrctype → typecon type constructor
| { [srctypes] } tuple type
| ( srctype ) parenthesised type

srctypes → srctype {, srctype} source types
expr → appexpr application expression

| \ varbinder -> expr lambda abstraction
| /\ typevar . expr type lambda abstraction

| let letbinder in expr monadic bind
| return [ srctype ] expr monadic return
| lift [ srctype => srctype ] expr lifting
| let rec letbinders in expr recursive binding
| case expr of {casealt}+ end case expression

appexpr → atomexpr atomic expression
| appexpr atomexpr application
| appexpr [ srctype ] type application

atomexpr → literal literal
| var variable
| conname data constructor name
| { [tupleelems] } tuple
| ( expr ) parenthesised

expression
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letbinders → letbinder {; letbinder} let binders
letbinder → varbinder <- expr let binder
casealt → | pattern => expr case alternative
literal → unit unit literal

| intlit integer literal
| floatlit floating point literal
| charlit character literal

tupleelems → expr {, expr} tuple elements
pattern → literal literal pattern

| varbinder variable pattern
| conname {varbinder} data constructor pattern

| { [tupelempats] } tuple pattern
| _ default pattern

tupelempats → tupelempat {, tupelempat} tuple element patterns
tupelempat → var : srctype tuple element pattern
varbinder → ( var : srctype ) variable binder
typecon → upperid type constructor
typevar → upperid type variable
conname → upperid data constructor name

var → lowerid variable
upperid → upper alphanum upper case identifier
lowerid → lower alphanum lower case identifier

| _ alphanum

4.4 Type system
This section is devoted to the details of theMIL type system and the effects representation. Wewill
not provide a formal definition of the full type system, but rather focus on the crucial parts. For
example, data type and function definitions will be omitted, since they are pretty straight-forward
and similar to the typing in many other functional languages.
We use a common way of presenting typing rules using two-dimensional inference rules
[Pierce, 2002]. We use this term for both axioms, which do not have a premise and rules with
premise(s) (which go above the line) and conclusion (below the line). There can be several
premises and in such case they are assumed to be combined with the logical conjunction (“and”).
Rules can be read as “If what is stated in the premise(s) holds, then wemay derive the conclusion”.
We use Γ to denote a type environment, which contains variables/functions/data constructors and
their types. New bindings are added to it using comma. Γ ⊢ e : T should be read as “expression
e has type T in the type environment Γ”.
Variables (as well as functions and data constructors) get their types from the type environment
Γ:
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x : T ∈ Γ
Γ ⊢ x : T

(T-Var)

Lambda abstraction is what is found in most functional languages, but note that it does not allow
variable shadowing:

x /∈ Γ Γ, x : T1 ⊢ e : T2
Γ ⊢ λ(x : T1)→ e : T1 → T2

(T-Abs)

Function application also has a classical shape, but the argument and parameter types do not have
to be the same, rather they need to satisfy the isCompatible relation, which we will define after
all the rules in the “Monads and relations” subsection, together with other relations that are used:

Γ ⊢ e1 : T1 → T2 Γ ⊢ e2 : T′
1 isCompatible(T′

1, T1)
Γ ⊢ e1 e2 : T2

(T-App)

Type abstraction and type application have typical System F rules, but again, type variable shad-
owing is not allowed:

X /∈ Γ Γ, X ⊢ e : T
Γ ⊢ ΛX . e : forall X . T

(T-TAbs)

Γ ⊢ e1 : forall X . T1
Γ ⊢ e1 [T2] : [X 7→ T2]T1

(T-TApp)

[X 7→ T2]T1 above means that all occurences of the type variable X in T1 are substituted with T2.
Throughout this text we assume that such substitutions are capture-avoiding [Pierce, 2002]. Unfor-
tunately, the current MIL implementation is naive in this respect and cannot correctly handle all
the cases of substitution.
The next four rules specify how data constructors get their types:

Γ ⊢ C ∈ T

Γ ⊢ C : T
(T-ConstrNil)

Γ ⊢ C T1...Tn ∈ T

Γ ⊢ C : T1 → ...→ Tn → T
(T-Constr)

Γ ⊢ C ∈ T X1...Xn
Γ ⊢ C : forall X1. ... .forall Xn.T X1...Xn

(T-ConstrNilTypeVars)

Γ ⊢ C T1...Tn ∈ T X1...Xn
Γ ⊢ C : forall X1. ... .forall Xn.T1 → ...→ Tn → T X1...Xn

(T-ConstrTypeVars)

In the rules above Γ ⊢ C ∈ Tmeans that “a data constructor C has been defined in type T”.
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Typing of tuples is specified with the following two rules:

Γ ⊢ {} : {} (T-EmptyTuple)

for each i Γ ⊢ ei : Ti
Γ ⊢ {ei=1..n} : {Ti=1..n}

(T-Tuple)

Probably the most important typing rule is the one for monadic bind:

x /∈ Γ Γ ⊢ e1 : M1 T′
1 Γ, x : T1 ⊢ e2 : M2 T2 T1 ≡α T′

1
isMonad(M1) isMonad(M2) isCompatibleMonad(M2, M1)
Γ ⊢ let (x : T1)← e1 in e2 : highestEffectMonad(M1, M2) T2

(T-Let)

The crucial parts are that both e1 and e2 should have monadic types. These two monads have
to satisfy the isCompatibleMonad relation. The type specified in the variable binder (T1) and the
result type of e1 (T′

1) must be alpha-equivalent (equivalent modulo renaming of type variables).
Alpha-equivalence is used here and in other similar situations because MIL has universally quan-
tified types, which introduce type variables. This can result in the types which have the same
meaning (and thus need to be considered equivalent), but happen to use different type variables.
The e2 expression gets the bound variable in scope. The monad for the type of the whole bind
expression is chosen using the highestEffectMonad function. The rule also specifies that bind
does not allow variable shadowing.
Monadic return typing rule is quite minimal. Its type is the monadic type return is annotated
with applied to the type of the expression that is being returned:

isMonad(M) Γ ⊢ e : T
Γ ⊢ return [M] e : M T

(T-Return)

The next rule specifies the typing of the lift operation. This operation is annotatedwith twomon-
ads: we lift a computation in monad M1 to monad M2. The monad of the expression e that we are
lifting (M′

1) and monad M1 should satisfy the non-commutative version of the isCompatibleMonad
relation. M1 also has to be a monad suffix of M2.

Γ ⊢ e : M′
1 T isMonad(M′

1) isMonad(M1) isMonad(M2)
isCompatibleMonadNotCommut(M′

1, M1) isMonadSuffix(M1, M2)
Γ ⊢ lift [M1 ⇒ M2] e : M2 T

(T-Lift)

The last rule describes let rec expression:

for each i xi /∈ Γ Γ, (xj : Tj)j=1..n ⊢ ei : T′
i Γ, (xj : Tj)j=1..n ⊢ e : T

Ti ≡α T′
i

Γ ⊢ let rec (xi : Ti)← ei;i=1..n in e : T
(T-LetRec)

Similarly to other expressions which introduce variables, let rec does not allow variable shad-
owing. All binding expressions (ei) are checked with all the variable binders in scope, so that they
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can be mutually recursive. The type of a binding expression should be alpha-equivalent to the
type specified in the corresponding variable binder.
Typing of case expressions is quite involved when written using judgement rules, so we will
omit it here. It can be informally described as the following: pattern types should match the
type of a scrutinee, every case alternative is checked separately, variables bound in patterns are in
scope for the corresponding alternative. The types of expressions in alternatives should satisfy the
isCompatible relation. The effect of the case expression is chosen using the highestEffectMonad
function among all the alternatives.

4.4.1 Monads and relations

Next, we will define what are the possible monads and how they can be combined in MIL as well
as the relations and helper functions used in the typing rules above.
There are four built-inmonads inMIL: Id (identity), State, IO (for input/output) and Error. They
all satisfy the isSingleMonad relation. Note that the Error type has an additional type parameter
for the type of error values.

isSingleMonad(Id)

isSingleMonad(State)

isSingleMonad(IO)

isSingleMonad(Error T)

isMonad unary predicate defines what is considered a monad in MIL. Single monad is one such
case:

isSingleMonad(M)
isMonad(M)

There is also an infix type constructor ::: that combines two monads. We call ::: a monad cons
operator, similarly to list cons cells. This is the way to combine effects in MIL. One can look at it
as a type-level list. What it represents is a monad transformer stack. Note, that in MIL there is
no distinction between the Statemonad and the StateTmonad transformer. It is the context that
determines themeaning. When amonad is to the left ofmonad cons, it is considered a transformer,
when it is to the right or is used as a type constructor elsewhere, it is a monad. When talking about
MIL these terms can be used interchangeably. In line with this we also may (rather informally)
use “combining/composing monads” for the sake of brevity, however what we actually mean is
“combining monad transformers”.
The monad cons operator should be thought of as right-associative. The following rule defines
that M1 ::: M2 is a monad, if M1 is a single monad and M2 is a monad (so it can be a monad cons as
well):
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isSingleMonad(M1) isMonad(M2)
isMonad(M1 ::: M2)

The following example gives an intuition with relation to monad transformers in Haskell (State
in MIL does not have a type of storage as opposed to StateT in Haskell, so it is substituted with
()):
Error Int ::: (State ::: IO)⇒ ErrorT Int (StateT () IO)

For the sake of the definitions below, we also define isMonadCons(M) to hold if M is a combination
of two monads with :::. We also use monadConsLeft and monadConsRight functions to get the
left-hand side and the right-hand side of a monad cons respectively.
One of the most important high-level relations is the isCompatible relation, which is used in
typing of function applications and function bodies, as an example. In general, we can view the
isCompatible relation inMIL as a subtyping relation extended tomonads and their combinations
withmonad cons. It tries to capturewhen a value of one type can be used as a value of another type
without violating the type safety [Pierce, 2002] (meaning that a program will not have run-time
type errors and that one cannot “hide” program effects in any way).
If both of the types are monadic, then a separate (non-commutative) relation for monads is used:

isMonad(M1) isMonad(M2) isCompatibleMonadNotCommut(M1, M2)
isCompatible(M1, M2)

For type applications involving monads, we use the isCompatible relation recursively for both
parts of the type application:

isMonad(M1) isMonad(M2) isCompatible(M1, M2) isCompatible(T1, T2)
isCompatible(M1 T1, M2 T2)

For function types, using the terminology from subtyping, we can say that they are covariant in
the result types and contravariant in the argument types:

isCompatible(T21, T11) isCompatible(T12, T22)
isCompatible(T11 → T12, T21 → T22)

For universally quantified types we recurse down the types under forall:

isCompatible(T1, [Y 7→ X]T2)
isCompatible(forall X . T1, forall Y . T2)

Note that we need to make sure that the type variables X and Y are considered equivalent further
down when checking the types T1 and T2 for compatibility. We achieve this by using the capture-
avoiding substitution.
For all the other cases type compatibility is subtyping:
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T1 <: T2
isCompatible(T1, T2)

Subtyping in MIL is defined as just alpha-equivalence for all the types except the tuple types.
Tuple types in MIL have width and depth subtyping. We will not present these rules here, they can
be found, for example, in [Pierce, 2002]. Tupleswith subtyping are introduced intoMIL to provide
a good support for implementing subtyping in source languages.
The core of determining whether two monads are compatible is the following non-commutative
operation:

isSingleMonad(M1) isSingleMonad(M2) M1 ≡α M2
isCompatibleMonadNotCommut(M1, M2)

isMonadCons(M1) isMonadCons(M2) monadConsLeft(M1) ≡α monadConsLeft(M2)
isCompatibleMonadNotCommut(monadConsRight(M1), monadConsRight(M2))

isCompatibleMonadNotCommut(M1, M2)

isSingleMonad(M1) isMonadCons(M2) M1 ≡α monadConsLeft(M2)
isCompatibleMonadNotCommut(M1, M2)

It specifies that two singlemonads are compatible if they are alpha-equivalent. Alpha-equivalence
for MIL monads is pretty straight-forward: every monad is alpha-equivalent to itself. In the case
of two Error T, their type arguments denoting the error types also must be alpha-equivalent. An-
other case is for two monad conses: their left-hand sides must be alpha-equivalent and then the
recursive cases on the right-hand sides must hold as well. Finally, a single monad is compatible
with a monad cons if it is alpha-equivalent to the left-hand side of the monad cons. One can think
about this relation as the one that checks whether the first argument is a proper prefix of the second
one. As an example, State ::: Error Unit is compatible with State ::: (Error Unit ::: IO). It is
also possible to think of every monad cons sequence as having an implicit monad variable M at the
end, similarly to monad transformer stacks parameterised over the underlying monad in Haskell.
An example of incompatible monads is State ::: Error Int and Error Int ::: State, because the
order of State and Error is different. Another example is State ::: IO is incompatible with just
State, because the first one has more effects than the second one and thus cannot be passed as an
argument instead of a just stateful computation and cannot be a body of a function that declares
only State as its effect.
isCompatibleMonad is a commutative version of the previous relation:

isCompatibleMonadNotCommut(M1, M2)
isCompatibleMonad(M1, M2)

isCompatibleMonadNotCommut(M2, M1)
isCompatibleMonad(M1, M2)
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Having defined the monad compatibility, it is worth looking back at the compatibility of function
types. Intuitively, if isCompatible(T1, T2), T1 has at most the effects of T2, potentially less, but
not more. Since function types are “covariant” in the result types, we can pass as an argument a
function which returns a computation with less effects than the specified parameter type. Also,
since function types are “contravariant” in the argument types, we can pass a function, which
has a parameter with a more effectful type. For example, a function of type (State ::: IO) Int →
State Int can be passed as an argument to a function which has a parameter of type State Int→
(State ::: IO) Int.
In the typing rule for the lift operation above, the relation isMonadSuffix was used. The intu-
ition behind it is that it specifies whether it is possible to properly put a combination of monads
on top of another monad transformer stack. Single monad M1 is a suffix of a single monad M2 if
they are alpha-equivalent. In this case lifting is a no-op and the monad of a computation is not
changed:

isSingleMonad(M1) isSingleMonad(M2) M1 ≡α M2
isMonadSuffix(M1, M2)

Next, if both arguments are monad conses, to satisfy isMonadSuffix they can be either alpha-
equivalent or the first monad cons is a suffix of the right-hand side of the second monad cons:

isMonadCons(M1) isMonadCons(M2) M1 ≡α M2
isMonadSuffix(M1, M2)

isMonadCons(M1) isMonadCons(M2) isMonadSuffix(M1, monadConsRight(M2))
isMonadSuffix(M1, M2)

Given the above it is possible to lift a State ::: IO computation into a Error Unit ::: (State ::: IO)
computation. It is basically putting Error Unit on the top of the stack.
The third case is when the first argument is a single monad and the second argument is a monad
cons. In this case we just shift and check if the single monad is a suffix of the right-hand side of
the monad cons:

isSingleMonad(M1) isMonadCons(M2) isMonadSuffix(M1, monadConsRight(M2))
isMonadSuffix(M1, M2)

An example here is lifting from IO to State ::: IO.
This was the last rule, which implies that monad cons is never a suffix of a single monad.
Finally, highestEffectMonad is a function that takes two monads and returns the one, which
encodes more effects. An important internal assumption in MIL is that the highestEffectMonad
is used only on compatible monads (see isCompatibleMonad). We define that monads combined
with monad cons have a higher effect than a single monad:

isMonadCons(M1) isSingleMonad(M2)
highestEffectMonad(M1, M2) = M1
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isSingleMonad(M1) isMonadCons(M2)
highestEffectMonad(M1, M2) = M2

For two monads, highestEffectMonad returns the first one, so we do not have any ordering be-
tween the MIL monads:

isSingleMonad(M1) isSingleMonad(M2)
highestEffectMonad(M1, M2) = M1

The most interesting case is when both arguments are monad conses. In this case we recurse into
the right hand-sides of monad conses, since that is where they might differ:

isMonadCons(M1) isMonadCons(M2)
highestEffectMonad(monadConsRight(M1), monadConsRight(M2)) = monadConsRight(M1)

highestEffectMonad(M1, M2) = M1

isMonadCons(M1) isMonadCons(M2)
highestEffectMonad(monadConsRight(M1), monadConsRight(M2)) = monadConsRight(M2)

highestEffectMonad(M1, M2) = M2

One can say that the intuition behind highestEffectMonad is that the longer chain of monad
conses has a higher effect.
Looking back at the T-Let typing rule again: it does not matter if it is a binding expression or a
body which has a higher effect, they must be compatible (using the isCompatibleMonad relation)
and the typewith the highest effect is chosen as the type of thewhole expression. The same applies
to case expressions.

4.5 Haskell implementation
Since one of the aims of this thesis was to produce a programming framework for working with
the designed monadic intermediate language, here we will outline some of the implementation
details, namely, several core data types.
MIL is implemented in Haskell. There is a parser which given a program text produces a source
version of the abstract-syntax tree (AST) and a type checker which given a source version of the
AST produces a type annotated version of it. There is also a lint checker, which given an already
type annotated AST verifies that it is well-typed. This is really useful as a tool to check that subse-
quent program transformations maintain its type correctness.
As it was mentioned above, we draw a distinction between the source AST and the type annotated
AST. The source version looks more like what a user entered (or rather, a compiler generated) as
a program. It is still explicitly typed, meaning, for example, that functions have type signatures
and variable binders have types specified. The type annotated version contains more information:
some syntax nodes are more refined and are annotated with types.
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The biggest difference between the two is in representations of types. The source representation
produced by the parser is captured in the SrcType data type:

data SrcType
= SrcTyTypeCon TypeName
| SrcTyArrow SrcType SrcType
| SrcTyForAll TypeVar SrcType
| SrcTyApp SrcType SrcType
| SrcTyTuple [SrcType]
| SrcTyMonadCons SrcType SrcType

It has data constructors for type constructors represented just as their names (TypeName is a wrap-
per for String), function types (SrcTyArrow), universally-quantified types, type application, tu-
ple types and monad cons, which has SrcTypes as its operands. It is important to note that type
variables and monads do not have separate data constructors, but are captured by SrcTyTypeCon
together with type constructors. This is due to the fact that the parser cannot really distinguish
them from each other (they are all just identifiers starting with an upper-case letter).
The internal representation of types is expressed as the TypeADT, which is slightly more involved.
Types are converted from the source representation during the type checking phase. At the same
time a number of checks are performed, for example, that all the types are properly kinded, that
they use types which are in scope, that there is no type variable shadowing etc.

data Type
= TyTypeCon TypeName
| TyVar TypeVar
| TyArrow Type Type
| TyForAll TypeVar Type
| TyApp Type Type
| TyTuple [Type]
| TyMonad MonadType

It has separate constructors for type constructors and for type variables. Function types,
universally-quantified types, type applications and tuple types are essentially the same. Monadic
types are expressed with the TyMonad data constructor, which has one field of type MonadType.
Built-in monads are captured in the MilMonad data type:

data MilMonad
= Id
| State
| Error
| IO

Amonadic type inMIL is either a singlemonad or a singlemonad combinedwith anothermonadic
type using monad cons. This is captured in the MonadType ADT, mentioned above:
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data MonadType
= MTyMonad SingleMonad
| MTyMonadCons SingleMonad MonadType

This data type is essentially a non-empty list of SingleMonads.
Single monads are represented using the SingleMonad data type:

data SingleMonad
= SinMonad MilMonad
| SinMonadApp SingleMonad Type

It has two data constructors: one for just a built-in monad and another one for application of a sin-
gle monad to a type. This is done to capture monads that might have additional type parameters.
In the current state of MIL one such example is the Errormonad. To get a monad the Error type
constructor needs to be applied to a type representing error values.
Expressions in MIL are represented using the parameterised data type Expr v ct mt t. It has
four type parameters:

• v for variable occurences
• ct for data constructor types
• mt for monads
• t for general type occurences

As opposed to types, expressions have only one data type for both source and type annotated
representations, hence all the type parameters.
Wewill provide the definition of the Expr data type below to get a general feeling on how different
MIL expressions are represented, but we will skip describing it in full detail:

data Expr v ct mt t
= LitE Literal
| VarE v
| LambdaE (VarBinder t) (Expr v ct mt t)
| AppE (Expr v ct mt t) (Expr v ct mt t)
| TypeLambdaE TypeVar (Expr v ct mt t)
| TypeAppE (Expr v ct mt t) t
| ConNameE ConName ct
| LetE (VarBinder t) (Expr v ct mt t) (Expr v ct mt t)
| ReturnE mt (Expr v ct mt t)
| LiftE (Expr v ct mt t) mt mt
| LetRecE [(VarBinder t, Expr v ct mt t)] (Expr v ct mt t)
| CaseE (Expr v ct mt t) [CaseAlt v ct mt t]
| TupleE [Expr v ct mt t]
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There are two type synonyms: one for the source representation of expressions and one for the
type annotated expressions. This is a general pattern used in the MIL implementation for many
other data types, like type definitions, constructors definitions, function definitions etc.

type SrcExpr = Expr Var () SrcType SrcType
type TyExpr = Expr TyVarBinder Type MonadType Type

In the Src case variable occurences are just their names as strings, but in the type annotated case,
they are names together with the variable type. TyVarBinder is used for this. Data constructor
occurences just have () as their type in the SrcExpr, but an actual type in TyExpr. Both of these
annotations can be useful when working with an instance of the AST, since it allows to get the
types without asking the type environment. For monads and general type occurences, source
representation of types (SrcType) is replaced with MonadType and the internal type representation
respectively.
Implementation details specific to optimisations are presented in a separate chapter.

4.6 Discussion
Currently, effects in MIL are quite coarse-grained. For example, compared to MIL-lite by Benton
and Kennedy [Benton and Kennedy, 1999], there is only one big State and no distinction between
reading/writing is made. Input and output are not separated either. Non-termination effect is not
captured in MIL.
None of the monadic ILs described in “Related work” had the flexibility of combining effects that
is achieved in MIL with the help of monad transformers (which is, of course, partly due to that
it wasn’t a goal for those ILs to be able to express different semantics). In [Tolmach, 1998] the
hierarchy of monads was fixed. In MIL-lite, effects are combined in sets, but there is no way to
choose an interpretation of State and Error combination, for example.
When it comes to programming with effects, as it was mentioned several times in “Related work”,
a neccessity to do liftingwhen usingmonad transformers to combinemonads iswidely considered
to be one of their biggest problems. While we agree, that it is a problemwhen it comes to everyday
programming using effects, we think it is not such a big issue for an intermediate language. It is
very useful for an IL to be human-readable, but it is usually not the main goal, since it is not a user
facing language. Moreover, as it will be seen in the next two chapters, we didn’t see lifting as the
biggest mental overheadwhen generating or readingMIL code for the source languages that were
designed as part of this work.



Chapter 5

Functional programming language
(FunLang)

This chapter introduces the first source programming language which has been designed during
this work – FunLang. It starts from the language overview and example programs. Then the
code generation to MIL is described. Finally, we make conclusions regarding the implementa-
tion of the FunLang compiler using MIL.

5.1 Overview
FunLang is a rather small functional programming language. Its design is mostly inspired by
Haskell. It is statically and explicitly typed. The type system of FunLang is based on System F.
In addition to the pure polymorphic lambda calculus FunLang incorporates do-notation similar
to the one found in Haskell and has a couple of built-in monads. It also adds minimal exception
handling.
One can say that FunLang is quite similar to MIL in many ways. The main motivation behind
designing FunLang as one of the languages for MIL evaluation is to be able to explore compilation
of a modern statically typed functional language. Despite the many similarities to MIL, as we
will see, the MIL code produced for FunLang programs looks rather different from the programs’
source code. In addition to the semantics similar to the one of MIL, FunLang offers cleaner syntax,
since it is a user facing language, rather than an intermediate representation. One of the main
semantic differences is implicit effects which are present in FunLang programs, as we will see in
this chapter.

5.2 FunLang by example
Similarly to the previous chapter, we will provide several examples showcasing the main features
of the language.

34
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5.2.1 Data types

As most statically typed functional programming languages, FunLang supports ADTs which can
be parameterised. One of the simplest data types is Bool, which represents true and false values:

type Bool = True | False

An example of a parameterised data type often found in functional programming languages is a
pair of two values:

type Pair A B = MkPair A B

Another canonical example of an ADT is a recursive data type representing a binary tree:

type Tree A
= Empty
| Node A (Tree A) (Tree A)

A tree is either empty or it is a node carrying a value of type A, which can have two children. Leaf
nodes having a value x are represented as Node x Empty Empty.

5.2.2 Functions and expressions

Functions in FunLang have syntax rather similar to Haskell. One needs to write a function name
and its type and then a so-called function equation containing the function body:

constInt : Int -> Int -> Int
constInt = \(a : Int) (b : Int) -> a;;

The idea is that potentially FunLang can be extended to have the same rich syntax for function
equations as in Haskell, meaning having multiple of them with parameters being expressed with
patterns to the left of the equal sign. This is the reason for having two semicolons at the end of
a function definition. Each equation would end with one semicolon and then the whole function
would end with one more. Unfortunately, multiple function equations and pattern matching for
parameters are not implemented as part of this project.
From the example above one can also see the syntax for lambda expressions in FunLang, which al-
lows to have multiple parameters instead of explicitly nesting several lambdas. Note that variable
shadowing is not allowed in FunLang.
Polymorphic functions are defined with the “big lambda”, which also allows to specify several
type variables at once. Below are examples of the identity function and function composition:
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id : forall A . A -> A
id = /\A . \(x : A) -> x;;

compose : forall A . forall B . forall C . (B -> C) -> (A -> B) -> A -> C
compose = /\A B C . \(f : B -> C) (g : A -> B) (x : A) -> f (g x);;

Function application is specified with juxtaposition. Square brackets are used for type application:

one : Int
one = id [Int] 1;;

FunLang has Unit, Bool, Pair, Int, Float, Char and String as built-in types. It supports the usual
infix arithmetic operations: +, -, * and /.

5.2.3 Monads

FunLang provides built-in IO and Statemonads, which are similar to the corresponding monads
in Haskell. The notation looks very similar to Haskell, except that more things are explicit, like
variable bindings, for example, and every statement in a do block is terminated with a semicolon,
while the whole block is terminated with the end keyword.

main : IO Unit
main = do

printInt 1;
i : Int <- readInt;
printInt i;
printInt (execState [Int] [Unit] stateFun 1);
return (evalState [Int] [Unit] stateFun 0);

end;;

stateFun : State Int Unit
stateFun = do

i : Int <- get [Int];
put [Int] i;
modify [Int] (\(s : Int) -> s);

end;;

As it can be seen from the previous example, FunLang provides a number of built-in functions for
working with IO and State:

printString : String -> IO Unit
readString : IO String
printInt : Int -> IO Unit
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readInt : IO Int
printFloat : Float -> IO Unit
readFloat : IO Float
evalState : forall S . forall A . State S A -> S -> A
execState : forall S . forall A . State S A -> S -> S
runState : forall S . forall A . State S A -> S -> Pair A S
get : forall S . State S S
put : forall S . S -> State S Unit
modify : forall S . (S -> S) -> State S Unit

The first six functions are for reading values of several built-in types from the standard input and
printing them to the standard output. They work in the IO monad. The functions evalState,
execState and runState are for running computations in the State monad. They all take one
such computation and an initial state value. The difference is that evalState returns the value of
the computation as the result, execState returns the value of the state itself and runState returns
both the value and the state as a pair. The last three functions are for working with state inside a
stateful computation. They allow to read the state value, overwrite it andmodify it with a function.
It is worth highlighting, that unfortunately, FunLang does not support combining monads in any
way. In spite of this property of FunLang, combiningmonads inMIL is used extensively, aswewill
describe in the “Code generation” section. Moreover, some features of FunLang, like the ability
to run stateful computations with evalState, execState or runState inside of any computation
influences the representation of effects in MIL code quite significantly.

5.2.4 Exceptions

FunLang provides rather naive support for exception handling. There are two language constructs
for it: throw and catch. The first one is an expression that allows to raise an exception. Exceptions
in FunLang do not carry additional information, so throw is used standalone, without any value
specified, but in order to assign a type to it, it needs to be annotated with a type. The catch
construct is a binary infix operator, that tries to evaluate an expression on the left-hand side and if
that throws an exception, it returns an expression on the right-hand side. The following example
will result in 1, since the expression on the right is throw and the handler expression is 1:

throw [Int] catch 1

5.3 Code generation
In this section we will outline how FunLang code is translated into MIL code.
In order to generate FunLang code we needed to decide in which monads different kinds of com-
putations should be expressed. Looking at FunLang, there are three different kinds of code: “pure”
code (outside of monads), code inside IO and code inside State. Pure code is not completely pure,
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though. First, functions can be non-terminating. MIL does not have a monad for non-termination,
so we do not worry about this particular effect. Second, FunLang exceptions have non-monadic
types, but we need to express potential failure in MIL. This means that the Error monad should
be part of all computations. For stateful computations we need to add State and for input/output
– IO. The problem here is that FunLang allows to “escape” State by using evalState, execState
or runState and therefore running stateful computations inside pure or IO computations. Escap-
ing State is not possible in MIL, so we need to add State to all stacks. Given all this, we have
two effect stacks: State ::: Error Unit for pure computations and computations in the State
monad and State ::: (Error Unit ::: IO) for computations in the IOmonad. If we do an ex-
ercise of expanding types as we did in one of the previous chapters for the IO monad stack, we
will get s -> IO (Either Unit (a, s)). This can be read as “a function that given a state value
can perform IO and either results in an error or produces a value and a new state”. Unit is chosen
as a type for error values, because exceptions in FunLang do not carry any value. We choose to
have State on top of Error, but for FunLang different orderings of Error and State cannot be ob-
served, since catch can at most have a stateful computation which has been run with evalState,
execState or runState and therefore state cannot escape outside of that computation. One could
extend FunLang with the Errormonad that can be combined with State somehow in order to be
able to interrupt stateful computations with errors.
Note, that there is an important relation between the pure and the IO monad stacks above. They
satisfy the isCompatible relation inMIL (the former is a prefix of the latter). This allows us to use
computations in the pure monad stack inside computations in the IO stack.

5.3.1 General scheme and type conversions

In order to generate code for function definitions, a type of every function needs to be converted
to the corresponding MIL representation. There were two main considertions here: all effects of
FunLang that are possible to express in MIL have to be captured in types and code generation
scheme should be as uniform as possible. These considerations together result in the fact that
all FunLang code, even expressions not inside monads, becomes monadic code in MIL. In such a
scheme every sub-expression has a monadic type and needs to be bound to a variable with bind
before it can be used. For example, literal occurences result in returns and in order to be passed
into a function their values need to be extracted from a monad (with bind). One can see some
resemblance to the ANF in a sense that all expressions are broken down into intermediate simple
expressions, like variables and function applications.
Next, we will provide some examples to demonstrate the code generation scheme outlined above.
A FunLang function with the simplest type Int can potentially throw an exception instead of
returning an integer. This means that its MIL type should be (State ::: Error Unit) Int. The
sameway, when there is a universally-quantified type or a function type, instead of having lambda
binders in the function body, it can just have throwwith an appropriate type annotation. Therefore,
there must be a monad in front of every forall type and every function parameter type. Below is
an example of the identity function in FunLang and then the MIL code generated for it:

id : forall A . A -> A
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id = /\A . \(x : A) -> x;;

id : (State ::: Error Unit) (forall A .
(State ::: Error Unit) (A ->

(State ::: Error Unit) A)) =
return [State ::: Error Unit] /\A .
return [State ::: Error Unit] \(x : A) ->

return [State ::: Error Unit] x;

IO type gets translated to the correspondingmonad stack described at the beginning of this section.
We will consider type conversions for State in a separate section.
The next example demonstrates how function and type applications look in the generated code:

one : Int
one = id [Int] 1;;

one : (State ::: Error Unit) Int =
let (var_1 : Int -> (State ::: Error Unit) Int) <-
let (var_0 : forall A . (State ::: Error Unit)

(A -> (State ::: Error Unit) A)) <- id
in var_0 [Int]

in let (var_2 : Int) <- return [State ::: Error Unit] 1
in var_1 var_2;

Every sub-expression gets bound to a variable and the code generator produces fresh variable
names for all of the intermediate sub-expressions. One can relate nested binds above to the fact
that applications are left-associative.

5.3.2 Data types and data constructors

Given the similarity between FunLang and MIL, there is basically almost no translation of data
type definitions. There exists one problem with data constructors and their application as func-
tions, though. Every MIL data constructor is introduced as a function in the global scope and
therefore, it can be used as a function. Application of data constructors in MIL does not have any
effect, whichmakes themdifferent from all the other function definitions generated fromFunLang,
which have a monad attached to every argument position. In order to avoid having this special
case which can complicate the code generation slightly, we generate a wrapper function for every
data constructor. This wrapper function is then used instead of the data constructor occurrence
itself.
The following example contains a definition of the Pair data type and the corresponding wrapper
function for its only data constructor:
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type Pair A B = MkPair A B;

con_MkPair :
(State ::: Error Unit) (forall A .
(State ::: Error Unit) (forall B .

(State ::: Error Unit) (A ->
(State ::: Error Unit) (B ->

(State ::: Error Unit) (Pair A B))))) =
return [State ::: Error Unit] /\A .
return [State ::: Error Unit] /\B .

return [State ::: Error Unit] \(var_1 : A) ->
return [State ::: Error Unit] \(var_2 : B) ->

return [State ::: Error Unit]
MkPair [A] [B] var_1 var_2;

What the code generator did in this case was generating an MIL expression from the type of the
data constructor. The problem of generating an expression which has a particular type can be
really hard for arbitrary types, but in the case of data constructors the shape of possible types is
quite restricted.

5.3.3 Built-in types and functions

Most of the FunLang built-in data types map one-to-one to the MIL data types, except for the
String type, since MIL provides only Char. A solution to this is to predefine a String data type
as the following:

type String
= Empty_Str
| Cons_Str Char String;

This is basically a list of characters. String is either empty or it is a cons cell of a character and
another string.
When it comes to built-in functions related to reading and printing built-in data types, MIL pro-
vides only read_char and print_char, therefore FunLang built-in functions like printString,
readString and so on need to be expressed in terms of read_char and print_char. All these
functions have to work inside the IO stack. It is very helpful that the IO stack contains Error, since
one needs to throw an exception in case when readInt is called and the first character in the input
stream is a letter, for example. When using read_char and print_char lifting needs to be used in
order for types to match, since these MIL functions have just IO in their types. The following code
snippet is the implementation of the printString function:

printString : (State ::: Error Unit)
(String -> (State ::: (Error Unit ::: IO)) Unit) =
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return [State ::: Error Unit]
\(s_ : String) ->
case s_ of
| Empty_Str =>

return [State ::: (Error Unit ::: IO)] unit
| Cons_Str (c_ : Char) (cs_ : String) =>

let (unit_0 : Unit) <-
lift [IO => State ::: (Error Unit ::: IO)] print_char c_

in let (printString_ : String -> (State ::: (Error Unit ::: IO)) Unit) <-
printString

in printString_ cs_
end;

In the actual implementation of FunLang most of the built-in functions, except for printString
and readString are actually just stubs in order to demonstrate the concept without fully-
implementing this non-crucial part.
Arithmetic operators map directly to built-in MIL functions:

plus : Int
plus = 1 + 2;;

plus : (State ::: Error Unit) Int =
let (var_0 : Int) <- return [State ::: Error Unit] 1
in let (var_1 : Int) <- return [State ::: Error Unit] 2
in return [State ::: Error Unit] add_int var_0 var_1;

This is one of the cases when not every sub-expression is bound to a variable, since the code gen-
erator knows the type of the add_int function when generating code for addition.
A more interesting case is division. Since it is rather easy for division to fail, namely, when using
0 as a divisor, div_int and div_float functions in MIL have Error in their types. We need to use
the lift operation in this case to get State on top:

division : Int
division = 1 / 2;;

division : (State ::: Error Unit) Int =
let (var_0 : Int) <- return [State ::: Error Unit] 1
in let (var_1 : Int) <- return [State ::: Error Unit] 2
in lift [Error Unit => State ::: Error Unit] div_int var_0 var_1;

5.3.4 State

Code generation for FunLang computations inside the Statemonadmakes use of MIL references.
The main problem was to provide State functions with references to work with. It was solved by
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adding an extra parameter of MIL Ref type to every State function. The example below shows a
type of a stateful computation in FunLang and the corresponding MIL type:

stateFun : State Int Unit

stateFun : (State ::: Error Unit) (Ref Int -> (State ::: Error Unit) Unit)

This implies that the code generator needs to keep track of whether a sub-expression type has a
reference as a parameter and pass the reference in scope as an argument. A special name for such
reference is used: state_. This variable must be introduced by a lambda for every State function.
The following example shows a simple State function that just reads the state value. One can see
how the code generator introduced the state_ reference and then supplied it to the get function:

stateFun : State Int Unit
stateFun = do

i : Int <- get [Int];
return unit;

end;;

stateFun : (State ::: Error Unit) (Ref Int -> (State ::: Error Unit) Unit) =
return [State ::: Error Unit] \(state_ : Ref Int) ->
let (i : Int) <-

let (var_0 : forall S_ . (State ::: Error Unit)
(Ref S_ -> (State ::: Error Unit) S_)) <-

get
in let (var_1 : Ref Int -> (State ::: Error Unit) Int) <-

var_0 [Int]
in var_1 state_

in let (var_2 : Unit) <- return [State ::: Error Unit] unit
in return [State ::: Error Unit] var_2;

Built-in State functions such as evalState, execState, runState, get, put and modify are imple-
mented in MIL and this code is emitted at the beginning of every program together with other
built-in functions and data types. The function evalState creates a reference with the initial state
value that it is given and runs a given State computation with this reference as an argument. The
same happens in execState, but in addition it reads the reference to get the final state value out
and returns it. The runState function does everything execState does, but then also constructs a
pair with both the result and the final state value and returns this pair. The get and put functions
are wrappers around read_ref and write_ref respectively. The modify operation is a more high-
level combination of these two with a given state transformation function applied in between.

5.3.5 Exceptions

When it comes to code generation for FunLang exception handling, the throw expression maps
almost directly to the throw_error function in MIL. Its first type parameter always gets Unit,
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since no other values can be thrown in FunLang. Its second type parameter is the type annotation
on throw converted to the corresponding MIL type. And finally, the error value itself is unit. The
lift operation to put State on top also needs to be generated, since throw_error only has Error
in its type.
Dealing with catch turned out to be a much bigger problem. When presenting MIL built-in func-
tions in the previous chapter, we omitted the catch_error function, which one would definitely
expect to see there. One possible type of catch_error could be forall E . forall A . Error
E A -> (E -> Error E A) -> Error E A, where the first parameter (after the two type parame-
ters) corresponds to the left-hand side of FunLang catch and the second parameter corresponds to
the right-hand side wrapped in a lambda, which takes a Unit placeholder. The problem with this
type and the design of FunLang is that in FunLang exceptions can be thrown and handled both
inside pure computations and inside IO computations, which corresponds to two different monad
stacks. So there are two possible types of computations that we need to pass to catch_error and
none of those match the type above. As was presented in the previous chapter, a type of the
argument to a function must satisfy the isCompatible relation with the corresponding parame-
ter type. If we say that instead of Error E A the first parameter of catch_error could be State
::: (Error E ::: IO) A (as well as all the other occurences of Error E A), then we could pass a
pure/stateful FunLang computation of type (State ::: Error E) A as an argument (it has less
effects than catch_error expects). But if we were to apply catch_error with IO in its type in-
side a function of type (State ::: Error E) A, the MIL type/lint checker would give an error,
since the result would have had more effects than specified by the function type. If we instead say
that catch_error should have (State ::: Error E) A instead of Error E A in its type, then we
cannot pass an IO computation as the first argument, since its type is not compatible (it has more
effects than catch_error expects).
For this reason,MILprovides two functions: catch_error_1 and catch_error_2 as aworkaround.
The types of these functions are not fully specified inMIL itself. There are placeholders formonads,
which a source language compiler needs to fill in, when using theMIL type/lint checker. FunLang
puts the pure monad stack and the IO stack respectively and then uses the corresponding versions
of catch_error depending on the context, in which catch expression is used. This solution is, of
course, not sustainable and can support up to two possible monad stacks in a similar case, when
exceptions can be thrown in all the contexts in the source language.
What one would really want to capture in the type of catch_error here is the fact that it expects
a computation that has Error as one of its effects. But what Error E A means in MIL is that a
computation has just the Error effect, not less and not more. Unfortunately, MIL does not offer
an ability to express the fact that a computation “has at least this effect, but maybe more”.

5.4 Conclusions
In general, we can say that code generation from FunLang to MIL is rather straight-forward, be-
cause FunLang and MIL are quite close to each other. The main difficulties were to get the type
conversions right as well as working with references for State.
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The code generator also used one small practical trick in order to avoid potential collisionswith dif-
ferent names (function, variable and type names) in FunLang code when generating fresh names.
FunLang’s lexer does not allow underscores in those names, while MIL does allow them, so all
the generated names contained underscores in them, which eliminates the possibility of collisions
with names in source programs.
When looking at the MIL code generated for pure FunLang code, which is actually pure and not
only specifies that in the type (meaning when it does not throw exceptions), one could see that the
size of the generated code is significantly bigger than it could have been if it was non-monadic.
A number of code transformations that have been implemented as part of this work allow to sim-
plify generated programs and remove a lot of extraneous code. This will be described in detail in
the chapter on optimisations. To go further and eliminate all the unnecessary returns and binds,
remove monads from the types as well as introduce opportunities for more optimisations, one
would need to implement some kind of effect inference. Such a process could analyse the code and
infer that it does not have the specified effects and then rewrite the code, simplifying it.
One could quite easily extend FunLangwithmore powerful features like case expressions or com-
bining monads with transformers, for example, because MIL is a rather expressive language and
has those features available out of the box.
We think that the problem described in the section on code generation for exceptions might be the
biggest current MIL limitation.



Chapter 6

Object-oriented programming language
(OOLang)

In this chapter we will look at another source programming language – OOLang. Language
overview, design principles and example programs are presented. Then we describe interesting
parts of the MIL code generation. At the end, conclusions regarding implementation of the
OOLang compiler using MIL are drawn.

6.1 Overview
OOLang is an object-oriented programming language. The design of OOLang is mainly inspired
by three programming languages: C#, Haskell and Ruby. Most of the semantics is rather similar
to the one of C#. Syntax is inspired by bothHaskell and Ruby. Some crucial language design ideas
and decisions as well as some general influence comes from Haskell.
OOLang offers a separation between pure and impure functions on the type level, encourages
immutability and tries to eliminate one of themost commonproblemof themodernOO-languages:
null references.

6.2 OOLang by example
This section will introduce most of the OOLang features using example programs.

6.2.1 Functions, statements and expressions

OOLang allows to define functions consisting of several statements. Functions can be pure or
impure, which is captured in the return type. By default all functions are impure. Impurity in
OOLang comes from input/output and assignments to references. Function definitions can con-
tain parameters in curly braces with a function arrow (->) separating several parameters (and a
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return type), which means that functions are curried. Note that in OOLang it is not possible to
define a function, which would take several arguments at once (one way of supporting this could
be to have tuples in the language and pass several arguments as a tuple). Function application is
expressed using juxtaposition. Unlikemany other programming languages with statements, there
is no return statement in OOLang. Instead, every statement has a value (and a type) and so the
value of the last statement is what is returned from a function.
OOLang has Unit (the type of the unit literal), Bool (which has literals true and false as possi-
ble values), Int, Float, Char and String as built-in types. It supports the usual infix arithmetic
operations: +, -, * and /.
The following example demonstrates some of the features described above:

def main : Unit
fun 1;
unit;

end

def fun : {a : Int} -> {b : Float} -> Pure Int
a;

end

OOLang supports higher-order functions:

def main : Unit
applyInt idInt 1;
unit;

end

def applyInt : {f : Int -> Pure Int} -> {x : Int} -> Pure Int
f x;

end

def idInt : {x : Int} -> Pure Int
x;

end

At the moment, there are no lambda expressions in OOLang, but given that the target for the
language is MIL, it should be rather straight-forward to add them.
OOLangprovides a conditional when-otherwise statement, which corresponds to if-else inmost
other languages. Both branches have to have the same type:

when b do
1;
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otherwise
2;

end;

Exception handling is performed using try-catch-finally. Exceptions can be thrown with the
throw statement, which is annotatedwith a type, since as it wasmentioned earlier, every statement
in OOLangmust have a type. The types of try and catch block must be the same (or rather satisfy
the subtyping relation, which we will present later in this chapter). The type of finally does not
matter, since its value is not returned.

try
throw [Int];
1;

catch
2;

finally
end;

OOLang provides a number of built-in functions for reading and printing values of built-in data
types:

printString : String -> Unit
readString : String
printBool : Bool -> Unit
readBool : Bool
printInt : Int -> Unit
readInt : Int
printFloat : Float -> Unit
readFloat : Float

6.2.2 Mutability

By default all variables in OOLang are immutable. To declare a mutable variable a special type
constructor Mutable is used. The next example demonstrates a declaration of an immutable and a
Mutable variable and the Mutable assignment operator:

def assignments : Pure Unit
x : Int = 0;
y : Mutable Int <- 0;
y <- 1;

end
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When variables are declared in OOLang, theymust be initialised. There is an exception to this rule
involving the Maybe type, which will be described later in this section.
Mutable variables never escape the scope of the function they are declared in, therefore assign-
ments to Mutable variables are considered pure, since they cannot change any global state out-
side of the function. Given this, Mutable variables are still quite useful, especially if OOLang is
extended with loop constructs. It is worth highlighting that OOLang Mutable variables are some-
what similar to the mutable variables in F#.

6.2.3 References

OOLang also supports references, which are quite similar to ordinary variables in C# (for refer-
ence, not value, types) or Java. But there is a slight difference, which makes OOLang references
remind of C pointers, namely that one can put a new value into the same reference cell (which
is not possible in Java or C#, where one can just mutate the value or make a reference variable
point to another value). There is a ref operator for creating new references, := for assigning val-
ues to references and ! for reading reference values. The following example demonstrates these
operators and a declaration of a Ref variable (note that = is used for initialisation):

def references : Unit
x : Ref Int = ref 0;
x := 1;
y : Int = !x;

end

Ref variables (unlike Mutable variables) can be passed around, so working with references is con-
sidered impure.

6.2.4 Maybe

Variables in OOLang (unlike C# or Java) cannot be null. Instead, a built-in Maybe type found in
many functional programming languages is used. There are two literal values for the Maybe type:
justwhich is used together with some value and nothingwhich has to be annotated with a type:

x : Maybe Int = just 1;
y : Maybe Int;
z : Maybe Int = nothing [Maybe Int];

There is a binary operator ?? (double question mark), which we call “nothing coalesce” (similar to
the “null coalesce” operator in C#). It allows in one expression to check whether the left operand
is nothing and if it is, the value of the right operand is returned, otherwise the value under just
in the left operand itself is returned:
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nothing [Maybe Int] ?? 0 # Evaluates to 0

As was mentioned above, variables of type Maybe can be left uninitialised. In this case they will
get the value nothing (which will be possible to change later on, but only for Mutable and Ref
variables):

def assignmentsMaybe : Pure Unit
x : Mutable (Maybe Int);
x <- just 1;

end

def referencesMaybe : Pure Unit
x : Ref (Maybe Int);

end

Refdeclarationwithout initialisation is the only case inOOLang, whenworkingwith Ref variables
is considered to be pure.

6.2.5 Classes

OOLang supports classes with inheritance similar to C# and Java. By default all methods are
virtual, meaning that they can be overriden. Overloading ofmethods is not supported. In addition
to methods, classes can also contain data fields. Class methods are basically OOLang functions,
but inside a class definition and with access to class data fields.
The following example contains a simple class hierarchy consisting of two classes with fields and
a method, which is overriden in the subclass:

class Parent
parentField : Int = 1;

def method : {x : Int} -> Pure Int
self.parentField;

end
end

class Child < Parent
childField : Bool = true;

def method : {x : Int} -> Pure Int
when self.childField do

x;
otherwise

super.method x;
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end;
end

def getParent : Pure Parent
super;

end
end

All class members have to be accessed through a special variable self inside the class. Class fields
cannot be accessed from the outside of the class. Super class members can be accessed through
the super variable.
Unfortunately, OOLang does not support Mutable class fields in the code generator. We will
describe this issue in the “Code generation” section.
The next example demonstrates constructing objects and working with them:

parentObj : Parent = Parent.new;
parentObj.method 1;

mChild : Maybe Child = just Child.new;
mParent : Maybe Parent = mChild ? getParent;

Object are created using a special construct ClassName.new, which does not have any parameters
in the current state of OOLang, meaning that OOLang classes do not support custom constructors.
Default constructor which initialises the fields is generated. Methods are applied to arguments in
the same way as functions. There is a special syntax (?) for calling methods on objects wrapped
in Maybe. If the object variable has just value, then the method is called on the underlying object
and the result is wrapped in just, otherwise, nothing is returned. This operator is inspired by the
?. operator in C# 6.0.
Since OOLang supports inheritance, one of the most interesting parts of its type system is the
subtyping relation. It is also used for checking the usage of other types than classes. Note that it
is not used for purity checking.
Subtyping in OOLang is reflexive (any type is a subtype of itself):

T <: T

If class A inherits from class B then A is a subtype of B:

class A < B...

A <: B

Subtyping relation is also transitive:
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A <: B B <: C
A <: C

For Pure types the following holds:

A <: B
Pure A <: B

A <: B
A <: Pure B

A <: B
Pure A <: Pure B

So, basically Pure is erased and subtyping is checked for the underlying types, meaning that Pure
types are interchangeable with other types. This is why the subtyping relation is not used for
purity checking (a separate mechanism is used).
Mutables are copied, so they can be used in the same places as ordinary types, except for special
declaration and assignment operators usage. And this gives us rules similar to the ones for Pure:

A <: B
Mutable A <: B

A <: B
A <: Mutable B

A <: B
Mutable A <: Mutable B

Ref types are invariant. There is a known problem with mutable references being covariant. An
example of this is covariant arrays in several popular programming languages, like Java and C#,
which is explained, for example, in [Birka and Ernst, 2004].
Maybe type is covariant:

A <: B
Maybe A <: Maybe B

6.3 Code generation
In this section we will describe the code generation from OOLang to MIL.
The same way as with FunLang, we needed to decide on the monad stacks for different kinds
of OOLang computations. As was described above, OOLang has pure and impure computations.
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Pure computations do not perform input/output and do notmanipulate state (with Refs), but they
can throw exceptions. Therefore, the pure stack for OOLang is Error Unit. Similarly to FunLang,
OOLang exceptions do not carry values. Impure computations add State and IO. We decided
to order Error and State differently from FunLang to not get the state rollback semantics, so we
have Error Unit ::: (State ::: IO) for impure OOLang computations. Again, the pure stack
is a prefix of the impure stack (they satisfy the isCompatible relation) to be able to easily run pure
computations inside impure ones.

6.3.1 General scheme and type conversions

The general approach to code generation and type conversions for OOLang is rather similar to
what was described in the FunLang chapter. Every function type needs to be converted to the
corresponding MIL type. There is one significant difference in OOLang, though. We know that
no effects can happen between partial applications of a function up until the return type, therefore
a monad is put only on top of the return type of the function. This is because in FunLang every pa-
rameter needs a lambda binder, which could potentially be substitutedwith throw, but in OOLang
all parameter binders are already there (using MIL lambda expressions without any effects) and
it is only the return type which is determined by the function body and therefore needs to capture
potential effects. For return types, Pure A results in Error Unit A and A results in (Error Unit
::: (State ::: IO)) A.
Similarly to FunLang, sub-expressions are bound to variables with the monadic bind. OOLang
statement sequences result in sequences of monadic binds. Since every statement has a value, that
value is what is bound to a variable. For some statements it is just a Unit variable.
OOLang when statements are expressed using the case expression to pattern match on the Bool
condition. The return value of the statement is bound to a variable. The following example tries
to capture most of what has been described about functions and statements so far:

def fun : {a : Int} -> {b : Bool} -> Unit
when false do
1;
2;

otherwise
3;

end;
unit;

end

fun : Int -> Bool -> (Error Unit ::: (State ::: IO)) Unit =
\(a : Int) -> \(b : Bool) ->
let (var_2 : Int) <-

let (var_0 : Bool) <-
return [Error Unit ::: (State ::: IO)] False

in case var_0 of
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| True =>
let (var_1 : Int) <-
return [Error Unit ::: (State ::: IO)] 1

in return [Error Unit ::: (State ::: IO)] 2
| False =>

return [Error Unit ::: (State ::: IO)] 3
end

in return [Error Unit ::: (State ::: IO)] unit;

Some of the more specific statements (declarations, assignments, exception handling etc.) as well
as class definitions will be covered in separate sub-sections.
One of the challenges in the OOLang code generator was to correctly generate code for variable
and function occurences. In order to do this correctly, one needs to realise that there are four
different kinds of variable/function occurences in OOLang:

• local variables of value types (non-function, primitive types)
• local variables of function types
• global functions with parameters
• global functions without parameters

For the first three cases, there is no monad at the front of the type. This means that the code
generator needs to emit return in order to make an expression monadic. In the fourth case, either
the pure stack or the impure stack is in the type, so no return is needed.

6.3.2 Built-in types and functions

Most of what was described for FunLang built-in types and functions holds for OOLang as well,
so we will omit repeating those points and will concentrate on the things specific to OOLang.
Since OOLang provides the built-in Maybe type, the following definition for Maybe is generated for
every OOLang program:

type Maybe A
= Nothing
| Just A;

A difference from FunLang is that Bool is a built-in data type with literals, rather than an ADT,
so there are built-in functions for printing and reading boolean values. The Bool data type itself
maps to the BoolADT in MIL. The following code snippet is an implementation of the printBool
function:
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printBool : Bool -> (Error Unit ::: (State ::: IO)) Unit =
\(b_ : Bool) ->
case b_ of

| True => printString
(Cons_Str 't'
(Cons_Str 'r'
(Cons_Str 'u'
(Cons_Str 'e' Empty_Str))))

| False => printString
(Cons_Str 'f'
(Cons_Str 'a'
(Cons_Str 'l'
(Cons_Str 's'
(Cons_Str 'e' Empty_Str)))))

end;

It basically just pattern matches on the argument and outputs a corresponding String.
readBool is quite a long function, which basically reads characters with read_char one by one
and pattern matches on them in order to find true or false as a sequence of characters. In case of
failure it uses throw_error.

6.3.3 Mutability and references

OOLang has three kinds of variables: default immutable variables, Mutables and Refs. Decla-
ration statements work similarly for all of them. The code generator emits a monadic bind that
introduces the variable being declared in scope and the rest of the statements become a body of
the bind expression and therefore they can access the declared variable.
Mutable variables are basically erased during the code generation. The MIL code produced for
Mutables resembles the SSA/ANF-style code. Every assignment introduces a new variable in
scope. This variable has an increasing counter as part of its name. The code generator internally
keeps track of what is the current variable name to correctly emit the variable access.
OOLang Ref variables are compiled down to the MIL references. There is a direct mapping be-
tween the operations on references: ref corresponds to new_ref, := corresponds to write_ref
and ! corresponds to read_ref.
The following example demonstrates both Mutable and Ref declaration, assignment and access
(declarations of immutable variables and their occurences look exactly as for Mutables, so we omit
them):

def main : Unit
a : Mutable Int <- 0;
a <- 1;
a;
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a <- 2;
a;
r : Ref Int = ref 0;
r := 1;
!r;
unit;

end

main : (Error Unit ::: (State ::: IO)) Unit =
let (a : Int) <-
return [Error Unit ::: (State ::: IO)] 0

in let (a_1 : Int) <-
return [Error Unit ::: (State ::: IO)] 1

in let (var_0 : Int) <-
return [Error Unit ::: (State ::: IO)] a_1

in let (a_2 : Int) <-
return [Error Unit ::: (State ::: IO)] 2

in let (var_1 : Int) <-
return [Error Unit ::: (State ::: IO)] a_2

in let (r : Ref Int) <-
let (var_6 : Int) <-

return [Error Unit ::: (State ::: IO)] 0
in lift [State => Error Unit ::: State] new_ref [Int] var_6

in let (var_5 : Unit) <-
let (var_4 : Int) <-

return [Error Unit ::: (State ::: IO)] 1
in lift [State => Error Unit ::: State] write_ref [Int] r var_4

in let (var_3 : Int) <-
let (var_2 : Ref Int) <-

return [Error Unit ::: (State ::: IO)] r
in lift [State => Error Unit ::: State] read_ref [Int] var_2

in return [Error Unit ::: (State ::: IO)] unit;

6.3.4 Exceptions

When it comes to the code generation for exception handling, try block corresponds to the first
parameter of the catch_error function, while catch block (with a lambda binder for the Unit
error value on top) corresponds to the second one. Since all OOLang statements and statement
blocks result in MIL expressions, the corresponding expressions are just passed as arguments to
catch_error.
One interesting consideration here is that we need to make sure that finally block is executed
after try and catch. For this reason, we bind the result of catch_error to a variable, then bind
the result of finally and then return the catch_error result as the result of the whole statement.
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The next example shows a translation for try-catch-finally statement:

def fun : Pure Unit
try
throw [Unit];

catch
unit;

finally
1;

end;
end

fun : Error Unit Unit =
let (var_0 : Unit) <-
catch_error_1 [Unit] [Unit]

(throw_error [Unit] [Unit] unit)
(\(error_ : Unit) -> return [Error Unit] unit)

in let (var_1 : Int) <- return [Error Unit] 1
in return [Error Unit] var_0;

There is exactly the same problem with catch_error type as in the FunLang case, therefore the
type checker specifies the appropriate monad stacks for catch_error_1 and catch_error_2.

6.3.5 Classes

In order to represent OOLang classes, MIL tuples are used. Every class maps to a type, which
is a tuple with two elements (which are tuples themselves) representing data fields and methods.
Since MIL tuples have both width and depth subtyping, new data fields and/or methods can be
added in subclasses and it will still be possible to work with a tuple representing a subclass object
as if it were a tuple for a superclass object, for example, pass as function arguments, pattern match
with the case expressions etc. Note that tuples for subclasses contain all of the superclass fields
and methods before their own, if any. The inspiration for the representation of OOLang classes
comes from [Pierce, 2002].
For every class definition three MIL functions are generated:

• new_ClassName_Data function, which we call a class data constructor function. This is a func-
tion that creates the data part of an object tuple. It contains generated code for field initiali-
sation. The following example contains two class definitions in OOLang and two class data
constructor function definitions in MIL:

class Parent
parentField : Int = 1;
parentField2 : Bool = true;
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end

class Child < Parent
childField : Float = 0.01;

end

new_Parent_Data : Error Unit {Int, Bool} =
let (self_parentField : Int) <- return [Error Unit] 1
in let (self_parentField2 : Bool) <- return [Error Unit] True
in return [Error Unit] {self_parentField, self_parentField2};

new_Child_Data : Error Unit {Int, Bool, Float} =
let (self_parentField : Int) <- return [Error Unit] 1
in let (self_parentField2 : Bool) <- return [Error Unit] True
in let (self_childField : Float) <- return [Error Unit] 1.0e-2
in return [Error Unit] { self_parentField

, self_parentField2
, self_childField};

Note that the subclass just duplicates the superclass field initialisations. It is also worth
highlighting that right now the code generator does not support referencing superclass fields
in field initialisers. We think that adding this should not cause any problems.

• class_ClassName function, whichwe call a class definition function. This function iswhere the
code for class methods is contained. It takes a class data tuple as a parameter and returns
the full class type. Method types are translated as all the other function types with one
addition. Method types get an additional parameter of type Unit. The reason is that we do
not want to evaluate methods at the point of their definition and such a parameter helps to
introduce laziness, that is needed in this case. This also means that the code generator needs
to supply an additional argument when applying methods. Method definitions need to be
able to access self and if a class has a superclass, then super has to be available as well. The
super variable is just bound to a constructed instance of the super class. The self case is a
bit more interesting, since when we are defining methods, we are in the process of defining
self. This is where the let rec expression is used to have a recursive binding for self.
The following example contains a simple class definition function:

class Parent
def method : {x : Int} -> Pure Int

0;
end

end

class_Parent : {} -> Error Unit {{}, {Unit -> Int -> Error Unit Int}} =
\(self_data : {}) ->
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let rec (self : {{}, {Unit -> Int -> Error Unit Int}}) <-
{ self_data
, {\(lazy_ : Unit) ->

\(x : Int) -> return [Error Unit] 0}}
in return [Error Unit] self;

The next example demonstrates how a class definition for a subclass looks:

class Child < Parent
def method : {x : Int} -> Pure Int

x;
end

def childMethod : Pure Bool
true;

end
end

class_Child : {} -> Error Unit
{{}, { Unit -> Int -> Error Unit Int

, Unit -> Error Unit Bool}} =
\(self_data : {}) ->

let (super : {{}, {Unit -> Int -> Error Unit Int}}) <- new_Parent
in let rec (self : {{}, { Unit -> Int -> Error Unit Int

, Unit -> Error Unit Bool}}) <-
case super of
| { super_data : {}

, super_methods : {Unit -> Int -> Error Unit Int}} =>
case super_methods of
| {super_method : Unit -> Int -> Error Unit Int} =>

{ self_data
, {\(lazy_ : Unit) ->

\(x : Int) ->
return [Error Unit] x,

\(lazy_ : Unit) ->
return [Error Unit] True}}

end
end

in return [Error Unit] self;

Note that in the example above the method from superclass is overriden in the subclass, so
a new definition is put in its place. In the case, when a subclass does not override a method,
a reference to the corresponding superclass method will be used as a method tuple element.
The superclass instance is decomposed with a sequence of case expressions and all its data
fields and methods are available.
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One of the most interesting observations to make here is that the subclassing polymorphism
is taken care of by storing methods’ lambda expressions in a tuple. This tuple is essentially
a classical dispatch table [Grune et al., 2012]. The ability to capture references to the self
and super objects is powered by closures (data structures for storing a function together
with its environment, which are heavily used in implementaion of functional programming
languages).
One of the main differences of the approach to class and object representation which was
taken here compared to themore classical one described, for example, in [Grune et al., 2012],
is the access to the self object. Usually onewould have a special parameter to everymethod,
which represents self and would be passed as an argument to every method call. This
would allow to avoid a recursive definition and a lazy parameter to every method. Given
that some representation ofmethods’ types is part of a class type (most likely via the dispatch
table), this approach works well in languages with a type system not as strict as the one in
MIL, namely, when having very general pointer or address types to represent method types
and being able to cast them. In MIL, having self as a parameter in every method would
require its type to be in everymethod type, which wouldmake the class type recursive. One
could think solving this with having an ADT instead of a tuple for every class type, but that
would require some kind of subtyping for ADTs.

• new_ClassName function, which corresponds to the ClassName.new construct in OOLang. It
basically puts together new_ClassName_Data and class_ClassName:

new_Parent : Error Unit
{ {Int, Bool}
, {Unit -> Int -> Error Unit Int}} =

let (self_data : {Int, Bool}) <- new_Parent_Data
in class_Parent self_data;

An interesting caveat of the code generation for class definitions is that it should process classes
in order from superclasses down to subclasses (for example, it generates field initialisers for a su-
perclass which then will be used when generating a class data constructor function for a subclass).
Therefore, the code generator performs sorting of classes by their depth in the class hierarchy.
Class member access is performed using pattern matching in MIL. The first case expression “sep-
arates” data fields frommethods. The second one introduces data fields into the scope (as variable
binders in a tuple pattern) and the third one does the same for methods:

def fun : {obj : Parent} -> Pure Int
obj.method 1;

end

fun : {{}, {Unit -> Int -> Error Unit Int}} -> Error Unit Int =
\(obj : {{}, {Unit -> Int -> Error Unit Int}}) ->
let (var_3 : Int -> Error Unit Int) <-

let (var_0 : {{}, {Unit -> Int -> Error Unit Int}}) <-
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return [Error Unit] obj
in case var_0 of

| {var_1 : {}, var_2 : {Unit -> Int -> Error Unit Int}} =>
case var_1 of
| {} =>

case var_2 of
| {method : Unit -> Int -> Error Unit Int} =>

return [Error Unit] method unit
end

end
end

in let (var_4 : Int) <- return [Error Unit] 1
in var_3 var_4;

Member access for objects wrapped in Maybe has one additional level of pattern matching on the
value of the Maybe data type.
As we mentioned above, OOLang classes cannot have Mutable fields. They would be just pure
immutable values in an object tuple, which classmethods could notmutate. One could think about
returning a new tuple for a mutated object, but this does not really work, since it would not be
possible for other methods to see this change and get the new state of the object.

6.4 Conclusions
Modern object-oriented programming languages incorporate many of the ideas introduced and
used for quite a long time in functional programming. OOLang tries to follow the same path,
which makes MIL a good fit to be a target language for OOLang.
Despite the mismatch in the major programming paradigms supported by OOLang and MIL, the
current state of MIL allowed to encode most of the OOLang features. OOLang classes and inheri-
tance were a motivation to introduce tuples with subtyping to MIL.
Unfortunately, there is no goodway inMIL to express OOLang Mutable class fields at themoment.
Many of the observations made in the corresponding section in the previous chapter apply here
as well, for example, problems with capturing a desirable type for catch_error.



Chapter 7

Optimisations

The majority of modern compilers implement sophisticated optimisations to produce as good
code as possible. In this chapter we will present several code transformations implemented in
MIL.We concludewith a discussion around classical optimisation techniques and their relations
to MIL.

As was mentioned in the “Introduction” chapter one of the goals of designing a monadic interme-
diate language is to be able to express and use optimising code transformations in the presence of
effects. MIL provides a dozen of implemented transformations available for using from a source
language compiler which targets MIL. Most of the transformations presented in this chapter are
either direct implementations or inspired by the transformations presented in [Tolmach, 1998] and
[Benton and Kennedy, 1999].
Unfortunately, since there is no intepreter or code generator implemented for MIL at the moment,
we cannot executeMIL code and therefore cannot measure its runtime characteristics like running
time or memory consumption. We can just estimate the impact of transformations by the code
size. Depending on how MIL is implemented, an intuition about the usefulness of certain optimi-
sations might be incorrect. Another way to get an idea about the runtime behaviour of some of
the MIL constructs is to make connections to the semantics of similar operations as presented in
[Tolmach, 1998] and [Benton and Kennedy, 1999].
We will provide some code snippets with real implementation of transformations, but to be able
to do this in a reasonable amount of space we will focus at the expression level of granularity,
since this is where the transformations happen. More high level cases (e.g. function defini-
tion) are merely recursing down to get to expressions. The MIL AST has support for Uniplate
[Mitchell and Runciman, 2007] – a Haskell library for generic traversals of algebraic data types
and so code transformations are implemented using these traversals. We want to highlight
that many of the transformation implementations are relatively naive and serve the purpose of
demonstrating the concept.

61
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7.1 Monad laws
As was stated in Chapter 2 all monads must satisfy three monad laws: left identity, right identity
and associativity. These three laws can be used not only to verify that a certain structure is indeed
a monad, but also to optimise monadic code.

7.1.1 Left identity

The first law that we will consider is left identity. The following is its definition from Chapter 2:

bind (return x) f = f x

The left identity monad law allows us to avoid a redundant bind and use x directly.
The following code snippet is a Haskell implementation of the left identity transformation forMIL:

leftIdentityExpr :: TyExpr -> TyExpr
leftIdentityExpr = descendBi f

where
f (LetE varBinder e1 e2) =

case e1 of
ReturnE _tm e ->

(VarE varBinder, leftIdentityExpr e) `replaceExprIn`
(leftIdentityExpr e2)

_ -> LetE varBinder (leftIdentityExpr e1) (leftIdentityExpr e2)
f expr = descend f expr

This and all the other transformations are implemented using the same pattern to perform a top-
down traversal of the AST, namely using Uniplate’s descendBi on the top level with a function
that has a case where the optimisation can be applied and a general case, which uses descendwith
the function itself to continue the recursion. Using descendBi allows to apply the optimisation on
the top level instead of skipping the top level and recursing down directly. We direct the reader
to the Uniplate documentation for some related details.
In the implementation above we look for a bind expression which has return as a binder expres-
sion and substitute all of the occurences of the bound variable in the bind bodywith the expression
under return (applying the transformation recursively to the subexpressions) using a helper func-
tion replaceExprIn.
The following is an MIL example containing the original code and then the resulting code after
applying the transformation:

let (x : Unit) <- return [Id] unit
in return [Id] x;
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==>

return [Id] unit;

7.1.2 Right identity

The second law allows us to eliminate redundant bind and a subsequent return:

bind m return = m

An implementation of this transformation looks like follows:

rightIdentityExpr :: TyExpr -> TyExpr
rightIdentityExpr = descendBi f

where
f (LetE varBinder e1 e2) =

case e2 of
ReturnE _tm (VarE vb) | vb == varBinder -> rightIdentityExpr e1
_ -> LetE varBinder (rightIdentityExpr e1) (rightIdentityExpr e2)

f expr = descend f expr

Here we look for a bind containing return of the bound variable as a body. If such an expression
is found, it is replaced with the binder expression (with the transformation applied on top).
An example for this transformations looks prettymuch the same as for the left identity, but what is
really happening is that it is only the whole binder expression which is left (instead of subtituting
x with 1 in the body):

let (x : Int) <- return [Id] 1
in return [Id] x;

==>

return [Id] 1;

7.1.3 Associativity

The last of the three monad laws is associativity. This law was presented as the following:

bind (bind m f) g = bind m (λx→ bind (f x) g)

The associativity transformation is implemented as in the snippet below:
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associativityExpr :: TyExpr -> TyExpr
associativityExpr = descendBi f

where
f (LetE varBinder e1 e2) =

case e1 of
LetE varBinder' e1' e2' ->

LetE varBinder' (associativityExpr e1')
(LetE varBinder (associativityExpr e2') (associativityExpr e2))

_ -> LetE varBinder (associativityExpr e1) (associativityExpr e2)
f expr = descend f expr

The following example shows a simple MIL code snippet and its transformed version:

let (y : Unit) <-
let (x : Unit) <- return [Id] unit
in return [Id] x

in return [Id] y;

==>

let (x : Unit) <- return [Id] unit
in let (y : Unit) <- return [Id] x
in return [Id] y;

We can categorise the associativity transformation as one that enables other transformations (using
the taxonomy of machine-independent transformations from [Torczon and Cooper, 2011]). This
transformation allows to restructure the code and make it more linear, thus enabling other trans-
formations to potentially improve the code further. For example, identity laws usually can be
applied more times after the associativity has been applied.

7.2 Lift transformations
The next couple of transformations are related to the monad transformer lift operation. Both
of them are trying to eliminate redundant lift operations. Whether these transformations can
be considered optimisations really depends on the code that is generated for lift. On one hand,
lift clearly has implementations for different monad transformers in Haskell, but on the other,
one can think that lift can be erased after the MIL stage (for example, when generating LLVM or
machine code). We could accept that a program in LLVM or machine code simply allows all the
effects all the time, and MIL’s type system ensured that everything is well typed.

7.2.1 Identity

The first one, which we call identity, can remove a lift where the source and the target monads
are the same:
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lift [M1 ⇒ M2] e = e, where M1 ≡α M2

The next example is probably the simplest case of applying this transformation:

lift [Id => Id] return [Id] unit;

==>

return [Id] unit;

7.2.2 Composition

The second lift transformation that is implemented for MIL is trying to replace a sequence of
two lift operations with one. In such a sequence of lifts the target of the inner (second) one is
compatible with the source of the outer (first) one, which is guaranteed by the type/lint checking:

lift [M2 ⇒ M3] (lift [M1 ⇒ M2] e) = lift [M1 ⇒ M3] e

The next example demonstrates a composition of two lift operations:

lift [IO ::: State => Error Unit ::: (IO ::: State)]
lift [State => IO ::: State] return [State] unit;

==>

lift [State => Error Unit ::: (IO ::: State)] return [State] unit;

7.3 Effect-dependent transformations
While, for example, monad laws and lift transformations above are applicable to all monads and
monad transformer stacks, some code optimisations and transformations are effect-dependent.
One of the strengths of intermediate languages based on monads and MIL in particular is the
ability to express such transformations and correctly apply them only when it is possible.

7.3.1 Id

Wewill start with a transformation that is, in general, only applicable to pure computations. Com-
putations inside the Idmonad are one example of such computations.
The first transformation allows to reorder two computations. Such transformation is not obvi-
ously beneficial, but it can be used to enable other transformations or when it comes to low level
considerations, may improve memory locality or parallelisation:
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let (x : T1)← e1 in let (y : T2)← e2 in e

=

let (y : T2)← e2 in let (x : T1)← e1 in e,

where x is not used in e2 and Monad is Id

Here is an implementation of this transformation:

exchangeExpr :: TyExpr -> TyExpr
exchangeExpr = descendBi f

where
f expr@(LetE varBinder e1 e2) =

case e2 of
LetE varBinder' e1' e2' | getBinderVar varBinder `isNotUsedIn` e1' ->

case getTypeOf expr of
TyApp (TyMonad (MTyMonad (SinMonad Id))) _ ->

LetE varBinder' (exchangeExpr e1')
(LetE varBinder (exchangeExpr e1) (exchangeExpr e2'))

_ -> LetE varBinder (exchangeExpr e1) (exchangeExpr e2)
_ -> LetE varBinder (exchangeExpr e1) (exchangeExpr e2)

f expr = descend f expr

Another transformation, which can be used inside the Idmonad, but not, for example, inside the
IOmonad in the general case is the elimination of redundant code:

let (x : T)← e in e′ = e′, where x is not used in e′ and Monad is Id

We skiped giving examples in these cases, since they would not be particularly interesting.

7.3.2 State

Next, we will describe four transformations applicable to computations inside the State monad.
One thing to note when looking at these transformations is that there are no explicit checks for
a monad being State. This is redundant, since the type system of MIL ensures that the state
operations are used only inside the monad with State.
The first one is a special case of the reordering transformation presented in the previous section.
We refer to it as “exchange new”. It allows to reorder creation of two references:

let (x : Ref T1)← new_ref [T1] e1 in let (y : Ref T2)← new_ref [T2] e2 in e

=
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let (y : Ref T2)← new_ref [T2] e2 in let (x : Ref T1)← new_ref [T1] e1 in e,

where x is not used in e2

In this transformation we are looking for a sequence of bind operations with new_ref as their
binder expressions. It does a check for usage of the variable that holds the reference created with
the first new_ref. This is done to avoid applying this transformation in the case, when the first
reference is used to create the second reference.
Another special case of the reordering transformation is “exchange read”, which can reorder read-
ing of two references:

let (x : T1)← read_ref [T1] e1 in let (y : T2)← read_ref [T2] e2 in e

=

let (y : T2)← read_ref [T2] e2 in let (x : T1)← read_ref [T1] e1 in e,

where x is not used in e2

It is very similar to the “exchange new” transformation. It also does a check for usage of the
variable that holds the value read from the first reference. This is done to avoid applying this
transformation in the case, when the first reference contains another reference that is read in the
second read_ref.
The third transformation for State computations allows to eliminate a reference reading in the
case when this reference has already been read and bound to a variable:

let (x : T)← read_ref [T] r in let (y : T)← read_ref [T] r in e

=

let (x : T)← read_ref [T] r in let (y : T)← return [State] x in e

Again, we look for a sequence of two read_refs as in the previous transformation, but here we
also check that the same reference is read (it works only when the reference is bound to a variable).
In this case, read_ref is replaced with return of the variable that is bound to the result of the first
read_ref.
Below is a small example that instead of reading the reference x again, reuses the value of the
variable a, which already contains the value of x:

let (x : Ref Int) <- new_ref [Int] 1
in let (a : Int) <- read_ref [Int] x
in let (b : Int) <- read_ref [Int] x
in return [State] unit;

==>
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let (x : Ref Int) <- new_ref [Int] 1
in let (a : Int) <- read_ref [Int] x
in let (b : Int) <- return [State] a
in return [State] unit;

The next State transformation also eliminates a reference reading, but in this case the information
from a reference writing operation is used:

let (u : Unit)← write_ref [T] r c in let (x : T)← read_ref [T] r in e

=

let (u : Unit)← write_ref [T] r c in let (x : T)← return [State] c in e

This transformation is very similar to the previous one, except for that the first operation must be
write_ref in this case.
The following is an example of reusing an expression that was written to a reference instead of
reading the reference:

let (x : Ref Int) <- new_ref [Int] 1
in let (z : Unit) <- write_ref [Int] x 2
in let (a : Int) <- read_ref [Int] x
in return [State] unit;

==>

let (x : Ref Int) <- new_ref [Int] 1
in let (z : Unit) <- write_ref [Int] x 2
in let (a : Int) <- return [State] 2
in return [State] unit;

The last State transformation eliminates an unnecessary reference writing, which directly follows
a creation of the reference:

let (x : Ref T)← new_ref [T] c1 in let (u : Unit)← write_ref [T] x c2 in e

=

let (x : Ref T)← new_ref [T] c2 in e

This transformation is again quite similar to the ones above. An example follows:

let (x : Ref Int) <- new_ref [Int] 1
in let (z : Unit) <- write_ref [Int] x 2
in return [State] unit;
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==>

let (x : Ref Int) <- new_ref [Int] 2
in return [State] unit;

7.3.3 Error

The last couple of the effect-specific transformations implemented forMIL is a pair of (rather naive)
transformations which try to eliminate unnecessary catch_error calls.
The first one looks for a specific case, when the first argument of catch_error is throw_error,
which basically means that the handler part will definitely be executed:

catchName [Unit] [T] (throw_error [Unit] [T] unit) (λ(err : Unit)→ e)

=

e,

where catchName == catch_error_1 or catchName == catch_error_2

It tries to find an application of catch_error_1 or catch_error_2 with throw_error as the first
non-type argument. This transformation is simplified by the fact that it looks only for the case
when the type of error values is Unit.
This optimisation is shown in the following code snippet:

catch_error_1 [Unit] [Int]
(throw_error [Unit] [Int] unit)
(\(e : Unit) -> return [Error Unit] 1);

==>

return [Error Unit] 1;

The second one looks for another specific case, when the first argument of catch_error is return,
which means that no exception can be raised, making the catch_error call unnecessary:

catchName [T1] [T2] (return [Error T1] e) h

=

return [Error T1] e,

where catchName == catch_error_1 or catchName == catch_error_2

An example of this transformation is shown below:
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catch_error_1 [Unit] [Int]
(return [Error Unit] 1)
(\(e : Unit) -> return [Error Unit] 2);

==>

return [Error Unit] 1;

7.4 Case expression transformations
In this section we present two transformations around case expressions which is an important
part of implementing conditional and pattern matching constructs in source languages.

7.4.1 Constant case elimination

Constant case elimination transformation allows to remove a case expression, which has a known
outcome (because of literal patterns and a literal scrutinee):

case si of | sj ⇒ ej end

=

ei,

where s is literal or data constructor

It tries to find literal or data constructor scrutinee expressions, which are, basically, constant values
and then to find a case alternative with a pattern corresponding to such a value.
An example of applying this transformation is presented below:

fun : State Int =
case 1 of
| 0 => return [State] 0
| 1 => return [State] 1
| _ => return [State] 2

end;

==>

fun : State Int = return [State] 1;

This transformation can be applied to eliminate unnecessary when statements in OOLang, when it
is known that a condition evaluates to true or false.
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7.4.2 Common bind extraction

The common bind extraction is a transformation that can hoist a bind out of case alternatives.
There are two variations of it: the first one deals with a common body expression, while the second
one is about a common binder expression. The implementation of these transformations in MIL is
very naive and uses simple equality both for variables and for body/binder expressions.
The first variant is presented below:

case s of | pi ⇒ let (vi : T)← ei in e end

=

let (v : T)← case s of | pi ⇒ ei end in e,

where all occurrences of vi in e are substituted with v

The following is an example of applying it:

case 1 of
| 0 => let (x : Int) <- return [IO] 0 in return [IO] unit
| 1 => let (y : Int) <- return [IO] 1 in return [IO] unit

end;

==>

let (x : Int) <-
case 1 of
| 0 => return [IO] 0
| 1 => return [IO] 1

end
in return [IO] unit;

The second variation looks as the following:

case s of | pi ⇒ let (vi : T)← e in ei end

=

let (v : T)← e in case s of | pi ⇒ ei end,

where all occurrences of vi in ei are substituted with v

Below is a corresponding example:
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case 1 of
| 0 => let (x : Unit) <- return [IO] unit in return [IO] 0
| 1 => let (y : Unit) <- return [IO] unit in return [IO] 1

end;

==>

let (x : Unit) <- return [IO] unit
in case 1 of

| 0 => return [IO] 0
| 1 => return [IO] 1

end;

7.5 Constant folding
Constant folding is one of the very essential and popular optimisations in compilers which deals
with finding constant expressions and evaluating them at compile time instead of doing unneces-
sary computations at runtime.
In MIL constant folding is implemented for all built-in arithmetic operations, except for division.
It is not implemented for division, since division is a potentially failing operation (for example,
when dividing by 0), so it would require a more detailed analysis. This transformation is using
the following identities between the MIL built-in functions and mathematical operations (li are
literals):

add_int l1 l2 = l1 + l2

add_float l1 l2 = l1 + l2

sub_int l1 l2 = l1 − l2

sub_float l1 l2 = l1 − l2

mul_int l1 l2 = l1 ∗ l2

mul_float l1 l2 = l1 ∗ l2

This time we will not have an example with only one transformation applied to a small piece of
MIL code, but rather an extended example with a piece of OOLang code and a number of different
transformations applied (the whole pipeline is presented in the next section). The example con-
tains simple OOLang function performing arithmetic operations and printing their results. What
follows is a fragment of non-optimisedMIL code (we needed to cut it to take a reasonable amount
of space) and finally the optimised version of it:

def main : Unit
a : Int = 2 + 3;
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b : Int = 3 - 2;
printInt b; # Make sure it is not optimized away completely
c : Int = 2 * 2;
d : Int = a + c;
printInt d; # Make sure it is not optimized away completely
e : Float = 2.0 + 3.0;
f : Float = 3.0 - 2.0;
printFloat f; # Make sure it is not optimized away completely
g : Float = 2.0 * 2.0;
h : Float = e + g;
printFloat h; # Make sure it is not optimized away completely
i : Int = 6 / 2;
j : Float = 6.0 / 2.0;

end

==>

main : (Error Unit ::: (State ::: IO)) Unit =
let (a : Int) <-
let (var_30 : Int) <- return [Error Unit ::: (State ::: IO)] 2
in let (var_31 : Int) <- return [Error Unit ::: (State ::: IO)] 3
in return [Error Unit ::: (State ::: IO)] add_int var_30 var_31

in let (b : Int) <-
let (var_28 : Int) <- return [Error Unit ::: (State ::: IO)] 3
in let (var_29 : Int) <- return [Error Unit ::: (State ::: IO)] 2
in return [Error Unit ::: (State ::: IO)] sub_int var_28 var_29

in let (var_2 : Unit) <-
let (var_0 : Int -> (Error Unit ::: (State ::: IO)) Unit) <-

return [Error Unit ::: (State ::: IO)] printInt
in let (var_1 : Int) <-

return [Error Unit ::: (State ::: IO)] b
in var_0 var_1

...

==>

main : (Error Unit ::: (State ::: IO)) Unit =
let (var_2 : Unit) <- printInt 1
in let (var_5 : Unit) <- printInt 9
in let (var_8 : Unit) <- printFloat 1.0
in let (var_11 : Unit) <- printFloat 9.0
in let (i : Int) <- div_int 6 2
in let (j : Float) <- div_float 6.0 2.0
in return [Error Unit ::: (State ::: IO)] unit;
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7.6 Transformations and source languages
As we saw above, every transformation is implemented as a pure function which takes a typed
MIL program and returns a typed MIL program. This allows to easily compose different transfor-
mations in a pipeline.
To chain different transformations in the code, we use a postfix application operator (also known as a
very popular pipeline operator in the F# programming language). We define it in Haskell as follows:

(|>) :: a -> (a -> b) -> b
a |> f = f a

Here is how the chain of transformations for FunLang looks like:

optimiseMil :: MIL.TyProgram -> MIL.TyProgram
optimiseMil milProgram =

milProgram
|> MILTrans.associativity
|> MILTrans.leftIdentity
|> MILTrans.rightIdentity
|> MILTrans.associativity
|> MILTrans.associativity
|> MILTrans.foldConstants
|> MILTrans.leftIdentity
|> MILTrans.foldConstants

The one for OOLang looks like the following:

optimiseMil :: MIL.TyProgram -> MIL.TyProgram
optimiseMil milProgram =

milProgram
|> MILTrans.associativity
|> MILTrans.leftIdentity
|> MILTrans.rightIdentity
|> MILTrans.foldConstants
|> MILTrans.leftIdentity
|> MILTrans.foldConstants
|> MILTrans.eliminateConstantCase

These particular pipelines are targeting some specific use cases used for testing. In order to achieve
better results and apply as many optimisations as possible one could make use of fixed point optimi-
sations (which are also available in Uniplate). Such a process would apply optimisation(s) until an
optimisation pass does not change the program. There are different approaches of varying com-
plexity to solving the problem of finding the best sequence of transformations, which we did not
focus on in this thesis.
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Of course, a compiler writer can implement additional MIL code transformations to optimise use
cases specific to the source language being compiled.
Unfortunately, some of the transformations are not really applicable to the source languages pre-
sented in the previous chapters because of the monad stacks they have. For example, State trans-
formations cannot be directly applied since they work only on computations that have just State
as their effect, but monad stacks in FunLang and OOLang have, for example, IO in their impure
stacks in addition to State.

7.7 Discussion
Correctness is often considered “the single most important criterion that a compiler must meet”
[Torczon and Cooper, 2011]. This, of course, includes optimisations. Safety is extremely important
when designing and applying code transformations. We can see that MIL type and effect system
is of great help here. It plays a role in implementing transformations and being able to quite easily
find out effect information or make assumptions based on types about a piece of code instead
of performing additional analysis to derive these facts, which are not present in the IL (which
is usually the case for most ILs). Moreover, MIL allows to run a lint checking potentially after
every transformation to make sure that none of the transformations made a program ill-typed.
While many classical ILs are imperative and statement based, meaning that most of the operations
are assigning values to variables, MIL is a functional language and therefore it is expression-based,
which in general makes it more easy to reason about the code, which implies that it should be
easier to see whether a certain transformation is safe or not.
In this thesis we tried to work with quite simple-looking algebraic identities for expressing code
transformations. Such identities are usually very minimal and very general at the same time,
e.g. monad laws. This makes the implementation of optimisations based on them only a dozen
lines of code in size. We also want to highlight that most industrial compilers are not implemented
in a functional language, especially not in such an expressive and concise one as Haskell, while
MIL, being a Haskell library, certainly benefits from this. Classical optimisations often use addi-
tional data structures (for example, sets) to maintain certain information about the program. It is
certainly possible to implement more powerful and sophisticated transformations for MIL using
a more algorithmic approach to the problem.
One example of this is recognising equivalent case expressions and hoisting them to perform the
matching only once. An interesting observation to make here is that this kind of optimisation
is performed on a functional language construct, but it can make consequent method calls on the
same object in OOLangmore efficient, given theway how those are compiled. Optimisingmethod
calls is one of the most important targets for OO-language compilers [Grune et al., 2012].
Some of the optimisations presented here try tomeet the same goals as the value numberingmethod
[Torczon and Cooper, 2011], [Muchnick, 1997], namely eliminating some redundancy in compu-
tations. MIL transformations like “use read”, “use write” are more specialised and simple, while
value numbering is amore general andmore complex technique. MIL certainly could benefit from
using value numbering to eliminate more redundancies (see examples at the end of this section).
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One of the major well-known approaches to compiler optimisations nowadays is data-flow anal-
ysis. Examples of data-flow optimisations are copy-propagation, constant-propagation and partial-
redundancy [Muchnick, 1997], [Torczon and Cooper, 2011]. Data-flow analyses mainly focus on
how values flow through the program and not on what effects can happen (which is one of the
strongest properties of MIL), although this still needs to be handled somehow. Data-flow tech-
niques should be possible to apply toMIL as well. One possible way to gowould be to incorporate
Hoopl – a Haskell library for data-flow analysis and transformations [Ramsey et al., 2010]. How-
ever, an important consideration and a potential obstacle with this is that very many common op-
timisations are using the notions of control-flow graph (CFG) and basic blocks [Muchnick, 1997]. MIL,
as was mentioned above, is a functional, expression-based language, but even more importantly,
it is a higher order language (meaning, that it supports higher order functions). This introduces
more complexity to the analysis (compared to simpler and more low-level ILs), which many com-
mon techniques are not designed to handle. It could be considered to transform MIL further to
something more low-level and imperative to benefit from more classical optimisations.
We will conclude with two examples that show some of the MIL strengths and weaknesses and its
relation to the classical methods mentioned above. The examples are mainly based on the value
numbering example from Chapter 8 in [Torczon and Cooper, 2011].
First, we will demonstrate a redundancy which MIL cannot eliminate, but value numbering can.
Below is a fragment of code that reads several integer values and then does some arithmetic ma-
nipulations and Mutable assignments in OOLang. One can notice that there is a common subex-
pression, namely a - d, which could be computed once.

b : Mutable Int <- readInt;
c : Mutable Int <- readInt;
d : Mutable Int <- readInt;
a : Mutable Int <- b + c;
b <- a - d;
printInt b;
c <- b + c;
d <- a - d;
printInt d;

==>

let (b : Int) <- readInt
in let (c : Int) <- readInt
in let (d : Int) <- readInt
in let (var_21 : Unit) <- printInt (sub_int (add_int b c) d)
in printInt (sub_int (add_int b c) d);

Looking at the generated (and optimised) MIL code, one can see that b + c - d is present twice
(note that the expression for a was propagated to both its use sites). This is something that value
numbering would be capable of eliminating, effectively rewriting d <- a - d; to d <- b;.
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The second example is very similar to the first one, but there is an important difference: the integers
are not read, but just have constant values. We introduced print statements to make sure that the
code is not optimised away completely. Another important consideration is that we disabled all
optimisations, except for monad laws for this example. It is especially important that constant
folding is disabled, because otherwise almost everything would have been computed at compile
time.

b : Mutable Int <- 1;
c : Mutable Int <- 2;
d : Mutable Int <- 3;
a : Mutable Int <- b + c;
printInt a;
b <- a - d;
printInt b;
c <- b + c;
printInt c;
d <- a - d;
printInt d;

==>

let (var_2 : Unit) <- printInt (add_int 1 2)
in let (var_5 : Unit) <- printInt (sub_int (add_int 1 2) 3)
in let (var_8 : Unit) <- printInt (add_int (sub_int (add_int 1 2) 3) 2)
in printInt (sub_int (add_int 1 2) 3);

Looking at the generated (and optimised) MIL code one can see that monad laws in this case did
pretty much what constant and copy propagation techniques mentioned above are designed to
do.

7.8 Conclusions
This chapter presented implementations of many transformations of MIL code ranging from
monad laws and some other effect-independent transformations to transformations for specific
effects like Id, State and Error.
Implementing transformations shown in this chapter does not require a lot of work. The structure
ofMILAST and its support forUniplatemakes it possible towrite clear and conciseUniplate-based
transformation code.
Generality and composability of most transformations allow to easily reuse them and build mod-
ular code optimisation pipelines in source language compilers.
Applicability of some transformations to the code generated for source languages can be some-
what limited, but we believe that it can largely be solved by implementing some kind of effect
inference/elimination process mentioned in Chapter 5.
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Conclusions

Finally, we will look at the results of this work and outline some ideas for future work.

8.1 Results
In this thesis we tried to focus on the design and implementation of a compiler IL that would
allow to capture programeffects such as input/output, exceptions, statemanipulation in programs
themselves and provide a way to express useful optimising code transformations (in the presence
of effects) that can be composed and reused. In addition to this, the ambition was to explore an
ability to provide a way of combining different effects to express different semantics of source
languages.
As the result of this work, we introduced amonadic IL formodern programming languages –MIL,
which fulfills the goals that were set for this work (the limitationswill bementioned in the next sec-
tion). It usesmonads to represent computational effects andmonad transformers to combine these
effects and allow to capture different semantics in the ordering of effects. It is possible to use MIL
as a target for languages that belong to two major programming paradigms: object-oriented and
functional. An example of this are two source programming languages (FunLang and OOLang)
that were designed and implemented as part of this project.
MIL provides an expressive framework for implementing effect-aware code transformations. A
number of code transformations has been implemented and are provided with MIL to demon-
strate this and to be used in building optimisation pipelines in source language compilers, which
target MIL. By providing support for the Uniplate library in the MIL AST, the implementations of
different transformations are made clear and concise.
All of the source code for this project as well as this report are freely available at https://
bitbucket.org/dmytrolypai/mil-masters-thesis-chalmers and https://github.com/dmytrolypai/
mil-masters-thesis-chalmers. It includes rather comprehensive test suites for MIL, FunLang and
OOLang as well as interactive environments for exploring and experimenting with the source
languages.
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8.2 Future work
Finally, we will outline some of the ideas for future work that came up during the work on this
thesis.
Probably, one of the most interesting and important directions in continuing the work on MIL is
the code generation from MIL. We think that the most appealing choice is to generate code for
LLVM, which is a mature and powerful compiler framework. By generating code for LLVM we
could reuse its low-level generic optimisations and native code generation. Other possibilities for
lower level code generation include generating C code or native code.
Something that we did not address in this project and that is important to do is to evaluate MIL
from the efficiency point of view, namely perform benchmarks on executable programs. This can
be quite easily done given a code generator, as suggested above. Another way could be to write
an interpreter for MIL in a way that it would be able to record some metrics during the execution,
for example, a number of function applications, bind operations etc.
Another very important direction ofMIL development is tomake theMIL representation of effects
and their combination more expressive. Right now MIL stacks are rather fixed and also order-
dependent. This, of course, gives us benefits of expressing different semantics, but at the same
time it cuts off the flexibility that might be available with a more set-based representation of effect
combinations. As was mentioned in several previous chapters, MIL does not allow to express the
desirable type of the catch_error function. Maybe, some sort of polymorphism inMIL stacks and
an ability to havemonad variables like, e.g. Error Unit ::: (m ::: State)would help in solving
this problem.
To be able to use more transformations on a practical program MIL needs some kind of effect in-
ference/elimination procedure to infer the real set of effects of a program, which might be smaller
than what is declared. Implementing such a process for MIL would allow to optimise programs
in source languages targeting MIL more heavily. A somewhat related area is trying to have more
fine-grained effects, similar to [Benton and Kennedy, 1999], for example, splitting IO into Input
and Output and State into Allocation, Reading and Writing.
MIL has a number of built-in monads and it does not provide a way to define new custommonads
and therefore effects. Although the latter could be a subject for further exploration, we believe that
it might be an unnecessary complication for MIL. The absence of user-defined effects is not a big
limitation, given that MIL is an intermediate language and its goal is to have a reasonable set
of built-in monads that allow to express most of the useful effects in potential source languages.
But what we think might be beneficial is to explore which other monads can be added to MIL as
built-in to be able to more easily cover a wider range of use cases. As was mentioned in Chapter
2 there exists a lot of interesting monads. What comes to mind as the most relevant to MIL are
Backtracking [Kiselyov et al., 2005] and Par monad [Marlow et al., 2011]. The first one could be
used to express, for example, logic programming languages and the second one could provide a
way to support parallelism in the IL.
Another related track can be to try bringing laziness into MIL. One of the ways of doing it might
be to incorporate ideas from [Peyton Jones et al., 1998], e.g. introducing language constructs for
evaluation suspension and forcing. This paper was explained in more detail in the “Related work”
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chapter.
Finally, one could look into a broader area of compiler modularity, in addition to what MIL al-
readyprovides in terms of combining effects andpure composable transformations and their reuse.
What we did not focus in this work was trying to have a modular representation of the AST (sim-
ilar to the “a la carte” approach) and using monad transformers in the compilers themselves to
compile different features/effects separately. Addressing this by following the work described in
[Liang et al., 1995], [Swierstra, 2008], [Harrison and Kamin, 1998], [Day and Hutton, 2012] could
be a way to cover this area of compiler modularity.
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