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Abstract
Fuel cost for transportation of heavy duty vehicles (HDVs) is a considerable portion
of the total operational cost. Small reductions of fuel consumption yield substantial
savings both economically and environmentally. In recent years, with increasing
environmental concern and the desire to reduce greenhouse gases, Intelligent Trans-
portation Systems, like platooning, has gained increased attention for companies
and researchers. A vehicle platoon is a convoy of vehicles driving at close inter-
vehicular distance in order to reduce air drag, thus saving fuel and increasing traffic
efficiency.
Driving at close distances has safety issues since the field of view of a human driver
is then limited, which makes it difficult to adapt to changes in the road curvature.
Thus, safe driving with short inter-vehicular distances requires automatic control in
both the longitudinal and lateral direction. This thesis focuses on the lateral control
of HDVs in platooning. A review of previous research was performed and Model
Predictive Control (MPC) was chosen as control strategy. An MPC is designed,
implemented and evaluated in the Simulink based simulation environment PreScan
using high-fidelity HDV models provided by Volvo Group Trucks Technology (Volvo
GTT).
The results show that the platoon is able to avoid string instability by tracking
the leading vehicle. Furthermore, the platoon is able to avoid obstacles within its
lane and tracks the leading vehicle with maximum deviation of 10 cm without sensor
noise. The developed MPC can be used as a regular lane keeping system by tracking
the middle of the road instead of a leading vehicle. Additionally, a Kalman filter is
implemented and evaluated in presence of noise. Given the performance of the MPC
and its lane keeping capabilities, MPC seems to be a suitable choice for platooning,
especially since its main drawback, the computational demand, is a diminishing
problem as technology advances.

Keywords: Model predictive control, platooning, heavy duty vehicles, lateral control,
autonomous vehicles, active safety.
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Sammanfattning
Bränslekostnaden för transportering av tunga fordon är en betydande del av den
totala operationskostnaden. Små minskningar av bränsleförbrukning leder till sub-
stantiella insparningar, både ekonomiskt och miljömässigt. I och med ökat miljötänk-
ande och kraven på att minska utsläppen av växthusgaser har ’Intelligent Trans-
portation Systems’, exempelvis platooning, fått ökat intresse och uppmärksamhet
från både företag och forskare. En fordonsplatoon är en konvoj av fordon som kör
med små avstånd mellan fordonen vilket leder till minskat luftmotstånd och därmed
besparning av bränsle samt ökad trafikeffektivitet.
Att köra med små avstånd mellan fordonen medför säkerhetsrisker eftersom synfäl-
tet för en mänsklig förare då är begränsat, vilket gör det svårt att anpassa sig till
förändringar av vägens kurvatur. Således kräver säker körning med små avstånd
mellan fordonen automatisk reglering både longitudinellt och lateralt. Denna tesen
fokuserar på den laterala kontrolleringen av tunga fordon i platooning. En genomgång
av tidigare forskning genomfördes vilket medförde att Modellprediktiv Reglering
(MPC) valdes som kontrollstrategi. I denna tes är därmed en MPC designad, im-
plementerad och utvärderad i den Simulink-baserade simulationsmiljön PreScan.
För valideringen av platoonen användes nogranna fordonsmodeller av tunga fordon
tillhandahållna av Volvo Group Trucks Technology (Volvo GTT).
Resultaten visar att platoonen klarar av att undvika string-instabilitet genom att
följa ledarfordonet. Vidare är platoonen kapabel till att undvika objekt inom filen
den kör i och följer även ledarfordonet med ett maximalt fel på 10 cm utan sensor-
brus. Den framtagna MPC:n kan även användas till vanlig filföljning (lane keeping)
genom att följa mitten av filen istället för ledarfordonet. Ett Kalmanfilter har även
utvecklats som har implementerats och validerats när brus och mätbortfall varit
närvarande. Givet MPC:ns prestanda och hur den håller fordonen i filen, verkar
MPC vara ett passande val för platooning. Speciellt eftersom MPCs största nackdel,
den höga beräkningsbördan, är ett problem som minskar allteftersom teknologin
utvecklas.

Nyckelord: Modellprediktiv reglering, platooning, tunga fordon, lateralreglering,
autonoma fordon, aktiv säkerhet.
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1
Introduction

Heavy duty vehicles (HDVs) transport 18 billion tonnes per year in Europe, which is
75% of Europe’s total land-transportation of goods [1]. It follows that large amounts
of fuel are used, and that even small reductions of fuel consumption, which are 25-
30% of a HDVs operating cost [2], yields substantial savings, both economically and
environmentally. The increased environmental concern together with the desire to
reduce greenhouse gas emissions have made Intelligent Transportation Systems gain
increased attention to face the future challenges in the transport sector.

1.1 Background

Volvo Group Trucks Technology (Volvo GTT) is at the frontier of the highly com-
petitive transport business, and thus interested in reducing fuel usage. Platooning
of HDVs is one way of reducing the fuel consumption and increasing traffic efficiency.
Platooning is a concept within vehicle automation where a group of vehicles travels
in a convoy on a highway, with a high level of automation and a small longitudi-
nal distance in between. The aim is to achieve benefits in terms of fuel and traffic
efficiency, safety and driver comfort. Studies have shown that the reduction of air
drag, as a consequence of a short intermediate distance between HDVs in a platoon,
decreases the fuel consumption by up to 12% [3][4][5][6][7].
A central challenge within platooning is the well-studied string stability issue. String
stability issues can occur when vehicles in the platoon make decisions based purely
on their direct preceding vehicle, and thus metaphorically forming a string. This
can cause unstable behaviour where "errors on errors" of leader-initiated maneuvers
accumulate throughout the platoon [8], which may cause vehicles further down in
the platoon to leave the desired lane causing potentially very dangerous situations.
Moreover, in order for an HDV to operate autonomously, it needs to perceive its envi-
ronment and itself, i.e. the road and its position in relation to it. Such sensor-based
perception systems are prone to unforeseen failures, often caused by uncontrollable
external factors such as pools of water on e.g. lane markings. Perception systems
need to be robust against these kinds of sensor failures. In the case of a lateral con-
trol system, the camera sensor detecting lane markings, V2V-communication and
distance-reading radar sensor are of particular interest.
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1. Introduction

1.2 Problem formulation and objectives
The purpose of this master’s thesis is to develop a lateral control system that au-
tonomously controls the lateral movement of heavy duty vehicles in a platoon. Au-
tonomous control of the lateral movement has the potential of being superior to
that of a human driver, enabling smaller inter-vehicular distances in a platoon. The
objectives are to

• identify which sensor information and V2V communication is needed to gen-
erate reference signals to a lateral control system

• decide what control strategy is suitable for this application
• design, implement and evaluate the control system in a simulation environment
• be able to handle specific sensor failures.

The lateral control system is tested on high-fidelity vehicle models in a simulation
environment called PreScan, which is more described in section 4.5.2. In addition,
to generate a more robust control system, the quality of the sensor readings needs to
be considered. As an example, Figure 1.1 shows recorded log data from the camera
sensor measuring the distance to the lane markings which shows clear spikes in the
data and the need of a filter.
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Figure 1.1: Log data, recorded at Hällered, from the camera lane marker sensor
showing distance to left (top) and right (bottom) lane markings. Spikes, sensor
failures, can be seen on both sides, especially right. These exemplify the need for
somehow treating the sensor data before giving it to the control system.

2



1. Introduction

To clarify further, a spike is zoomed in and displayed in Figure 1.2. These kind of
failures can be caught by the confidence value of each measurement given by the
camera and are of focus in this thesis. There are other types of sensor failures which
are not as easily detectable and are not in the scope of this thesis.0 0.5 1 1.5 2 2.5 3
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Figure 1.2: Zoom of the right lane marking distance above, illuminating a sensor
failure. The failure could be that the camera picks up another object to track, or
blockage of the correct lane marking.

1.3 Scope and limitations
The scope of this thesis lies on the development of the lateral control system for
a platoon. Longitudinal dynamics, such as accelerating, breaking or non-zero road
gradients, are outside the scope of this thesis. Thus, a constant longitudinal velocity
and a constant inter-vehicular distance between each vehicle is assumed. Further-
more, the platoon scenario in focus is on highway driving. Modern highways have
curve radii greater than 500 meter [9]. Vehicles that are not members of the pla-
toon are considered absent and not taken into consideration. Driving situations that
require leaving the lane are not considered.

1.4 Choice of control strategy
There are different approaches used in the literature to develop control systems
for platooning. The most significant difference between the different approaches
is whether or not they are using vehicle-to-vehicle (V2V) communication to send
information. A platoon without V2V communication is often referred to as a local
approach and a platoon which uses V2V is referred to as a global approach [10].
Although a local approach is robust in the sense that it does not rely on stable V2V
communication, it does not give the same benefits as a global approach. The benefits
of a global approach is the possibility to share information, which can e.g. give a
larger look-ahead distance, since a small inter-vehicle distance may block the lane
detection of the following vehicles, i.e. the back of the preceding vehicle takes up
most of the following vehicles field of vision. Furthermore, another possibility with
the global approach is to let all vehicles in the platoon share the same reference
trajectory from the leading vehicle, thus making it possible to remove the string
stability issues [11].
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1. Introduction

Furthermore, different control strategies are used in the literature, mainly PID con-
trol [12], Linear Quadratic (LQ) control [13] and Model Predictive Control (MPC)
[14][9]. In order to utilize the knowledge of how the road looks ahead (obtained
through V2V), a PID approach was put aside in favor of a more predictive ap-
proach, such as a LQR or an MPC controller. Taking into account that the road is
a constrained environment and that an HDV has constrained steering, together with
the importance of safety in a platoon, MPC, which has the strength of constraints,
was deemed favorable over LQR.
Constraints used in model predictive controllers typically model control saturations.
In the vehicle-case however, actual saturation of the steer wheel is not usual. How-
ever, constraints can be used to limit steering wheel angle to its typical operating
region, and the rate of change of it, in order to prevent violent control actions that
can be dangerous or uncomfortable. Constraints can further be used, in combination
with lane detection, to keep the HDVs within a specific region, e.g. between the lane
markings. More details about MPC and constraints can be found in Chapter 2.

1.4.1 MPC methods in platooning
Two main ways of implementing an MPC based control system for a platoon are
found in the literature, namely centralized MPC and decentralized MPC. An MPC
is considered to be implemented in a centralized manner when one MPC calculates
the control signals for all vehicles in the platoon. Conversely, a decentralized imple-
mentation is when each vehicle only calculates its own control signal. The trade-off
is between optimality, where centralized is superior, versus fast computation, where
decentralized is superior. Since a centralized MPC is a more computationally de-
manding control strategy [14], a global decentralized MPC is used in this thesis.

1.5 Thesis outline
The outline is as follows. Chapter 2 reviews relevant theory used in the thesis.
Chapter 3 describes how the platoon is set up in a more detailed manner, how
the controllers references are built up, how the vehicles’ and their positions relative
to the road are modelled and what sensors are used. Chapter 4 shows how the
MPC and Kalman filters are implemented and how sensor failures are modelled.
It also describes the simulation environment. Chapter 5 shows the results of the
simulations. Chapter 6 discusses the results. Chapter 7 contains a conclusion of the
thesis. Chapter 8 gives relevant notes on the most central future work.
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2
Theoretical background

This chapter outlines the used theory, where the model predictive control approach
is explained, and how to manipulate the standard formulation in a way to make
control more smooth, how to add slack variables, how to use feed forward in the
prediction model and also the theory of the linear Kalman filtering.

2.1 Model Predictive Control
A model predictive controller is at its core an online algorithm that uses a model to
predict the future system behaviour and returns control signals based on numerical
optimization in the form of minimizing a constrained quadratic cost function.

Prediction
The prediction model is used to describe the future behaviour of the system. In
this thesis a linear MPC is used, a discrete-time state-space representation of the
prediction model is written as follows

z(k + 1) = Adz(k) +Bdu(k) (2.1)

where u(k) are the control inputs and z(k) the states at sample time k. Further, Ad
is the discrete system matrix and Bd the discrete input matrix. The behaviour of
the system is predicted N steps into the future, called the prediction horizon, using
a predicted input sequence called the control horizon as follows

z(k + 1 + i|k) = Adz(k + i|k) +Bdu(k + i|k) i = 0, 1, . . . , N − 1 (2.2)

where z(k + i|k) and u(k + i|k) denote the values of the states and inputs at time
k+ i predicted at time k. The control horizon is typically the same as the prediction
horizon, but can be made shorter in order to reduce the computational complexity.
If made shorter, the last control input is usually kept for the remainder of the
prediction horizon, i.e. u(k + Nu + i) = u(k + Nu) where Nu being the control
horizon.

Optimization
The prediction of the states and the control inputs are then minimized in a cost
function J which in this thesis is a quadratic cost function

J(k) =
Nh−1∑
i=0
||z(k+ 1 + i)− zref (k+ 1 + i)||2Q +

Nu−1∑
i=0
||u(k+ i)− uref (k+ i)||2R (2.3)

5



2. Theoretical background

where Q and R are positive definite matrices that contain scalar weights on the
states and control inputs, zref future references of the states to be followed and uref
future input references often set to zero. Minimizing the quadratic cost function
yields the optimal sequence of control inputs u∗(k) at time k

u∗(k) = min
u

J(k). (2.4)

The cost function is also subject to the system constraints (2.1) and possibly further
constraints on the states and the control inputs yielding the optimization problem

min
u

J(k) = min
u

Nh−1∑
i=0
||z(k + 1 + i)− zref (k + 1 + i)||2Q + (2.5)

Nu−1∑
i=0
||u(k + i)− uref (k + i)||2R

subject to: x(0) = x0

∀i ∈ [0, Nh] : z(k + 1 + i) = Az(k + i) +Bu(k + i)
∀i ∈ [0, Nh] : z(k + i) ∈ Z
∀i ∈ [0, Nh] : u(k + i) ∈ U

where Z is the additional set of constraints imposed on the states and U are the
constraints imposed on the control signals.

Receding horizon framework
In an online computation of the algorithm, the minimization in (2.5) is solved at each
sampling instant k generating the vector of optimal control inputs u∗(k) and only the
first control input in this vector is applied to the actual plant, i.e. u(k) = u∗(k|k).
This is repeated for each sampling instant k = 0, 1, . . .. The online procedure of
an MPC algorithm can be seen in Algorithm 1. The length of prediction horizon
remains the same throughout each minimization of the algorithm thus creating a
receding or moving horizon.

Algorithm 1 The MPC algorithm
1. Measure x(k|k)
2. Calculate control signals u by solving (2.5)
3. Apply first control signal to actual plant
4. Wait until next time instant, i.e. until k:=k+1
5. Repeat from 1.

6



2. Theoretical background

2.2 Smooth Control
Large changes from a control signal to its consecutive one, ∆u(k) = u(k)−u(k−1),
are both unrealistic, uncomfortable and potentially dangerous and thus sought to
be minimized. This section describes how to limit changes of u(k) and ∆u(k).

2.2.1 Limiting changes of u(k)
To get more natural and smooth control, the prediction model can be changed to use
control increments as input, i.e. ∆u(k), instead of u(k). By doing so, it is straight
forward to limit this increment, and thereby limiting how much u(k) can change
between samples. In other words to go from

z(k + 1) = Adz(k) +Bdu(k) (2.6)

where u(k) is the control input, to[
z(k + 1)
u(k)

]
=

[
Ad Bd

0 1

]
︸ ︷︷ ︸

Â

[
z(k)

u(k − 1)

]
︸ ︷︷ ︸

ẑ(k)

+
[
Bd

1

]
︸ ︷︷ ︸
B̂

∆u(k) (2.7)

where ∆u(k) is the control increment, or control move.

2.2.2 Limiting changes of ∆u(k)
Improving smoothness even more can be achieved by limiting the change between
two consecutive control increments ∆u, i.e. ∆∆u(k) = ∆u(k)−∆u(k−1) := ∆2u(k).
By rearranging the following two relations∆u(k) = u(k)− u(k − 1)⇐⇒ u(k) = ∆u(k) + u(k − 1)

∆2u(k) = ∆u(k)−∆u(k − 1)⇐⇒ ∆u(k) = ∆2u(k) + ∆u(k − 1)

an expression for u(k) can be obtained. After rearranging, the expression for u(k)
is as follows

u(k) = u(k − 1) + ∆u(k − 1) + ∆2u(k). (2.8)

Now using ∆2u(k) as control input, the linear system can be expressed with the
augmented state vector ξ = [z(k + 1) u(k) ∆u(k)]T with the discrete-time state-
space matrices

A =

Ad Bd Bd

0 1 1
0 0 1

 , B =

Bd

1
1

 . (2.9)

When limiting changes of u(k) and ∆u(k), the state-space representation (2.1) can
be updated to

ξ+ = Aξ + B∆2u. (2.10)

7



2. Theoretical background

2.3 Constraint management
Hard constraints often cause problems due to the mismatch between the predic-
tion model and the actual plant. The MPC-generated trajectory may get close to
the constraint and remain there, but the actual plant may slightly overshoot the
trajectory and go outside of the constrained area, from where no feasible optimiza-
tion can be found. A way to handle this is to soften the constraints by increasing
their magnitudes with non-negative slack variables ε1:N . The slack variables ε1:N
are added in the cost function J with a weight matrix S ∈ Ri×i in order to minimize
them if possible. The weight matrix S is chosen much greater than Q and R in
order to keep the slack variables at 0, and thus use the constraints as they originally
were stipulated, unless anything else than increasing εi would result in infeasibility.
Mathematically, a constraint which keeps a state z1(k) over the prediction horizon
k = 1, . . . , Nh− 1 between a constant minimum and maximum value can be written
as

z1min
≤ z1(k) ≤ z1max (2.11)

and when introducing slack variables reformulated into

z1min
− ε(k) ≤ z1(k) ≤ z1max + ε(k), k = 1, . . . , Nh − 1. (2.12)

The updated cost function, now containing the slack variables in the minimization,
is written as

J(k) =
Nh−1∑
i=0
||z(k + 1 + i)− zref (k + 1 + i)||2Q+

||ε(k + 1 + i)||2S+ (2.13)
Nu−1∑
i=0
||u(k + i)− uref (k + i)||2R.

2.4 Utilizing preview information
Disturbances that act on states can be expressed by extending (2.10) with a distur-
bance κ with disturbance matrix W , i.e.

ξk+1 = Aξk + B∆2uk +Wκk

ξk+2 = Aξk+1 + B∆2uk+1 +Wκk+1
...

ξk+Nh = Aξk+Nh−1 + B∆2uk+Nh−1 +Wκk+Nh−1.

(2.14)

If the coming disturbances κk . . . κNh are known, they can be accounted for by the
MPC. Utilizing preview information in this manner is usually called feed forward.
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2. Theoretical background

2.5 Kalman filter
Measurements from sensors always contain an uncertainty, i.e. noise. Looking at
a noisy reading of e.g. a vehicles position, one can be certain that the data one is
looking at is untrue, since the vehicle still abides by the laws of physics and cannot
make the, sometimes, momentaneous large changes in position that noisy data can
indicate.
The Kalman Filter is a filter which estimates the states of a dynamic linear system
based on measurements [15]. The idea is to take into account a process model
which is a set of mathematical equations describing the states to be estimated,
and combine the evolution of this process model with measurements to get a more
accurate reading. The process model is typically written as (2.1), with the addition
of process noise ω to incorporate the uncertainty in the mathematical equations

zk = Azk−1 +Buk + ωk (2.15)

where ω is assumed to be zero-mean white noise with covariance matrix Q, i.e.
W ∼ N (0, Q). The measurement of the true state is modelled through

yk = Czk + vk (2.16)

where C is the measurement matrix mapping the true states zk to the measurement
observations yk. Further, vk is the measurement noise which is a zero-mean white
noise with covariance matrix R. An iteration of the recursive filter has two steps,
namely a prediction update step and a measurement update step. The outputs
in each iteration are the mean values of the estimated states ẑk along with their
covariance matrix Pk. An online algorithm of the Kalman filter can be seen in
Algorithm 2.

Algorithm 2 The Kalman filter algorithm
Initial prediction of state estimation based on z0: zk = Az0 +Bu0
Initial prediction of covariance estimation based on P0: Pk = P0AP0 +Qk

while measuring do
Calculation of measurement residual: ỹ = yk − Cẑk
Calculation of optimal Kalman gain: Kk = PkC(CPCT +Rk)−1

Correction of state estimation based on measurements: x̂k = ẑk +Kkỹk
Correction of covariance estimation based on measurements: Pk = (I−KkC)Pk
Prediction of state estimation: ẑk = Azk−1 +Buk−1
Prediction of covariance estimation: Pk = Pk−1APk−1 +Qk

return ẑk
return Pk
k ← k+1

end while

9



2. Theoretical background

10



3
System Description

This chapter explains the platoon setup in a more technical manner, the generation
of the reference trajectories, the modelling of the lateral vehicle dynamics, the mod-
elling of the lateral position dynamics w.r.t. the road and the discretization of the
full dynamic model.

3.1 Platoon setup
The platoon under consideration consists of a leading vehicle which is steered man-
ually by a driver and a number of following vehicles which are driven autonomously,
see Figure 3.1.
The objective of the platoon is to follow behind each other in close distance, to receive
the benefits in terms of air drag reduction, while being able to avoid obstacles within
its lane. The vehicles are equipped with a camera measuring the lane markings, a
radar measuring the distance to the preceding vehicle and antennas to be able to use
V2V communication through a CAN bus coupled with a WiFi connection, described
more in Section 3.4. It is assumed that each vehicle has a constant local longitudinal
velocity ẋ of 20 m/s with a constant time headway front-to-bumper between each
vehicle of 0.5 seconds as well as 1.0 seconds front-to-front. This assumption is
based on log data provided from Volvo, where the minimal time headway was 0.5
seconds. Keeping the velocity ẋ and time headway between each vehicle constant is
achieved by the related functionality Cooperative Adaptive Cruise Control (CACC)
on flat roads. The platoon is assumed to operate on modern highways, which have
curve radii greater than 500 meters. Furthermore, each following vehicle has a
decentralized MPC calculating its own control signal based on its current position
in the lane as well as the reference trajectory and curvature received from V2V. The
sample time Ts for a HDV needs to be 50 ms or smaller to function as intended [16],
and thus Ts is chosen to be 50 ms. The length of the prediction horizon needs to
match the lengths front-to-front, thereby the number of prediction steps are chosen
to be Headway/Ts = 20 steps.
Two different global approaches are investigated, one where each vehicle follows
its first preceding vehicle and one where each vehicle follow the manually steered
leading vehicle. These approaches are described in more details in Section 3.2.
In both approaches, the reference trajectories consists of the distance to the lane
centerline ycl and the heading between the vehicle and the lane centerline Ψcl. The
curvature κ is sent at the same time as a feed forward addition and will tell each
MPC in the following vehicles that a curvature is coming ahead of time, yielding a

11



3. System Description

(𝑦𝑙𝑐 ,Ψ𝑙𝑐 , κ)  

𝑙𝑒𝑎𝑑𝑖𝑛𝑔 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 

Figure 3.1: Overview of a platoon with one leading vehicle and two following
vehicles. The objective of the platoon is to follow behind each other as well as
avoiding objects within its lane. The red triangles visualize an approximation of the
field of view of the camera sensors. The blue dots represent way points where the
leading vehicle has travelled. Each of these blue dots contain information about the
curvature κ, lateral offset ycl and heading angle Ψcl indicated by the black arrow.
The black box with a warning triangle visualizes an obstacle which needs to be
avoided.

smoother transition from a straight road to a curved road. The curvature is treated
as an input disturbance in the prediction model, which means that in each time step
of the prediction horizon, the curvature of the road is taken into account as seen in
(2.14). The continuous-time state-space representation of the prediction model is
written as

ż = Az +Bu+Wκ (3.1)

where z are the states, u the control input and κ the input disturbance. The
modelling of the prediction model is described in more details in Section 3.3.

3.2 Reference generation

This section describes the two different global approaches that are used to generate
the references to the controllers in the platoon. In the first approach each vehicle
follows its preceding vehicle, whereas in the second approach each vehicle follows
the leading vehicle.

12



3. System Description

3.2.1 Reference generation based on preceding vehicle
In this approach, each vehicle transmits its position ycl and heading relative to the
lane Ψcl as well as the feed forward disturbance κ to their first succeeding vehicle.
Figure 3.2 shows a platoon with three vehicles with the first being the leading vehicle.

Figure 3.2: A three-vehicle platoon with two following vehicles and one leading
vehicle using preceding vehicle approach. The dotted blue and red lines indicates
the reference trajectories of the first respectively second follower in the platoon.

The reference trajectory for the first following vehicle is represented by the blue
dots, and the reference trajectory for the second following vehicle is represented by
the red dots. These trajectories have fixed length, starting at its own camera ending
at their preceding vehicle’s camera. Thus, each dot in the trajectory stores a future
reference at that current position on the road with a distance to the lane centerline
ycl and heading Ψcl. The time-length of the reference trajectory is equal to N · Ts
where N is the number of waypoints and Ts the sampling time of the MPCs, as
described in Section 3.1. These reference trajectories are updated every sampling
instant Ts giving each MPC a possibly completely new reference trajectory. The
reference trajectories of three following vehicles are visualized in Figure 3.3.

Reference trajectories 

1𝑠𝑡 𝑓𝑜𝑙𝑙𝑜𝑤𝑒𝑟

2𝑛𝑑 𝑓𝑜𝑙𝑙𝑜𝑤𝑒𝑟

3𝑟𝑑 𝑓𝑜𝑙𝑙𝑜𝑤𝑒𝑟

𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑓𝑟𝑜𝑚
𝑙𝑒𝑎𝑑𝑖𝑛𝑔 𝑣𝑒ℎ𝑖𝑐𝑙𝑒

(V2V)

𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑓𝑟𝑜𝑚
1𝑠𝑡 𝑓𝑜𝑙𝑙𝑜𝑤𝑒𝑟

(V2V)

𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑓𝑟𝑜𝑚
2𝑛𝑑 𝑓𝑜𝑙𝑙𝑜𝑤𝑒𝑟

(V2V)

i=1 𝑖 = 20
reference index i

Figure 3.3: Visual representation of how the reference trajectory in each MPC is
updated using preceding vehicle approach, when accounting for a known, constant
V2V delay. In each time step, the trajectories are shifted one time step to the left
removing the oldest and just passed reference entries (i = 1) after which newly
acquired references at the end of each trajectory (i = 18) is added. Reference
trajectories is of length 20, sample time of 0.05 s and V2V delay of 0.1 s.
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In each sampling instant, each reference trajectory is shifted one step to the left
removing the waypoints just passed by each vehicle which corresponds to index
i = 1 after which new waypoints are added in the end of each trajectory. To account
for V2V delay, which is approximated as a constant delay of 0.1 seconds and Ts being
0.05 seconds, the new waypoints are added two samples ahead. The new waypoints
are indicated by blue color and are added at position index i = 18.

3.2.2 Reference generation based on leading vehicle
In this approach, each vehicle will instead follow the leading vehicle, where the
leading vehicle transmits the same references ycl and Ψcl together with the feed
forward disturbance κ as the previous approach. Figure 3.4 show the same platoon
scenario with three vehicles with the difference being that the data in the reference
trajectories will all originate from the leading vehicle, indicated by blue color.

Figure 3.4: A three-vehicle platoon with two following vehicles and one leading
vehicle using leading vehicle approach. The squared and circled blue lines indicates
the reference trajectories of the first respectively second follower in the platoon.

Each vehicle will still transmit a waypoint at each sample time Ts to its first succeed-
ing vehicle as before, but the waypoint will no longer be based on its own camera.
Instead, the waypoints originate from the leading vehicle and are passed through
each vehicle. The reference trajectories have the same length N = 20 visualized
with blue squares and blue circles for the first and second follower respectively. The
reference trajectories are starting from the corresponding vehicles camera reaching
to the preceding vehicles camera. How the reference trajectories are generated can
be seen in Figure 3.5. At each sampling instant Ts the first follower will pass through
a waypoint at reference index i = 3 in its reference trajectory to the second follower
where a constant delay of 0.1 seconds is taken into account. The whole trajectory is
afterwards in the same sampling time Ts shifted one time step to the left removing
the oldest reference entry i = 1. The leading vehicle will then send a new waypoint
to the first following vehicle to reference index i = 18 indicated by blue color where
a constant delay of 0.1 seconds is yet again considered. This pattern then repeats
itself along the platoon members.
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Reference trajectories 

1𝑠𝑡 𝑓𝑜𝑙𝑙𝑜𝑤𝑒𝑟

2𝑛𝑑 𝑓𝑜𝑙𝑙𝑜𝑤𝑒𝑟

3𝑟𝑑 𝑓𝑜𝑙𝑙𝑜𝑤𝑒𝑟

𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑓𝑟𝑜𝑚
𝑙𝑒𝑎𝑑𝑖𝑛𝑔 𝑣𝑒ℎ𝑖𝑐𝑙𝑒

(V2V)

i=1 𝑖 = 20
reference index i

Figure 3.5: Visual representation of how the reference trajectory in each MPC is
updated using the leading vehicle approach, when accounting for a known, constant
V2V delay. In each time step, the vectors are shifted one time step to the left
removing the oldest and just passed reference entries (i = 1) after which a new
acquired reference is added to the first follower (i = 18) which then also forwards a
new reference to its succeeding follower (to i = 20) in the same manner. Reference
trajectories of length 20, sample time of 0.05 seconds and V2V delay of 0.1 seconds.
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3.3 Modelling
This section describes the modelling of the lateral vehicle dynamics, based on [17],
as well as the modelling of the lateral position dynamics relative to the road.

3.3.1 Lateral vehicle dynamics
What one gets if the distance between the pair of tires on each axle is reduced to
zero is intuitively called a bicycle model. The bicycle model is often sufficient and
recommended to use if the radii of the roads are large, since it only considers lateral
and yaw motion, and no roll motion. The states of the bicycle model used in this
thesis are the local lateral velocity ẏ and the angular velocity Ψ̇. The modelled
bicycle can be seen in Figure 3.6.

𝑋 

𝑌 

𝛿𝑓 

𝛼𝑓 

𝐹𝑟𝑦 

𝐹𝑓𝑦 

𝛼𝑟 

Ψ 

Figure 3.6: Bicycle model showing lateral forces Fry and Ffy, slip angles αr and
αf , steering wheel angle δf , tire rear and front velocity vectors vr and vf , local
longitudinal and lateral velocities ẋ and ẏ and finally yaw angle Ψ w.r.t. the global
coordinate frame. The distances to the center of gravity from the rear and front
axle are called lr and lf respectively.

The total lateral force on the two-wheeled bicycle model is, neglecting air drag, the
sum of the lateral forces from the front and rear tire as seen in Figure 3.6, assuming
small steering angle δf . The total lateral acceleration is the acceleration along the
vehicles y-axis and the centripetal force. Using Newtons second law the following
equations are derived

may = Fry + Ffy (3.2)
ay = ÿ + ẋΨ̇ (3.3)

where m is the total mass, ay the total lateral acceleration, Fry and Ffy the rear
and front lateral forces respectively, and ẋ the local longitudinal velocity.

16



3. System Description

Combining (3.2) and (3.3) yields

m(ÿ + ẋΨ̇) = Fry + Ffy. (3.4)

The lateral tire forces Ffy and Fry have, experimentally, been shown to be propor-
tional to the angle between the tire orientations and the velocity vectors v{f,r} of
the vehicle if that angle is small as follows

Fry = 2Crαr (3.5)
Ffy = 2Cfαf (3.6)

where α{r,f} are called the tire slip angles and C{r,f} the cornering stiffnesses given
per tire for the rear and front axle respectively. The tire slip angles α{r,f} can in
turn be written as

αr = −βr (3.7)
αf = δf − βf (3.8)

where β{r,f} are the side slip angles for front and rear tire respectively. The angles
β{r,f} are the tangent of the lateral velocity vector components v{r,f} divided by the
longitudinal velocity vector component ẋ. Using a small angle approximation gives
the following relationships for β{r,f}

tan(βr) ≈ βr = ẏ − lrΨ̇
ẋ

(3.9)

tan(βf ) ≈ βf = ẏ + lf Ψ̇
ẋ

(3.10)

where lr and lf are the distances to the center of gravity from the rear and front
axle respectively. Now, inserting (3.10) and (3.9) in (3.8) and (3.7) respectively, and
the obtained equations in (3.5) and (3.6), the lateral forces can be written as

Fry = 2Cr(
−ẏ + lrΨ̇

ẋ
) (3.11)

Ffy = 2Cf (δ −
ẏ + lf Ψ̇

ẋ
). (3.12)

Using (3.11) and (3.12) in (3.4) yields a final expression for the lateral acceleration

ÿ = Cf + Cr
mẋ

ẏ − Cf lf − Crlr
mẋ

Ψ̇− ẋΨ̇ + Cf
m
δf . (3.13)

For the angular acceleration Ψ̇, a moment balance about the vehicles z-axis is first
considered

IzΨ̈ = lfFfy − lrFry (3.14)

where Iz is the moment inertia around z-axis. Using (3.11) and (3.12) again in (3.14)
gives a final expression for the angular acceleration
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Ψ̈ = −(Cf lf − Crlr)
Izẋ

ẏ −
Cf l

2
f + Crl

2
r

Izẋ
Ψ̇ + Cf lf

Iz
δf . (3.15)

Finally, using the state equations (3.13) and (3.15) in standard state space form
yields  ÿ

Ψ̈

 =

 Cf +Cr

mẋ
−Cf lf−Crlr

mẋ
− ẋ

− (Cf lf−Crlr)
Iz ẋ

−Cf l
2
f +Crl2r
Iz ẋ


 ẏ

Ψ̇

 +
 Cf

m

Cf lf
Iz

 δf . (3.16)

3.3.2 Lateral position dynamics
In order to follow a reference from the leading vehicle and to keep each vehicle on
the lane, the bicycle model needs to be extended. Figure 3.7 shows the modelling
of the lateral position dynamics relative to the lane centerline. Similar approaches
have been used with MPC in lane keeping systems [18][19] and in platooning [20].
The two states Ψlc and ylc marked in red are added to the model. These states
represent the heading angle between the vehicle and the road and the distance from
the road centerline to the camera sensor, which is placed on the vehicles x-axis at
the top of the cabin.

𝑋 

𝑌 

. 

. 

Figure 3.7: Modelling of the lateral position dynamics relative to the lane center-
line. The bicycle model derived in 3.3.1 is extended with the states marked in red
which are the distance to the lane centerline ycl and the heading between the vehicle
and the lane Ψlc.

The following nonlinear equations describes the lateral position dynamics

Ψ̇lc = Ψ̇− Ψ̇r = Ψ̇− κṡ (3.17)
ẏlc = ẏscos(Ψlc) + ẋΨlc (3.18)
ṡ = ẋcos(Ψlc) + ẏssin(Ψlc) (3.19)
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where Ψ and Ψr are the angles of the vehicle and the road respectively, relative to
the global inertial frame. The yaw rate of the road Ψ̇r can be written as κṡ where
κ is the curvature of the road. The velocity ṡ is the velocity tangent to the curve.
Furthermore, Ψlc and ycl are relative to the road aligned coordinate frame. The
velocities ẋ, ẏ and ẏs are the velocities of the vehicle in the body fixed coordinate
frame. The velocity ẏs is rewritten as

ẏs = ẏ + (lf + ls)Ψ̇ (3.20)

where ls is the distance from the front axle to the camera sensor. Since the platoon
is assumed to drive in a modern highway with radii > 500 meters the angle Ψlc is
small. With this approximation the nonlinear equations can be simplified to linear
equations as follows

Ψ̇lc = Ψ̇− Ψ̇r = Ψ̇− κṡ
ẏlc = ẏ + (lf + ls)Ψ̇ + ẋΨlc

ṡ = ẋ.

(3.21)

This yields the final two linear equations for the lateral position dynamics

Ψ̇lc = Ψ̇− κẋ
ẏlc = ẏ + (lf + ls)Ψ̇ + ẋΨlc.

(3.22)

Writing the equations in (3.22) into state space form and using them together with
the linear bicycle equations in (3.16) yields the following extended continuous state
space model



ÿ

Ψ̈

Ψ̇cl

ẏcl

 =



Cf +Cr

mẋ
−Cf lf−Crlr

mẋ
− ẋ 0 0

− (Cf lf−Crlr)
Iz ẋ

−Cf l
2
f +Crl2r
Iz ẋ

0 0
0 1 0 0
1 lf + ls ẋ 0




ẏ

Ψ̇
Ψlc

ylc

 +



Cf

m

Cf lf
Iz

0
0

 δf +


0
0
ẋ

0

κ (3.23)

where the curvature κ is the feed forward input disturbance, Ac is the continuous
system matrix and Bc the continuous input matrix. The discrete version of this con-
tinuous model can be regarded as the prediction model according to (2.1) in Section
2.1, although with the addition of curvature as an input disturbance described in
Section 2.4. However, the full discrete model is described in Section 3.3.4.
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3.3.3 Discretization
To find the analytical solution of a linear continous system

ẋ(t) = Acx(t) +Bcu(t) (3.24)

the expression is first rearranged and then by introducing an integrating factor the
following equation is found

e−Actẋ(t)− e−ActAx(t) = e−ActBcu(t). (3.25)

Further, the LHS is identified to have another form and is rewritten to

d

dt
(e−Actx(t)) = e−ActBcu(t). (3.26)

Integrating both sides and rearranging with the follows steps∫ t

t0

d

dt
(e−Actx(t))dτ =

∫ t

t0
e−AcτBcu(t)dτ (3.27)

e−Actx(t)− e−At0x(t0) =
∫ t

t0
e−AcτBcu(t)dτ (3.28)

e−Actx(t) = e−At0x(t0) +
∫ t

t0
e−AcτBcu(t)dτ (3.29)

x(t) = eAc(t−t0)x(t0) + 1
e−Act

∫ t

t0
e−AcτBcu(t)dτ (3.30)

yields the analytical solution

x(t) = eAc(t−t0)x(t0) +
∫ t

t0
eAc(t−τ)Bcu(τ)dτ. (3.31)

Now using (3.31), the discrete solution is obtained by defining

x(t) := x(kT ), k = 0, 1, 2... (3.32)

with T as sampling period. The control signal u is assumed to be made continuous
by being kept constant over a sampling period, i.e. zero order hold (ZOH). Inserting
(3.32) in (3.31) with t0 = kT and t = (k + 1)T yields

x((k + 1)T ) = eAc((k+1)T−kTx(kT ) +
∫ (k+1)T

kT
eAc((k+1)T−τ)Bcu(τ)dτ (3.33)

where u is kept constant during one change of k since ZOH is in effect. This gives

xk+1 = eAcTxk +
∫ (k+1)T

kT
eAc((k+1)T−τ)Bcdτ · uk (3.34)

and changing variables to Υ = (k + 1)T − τ gives

xk+1 = eAcTxk +
∫ T

0
eAcΥBcdΥ · uk. (3.35)
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Comparing (3.35) with (3.24), the discrete time state-spaces matrices can be iden-
tified as

Ad = eAcT (3.36)

Bd =
∫ T

0
eAcΥBcdΥ (3.37)

(3.38)

which can be expressed as infinite sums. For implementation, this is closely approx-
imated by finite sums (limiting the summation variable i) which gives

Ad = eAcT ≈
isufficient∑

i=0

(AcT )i
i! (3.39)

Bd =
∫ T

0
eAcΥBcdΥ ≈

isufficient∑
i=0

(AcT )i
(i+ 1)!BcT. (3.40)

isufficient was found to be around 5 for this thesis case.

3.3.4 Discrete model
The full discrete model is obtained by discretizing the continuous model (3.23)
with equations (3.39) and (3.40) and extending it with steering wheel acceleration
as control input as described in Section 2.2. This gives the following full discrete
model

z(k + 1)
u(k)

∆u(k)

 =

Ad Bd Bd

0 1 1
0 0 1


 z(k)
u(k − 1)

∆u(k − 1)

 +

Bd

1
1

 ∆2u(k) +

Wd

0
0

κ(k) (3.41)

which corresponds to (2.14) in Section 2.4.
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3.4 Sensors
This section describes the sensors required for this platooning setup. The sensors
used are cameras, radars, internal vehicle sensors, and V2V communication. The
decision to use this combination of sensors was based on discussions with Volvo
GTT.

3.4.1 Camera
There are four momentaneous quantities needed from the lane markings, taken per-
pendicular to the position of the forward-facing camera on each HDV. These quan-
tities are the heading relative to the centerline of the lane Ψcl, the distance to the
right and left lane markings (which combined can be used to find the distance to
the centerline of the lane ycl) and the curvature κ.

3.4.2 Radar
The radar was noted to be better at measuring inter-vehicular distance than the
camera. In the case of varying inter-vehicular distance, this can be used to stretch
or shrink the time between each sample, i.e. the sampling time Ts in order to
maintain the number of samples in the horizon.

3.4.3 Internal vehicle states
The predictive model derived above needs measurements of the local lateral velocity
ẏ, the yaw rate Ψ̇ and local longitudinal velocity ẋ. The yaw rate is measured using a
gyroscope and the longitudinal velocity is measured using a tachometer. The lateral
velocity is estimated from the yaw rate measurements.

3.4.4 V2V
The V2V system that is used is realized through a CAN bus and a WiFi network.
The V2V system can send arbitrary information between vehicles where all vehi-
cles in the platoon are capable of sending and receiving. A delay of 100 ms is
assumed between each transmission and its respective reception. Packet losses are
not considered.
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4
Implementation

This chapter describes how the used MPCs and Kalman filters are tailored to the
application and how the simulation setup is implemented. Additionally, modelling
of lane marking losses is presented.

4.1 MPC formulation
The control objective of the optimization problem is to minimize the control signals
such that the deviation from the reference trajectory ylcref

,Ψlcref
transmitted from

the leading vehicle is also minimized, while satisfying constraints on the states and
inputs. The optimization problem has been formulated as

minimize
∆2u(0:N−1),ε(1:N)

N−1∑
i=0
||η(k + 1 + i)− ηref (k + 1 + i)||2Q + ||∆2u(k + i)||2R

+||ε(k + 1 + i)||2S

(4a)

subject to

ξ(k + 1) = Aξ(k) + B∆2u(k) +Wκ(k), (4b)
η(k + 1 + i) = Cξ(k + 1 + i), (4c)

umin ≤ u(k) ≤ umax, (4d)
∆umin ≤ ∆u(k) ≤ ∆umax, (4e)

∆2umin ≤ ∆2u(k) ≤ ∆2umax, (4f)
ylcmin

− ε(k + 1) ≤ ylc(k + 1) ≤ ylcmax + ε(k + 1), (4g)
ε(k + 1) ≥ 0, (4h)

k = 0, ..., N − 1

where η = Cξ = [ylc Ψlc u ∆u]T and where ∆2u(0 : N − 1) = [∆2u(0), ...,∆2u(N −
1)] ∈ RN is the set of future control signals and ε(1 : N) are the slack variables.
Furthermore, N is the prediction and control horizon, Q,R, S are positive definite
weights on the states, control signals and slack variables. The optimization problem
includes constraints on the state ylc as in (4g) to avoid leaving the lane and also ac-
tuator limitations on the steering wheel angle, angular rate and angular acceleration
as in (4d-4f) to avoid the risk of roll over. The optimization is solved at each time
instant and the very first element of the set of future control signals ∆2u(k) is used,
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while the rest are discarded. The control signal ∆2u(k) is then integrated twice and
applied to the corresponding vehicle. This optimization is performed every sampling
instant in each vehicle giving a new steering wheel angle 20 times per second.

4.1.1 FORCES Pro
FORCES Pro is a code generation tool [21] used for different optimization algo-
rithms, including optimal control, which has been used in this thesis. The FORCES
Pro tool requires the optimal control problem to be formulated in a standard form

minimize
N∑
i=1

1
2χ

T
i Hχi + fTi χi

subject to D1χ1 = c1

Ci−1χi−1 +Diχi = ci

Aχi ≤ b

(4.1)

where χi are the optimization variables, H the Hessian matrix containing weighting
matrices and fi the remaining linear terms.

4.2 MPC formulation in standard form
In order to use FORCES Pro, the optimization problem in (4a-h) needs to be for-
mulated in standard form shown in (4.1). The optimization vector χ will then be

χi = [∆2u(k − 1 + i) ξ(k + i) ε(k + i)]T , i = 1, . . . , N − 1. (4.2)

Furthermore, the Hessian matrix H will be a diagonal matrix as follows

H =

R 0 0
0 Q 0
0 0 S

 (4.3)

containing the positive definite matrix Q and positive definite scalars R, S where Q
is a 6 × 6 matrix containing the weights of the states and R and S are two scalars
weights for the control input ∆2u and slack variable ε. The remaining linear terms
are collected in the vector f

fi = [−∆2urefR − ξTiref
Q − εrefS]T , i = 1, . . . , N − 1 (4.4)

where ∆2uref = 0, εref = 0 and

ξTiref
= [0 0 Ψlcref

(k + i) ylcref
(k + i) 0 0], i = 1, . . . , N − 1. (4.5)

The equality constraints (4b-c) are transformed such that they fit the matrices C
and D.
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The matrix C is written as follows

C =


04,1 Ad Bd Bd

0 01,4 1 1
0 01,4 0 1
0 01,4 0 0

 (4.6)

where Ad and Bd are the discretized prediction model matrices in (2.1) and 0i,j
a vector or matrix containing zeros with i rows and j columns. The matrix D is
written as follows

D =
[
Bd −I4 04,2 04,1
12,1 02,4 −I2 02,1

]
(4.7)

where Ii is the identity matrix of size i. Furthermore, the inequality constraints
(4d-h) are written as

0 01,3 0 −1 0 0
0 01,3 0 1 0 0
0 01,3 0 0 −1 0
0 01,3 0 0 1 0
−1 01,3 0 0 0 0
1 01,3 0 0 0 0
0 01,3 −1 0 0 0
0 01,3 1 0 0 0
0 01,3 0 0 0 −1


︸ ︷︷ ︸

A

χi ≤



−umin
umax
−∆umin
∆umax
−∆2umin
∆2umax
−ylcmin

ylcmax

0


︸ ︷︷ ︸

b

. (4.8)

Finally, the cmatrix which contains the curvature and the initial condition is written
as follows 

c1 = −


Ad Bd Bd

0 1 1
0 0 1

 ξ(k)−


Wd

0
0

κ1

ci = −


Wd

0
0

κi
(4.9)

where Wd is the disturbance matrix and κi the curvature for each step i = 2, . . . , N
in the prediction horizon.
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4.3 Kalman filters
This section describes how the Kalman Filters are implemented. The leading vehicle
has a separate filter since it senses, in addition to what a following vehicle senses,
the curvature κ of the road.

Leading vehicle Kalman filter
The same prediction model used in the MPCs are used in the leading vehicles Kalman
filter, with the addition of the curvature κ as a state

κ̇ = 0 + v (4.10)

where v is process noise. The process model of the leading vehicles Kalman filter is
then the following


ÿ

Ψ̈
Ψ̇cl

ẏcl
κ̇

 =



Cf +Cr

mẋ
−Cf lf−Crlr

mẋ
− ẋ 0 0 0

− (Cf lf−Crlr)
Iz ẋ

−Cf l
2
f +Crl2r
Iz ẋ

0 0 0
0 1 0 0 −ẋ
1 lf + ls ẋ 0 0
0 0 0 0 0




ẏ

Ψ̇
Ψlc

ylc
κ

 +



Cf

m
Cf lf
Iz

0
0
0

 δ (4.11)

which is discretized with equations (3.39) and (3.40). Furthermore, all the states in
(4.11) are measured and the measurement matrix C in (2.16) is the identity matrix
I5. The process noise and measurement noise in (2.15) and (2.16) respectively are
zero-mean white noise with covariance matrix Q and R. The covariance matrices
are both diagonal matrices where Q has been tuned experimentally and R contains
variances of the state measurements from real data logs on a test track. The initial
guess P0 is set to 0.5·I5.

Following vehicle Kalman filter
The Kalman filter implemented in the following vehicles has the same model as
the prediction model in the MPCs, and is discretized in the same manner using
equations (3.39) and (3.40). The following vehicle Kalman filter has the identity
matrix I4 as measurement matric C and the covariance matrices contains the same
values as the leading vehicle filter, expect for the curvature κ since its not included
as a state. The initial guess P0 is set to 0.5·I4.
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4.4 Modelling losses of lane marking detection
As noted in Chapter 1, the detection of the lane markings are not 100% reliable. For
instance, sometimes gaps unexpectedly occur, e.g due to lane exits or a stand-still
vehicle at the side. Seen in Figure 4.1 is an illustration of how the lateral offset could
look like based on the lane markings if the right side has unreadable gaps. The red
signal represents the lateral offset, i.e. distance to the middle of the lane. It is seen
to be noisy close to zero at the straight road segment, then to have a spike. Going
into the curve, the lateral offset is non-zero, and a spike occurs there as well. The
last spike and the end of the curve are not shown in the road-illustration. These
spikes are modelled to be one second in duration and thus correspond to losing the
lane marking for 20 meters, given the vehicles speed of 20 m/s.
Log data received from Volvo show that each camera has a confidence value from
0-10, where 0 indicates a bad reading, and 10 indicates a very good reading. Right
and left lane markings have separate confidence values, and in the scenario in Figure
4.1, only the right lane marking is unreliable, and the left could be relied on solely.
The way losses of lane marking detection is modelled in this thesis does not take
this redundancy into consideration. Even though it is rare that both lane markings
become unreliable at the same time, this is the situations that this thesis does take
into consideration.

20 𝑚

Figure 4.1: Illustration of what the distance to the center line ycl looks like to the
vehicle (red signal with spikes) in the events of lane marking losses (white spaces)
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4.5 Simulation
The simulation and evaluation of the platoon using MPC has been carried out in
PreScan. Figure 4.2 shows the evaluated platoon in the PreScan 3D environment.
More information about PreScan can be read in section 4.5.2.

Figure 4.2: The evaluated platoon in PreScan environment with four HDVs with
three following vehicles and one leading vehicle. The width of the lane is 3.5 meters
and each HDV has a longitudinal speed of 20 m/s.

4.5.1 Computer hardware specifications
The feasibility of the implemented MPCs in terms of computational demand is later
to be discussed. The hardware specifications of the computer used for developing
the MPC and of the computer used for running the simulation environment are

• Development computer
– Windows 7 64-bit
– Intel Core i5-3320M @ 2.6 GHz (4 CPUs)
– 4 GB RAM

• Simulation computer
– Windows 7 64-bit
– Intel Xeon X5660 @ 2.8 GHz (6 CPUs)
– 32 GB RAM

4.5.2 PreScan
PreScan is a visual, Simulink-based simulation environment that has, among other
features, models for roads, lane detection sensors and V2V communication. Some
vehicle dynamic models are built in and it is possible to pass more detailed mod-
els through the Simulink interface. In other words, software-in-the-loop (SIL) and
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model-in-the-loop (MIL) are supported. The inputs from PreScan to Simulink are
sensor readings (including V2V communication) and vehicle states. As output from
Simulink to PreScan, PreScan requires updated vehicle states. Typically a Simulink
vehicle model is given a new steering angle or throttle/brake signal as input and the
resulting updated states as output to PreScan. Experiment scenarios are built by
placing road segments in a 2D scenario builder. Vehicles, with specified dynamics,
are then placed on the roads, and sensors are connected to the vehicles. The sensors
show up as Simulink blocks in the Simulink interface and pass the readings from
the sensors as the simulation progresses. A 3D rendering of the vehicle on the 2D
scenario is generated and visualized as the vehicles states are updated per sampling
instant. A deeper description and use guide of PreScan can be found in [22].
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4.5.3 Structure of implemented components and signal rout-
ing

The implementation of the platoon with the approach that each following vehicle
tracks the leading vehicle described in 3.2.2 can be seen in Figure 4.3. As indicated,
the leading vehicle transmits its current position through V2V to the first following
vehicle, which will in turn transmit a waypoint at reference index i = 3 (since there
is a two sample delay) in its own reference trajectory just passed by the vehicle
itself, to the second following vehicle. The pattern is repeatable, meaning that all
the blocks are alike for each follower. If one more follower is to be added, a new
instance of the reference generator block and MPC block can be used.
To account for sensor noise the reference data that is transmitted by the leading
vehicle is first Kalman filtered. Each following vehicle has also one Kalman filter for
its own internal states and camera measurements for the same purpose.

𝐿𝑒𝑎𝑑𝑖𝑛𝑔 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 

𝐾𝑎𝑙𝑚𝑎𝑛 𝑓𝑖𝑙𝑡𝑒𝑟 

 
𝐹𝑜𝑙𝑙𝑜𝑤𝑖𝑛𝑔 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 

 

𝐾𝑎𝑙𝑚𝑎𝑛 𝑓𝑖𝑙𝑡𝑒𝑟 

𝑀𝑃𝐶 𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟 

𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟 𝑀𝑃𝐶 
 

𝐹𝑜𝑙𝑙𝑜𝑤𝑖𝑛𝑔 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 
 

𝐾𝑎𝑙𝑚𝑎𝑛 𝑓𝑖𝑙𝑡𝑒𝑟 

𝐿𝑒𝑎𝑑𝑖𝑛𝑔 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 

1𝑠𝑡 𝑓𝑜𝑙𝑙𝑜𝑤𝑖𝑛𝑔 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 

2𝑛𝑑 𝑓𝑜𝑙𝑙𝑜𝑤𝑖𝑛𝑔 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 

Figure 4.3: Implementation of the platoon in Simulink showing the structure and
signal routing of the leading vehicle together with the two first following vehicles
indicated with blue, red and green color respectively. This structure is based on
the approach where each following vehicle tracks the leading vehicle, described in
section 3.2.2.
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5
Results

In this chapter, results from simulating a platoon of four HDVs, including the leading
vehicle, in PreScan are presented. All vehicles have separate but identical dynamics,
namely a high fidelity HDV model provided by Volvo, and have local longitudinal
velocities of 20 m/s. Each following vehicle have a separate but identical MPC
controller. The roads are flat and curves have a fixed radius of 500 m. A transmission
of information via V2V is modelled to have a delay of 100 ms.

The considered simulation scenarios are
• Driving through a curve with a radius of 500 meters, seen in Figure 5.1.
• Avoiding an obstacle within its lane on a straight road, seen in Figure 5.2.

Furthermore, the figures in this chapter are shifted in time when several vehicles
are shown, so that each value in the figures in the vertical direction corresponds to
the same position on the road. This is done in order to be able to make an easier
comparison.

Figure 5.1: Simulation scenario
when driving through a curve (black
color) with a radius of 500 meters.
The simulation starts and ends on a
straight road segment, indicated by
red color. For visualization purposes
the curve is kept short in this figure
but is longer in the actual simulation.

Figure 5.2: Simulation scenario
when avoiding an obstacle within the
lane on a straight road. The obsta-
cle is indicated by the black box with
a warning triangle and is assumed to
be static.
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5. Results

5.1 Lateral control performance
This section evaluates the behavior of the simulated platoon in absence of sensor
noise, firstly using a local approach, i.e. that every vehicle only considers its directly
preceding vehicle. The well known issue with maintaining string stability is seen.
The preceding vehicle approach was then discarded due to the results shown below.
Secondly, results using a global approach are presented, showing no propagation of
errors.

5.1.1 Reference tracking using preceding vehicle approach
The reference tracking of the preceding vehicle approach have been evaluated with
the two simulation scenarios described above. How the reference trajectories are
generated using a preceding vehicle approach is described in Section 3.2.1.
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5.1.1.1 Curve

The curvature of the simulated road can be seen in Figure 5.3 and the lateral offset
ycl and heading angle Ψcl can be seen in Figure 5.4 and Figure 5.5 respectively. It can
be seen that the lateral offset to the middle of the lane is accumulating throughout
the platoon members inside the curve, which is not desirable. Furthermore, the
heading angle error accumulation of the vehicles in the platoon is not as significant
when compared to the lateral offset.
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Figure 5.3: Curvature of the road as
read perpendicular to the camera of
the leading vehicle, through a curve
with a radius 500 m.
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Figure 5.4: Lateral offset of the ve-
hicles in the simulated platoon during
a curve, using the preceding vehicle
approach. As expected the errors ac-
cumulate, giving an increase of about
5 cm per vehicle.
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Figure 5.5: Heading offset of the vehicles in the simulated platoon during a curve,
using the preceding vehicle approach. The heading error accumulation between the
vehicles is not as significant.
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5.1.1.2 Obstacle avoidance

The lateral offset and heading angle relative to the lane for all members of the
simulated platoon can be seen in Figure 5.6 and Figure 5.7. The lateral offset of
the following vehicles increases to the same value, although in the beginning of the
manoeuvre the following vehicles further down in the platoon gets closer to the
avoided object. Moreover, the heading angle of the following vehicles further down
in the platoon gets smaller, which explains why the lateral offset gets closer to the
avoided object.
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Figure 5.6: Lateral offset of the ve-
hicles in the simulated platoon dur-
ing an obstacle avoidance, using the
preceding vehicle approach. Follow-
ing vehicles get closer to the avoided
object as they are further down in the
platoon.
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Figure 5.7: Heading offset of the ve-
hicles in the simulated platoon during
an obstacle avoidance. The change of
heading gets less drastic for following
vehicles further down in the platoon,
which is not desirable when avoiding
static obstacles.

5.1.2 Reference tracking using leading vehicle approach
The reference tracking of the leading vehicle approach have been evaluated with the
same two simulation scenarios described above. How the reference trajectories are
generated using a leading vehicle approach is described in section 3.2.2.
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5.1.2.1 Curve

The curvature of the simulated road can be seen in Figure 5.3 and the lateral offset
ycl and heading angle Ψcl can be seen in Figure 5.9 and Figure 5.10 respectively.
As seen in both the lateral offset and the heading angle, no accumulating errors
throughout the platoon is present.

0 2 4 6 8 10 12 14 16 18 20
−3

−2

−1

0

1

2

3
x 10

−3

Time [s]

C
u
rv

a
tu
re

[1
/m

]

Figure 5.8: Curvature of the road as
read perpendicular to the camera of
the leading vehicle, through a curve
with radius 500 m.
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Figure 5.9: Lateral offset of the ve-
hicles in the simulated platoon during
a curve, using the leading vehicle ap-
proach. Following vehicles travels the
same path with no accumulating er-
rors.
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Figure 5.10: Heading offset of the vehicles in the simulated platoon during a curve.
No heading error accumulation can be seen between the following vehicles.
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5.1.2.2 Obstacle avoidance

The lateral offset and heading angle relative to the lane for all members of the
simulated platoon can be seen in Figure 5.11 and Figure 5.12. It can be seen that
no accumulating errors occur in the lateral offset and heading angle when avoiding
an object in the lane.
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Figure 5.11: Lateral offset of
the vehicles in the simulated pla-
toon during an obstacle avoid-
ance, using the leading vehicle ap-
proach. Following vehicles travels
the same path during the obstacle
avoidance.
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Figure 5.12: Heading offset of
the vehicles in the simulated pla-
toon during an obstacle avoid-
ance, using the leading vehicle ap-
proach. The change of heading
remains the same for all follow-
ing vehicles further down in the
platoon.
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5.2 Ride comfort with and without preview infor-
mation

This section shows how utilizing preview information propagated through V2V com-
munication, coupled with the predictive nature of MPC, improve ride comfort. A
common metric used to quantify ride comfort is the rate of change of acceleration,
i.e. the derivative of acceleration w.r.t time, called jerk [23]. This section will show
the steering wheel angle and the lateral jerk for a following vehicle and a leading
vehicle when entering a curve and also when the leading vehicle avoids an obstacle
on a straight road.

5.2.1 Curve
The steering wheel angle and lateral jerk for a following vehicle and the leading
vehicle can be seen in Figure 5.13 and Figure 5.14 when driving through a curve.
To show the effectiveness of the preview information of the future curvature, the
leading vehicle has no knowledge of how the road looks ahead. In reality, the driver
would naturally see how the road looks ahead and steer accordingly. However, this
shows how the feed forward of the curvature to the following vehicle results in a
more smooth steering and less lateral jerk.
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Figure 5.13: Steering wheel angles
of a following vehicle driving through
a curve with and without preview in-
formation of the road curvature. The
steering wheel angle of the following
vehicle with preview information is
more smooth.
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Figure 5.14: Lateral jerks of a fol-
lowing vehicle driving through a curve
with and without preview information
of the road curvature. The lateral jerk
from the following vehicle with curva-
ture preview has significantly less lat-
eral jerk.
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5.2.2 Obstacle avoidance
The worst case scenario when avoiding an obstacle in the lane is when it appears
suddenly. That is the scenario that has been simulated. As expected, this causes
a large amount of jerk for the leading vehicle which initiates the evasive maneuver.
In Figure 5.15 it can be seen that the maximum required steering angle for the
following vehicle is much lower than for the leading vehicle in order to avoid the
object. Furthermore, in Figure 5.16 is how much smaller the lateral jerk is for
a following vehicle that can adjust for the avoided object much earlier than the
leading vehicle.
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Figure 5.15: Steering wheel angles
of a following and a leading vehicle
during an obstacle avoidance manoeu-
vre on a straight road. The leading
vehicle makes a sudden and harsh ma-
noeuvre. The steering wheel angel of
the following vehicle is more smooth
due to the preview information of the
leading vehicle’s path.
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Figure 5.16: Lateral jerks of a fol-
lowing and a leading vehicle during
an obstacle avoidance manoeuvre on
a straight road. The leading vehicle
makes a sudden and harsh manoeu-
vre. The lateral jerk of the following
vehicle is significantly smaller due to
the preview information of the leading
vehicle’s path.
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5.3 Safety
A central appeal of an MPC control strategy is the possibility of implementing
constraints. A road is naturally a constrained area. This section shows a way in
which the following vehicles are protected, by use of constraints, from leaving the
lane, even if the leading vehicle, unexpectedly, requests them to. One could note
that certain situations might require leaving the lane for safety reasons, but these
are not considered as stated in Chapter 1.
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Figure 5.17: Reaction of the following vehicles when the leading vehicle unex-
pectedly maneuvers in such a way that the left out most edge exits the lane. The
following vehicles stays within the lane.
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5.4 Kalman filter performance
This section evaluates the filter performance in an open-loop simulation where each
figure shows the true state, measured state and the filtered state. In the measured
state, noise has been added manually. The Kalman filter in the following vehicles
filters four states, as stated in Section 4.3. These states are ẏ, Ψ̇,Ψcl and ycl. In
addition, the leading vehicle also filters the curvature κ. The added noise levels
(standard deviation σ) on the different states where estimated from real log data
from a test track. Specifically, the standard deviation for the lateral offset measure-
ments by the camera was obtained from a previous thesis [24]. Figures 5.18, 5.19,
5.20, 5.21, 5.22 and 5.23 shows the kalman filtered yawrate, lateral velocity, heading
angle, curvature, lateral offset with noise and lateral offset with noise and sensor
failures respectively. Worth to note is that the chosen curvature is difficult for a
Kalman filter to capture, since it has very steep dynamics as seen in Figure 5.21.
How the filtered curvature that grows slower than the actual curvature affects the
rest of the system becomes apparent in later sections. Moreover, the filtered lateral
offset in Figure 5.22 has a slight offset compared to the true lateral offset although
capturing the same dynamics. Figure 5.22 shows how the Kalman filter copes with
specific known sensor failures on the right lane marking. It does so by, during the
failures, rely much less on measurements and much more on its prediction model.
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Figure 5.18: True, measured and fil-
tered yaw rate.
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Figure 5.19: True, measured and fil-
tered lateral velocity.
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Figure 5.20: True, measured and fil-
tered heading angle Ψcl.
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Figure 5.21: True, measured and fil-
tered curvature κ.
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Figure 5.22: True, measured and fil-
tered lateral offset ycl in absence of
sensor failures.
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Figure 5.23: True, measured and fil-
tered lateral offset ycl in presence of
specific sensor failures added on the
right lane marking.

5.5 Lateral control performance with added noise
Effects of Kalman filtering when going through a curve are seen comparing Figure
5.24 and Figure 5.25 below. The comparison is between not filtering the references
from the leading vehicles and not filtering the measurements taken by the following
vehicles versus filtering both. The filtered case shows two bumps in lateral offset
when entering and leaving the curve, explained by Figure 5.21, which shows that
the filter makes it seem like the curvature is coming gradually instead of stepwise,
as it actually is. Furthermore, seen in Figure 5.26 and Figure 5.27 is how the filter
significantly reduces changes in steering wheel angle and lateral jerk. It can also be
seen that the filtered steer wheel angle in Figure 5.26 increases slightly later when
entering (and leaving) the curve than the unfiltered signal. This is because of the
way the curvature κ is filtered as shown in 5.21.
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Figure 5.24: Lateral offset in a curve
with unfiltered references from the
leading vehicle and unfiltered mea-
surements from the following vehicle’s
sensors.
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Figure 5.25: Lateral offset in a curve
with filtered references from the lead-
ing vehicle and filtered measurements
from the following vehicle’s sensors.
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Figure 5.26: Steering wheel angles of a following vehicle in a curve for the unfiltered
and filtered case. The steering wheel angle for the filtered case is more smooth.
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Figure 5.27: Lateral jerks of a following vehicle in a curve for the unfiltered and
filtered case. Significantly less lateral jerk for the filtered case.
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5.6 Lateral control performance with added noise
and sensor failures

In addition to adding sensor noise, sensor failures are also added on the lateral offset
measurements. A comparison between not filtering sensor failures in the reference
and in the following vehicle versus filter both are seen in Figures 5.28 and 5.29.
As expected, not filtering failures on neither the reference nor following vehicle is
catastrophic. Filtering both reference and following vehicle shows vast improvement.
Figure 5.30 show the steering wheel angle for the filtered and unfiltered case, and
Figure 5.31 show the lateral jerk for the filtered and unfiltered case.
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Figure 5.28: Lateral offset in a curve
with unfiltered references from the
leading vehicle and unfiltered mea-
surements from the following vehicle’s
sensors. Additionally, sensor failures
are added on the lateral offset in both
the leading vehicle’s reference and on
the following vehicle’s own measure-
ments.
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Figure 5.29: Lateral offset in a curve
with filtered references from the lead-
ing vehicle and filtered measurements
from the following vehicle’s sensors
in presence of sensor failures on both
the leading vehicle’s reference and on
the following vehicle’s own measure-
ments.
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Figure 5.30: Steering wheel angles of a following vehicle in a curve for the unfiltered
and filtered case in presence of both noise and sensor failures. It can be seen that
the constraints for the unfiltered case gets activated several times.
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Figure 5.31: Lateral jerks of a following vehicle in a curve for the unfiltered and
filtered case. Again, significantly less lateral jerk for the filtered case.
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5.7 Computation time
Solving one MPC optimization yielding the next control input as described by equa-
tions (4a-h) with prediction model as described by equation 3.23 on the simulation
computer with hardware specifications as described in Section 4.5.1 took about 1.6
milliseconds. On the development computer with specifications described in the
same section, it took about 3.8 milliseconds.
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6
Discussion

This chapter provides a discussion about the reference generation and about the
results. Additionally, a brief discussion about real life viability and non-linear MPC
is given in the end of the chapter.

Reference generation
In the leading vehicle approach a decision was made to let the reference trajectories
from the leading vehicle pass through each following vehicle instead of passing it
directly from the leading vehicle to the each follower. As far as the authors of this
thesis sees it, there is a trade off between longer vision versus computation time,
modularity and memory usage. Either one could increase the horizon length for each
following vehicle further down in the platoon so that all vehicles reaches the lead-
ing vehicles camera, or keep the horizon length constant as it is implemented in the
leading vehicle approach, but then store the values in a buffer before it is used. If in-
creasing the horizon length, the computation time and memory usage would increase
for each MPC further down in the platoon, yet it is also unclear how much benefit
an increased horizon would give, since the model mismatch between the prediction
model in the MPCs would increase if the horizon is longer, and might result in a
less accurate control signal. Having different horizon lengths would lead to loss of
modularity which means that a different setup needs to be implemented depending
on which position a vehicle has in the platoon. In case of the other approach where
the horizon length is kept the same for all vehicles but the references are stored in
a buffer, this would also require a different reference generator setup depending on
the position on a vehicle in the platoon. In the leading vehicle approach in this
thesis, the modularity is kept and the approach requires less computational time
and memory usage compared to a increasing horizon approach which is important
when implementing in real HDVs.

Lateral control performance without noise
The preceding vehicle approach caused accumulating errors as expected. Even
though these errors are not increasing rapidly, due to the performance of the MPC,
they are not desirable. The leading vehicle approach did not cause accumulating
errors which was also expected. However, one drawback with the leading vehicle
approach is the accuracy for vehicles in the further down in the platoon when con-
sidering measurements of the longitudinal distance, as they need to dead-reckon
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their travelled distance for a long time. This thesis assumed a constant longitudinal
velocity. In a real life implementation, how viable the leading vehicle approach is
thus seems to rely much on the reliability of the estimated longitudinal speed. The
distance between the vehicles can be assumed to be well known due to the accuracy
of the radar. The lengths of each vehicle in the platoon seem reasonable to share via
the V2V communication which motivates the assumption that the length between
the vehicles in the platoon are known. Moving on, another challenge might be the
reliability of the V2V communication. This thesis assumed a constant and known
V2V delay. The effects of a varying and unknown delays are hard to predict.

Ride comfort
When choosing control strategy, a global approach with MPC was chosen. The
reasoning behind it was that one could utilize the predictive nature of MPC together
with the look-ahead information shared via V2V communication. It did, as reasoned,
turn out to have a noticeable positive effect on the smoothness of steering and
thereby ride comfort both in curves and when avoiding objects, compared to a look-
down approach. Although the comparison was performed with a leading vehicle
without preview and a following vehicle with preview the comparison could just as
well have been performed between two following vehicles, one without and one with
preview.

Safety
The constraints that limits the HDVs from leaving the lane performed as intended,
even when the HDVs was requested to leave the lane. As it can conceivably be dan-
gerous to be "trapped" in the lane, additional control logic needs to be implemented
about when these constraints should be active or not. This, however, is on a higher
decision level then the developed controller, and could e.g best be implemented
by letting the leading vehicle driver make those decisions. The safety chapter was
presented to show the possibilities when using MPC in platooning.

Kalman filter performance
Noise caused a vast reduction in ride comfort. The Kalman filters however reduced
this reduction considerably. The added noise on each signal seem realistic, since the
standard deviations are estimated from real log data on a test track. However, on
real roads the data would most likely not look as pretty as from the log data on
the test track with possibly higher noise levels. Though adding these noise levels is
a step towards reality. Furthermore, the filtering of the lateral offset has an offset
which possibly is due to a model mismatch between the Kalman process model and
the actual true lateral offset. Additionally, the curvature in the simulation tests was
chosen to change instantly between zero and the curvature value in order to showcase
the ’worst’ scenario. These kinds of non-dynamic changes seem hard to model with
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a linear Kalman filter if one would want to remove most of the noise levels as seen in
Figure 5.21, where the filtered curvature increases slower. In reality, the curvature
is not changing as rapidly and would make it easier to filter. In this thesis sensor
failures was only considered on the lateral offset measurements. Additional steps
would be to add sensor failures also on the measured curvature and heading angle
which will appear in reality. Also, sensor failures might not be as easily detectable
as stated in Chapter 1. This would require an improved filter.

Lateral control performance with added noise
Unfiltered noisy signals did not cause an unstable platoon, however it decreased
ride comfort significantly. The reason noise did not cause too violent steering may
have to do with the fact that both ∆u and ∆2u are weighted and constrained. The
weights certainly kept the steer wheel velocity and acceleration down, acting as a
sort of inertia or low pass filter and not letting the high frequency components of
the noise affect the HDVs too much.

Lateral control performance with added noise and
sensor failures
The sensor failures were modelled as one second windows where the distance to the
lane centerline was given bogus values. These were handled by tuning the Kalman
filter to rely much more on the model than the measurements while the failure
was occurring (i.e. the measurements were known to be of bad quality when they
occurred). The Kalman filter made the sensor failures to only have centimeter-effects
on the lateral offset, even in curves. It is hard to know what is deemed good or bad
filter performance on sensor failures. Given the length of the simulated failures and
that they are treated as if both left and right lane markings are unreliable, which
they probably are not very often, the filter seems efficient, even in curves. The bogus
values were added on the right lane marking. How the filter handles bogus values on
the left lane marking is yet to be considered, although these kinds of failures seem
to occur most often on the right lane marking, as seen in Figure 1.1.

Computation time and real life viability
The MPCs are set to run once every 50 milliseconds and thus gives new steering
angles to the vehicles. On the simulation computer, with specifications listed in Sec-
tion 4.5.1, one MPC execution took about 1.6 milliseconds corresponding to 3.2%
of the sample time of the MPC. On the development computer, it took about 3.8
milliseconds corresponding to 7.8% of the sample time. The dSpace Autoboxes often
used with Rapid Control Prototyping (RCP) for testing in prototype vehicles are
however significantly much more constrained in hardware. Comparing the perfor-
mance of a dSpace Autobox with the computers used to develop and simulate the
MPC and Kalman filters seems difficult and is left for future work.
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Linear versus non-linear MPC
Increasing the accuracy of the prediction model even more could be achieved by us-
ing a non-linear prediction model instead of a linear one. This however would require
a linearization at each sampling instant, which means an increase in computational
demand. Conversely, if the linear prediction model turns out to be too computa-
tionally demanding itself, one could look into an explicit MPC which, thanks to the
linearity, uses precomputed solutions instead of run-time optimization.
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7
Conclusion

Driving in a platoon on highways have many benefits, although this give rise to
technical challenges which needs to be tackled in order for platooning to become
reality. The objectives of this thesis were to investigate some of these challenges,
more specifically, the objectives of this thesis were to

• identify which sensor information and V2V communication is needed to gen-
erate reference signals to a lateral control system

• decide what control strategy is suitable for this application
• design, implement and evaluate the control system in a simulation environment
• be able to handle specific sensor failures

The developed MPC and Kalman filters meet the objectives set for this thesis.
Combining the selected sensors and V2V communication provides the lateral con-
trol system with sufficient information for the tested scenarios. The MPC handles
the steering automatically and thus enables smaller longitudinal distances between
vehicles in platooning. No real drawback is noted with this approach, except po-
tentially the computational demand and memory usage when implementing in real
vehicles.
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8
Future Work

There are a lot interesting work that has been discovered while conducting this
thesis. Relevant future work which is of particular interest are listed here.

Varying inter-vehicular distance
It would be preferred to have varying inter-vehicular distance, especially given hills,
where CACC systems would want a varying distance for fuel-saving purposes. The
remedy is not very complex though, as the distance and longitudinal velocity can be
read at each sampling instant, giving the required time gap, which is then divided
by the number of prediction steps giving the required sampling time. The predic-
tion model is then re-discretized with this sampling time giving a longer or shorter
prediction horizon depending on the current time gap.

Improving the perception part
This thesis showed that having a filter which can handle sensor failures is necessary.
The implemented linear Kalman filters shows improvement in ride comfort and keeps
the vehicle reasonably stable even when its "blind" regarding the distance to its lane
markings for relatively long periods of time. However, much more work could go
into this, where additional sensor failures on other measurements can be added and
also failures which are less detectable in the sense that it does not give a very low
confidence value on the measurements which have been assumed in this work.

Varying longitudinal speed
The longitudinal speed was assumed to be constant at 20 m/s, i.e. 72 km/h. The
longitudinal speed effects the lateral dynamics of the prediction model in the MPCs.
A linear time-varying (LPV) model instead of a strictly linear model could be used
pretty easily. A look-up table of tuning parameters for different longitudinal speeds
is then needed.

Modelling packet losses and varying delays
The V2V communication used in this thesis is well-behaved. How much different
percentages of packet losses affects performance can be investigated as well as the
effect of varying delays.
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Turning lane constraints on/off
As discussed in the report, restricting the vehicles in the platoon to the lane in focus
is both good and potentially bad. The constraints of the lateral offset need to be
possible to turn off, either as a separate feature or as a part of instantly dissolving
the platoon, or both.

Constraining steering wheel angle acceleration
Constraining and weighting the steering wheels angular velocity ∆u improved the
performance of the MPC significantly, and thus the decision to constrain and weight
the steering wheel acceleration ∆2u was made. Though, ∆2u did not hit its con-
straints practically at any time, even though its weight likely made the steering
smoother. Further testing constraining the steering wheel acceleration is recom-
mended.

Different sample times
The choice of sample time was not evaluated against other sample times. This is
interesting to look into, seeing how much lower or higher one can go, and the benefits
and drawbacks of both cases.

Evaluate code efficiency
In order to be tested in a dSpace Autobox, the developed algorithms most likely
need to be written more efficiently w.r.t. memory usage and processor usage.
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