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Abstract

Recently, a new class of uncoordinated multiple access techniques named coded slot-
ted ALOHA (CSA) has emerged and attracted much interest. CSA is based on the
well known slotted ALOHA system. The key innovation of CSA is that users repli-
cate each packet over several slots and that decoding is performed iteratively over
a sequence of slots using successive interference cancellation. One of the important
features of CSA is that it can be represented by means of a bipartite graph. As a
result, the performance and analysis of CSA shows a lot of resemblance to that of
codes on graphs.

In this work, we consider a frame asynchronous CSA (FA-CSA) system, where
users joins the system on a slot-by-slot basis according to a Poisson process. A
user begins its local frame in the slot following the slot it joins, and replicates its
message in a number of randomly selected slots of the local frame. This is in contrast
with classical frame synchronous CSA (FS-CSA), where a user that joins the system
awaits the start of the next global frame, in which it replicates its message over a
number of randomly selected slots.

The main purpose of this work is to analyze and investigate the performance
of FA-CSA. The performance is evaluated in terms of packet loss rate (PLR) and
delay. In particular, we derive (approximate) density evolution equations that char-
acterize the asymptotic behavior of iteratively decoded FA-CSA. We show that, if
the receiver can monitor the system before anyone starts transmitting, a boundary-
effect similar to that of spatially coupled codes occurs, which greatly improves the
decoding threshold. Furthermore, we derive tight approximations of the error floor
(EF), in the finite frame length regime, based on the probability of occurrence of
the most frequent stopping sets. We show that, in general, FA-CSA provides better
PLR in both the EF and waterfall regions as compared to frame synchronous CSA.
Moreover, we show by simulation that FA-CSA generally outperforms FS-CSA in
terms of delay.

Keywords: Coded slotted ALOHA, density evolution, error floor, multiple access,
spatial coupling, stopping sets.
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Acronyms

ARQ automatic repeat request

BEC binary erasure channel

CSMA carrier sense mutiple access

CN check node

CSA coded slotted ALOHA

DE density evolution

EF error floor

FDMA frequency division multiple access

FA-CSA frame asynchronous coded slotted ALOHA

FA-CSA-F FA-CSA with first slot fixed

FA-CSA-FB FA-CSA-F with boundary effect

FA-CSA-FNB FA-CSA-F with no boundary effect

FA-CSA-U FA-CSA with uniform slot selection
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IC interference cancellation
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PLR packet loss rate

pmf probability mass function

PA pure ALOHA

RV random variable

SA slotted ALOHA

SC-CSA spatially coupled CSA

SIC successive interference cancellation

TDMA time division multiple access

VN variable node
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Symbols

τ duration of packet [s]

n frame length [slots]

M number of active users (RV)

m number of active users (realization)

g system load [users/slot]

p̄ packet loss rate

nRX memory size [slots]

Λ(x) node-perspective variable node degree distribution

λ(x) edge-perspective variable node degree distribution

P(x) node-perspective check node degree distribution

ρ(x) edge-perspective check node degree distribution

p probability of passing erasure message over VN edge

q probability of passing erasure message over CN edge

pi→j probability of an erasure message from a class-i VN to a class-j CN

qi→j probability of an erasure message from a class-i CN to a class-j VN

g? iterative decoding threshold [users/slot]

u arbitrary user

S graph representation of a stopping set

v(S) graph profile of S
vl (S) number of degree l variable nodes in S
ν (S) number of variable nodes in S
µ (S) number of check nodes in S
c(S) number of graph isomorphisms of S
δmax maximum delay constraint [slots]
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Chapter 1

Introduction

1.1 Background and Motivation

The need for multiple access techniques arises whenever more than one user needs
to share common resources in a communication system. Typically, these common
resources are time and frequency. The purpose of a multiple access technique is
to describe how resources should be allocated amongst users in a system [1]. In
many communications systems it is possible to have a coordinated allocation of
resources. Coordination is carried out by a central unit, e.g., a base station in a
cellular system. Conventional examples of coordinated multiple access techniques
are frequency division multiple access (FDMA) and time division multiple access
(TDMA) [1]. These techniques are common in, e.g., cellular systems such as the
Global System for Mobile (GSM), where TDMA is used, and Digital European
Cordless Telephone (DECT), where FDMA is used [2].

In some systems, however, coordination is not possible, for which the reasons can
be many. One reason is that the set of users in the system may change too quickly
for a coordinator to keep track of. Another reason is that no natural coordinator
exists in the system. A third reason is that the coordinated resource allocation
itself might be time consuming, and thus, impose unacceptably large latencies on
the communication.

Uncoordinated multiple access techniques can be used when coordination is not
possible or desired. These techniques let users select independently which resources
to use for transmission, in an arbitrary or semi-arbitrary manner. Some of the most
frequently used uncoordinated multiple access techniques are based on the ALOHA
systems [3, 4], proposed in the 1970s for wireless networks. The ALOHA systems
provide packet based communication. In the first adaption of ALOHA, named pure
ALOHA (PA), a user simply sends a packet over the shared medium as soon as
the packet is generated. A successor of PA is the slotted ALOHA (SA) system, in
which time is divided into slots of duration τ and users must send packets within
the boundaries of slots.

Example 1. Toy examples of both of PA and SA are depicted in Fig. 1.1. Green
slots correspond to successful transmissions and red slots show packets in collision.
In both PA and SA the two middle users are interfering each other and therefore
their packets are lost. In PA packets are lost even if there is just a partial collision.
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Figure 1.1: Toy examples of pure ALOHA and slotted ALOHA, respectively. Green slots
represent successfully received packets while red slots represent packets in collision.

Analysis of the ALOHA systems is commonly performed with the assumptions
that users join the system (generates packets) according to a Poisson process with
mean g. The parameter g is the average number of users that join per time unit
(t.u.), where a t.u. is the duration of a packet or a slot. Furthermore, it is assumed
that a packet is successfully received if it is not interfered by any other user packet
on the shared medium.

The throughput of a multiple access technique is defined as the fraction of time
(or slots) that contains successful packet transmissions. It is straightforward to
show that the throughput of PA is TPA = ge−2g, whereas for SA it is TSA = ge−g.
The throughput of PA, SA, and TDMA is plotted as a function of the system load
in Fig. 1.2a, where the system load is the average number of users per t.u.. The
maximum throughput is given by T ?PA = 1/(2e) and T ?SA = 1/e , for PA and SA
respectively. Furthermore, the packet loss rate (PLR), denoted by p̄, which is the
fraction of unresolved packets such that p̄ = 1−T/g, is plotted for the same systems
as a function of the system load in Fig. 1.2b. Clearly, the efficiency and reliability of
PA and SA is relatively low, i.e., many packets are sent but never resolved. However,
PA and SA provide very simple uncoordinated multiple access and we will later see
that SA can be extended to provide reliable and low latency uncoordinated multiple
access.

In systems where PA or SA is employed and reliable communication is desired,
the most common solution is to use an automatic repeat request (ARQ) scheme
alongside PA or SA [5]. The function of an ARQ scheme is to notify users upon
successful transmission of a packet. The intended receiver does so by replying with
an acknowledgment whenever it receives a packet successfully. Acknowledgments are
typically sent on a separate, collision free, communication channel. If a user does not
receive an acknowledgment from the receiver within some time-out duration, it will
retransmit the packet. This way, the packet may be transmitted many times before
it is successfully received. ARQ schemes allow simple techniques like PA and SA
provide reliable multiple access. However, it introduces some problems, such as large
delays and possible congestion of the shared medium. Furthermore, ARQ requires
a separate channel for acknowledgments. We remark that there are many different
types of ARQ schemes and that the one explained here just gives the general idea
of its operation.
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Figure 1.2: Performance comparison of PA, SA, and TDMA.

Another common class of uncoordinated multiple access are carrier sense mutiple
access (CSMA) based techniques, which also provide packet based communication
[2]. In CSMA, when a user joins the system, it first senses the shared medium to
check if it is currently occupied by some other user. If the medium is not busy, the
user transmits its packet immediately. However, if the medium is busy, the user will
back off for some random duration, and then sense the medium again. This process
of backing off and sensing may be repeated several times before transmission. Even
if CSMA avoids more collisions than PA and SA by sensing the medium, it is most
usually employed with an ARQ scheme alongside. One well known standard that
uses CSMA with collision avoidance is the IEEE standard 802.11, commonly known
as WiFi [6].

Recently, a considerable interest for finding novel solutions to provide reliable,
low latency communication in dynamic networks has emerged. The reason for this
is that the next generation communication systems, 5G, promise to handle these
scenarios [7]. Finding solutions that can provide this type of communication will
pave the way for many future technologies such as traffic safety, traffic efficiency,
and efficient industrial communication, to mention a few. One essential component
of these new systems is, of course, the multiple access technique. Conventional
coordinated and uncoordinated multiple access techniques are not well suited for
these applications, because they cannot meet the requirements either on reliability,
latency, or dynamism. A promising novel uncoordinated multiple access technique
for these scenarios is coded slotted ALOHA (CSA).

1.2 Coded Slotted ALOHA

In this section, we introduce the concept of CSA and present some results that
are useful in order to understand the work of this thesis. CSA builds on the SA
technique and borrows ideas from the field of error correcting codes to provide highly
reliable uncoordinated multiple access without the use of an ARQ scheme.

Similarly to SA, time is divided into slots in CSA. Each slot has duration τ and
users in the system join the system according to some user model. A user that joins
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the system generates a packet of duration τ (including guard intervals), such that
a packet can be place within one slot. Two key ingredients of CSA is to let users
replicate each packet a number of times within a frame of slots, and to perform
iterative decoding of frames using successive interference cancellation (SIC). This
idea was first presented in [8], where each user replicated its packet a fixed factor l.
Later this idea was generalized so that users instead could pick individual repetition
factors from a predefined degree distribution [9]. The degree distribution is given in
polynomial form as

Λ(x)
∆
=
∑
l

Λlx
l, (1.1)

where Λl is the probability that a user selects a repetition factor l and Λ(1) = 1. A
user with repetition factor l is called a degree-l user and transmits l replicas of its
packet in l randomly selected slots from a set of n slots. In the context ofCSA n is
commonly referred to as the frame length. It is also usually assumed that the users
are both slot and frame synchronous [8, 9]. Furthermore, in each frame, m users
transmit all their replicas in randomly selected slots of that frame. The system load
g is defined as

g
∆
=
m

n
. (1.2)

More generally, the system load is the average number of users per slot. A slot that
contains r replicas is a degree-r slot. Similarly to the degree distribution for users
in (1.1), we define a degree distribution for slots as

P(x)
∆
=
∑
r

Pr x
r, (1.3)

where Pr denotes the probability that slot has degree r. P(x) is a consequence of
the selected degree distribution Λ(x) for users and the system load g, whereas Λ(x)
is directly controlled by the system designer.

In the analysis of CSA it is typically assumed that perfect interference cancella-
tion (IC) can be performed to remove the interference of a user’s replicas once its
packet has been decoded. This assumption makes the analysis of the system more
feasible. In [8,9] actual (low complexity) IC was implemented with little performance
degradation as compared to perfect IC.

Iterative decoding of a CSA frame using SIC is performed as follows:

1. Find all degree-1 slots in the frame and the corresponding users that transmit
within these slots.

2. Decode the packets of the users found in step 1 and cancel the interference of
all their replicas using IC.

3. If no degree-1 slots were found in step 1 or if a maximum allowed number of
iterations has been reached, terminate the decoding. Otherwise, go back to
step 1.

To facilitate step 2, all packets in CSA contain pointers to its other replicas. SIC is
very powerful because the decoding of one user’s packets allows for the interference
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Figure 1.3: Example of iterative decoding of one frame in CSA. The decoding terminates after
4 iterations, since no unresolved users remain. At each step, slots with degree 1 are colored green
and slots with collisions are colored red.

of all its replicas to be removed. This can lead to the exposure of new degree-1 slots
and thus, to the decoding of other user’s packets.

Example 2. Iterative decoding of a CSA frame with Λ(x) = 0.5x2 + 0.5x3, n = 5,
and m = 4 is depicted in Fig. 1.3. Each sub-figure shows how the iterative decoding
with SIC proceeds step by step. In iteration 1, user 4 is resolved since slot 4 is
of degree 1. The replicas of user 4 in slot 3 and 5 can then also be lifted by IC.
In iteration 2, slot 5 is of degree 1 and user 1 can therefore be resolved, and the
replica in slot 2 can also be lifted. In iteration 3, slot 2 is of degree 1, user 2 can
be resolved, and the replicas lifted. In iteration 4, only user 3 remains and can of
course be resolved. We remark that in a CSA system, a new frame would of course
take place right after the depicted one, in which 4 new users send their replicas.

One of the most important results on CSA is the connection to codes on graphs,
established in [9]. The operation of a CSA system can be represented by a bipartite
graph G = {V , C, E}, where V is the set of variable nodes (VNs), C is the set of
check nodes (CNs) and E is the set of edges connecting the VNs and CNs. There
is an edge ei→j ∈ E from VN i to CN j if user i transmits a packet in slot j. VNs
represent users and CNs represent slots, and the terms will be used interchangeably
throughout the thesis. Decoding of the CSA system can be viewed as a message
passing algorithm over the edges of the underlying graph. This CSA decoder is
in fact equivalent to the peeling decoder for low-density-parity-check (LDPC) codes
over the binary erasure channel (BEC) [10]. We remark that the decoder for CSA
(and the peeling decoder) does not always succeed as in Example 2. A collision
pattern, or equivalently a graph structure, that makes the decoder fail is called a
stopping set [10]. More details about stopping sets are given in Section 3.3.
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(a) Decoding iteration 1 (b) Decoding iteration 2

(c) Decoding iteration 3 (d) Decoding iteration 4

Figure 1.4: Bipartite-graph representation of the example in Fig. 1.3. Circles represent VNs
and squares represent CNs. Dashed edges show the connection of degree-1 CNs to VNs at each
iteration.

Example 3. In Fig. 1.4, a graph representation of the decoding process previously
depicted in Fig. 1.3 is shown. Circles represent VNs (users) and squares represent
CNs (slots). Decoding using the graph is performed by iteratively peeling of all edges
of VNs with at least one edge connected to a degree-1 CN. Edges connected to degree-
1 CNs at each iteration are dashed in Fig. 1.4.

A common analytical tool for iteratively decoded error correcting codes is density
evolution (DE). DE is used to predict the average asymptotic behavior of LDPC
code ensembles with certain degree distributions. It does so by mimicking the it-
erative decoder in a probabilistic manner. DE tracks the evolution, over decoding
iterations, of the probability densities of messages passed in the iterative message
passing decoder [10, 11]. This is especially simple for codes over the BEC, where a
message passed in the decoder is binary, i.e., either an erasure message or a non-
erasure message. Therefore, it suffices to track a single parameter per node in the
DE, i.e., the probability of passing an erasure message. Because of the similarities
between the decoding of CSA and the peeling decoder for LDPC codes over the
BEC, it makes sense that it is also possible to derive DE equations that character-
izes the asymptotic performance of CSA [9]. The derivation of the DE equations
assumes that the underlying graph is cycle-free, which is true for CSA when the
frame length tends to infinity.

We now derive the DE equations for CSA, as first derived in [9]. For the deriva-
tion, let pk denote the probability that an erasure message is passed over the edges
from a VN at iteration k, and denote by qk the probability that an erasure message
is passed over the edges from a CN at iteration k. A degree-l VN passes an erasure
message over an edge if all the incoming messages on its other edges in the previous
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iteration were erasures, thus,
pk = ql−1

k−1. (1.4)

A degree-r CN does not pass an erasure message over an edge if at least one of the
incoming messages on its other edges in the previous iteration was a non-erasure
message, thus,

qk = 1− (1− pk)r−1. (1.5)

We remark that (1.4) and (1.5) follow from the properties of the CSA decoder.
Equations (1.4) and (1.5) were derived assuming a certain degree (l or r) for VNs

and CNs, respectively. In general, VNs and CNs in the system will have different
degrees. Therefore, we generalize (1.4) and (1.5) by computing the expectation with
respect to the probability that an edge is connected to a degree-l VN and a degree-
r CN, respectively. To facilitate this computation we define the edge-perspective
distributions for VNs and CNs as

λ(x)
∆
=
∑
l

λlx
l−1 and ρ(x)

∆
=
∑
r

ρrx
r−1, (1.6)

where λl is the probability that an edge is connected to a degree-l VN and ρr is the
probability that an edge is connected to a degree-r CN. Furthermore,

λl =
Λll

Λ′(1)
and ρr =

Pr r

P′(1)
, (1.7)

where f ′ denotes the derivative of the function f .
Now, (1.4) is generalized to

pk =
∑
l

λlq
l−1
k−1 = λ(qk−1), (1.8)

and (1.5) to

qk = 1−
∑
r

ρr(1− pk)r−1 = 1− ρ(1− pk), (1.9)

where ρ(x) = e−gΛ
′(1)(1−x) as m → ∞ and n → ∞ and the ratio g = m/n is kept

constant [9]. This gives

qk
(a)
= 1− e−gΛ′(1)λ(qk−1) (b)

= 1− e−gΛ′(qk−1), (1.10)

where in (a) it was used that pk = λ(qk−1) and in (b) that λ(x) = Λ′(x)/Λ′(1).
DE is now performed by iteratively updating (1.10), with q0 initialized to 1, until

a fixed point is reached. The PLR at the kth iteration, p̄k, can be computed as

p̄k = Λ(qk). (1.11)

In the asymptotic regime, CSA typically exhibits a threshold behavior, i.e., when
the system operates below a threshold, denoted by g?, all users can be resolved.
However, if the system operates above the threshold, the PLR will be bounded
away from zero. The threshold g? can be predicted by the DE equation (1.10). It

7
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Figure 1.5: Typical PLR performance of CSA in the asymptotic and finite frame length regimes.

can be found by searching for the maximum load g for which q converges to 0 by
iteratively updating (1.10).

Asymptotic performance curves for CSA obtained by DE are depicted in Fig. 1.5a.
The figure clearly depicts the threshold in the asymptotic PLR performance of CSA
and additionally gives the values of the thresholds g? for the three distributions.
The VN-degree distribution Λ(x) = 0.50x2 + 0.28x3 + 0.22x8 with g? = 0.938 was
found in [9] by a threshold optimization over VN degree distributions with maximum
degree 8. In [12] it was shown that CSA (asymptotically) can provide packet loss
free transmission at a load of one user per slot, by letting user repetition degrees
follow an ideal soliton distribution. The ideal soliton distribution, however, is not
very practical since it has maximum degree equal to the frame length n. Fig. 1.5b
depicts instead simulated finite frame length performance with n = 100. We observe
that the finite frame length performance typically shows two regions of interest, the
waterfall (WF) region and the error floor (EF) region, both indicated in Fig. 1.5b
for Λ(x) = x4. In the WF region the PLR curve steeply changes from low to high.
This WF is related to the asymptotic threshold, whereas in the EF region the PLR
is low and governed by some dominant stopping sets. In [13] and [14] a framework
for predicting the finite frame length EF was established. We remark that CSA can
provide much better reliability (PLR) for reasonable system loads as compared with
SA and PA, compare Fig. 1.5b and Fig. 1.2b.

Before we move on to the contribution of this thesis, we first give a short summary
of some of the other relevant works on the topic of CSA.

In [15] a generalized CSA scheme was proposed where packets are split into
smaller segments and a randomly selected local component code is used to encode
the packet. Furthermore, a spatially coupled CSA (SC-CSA) was proposed in [16].
A large improvement of the iterative decoding threshold was observed for SC-CSA
as compared to standard CSA. This improvement is similar and related to the
thresholds improvement resulting from spatial coupling in LDPC codes [17].

To improve the delay performance, a frame asynchronous coded slotted ALOHA
(FA-CSA) system was proposed in [18]. In FA-CSA a user that joins the system
begins its local frame in the following slot. Furthermore, the user will select slots for
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its replicas randomly from the slots of its local frame. This is in contrast with clas-
sical frame synchronous coded slotted ALOHA (FS-CSA) where users that join the
system await the start of the next global frame, in which they become active and will
select slots for their replicas randomly from the slots of that global frame. Simula-
tion results in [18] show that, in addition to improve the average delay, FA-CSA also
outperforms FS-CSA in terms of throughput. A fully asynchronous (both frame-
and slot- asynchronous) CSA system was later proposed in [19]. The performance
of this fully asynchronous CSA in terms of PLR, also considering physical layer
aspects, was evaluated in accordance with the framework introduced in [20] and by
simulations.

1.3 Aim and Outline

In this thesis, we consider FA-CSA systems, where users join the system on a slot-
by-slot basis according to a Poisson process. Our ambition is to characterize the
performance of FA-CSA in terms of reliability and delay.

We derive approximate DE equations that predict the PLR performance of
FA-CSA as the frame length tends to infinity. Several models are considered for
the initialization of the system. We show that, if there is a boundary effect, i.e., if
the CNs at the boundary of the system have lower expected degree than other CNs,
the iterative decoding threshold is greatly improved as compared to the case with
no boundary effect. This threshold improvement is similar to the effect of spatial
coupling in LDPC codes, an idea that has previously been applied to CSA with
SC-CSA [16]. Furthermore, we derive tight analytical approximations of the EF in
the finite frame length regime. This analysis is based on the framework established
in [13] and [14], where the probability of occurrence of minimal stopping sets is
computed and used to approximate the EF in CSA systems. In order to evaluate
the performance of FA-CSA, we compare it with FS-CSA and SC-CSA in terms of
threshold, EF, and delay. The evaluation is based on the derived DE equations,
EF-predictions, and simulations.

The work in this thesis has resulted in an accepted conference paper [21], to be
presented at the 9th International Symposium on Turbo Codes & Iterative Informa-
tion Processing, Brest, France, September 2016, and a submitted journal paper [22].
Note that the content of [22] completely covers what is presented in this thesis.

The remainder of this thesis is organized as follows. In Chapter 2 we give a
detailed system model for FA-CSA. In Chapter 3 we analytically derive the CN
degree distributions, approximate DE equations, and predictions of the EF in the
finite frame length regime, for FA-CSA. In Chapter 4 we give numerical results on
and compare the performance of FA-CSA to FS-CSA and SC-CSA. Finally, Chapter
5 concludes the thesis.
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Chapter 2

System Model

A model for the systems considered in this thesis is presented in this chapter. The
systems do inherit many properties from the CSA system described in Section 1.2,
however, all properties of the considered systems are stated for completeness.

We consider a CSA system where time is divided into slots, each of duration
τ , and where users are slot-synchronized. A user that joins the system generates a
message and selects a repetition factor l randomly according to a predefined degree
distribution [9]. The message is then mapped into a physical layer packet of duration
τ (including guard intervals), such that one packet can be sent within one slot. The
user transmits l copies (called replicas) of the packet in randomly selected slots.
A user that repeats its packet l times is called a degree-l user and similarly a slot
containing r replicas from different users is called a degree-r slot. It is assumed that
a common receiver captures all transmission in the system, and that a packet can
always be decoded if at least one of its replicas is in a degree-1 slot. Furthermore,
to facilitate decoding, each replica of a packet contains pointers to all other replicas
of that packet.

We assume that users join the system on a slot basis according to a Poisson
process and let K denote the number of users that join in a slot. Then K is a
Poisson distributed random variable (RV) with mean g, K ∼ Po(g), where g is the
average system load in users per slot. The probability that k users join in a given
slot is thus,

Pr(K = k) =
e−ggk

k!
. (2.1)

This is a common user model for multiple access techniques, used, e.g., in the original
ALOHA systems [3, 4].

We define the two most important performance measures for the considered
systems.

Definition 1. The PLR, denoted by p̄, is the average probability that an arbitrary
user’s packet is never resolved.

Definition 2. The delay of a resolved user’s packet is the number of slots between
the slot a user joins the system and the slot following the decoding of its packet.

The PLR measures a systems reliability whereas the delay measures the latency
performance.
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2.1 Frame Synchronous Coded Slotted ALOHA

In FS-CSA, communication takes place during global frames consisting of n slots
each. A degree-l user that joins the system waits until the next frame, and transmits
its l replicas in randomly chosen slots of that frame. We then say that the user
is active the whole duration of the frame. We denote by M ∼ Po(ng) the RV
representing the number of active users per frame. Note that the active users in a
frame are all the users that joined the system during the previous frame.

Decoding of FS-CSA is performed on a slot-by-slot basis. Assume the decoding
of slot i. First, the interference caused by packets for which replicas in previous
slots have already been decoded is canceled from the slot. The receiver then checks
if slot i is a degree-1 slot and, if not, the decoding of slot i is stopped. Otherwise,
the packet in slot i is decoded and the interference from all its replicas canceled
from the corresponding past slots. The receiver then proceeds to iteratively find
any degree-1 slots in its memory, decode the packets in these slots, and cancel the
interference of all replicas of the decoded packets. This process continues until no
new degree-1 slots are found or a maximum number of iterations is reached.

FS-CSA is similar to the CSA described in Section 1.2, with the differences
being the Poisson user model and slot-by-slot decoding. This model for FS-CSA is
introduced here because it is more similar and comparable to the FA-CSA system
that we will describe next.

2.2 Frame Asynchronous Coded Slotted ALOHA

In FA-CSA, when a degree-l user joins the system it transmits a first replica in the
following slot. The remaining l − 1 replicas are distributed uniformly within the
n − 1 subsequent slots. Similarly to FS-CSA, n is the frame length of FA-CSA.
However, contrary to FS-CSA, slots are not arranged in global frames. We say that
a user is active during the n slots following the slot where it joins the system and,
accordingly, we call the n slots where a user is active its local frame. Because a user
always transmits in the first slot of its local frame, we call this system FA-CSA with
first slot fixed (FA-CSA-F).

Decoding of FA-CSA is performed in a similar way as for FS-CSA, with the only
difference that the receiver needs to consider not only the slots of a current frame,
but all slots of the entire history of the system. In practice, the receiver cannot
consider infinitely many slots and has a finite memory. We denote by nRX the size
of the receiver memory in number of slots. It was shown in [18] that increasing nRX

beyond 5n does not improve performance in general. A finite nRX creates the notion
of a sliding-window decoder.

We let

Mi ∼ Po(µi) (2.2)

denote the number of active users in the ith slot of FA-CSA, which is Poisson
distributed with mean µi. The active users in slot i are all users that joined in the
slots [i − n, i − 1]. We consider two different models for the initialization of the
system, i.e., for 1 ≤ i ≤ n. The first model assumes that there are no active users
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at i = 0. In this case

µi =

{
ig for 1 ≤ i < n

ng for i ≥ n
, (2.3)

and we say that a boundary effect is present for this model. Effectively, this means
that the n− 1 first slots of the system have lower average degree than the rest.

The second model assumes that there are already M ∼ Po(ng) active users at
i = 0. Thus,

µi = ng for all i ≥ 1. (2.4)

For this model, all considered slots have the same average degree.
The system with boundary effect corresponds to a system where the receiver is

present at the very start of communication, or potentially, a system with periods
of low load. A practical example is road side infrastructures in a vehicular network
as the intended receivers. On the other hand, the model with no boundary effect is
useful for systems where the receiver joins an already ongoing communication, e.g.,
a vehicle in a local vehicular network as the intended receiver. A vehicle will join
and leave local networks with ongoing communication as it is moving.

In addition to the initialization models described above, we introduce another
model for the selection of slots for transmission aside from FA-CSA-F. We con-
sider a system where a degree-l user selects all l slots for transmission randomly
from the local frame and call this FA-CSA with uniform slot selection (FA-CSA-U).
FA-CSA-U is useful because it is more similar to FS-CSA and provides a simplified
analysis in some cases, however we remark that FA-CSA-F is more practical and
performs better in general, therefore, the emphasis of this work is on FA-CSA-F.

In all, we consider four models for FA-CSA, i.e., FA-CSA-F with boundary ef-
fect (FA-CSA-FB), FA-CSA-F with no boundary effect (FA-CSA-FNB), FA-CSA-
U with boundary effect (FA-CSA-UB) and FA-CSA-U with no boundary effect
(FA-CSA-UNB). The terminology boundary effect will become clearer in Section
3.1 and 3.2.

Example 4. An example of FS-CSA and FA-CSA-FB is depicted in Fig. 2.1, with
n = 6, g = 0.5 and Λ(x) = 0.5x2 + 0.5x3. Gray areas show the frames of FS-
CSA and local frames for each user in FA-CSA-FB. Slots filled with green represent
packets of degree-2 users and slots filled with blue represents packets of degree-3
users. The delay of each user is indicated by a number in the slot in which it is
decoded. Furthermore, the four striped green slots in the second frame of the FS-
CSA example, collide in such a way that the packets in these slots cannot be decoded.
Such collision patterns are called stopping sets.

As described in Section 1.2, CSA can be represented by a bipartite graph. This
is of course also true for the systems considered here. In Fig. 2.2, the equivalent
graph representation of Fig. 2.1 is depicted.
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FS-CSA

FA-CSA

New users :
Slot :

# of active users :

# of active users :
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Figure 2.1: An illustration of both FS-CSA and FA-CSA-FB. Both systems have the same
new users joining. Green and blue slots represent replicas of degree-2 and 3 users, respectively.
The four striped slots of FS-CSA constitutes a stopping set and cannot be resolved by the iterative
decoder.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

1 2 3 4 5 6 7VN:

CN:
1 2 3 4 5 6 7 8 9VN:

CN: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

F
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S
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F
S
-C

S
A

Figure 2.2: Equivalent graph representations of the FS-CSA and FS-CSA systems depicted in
Fig. 2.1. VNs (users) are represented by circles and CNs (slots) by squares.
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Chapter 3

Analysis

3.1 Degree Distributions

In this section, we derive the VN- and CN-degree distributions for FA-CSA systems.
These degree distributions will later be used in the DE analysis. We define the node-
perspective VN- and CN-degree distribution as in (1.1) and (1.3), i.e.,

Λ(x)
∆
=
∑
l

Λlx
l and P(x)

∆
=
∑
r

Pr x
r, (3.1)

respectively, where Λl is the probability that an arbitrary VN has degree l and Pr

is the probability that a CN has degree r. Λ(x) is under the control of the system
designer and is subject to optimization. We introduce also the edge-perspective VN-
and CN-degree distributions as in (1.6),

λ(x)
∆
=
∑
l

λlx
l−1 and ρ(x)

∆
=
∑
r

ρrx
r−1, (3.2)

where λl denotes the probability that an edge is connected to a degree-l VN and ρr
denotes the probability that an edge is connected to a degree-r CN. The probabilities
λl and ρr are given by

λl =
lΛl∑
d dΛd

and ρr =
rPr∑
d dPd

, (3.3)

i.e., λ(x) = Λ′(x)/Λ′(1) and ρ(x) = P′(x)/P′(1), where f ′ denotes the derivative of
the function f .

3.1.1 Frame Asynchronous CSA with First Slot Fixed

For CSA systems with boundary effect, the first n CNs all have distinct degree
distributions. This gives rise to different classes of CNs and VNs. We call a CN at
position i (slot i) a class-i CN. Similarly, a VN that joins the system at position
i − 1 is a class-i VN. Additionally, in FA-CSA-F a degree-l class-i VN always has
one connection to a class-i CN, i.e., a fixed edge, and it has l − 1 connections to
randomly selected CNs of classes

Ji ∆
= [i+ 1, i+ n− 1]. (3.4)
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qi→j
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pi→i

VN i

. .
.

l − 1 pi→j

Figure 3.1: Class-i VN and CN and their corresponding connectivity.

The node connectivity for class-i VNs and CNs of FA-CSA-F is depicted in Fig. 3.1.
Accordingly, we define the node-perspective VN-degree distributions for FA-CSA-F

Λi→i(x) = x,

Λi→Ji(x) =
∑
l

Λi→Ji
l xl

(a)
=
∑
l

Λlx
l−1, (3.5)

where Λi→i(x) represents the fixed connection. Λi→Ji
l = Λl+1 is the probability

that a class-i VN has l connections to CNs of classes in Ji and in (a) we have
made the change of variables l→ l− 1. The corresponding edge-perspective degree
distributions are,

λi→i(x) = 1,

λi→Ji(x) =

(
Λi→Ji

)′
(x)

(Λi→Ji)′ (1)
=
∑
l

λi→Jil xl−2, (3.6)

with λi→Jil = Λl(l − 1)/
∑

l Λl(l − 1).
On the other hand, a class-i CN is connected to r1 class-i VNs and to r2 VNs of

classes in the range

Ki ∆
=

{
[1, i− 1] for 1 ≤ i < n

[i− n+ 1, i− 1] for i ≥ n
. (3.7)

Correspondingly, we define the degree distributions

Pi→i(x) =
∑
r1

Pi→i
r1

xr1 and Pi→Ki(x) =
∑
r2

Pi→Ki
r2

xr2 , (3.8)

where Pi→i
r1

is the probability that a class-i CN has r1 edges incident to class-i VNs,

and Pi→Ki
r2

is the probability that a class-i CN has r2 connections to VNs of classes
in Ki. The corresponding edge-perspective degree distributions are

ρi→i(x) =

(
Pi→i)′ (x)(
Pi→i)′ (1)

=
∑
r1

ρi→ir1
xr1−1 (3.9)

and

ρi→Ki(x) =

(
Pi→Ki

)′
(x)(

Pi→Ki
)′

(1)
=
∑
r2

ρi→Ki
r2

xr2−1. (3.10)

Proposition 1. The class-i CN degree distributions for FA-CSA-F are given by

Pi→i(x) = ρi→i(x) = exp(−g(1− x)) (3.11)
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and

Pi→Ki(x) = ρi→Ki(x) = exp

(
−δi(Λ

′(1)− 1)

n− 1
(1− x)

)
, (3.12)

with

δi =

{
min(i− 1, n− 1)g for FA-CSA-FB

(n− 1)g for FA-CSA-FNB
. (3.13)

Proof: Denote by R1 the RV representing the number of edges connecting a
class-i CN to class-i VNs. Clearly, R1 ∼ Po(g), because each class-i VN is connected
through a single edge to the class-i CN. Therefore,

Pi→i
r1

= Pr(R1 = r1) = exp(−g)
gr1

r1!
. (3.14)

Now Pi→i(x) is given by

Pi→i(x) =
∑
r1

Pi→i
r1

xr1 =
∞∑
r1=0

exp(−g)
gr1

r1!
xr1

(a)
= exp (−g(1− x)) , (3.15)

where in (a) we used that
∑∞

n=0
xn

n!
= exp(x). Furthermore,

ρi→i(x)=

(
Pi→i)′ (x)(
Pi→i)′ (1)

=
g exp(−g(1− x))

g exp(0)
= exp(−g(1− x)). (3.16)

We now denote by R2,i the number of edges connecting a class-i CN to VNs of
classes in the range Ki, as given by (3.7). The number of VNs that joins the system
in Ki is a Poisson RV, denoted by Ki, with mean δi given in (3.13). Each VN in Ki
connects to the class-i CN with probability

p =
Λ′(1)− 1

n− 1
. (3.17)

Applying the law of total probability this gives,

Pi→Ki
r2

=
∞∑
k=r2

Pr(R2,i = r2 |Ki = k) Pr(Ki = k)

=
∞∑
k=r2

(
k

r2

)
pr2 (1− p)k−r2 exp(−δi)

δki
k!

= exp(−δi)
(

p

1− p

)r2 ∞∑
k=r2

k!

r2!(k − r2)!
(1− p)k δ

k
i

k!

=
exp(−δi)

r2!

(
p

1− p

)r2 ∞∑
k=r2

((1− p)δi)k
(k − r2)!

(a)
=

exp(−δi)
r2!

(pδi)
r2

∞∑
k=0

((1− p)δi)k
k!

(b)
= exp(−pδi)

(pδi)
r2

r2!
, (3.18)
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where in (a) we used k′ = k − r2 and k′ ← k and in (b) we used that
∑∞

n=0
xn

n!
=

exp(x).

Following similar steps as in (3.15) and (3.16) gives

Pi→Ki(x) = ρi→Ki(x) = exp(−pδi(1− x)) = exp

(
−δi(Λ

′(1)− 1)

n− 1
(1− x)

)
, (3.19)

where p is given in (3.17)

3.1.2 Frame Asynchronous CSA with Uniform Slot Selec-
tion

For FA-CSA-U, we need to consider only one degree distribution per CN class
as defined in (3.1) and denote by Pi(x) and ρi(x) the node-perspective and edge-
perspective class-i CN degree distributions respectively.

Proposition 2. The class-i CN degree distribution for FA-CSA-U is given by

Pi(x) = ρi(x) = exp
(
−µi
n

Λ′(1)(1− x)
)
, (3.20)

where for FA-CSA-UB µi is given by (2.3) and for FA-CSA-UNB µi is given by
(2.4).

Proof: A class-i CN can be connected with any of the Mi VNs at position
i. The probability that each of the Mi VNs connects to the class-i CN is Λ′(1)/n.
This setup is similar to the setup for the derivation of Pi→Ki(x) in Proposition 1.
Taking similar steps, it directly follows that

Pi(x) = ρi(x) = exp
(
−µi
n

Λ′(1)(1− x)
)
. (3.21)

The CN degree distribution for FS-CSA, found in [9] holds also when a Poisson
user model is used, although the assumption that n→∞ is not necessary. In fact,
the CN degree distributions for FA-CSA-UNB and FS-CSA are the same, which
is not unexpected since FA-CSA-U is similar to FS-CSA in that the edges of an
arbitrary VN are connected to its local frame the same way as a VN of FS-CSA
connects edges to a global frame.

3.2 Density Evolution Analysis

In this section we derive the DE equations for FA-CSA with boundary effect that
will predict the asymptotic performance and allows us to find the decoding threshold
g? for an FA-CSA system. The derivation is similar to that for standard CSA given
in Section 1.2.
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3.2.1 Frame Asynchronous CSA with First Slot Fixed

Because a class-i VN is always connected to a class-i CN, all edges of FA-CSA-F
are not equivalent, see Fig. 3.1. Therefore, we must differentiate between edge types,
and thus update pi→i, pi→j, qi→i, and qi→j separately in the DE, where pi→i denotes
the probability of an erasure message from a class-i VN to a class-i CN, pi→j denotes
the probability of an erasure message from a class-i VN to a class-j CN with j 6= i,
qi→i denotes the probability of an erasure message from a class-i CN to a class-i
VN and qi→j denotes the probability of an erasure message from a class-i CN o to
a class-j-VN with j 6= i.

A message from a class-i VN is in erasure if all incoming messages on other edges
are in erasure, i.e.,

pi→i =
∑
l

Λlq̃
l−1
i = Λi→Ji(q̃i), (3.22)

pi→j = qi→i
∑
l

λi→Jil q̃ l−2
i = qi→iλ

i→Ji (q̃i) , (3.23)

for j ∈ Ji, where Ji is given in (3.4), and

q̃i =
1

n− 1

∑
j∈Ji

qj→i, (3.24)

is the average erasure probability of incoming messages from CNs in Ji.
A class-i CN is resolved whenever at most one of its edges carries an erasure

message. Equivalently, a message from a CN is not an erasure if none of the incoming
r1 + r2 − 1 messages on other edges are in erasure. Therefore,

qi→i = 1−
(
∞∑
r1=1

ρi→ir1
(1− pi→i)r1−1

)(
∞∑
r2=0

Pi→Ki
r2

(1− p̃i)r2
)

(a)
= 1−

(
∞∑
r1=0

e−ggr1

r1!
(1− pi→i)r1

)
Pi→Ki(1− p̃i)

= 1− Pi→i(1− pi→i) Pi→Ki(1− p̃i)

= 1− exp (−gpi→i) exp

(
−δi(Λ

′(1)− 1)

n− 1
p̃i

)
(3.25)

where in (a) we used ρi→ir1
= Pi→i

r1
, r′1 = r1 − 1 and r′1 ← r1, and where

p̃i =


0 for i = 1∑

k∈Ki
pk→i/(i− 1) for 1 < i < n∑

k∈Ki
pk→i/(n− 1) for i ≥ n

. (3.26)

is the average erasure probability of incoming messages from VNs in Ki and Ki is
given by (3.7). Similarly,

qi→j = 1−
(
∞∑
r1=0

Pi→i
r1

(1− pi→i)r1
)(

∞∑
r2=1

ρi→Ki
r2

(1− p̃i)r2−1

)

= 1− exp (−gpi→i) exp

(
−δi(Λ

′(1)− 1)

n− 1
p̃i

)
(3.27)
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for j ∈ Ki. Note that qi→i = qi→j, which follows from the fact that Pi→i(x) = ρi→i(x)
and Pi→Ki(x) = ρi→Ki(x) which, in turn, follows from the properties of the Poisson
distribution (see Proposition 1). For a general user model, however, qi→i 6= qi→j.

DE is now performed by iteratively updating (3.22)-(3.27), with pi→i, pi→j, qi→i
and qi→j initialized to 1. The PLR at position i can be computed as p̄i = Λ(q̃i)qi→i/q̃i
and the threshold g? is found by searching for the largest value of g for which p̄i
converges to 0 for all positions. For a system without boundary effect (3.22)-(3.27)
are only updated for i > n

We remark that exact DE requires n → ∞. This would require to keep track
of an infinite number of node classes, which is unfeasible in practice. Therefore,
the thresholds computed in Chapter 4 must be seen as approximate DE thresholds.
However, we have found that it is sufficient to set n ≈ 100 and run DE over a chain
of 20n positions in order to obtain g? with good precision. Considering larger values
of n does not change the obtained thresholds.

3.2.2 Frame Asynchronous CSA with Uniform Slot Selec-
tion

For FA-CSA-U all edges are equivalent and therefore we do not need to consider
different edge-types. We denote by pi the probability that an erasure message is
passed from a class-i VN , and by qi the probability that an erasure message is
passed from the class-i CN. It follows that,

pi =
∑
l

λlq̃
l−1
i = λ(q̃i), (3.28)

where

q̃i =
1

n

i+n−1∑
j=i

qi, (3.29)

is the average erasure probability of the incoming messages to a class-i VN. Fur-
thermore,

qi = 1−
∑
r

ρi,r(1− p̃i) r−1 = 1− ρi(1− p̃i) = 1− exp
(
−µi
n

Λ′(1)p̃i

)
. (3.30)

where

p̃i =

{∑i
j=1 pj/i for 1 ≤ i < n∑i
j=i−n+1 pj/n for i ≥ n

. (3.31)

is the average erasure probability of the incoming messages to the class-i CN.
DE is performed similarly to FA-CSA-F, by iteratively updating (3.28)-(3.31),

with pi and qi initialized to 1. The PLR at position i can be computed as p̄i = Λ(q̃i).

3.3 Finite Frame Length Analysis

In the finite frame length regime, CSA exhibits an error floor in its PLR performance
for low to medium loads g. The EF is due to stopping sets, i.e., graph structures
which make the iterative decoder fail.

20



S1 S2 S3 S̃3 S4

S5 S6 S7 S8 S9
Figure 3.2: All minimal stopping sets with µ (S) ≤ 3, also including two isomorphic graphs S3
and S̃3.

Definition 3. A stopping set S is a connected bipartite subgraph with all CNs of
degree strictly larger than 1.

The EF of CSA is dominated by minimal stopping sets.

Definition 4. A minimal stopping set is a stopping set that does not contain a
nonempty stopping set of smaller size.

In this section, we find estimates of the EF by approximating the probability of
occurrence of minimal stopping sets.

We first introduce some useful notation for a stopping set S. Let µ (S) denote
the number of CNs, ν (S) the number of VNs, and vl (S) the number of degree-l
VNs in S. Moreover, we define the degree profile of a stopping set as the vec-
tor v(S) = [v0 (S), v1 (S), . . . , vµ(S) (S)], and denote by c(S) the number of graph
isomorphisms of S [23, p.4]. Unfortunately, there is no straightforward analytical
expression for c(S). However, c(S) is tabulated in Appendix A, along with v(S),
ν (S), µ (S) and c(S) for all 142 minimal stopping sets of FA-CSA and FS-CSA with
µ (S) ≤ 5. Furthermore, we remark that similar finite frame length analysis for reg-
ular VN-degree distributions has previously been presented in [19, 20] for the fully
asynchronous CSA and FS-CSA respectively. In Fig. 3.2 we depict all nine minimal
stopping sets for FA-CSA with µ (S) ≤ 3, including two isomorphic stopping sets,
S3 and S̃3.

If we allow infinitely many decoding iterations and let nRX → ∞ for FA-CSA,
all packet losses in CSA are caused by stopping sets. The PLR, see Definition 1, is
then equivalent to the probability that an arbitrary VN is part of a stopping set.

We denote by A the set of all stopping sets, and by A? ⊂ A a smaller set of
minimal stopping sets that dominate the PLR in the EF region. Furthermore, let u
denote an arbitrary VN in a CSA system. The PLR can be approximated as follows,

p̄ = Pr

(⋃
S∈A

u ∈ S
)

(a)

≤
∑
S∈A

Pr (u ∈ S)
(b)≈
∑
S∈A?

Pr (u ∈ S)

(c)
=
∑
S∈A?

∞∑
m=0

Pr (u ∈ S|m) Pr(M = m).

(3.32)

In (a) the probability is upper bounded using the union bound. In (b) we consider
a summation over the subset A?, turning the upper bound into an approximation.
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Lastly, in (c) we condition the probability of u being part of a stopping set S on the
RV M , representing the number of VNs that can create the stopping set S with u,
and average over all possible values of M .

Using (3.32) as a starting point, we derive EF approximations for FA-CSA-FNB
and FA-CSA-UNB. We do not consider boundary effects as this simplifies the anal-
ysis. Furthermore, we remark that a boundary has negligible impact on the EF of
a system that runs for a longer time.

We express Pr (u ∈ S|m) in (3.32) in terms of factors that are simpler to derive,

Pr (u ∈ S|m) =
a(S,m)b(S)c(S)

d(S)
· ν (S)

m
, (3.33)

where a(S,m) is the expected number of ways to select ν (S) VNs with the de-
gree profile v(S) from a set of m VNs with degree distribution Λ(x), b(S) is the
number of ways to select the CNs of S such that u ∈ S, c(S) is the number of
graph-isomorphisms of S, and d(S) is the total number of ways in which ν (S) VNs
(including u) with degree profile v(S) can connect edges to CNs in their local frames.

The fraction ν(S)
m

represents the probability that VN u is one of the ν (S) VNs in S.
We give first the factor a(S), because it is the same for FA-CSA-FNB and

FA-CSA-UNB,

a(S,m) =

(
m

ν (S)

)
ν (S)!

∏
l

Λ
vl(S)
l

vl (S)!
, (3.34)

which stems from the multinomial distribution and was derived in [14]. In the
following, we derive expressions for the factors b(S) and d(S).

3.3.1 Frame Asynchronous CSA with First Slot Fixed

Let u represent a VN active in the range [i, i+ n− 1]. Furthermore, to simplify the
derivation we make the assumption that S spans at most n slots. Without loss of
generality, we consider the range [i, i+ n− 1].

Since we are considering stopping sets constrained to the slots in the range
[i, i+n−1] that contain u, the first slot of the stopping set must be i. According to
our assumption, the remaining µ (S)−1 slots of S are chosen with equal probability
from the subsequent n− 1 slots. This gives,

bFA−F(S) ≈
(

n− 1

µ (S)− 1

)
. (3.35)

We now consider dFA−F(S). An arbitrary user in slot i+n−1 has n equiprobable
slots for its first replica, i.e., the slots in [i, i + n − 1]. However, the first replica of
user u is fixed to slot i. For each placement of a degree-l user’s first replica, there are(
n−1
l−1

)
possible placements for its remaining replicas. Furthermore, each user places

its replicas independently of other users. Thus,

dFA−F(S) = n−1
∏
l

(
n

(
n− 1

l − 1

))vl(S)

. (3.36)
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An EF-approximation for FA-CSA-F is now given by evaluating (3.32), using
(3.33)-(3.36) and Pr(M = m) = e−ng(ng)m/m!,

p̄FA−F ≈
∑
S∈A?

∞∑
m=0

a(S,m)bFA−F(S)c(S)

dFA−F(S)

ν (S)

m

e−ng(ng)m

m!
. (3.37)

3.3.2 Frame Asynchronous CSA with Uniform Slot Selec-
tion

We denote by u an arbitrary VN in an FA-CSA-U system. Without loss of generality
we assume that if a VN u ∈ S, then u is the highest degree VN of S. We make
a simplifying assumption that all the VNs in S must be active in the entire range
[kf , kl] where kf and kl are the positions of the first and last CNs that u is connected
to respectively and we let q(S) denote the degree of u.

If we denote by D the RV representing the distance kl − kf , then its probability
mass function (pmf) is given by,

Pr(D = d) = (n− d)

(
d−1

q(S)−2

)(
n

q(S)

) (3.38)

for d ∈ [q(S) − 1, n − 1]. According to our assumption, the number of VNs from
which the VNs of S can be selected is Poisson distributed with mean g(n−D). We
let M ∼ Po(g(n − D)) be the RV representing this number, then m in (3.32) is a
realization of M , such that,

Pr(M = m) =
n−1∑

d=q(S)−1

e−g(n−d)(g(n− d))m

m!
(n− d)

(
d−1

q(S)−2

)(
n

q(S)

) , (3.39)

obtained by averaging over D.
The CNs for S are, according to the assumption, selected randomly from a set

of n CNs corresponding to the local frame of u, thus,

bFA−U(S) ≈
(

n

µ (S)

)
. (3.40)

A degree-l VN can connect its edges in
(
n
l

)
ways to its local frame, hence,

dFA−U(S) =
∏
l

(
n

l

)vl(S)

. (3.41)

Now, evaluating (3.32), using (3.34), (3.40)-(3.41), and (3.39) gives,

p̄FA−U ≈
∑
S∈A?

bFA−U(S)c(S)

dFA−U(S)

n−1∑
d=

q(S)−1

Pr(D = d)
∞∑
m=0

a(S,m)
ν (S)

m

e−g(n−d)(g(n− d))m

m!
,

(3.42)
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3.3.3 Frame Synchronous CSA

The probability Pr (u ∈ S|m) in (3.33) for an FS system with constant number of
users per frame m, has previously been derived in [13] and [14]. For completeness, we
give the corresponding expressions of the factors in (3.33), because the formulation
that we use is slightly different and also includes the Poisson user model.

The CNs for S are selected randomly and uniformly from a set of n CNs (corre-
sponding to the n slots of the frame) and thus,

bFS(S) =

(
n

µ (S)

)
. (3.43)

A degree-l VN can connect its edges in
(
n
l

)
ways to the frame, hence

dFS(S) =
∏
l

(
n

l

)vl(S)

. (3.44)

Now, evaluating (3.32), using (3.34), (3.43)-(3.44), and Pr(M = m) = e−ng(ng)m/m!
gives,

p̄FS ≈
∑
S∈A?

∞∑
m=0

a(S,m)bFS(S)c(S)

dFS(S)

ν (S)

m

e−ng(ng)m

m!
. (3.45)

3.3.4 Numerical Evaluation of Error Floor Approximations

We give an easy-to-use formula to evaluate (3.37),(3.42) and (3.45),

p̄ ≈
∑
S∈A?

φ(S)ν (S) c(S)

(
n

µ (S)

)∏
l

Λ
νl(S)
l

νl(S)!

(
n

l

)−νl(S)

, (3.46)

where φ(S) is given by

φ(S) =


µ (S)

∏
d d
−νd(S)

∑ν(S)−1
k=0 (−1)ν(S)−1+k (ν(S)−1)!

k!
(ng)k for FA-F∑ν(S)−1

k=0

∑n−q(S)
d=q(S)−1(−1)ν(S)−1+k (ν(S)−1)!

k!
((n− d)g)k(n− d)

( d−1
q(S)−2)
( n
q(S))

for FA-U∑ν(S)−1
k=0 (−1)ν(S)−1+k (ν(S)−1)!

k!
(ng)k for FS.

(3.47)
In (3.47), it has been used that

∞∑
m=0

e−ng(ng)m

m(m− ν (S))!
=

ν(S)−1∑
k=0

(−1)ν(S)−1+k (ν (S)− 1)!

k!
(ng)k (3.48)

thus, the infinite sum over m in (3.37), (3.42) and (3.45) can be replaced by a finite
sum, which makes the evaluation simpler.

24



Chapter 4

Numerical Results

In this chapter, we give numerical results on the performance of FA-CSA, both
in the asymptotic regime and in the finite frame length regime. We compare the
performance of FA-CSA to FS-CSA and SC-CSA in terms of decoding threshold,
EF, and delay.

4.1 Iterative Decoding Thresholds

In Table 4.1, we give (asymptotic) iterative decoding thresholds for FA-CSA, for
Λ(x) = xl with l = 3, 4, 5, 6, 7 and 8, and Λ(x) = Λ?(x) = 0.86x3 + 0.14x8. Λ?(x)
was obtained in [14] for FS-CSA by a joint optimization of the EF and the threshold.

We observe that for FA-CSA with boundary effect, the decoding threshold im-
proves significantly with respect to the case where there are already active users at
time i = 0. This is due to a boundary effect (thus its name) caused by the lower
degree of the CNs for i ∈ [1, n−1], which results in a wave-like decoding effect simi-
lar to that of spatially coupled LDPC (SC-LDPC) codes. Furthermore, for FA-CSA
with boundary effect and with regular VN-degree distribution Λ(x) = xl, the de-
coding threshold improves with increasing VN degree, whereas the opposite occurs
for the systems without boundary effect. This behavior is similar to that of regular
LDPC codes, where a larger VN degree improves the threshold for SC-LDPC codes
but has the opposite effect for uncoupled LDPC codes.

Table 4.1: DE thresholds for FA-CSA and FS-CSA

Λ(x) x3 x4 x5 x6 x7 x8 Λ?(x)

g?FA-FB 0.917 0.976 0.992 0.997 0.998 0.999 0.963

g?FA-UB 0.917 0.976 0.992 0.997 0.998 0.999 0.963

g?FA-FNB 0.818 0.772 0.701 0.637 0.581 0.534 0.851

g?FA-UNB 0.818 0.772 0.701 0.637 0.581 0.534 0.851

g?FS 0.818 0.772 0.701 0.637 0.581 0.534 0.851
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Figure 4.1: DE (dashed lines) and simulation results for n = 105 (solid lines) of the PLR for
FA-CSA-FB and FA-CSA-FNB

We also give in Table 4.1 the corresponding decoding thresholds for FS-CSA,
denoted by g?FS. FA-CSA with boundary effect yields significantly better thresholds
than FS-CSA. Interestingly, the thresholds for FA-CSA-FNB, FA-CSA-UNB and
FS-CSA are identical. Indeed, the systems are very similar in that FS-CSA and
FA-CSA-UNB have the same CN-degree distribution and CNs of FA-CSA-FNB have
the same average degree, but a slightly different node connectivity.

In Fig. 4.1, we plot the PLR of FA-CSA with boundary effect obtained from DE
(dashed lines) together with simulation results for n = 105 (solid lines), for Λ(x) = xl

with l = 3 and 5, and Λ(x) = Λ?(x). The figure shows that the DE equations are
in good agreement with the simulations and make apparent the boundary gain for
Λ(x) = x3 and Λ?(x).

4.2 Finite Frame Length Packet Loss Rate and

Error Floors

In Fig. 4.2 we plot the simulated PLR as a function of the system load, g, for
FA-CSA-FNB, FA-CSA-UNB and FS-CSA, with Λ(x) = Λ?(x) and n = 200. The
EF predictions, as derived in Section 3.3, are also shown with dotted lines. We
observe that both instances of FA-CSA outperforms FS-CSA in the EF and WF re-
gions. Furthermore, FA-CSA-FNB has a lower EF than FA-CSA-UNB, as predicted
by the EF approximations. This hierarchy of the EF performance holds in general,
i.e., for any n, and Λ(x). We remark further that corresponding FA systems with
boundary effect does not exhibit a better EF if they are run for a long period.

Even though the two FA-CSA systems whose PLR is presented in Fig. 4.2 do not
have a boundary effect, it is apparent that they exhibit much superior WF perfor-
mance as compared to FS-CSA. Since all three systems have the same asymptotic
decoding thresholds g? = 0.851, this means that FA-CSA systems without boundary
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FA-CSA-UNB and FS-CSA with n = 200 and Λ(x) = Λ?(x).
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are punished less by the finite frame length restriction and can therefore support
larger system loads while still providing reliable multiple access in the finite frame
length regime.

In Fig. 4.3 we compare the PLR performance in the WF region of FA-CSA-FB,
FA-CSA-FNB, and FS-CSA for Λ(x) = x3 and frame lengths n = 500, 1600, 10 000,
and 100 000. For short frame lengths (n = 500) FA-CSA-FB and FA-CSA-FNB have
similar PLR performance, whereas FS-CSA performs worse. When the frame length
is increased however, the FA system with boundary effect outperforms the system
without boundary effect in the WF region. This is seen already at n = 1600 where
the performance of FA-CSA-FB is slightly better as compared to FA-CSA-FNB.
This boundary gain increases with the frame length, as observed for n = 10 000 and
n = 100 000. The asymptotic performance for FA-CSA-FB and FA-CSA-FNB given
by DE is also plotted as dashed lines with the results for n = 100 000. As the frame
length is increased, we also notice how the performance of FS-CSA approaches that
of FA-CSA-FNB, as predicted by DE and the results in Table 4.1.

We have argued previously that the reason systems with boundary effect asymp-
totically has a large gain in terms of decoding threshold is because the lower degree
CNs at the boundary will induce a wave-like decoding effect. This improvement,
of course, will only happen if the wave can propagate through the entirety of the
system. Due to the randomness of the Poisson user model the experienced load in a
window of n slots will sometimes be above, and sometimes below the expected load
g users/slot. Such variations are more distinct for low frame lengths. Therefore, we
believe, and our simulations suggest, that for low frame lengths an induced wave
will be broken by events where the experienced load is large, causing the wave not
to propagate further. Once the wave has been broken the system is equivalent to a
system without boundary effect, which explains why an improved WF performance
of FA-CSA-FB for n = 500 is not observed. For large frame lengths, instead, the
variation of the experienced load will be lower and a wave can therefore propagate
without being broken and will improve performance in the WF region.

By careful inspection of Fig. 4.3, we notice that the performance at a load g ≈
0.83 of FA-CSA-FNB is better for n = 1600 compared to n = 100 000. This is
counterintuitive at first, but might be explained by the same reasoning as above.
For particular frame lengths n, the variations of experienced load could be large
enough, such that the low peaks with some chance will induce a decoding wave,
similar to the wave of a system with boundary effect. To benefit from such events
it would be necessary that the frame length n is not too low, which would cause
a decoding wave to break soon after its occurrence. If instead the frame length is
large the probability of a sporadic wave’s creation would be extremely low due to
the low variations of the experienced load. Also this theory has been supported by
simulations. For FA-CSA-FNB with n = 1600 at a nominal system load g ≈ 0.83,
we have observed a sudden drop of the simulated PLR from a high level down to
the level of the EF after a number of slots. After the drop, the PLR remains low for
the duration of the simulation, suggesting that a wave is propagating. We remark
that this is indeed a sporadic behavior which occurs at different times (with respect
to the start of the system) in each round of simulation.
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Figure 4.4: Delay performance of FA-CSA-FNB, FA-CSA-UNB and FS-CSA, with n = 200
and Λ(x) = Λ?(x). Solid lines show the average delay and dashed lines show the 90th percentile
of the delay.

4.3 Finite Frame Length Delay Performance

We compare the delay (see Definition 2) performance of FA-CSA-FNB, FA-CSA-UNB
and FS-CSA for n = 200 and Λ?(x). In Fig. 4.4 the average and 90th percentile of the
delay is depicted for g ∈ [0.1, 1] users/slot. FA-CSA-FNB performs best in terms of
average delay and FS-CSA worst. This is expected because a user in FA-CSA-FNB
sends its replicas sooner after joining the system than in FA-CSA-UNB and FS-CSA.
However, in terms of the 90th percentile, the two FA systems perform worse than
FS-CSA for g ∈ [0.8, 0.9] users/slot. We remark that the delay is only defined for
successfully received packets, and for g ∈ [0.8, 0.9] the PLR is high for all three sys-
tems, as seen in Fig. 4.2. Therefore, if reliable communication is desired the systems
should not be operated at these loads anyway.

In Fig. 4.5, we plot the delay pmf, i.e., the probability that a user has a certain
delay k, for a system load g = 0.5 users/slot. The results show again that overall
FA-CSA-FNB provides the best delay performance.

Fig. 4.5 also shows that the maximum delay of the FA systems is larger than
that of the FS system, however the probability of such large delays is very low. In
practice the maximum delay of the FA systems is limited by the frame length and
the memory size of the receiver, whereas the maximum delay of an FS system is
strictly limited by the frame length.

Indeed, the maximum delay of FS-CSA is 2n − 1, whereas the maximum delay
of FA-CSA is given by n + nRX. In Figs. 4.4 and 4.5, we considered very large nRX

in order to not degrade the PLR performance. With a large nRX the maximum
possible delay of FA-CSA can be very large. For applications with strict latency
requirements this might be unacceptable. In Figs. 4.6 and 4.7, we therefore present
a comparison between FS-CSA and FA-CSA-F with a strict delay constraint of δmax

slots.

Definition 5. The PLR of a CSA system with a delay constraint δmax, is the average
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Figure 4.5: The pmf of the delay for FA-CSA-FNB, FA-CSA-UNB and FS-CSA, with n = 200
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probability that an arbitrary user’s packet is not resolved within δmax slots of joining
the system.

Note that Definition 5 is not a constraint on the memory size nRX. In Fig. 4.6
we depict the delay-constrained PLR (according to Definition 5) of FA-CSA-F with
δmax = 200 and compare it to that of FS-CSA with n = 100, using Λ(x) = Λ?(x).
We observe that for a given δmax it is possible to find a local frame length for
FA-CSA-F such that the PLR is strictly better than that of FS-CSA with the same
delay constraint. A good choice of n for FA-CSA-F with the maximum delay con-
straint δmax is, in general, half the length of the delay constraint, i.e., n = δmax/2,
as suggested by Fig. 4.6. This choice provides relatively good performance, and
outperforms FS-CSA, for all considered system loads.

A large memory can also be costly in practice. Therefore, we make a fair com-
parison in terms of memory size nRX of FA-CSA-F and FS-CSA. In FS-CSA the
only natural choice of memory size is the frame length n, because a decoder gains
nothing from capturing more than one frame simultaneously. For FA-CSA, however,
a fixed nRX leaves the choice of frame length n open. In Fig. 4.7, we give PLR results
for FA-CSA-F with Λ?(x), nRX = 400 and different frame lengths n. We compare
this to the PLR of FS-CSA with n = 400. For almost all system loads, it is possible
to find an appropriate n for FA-CSA-F, so that it performs better in terms of PLR
compared to FS-CSA with the same memory-constraint. The advantage of FA-CSA
in terms of memory is that it is more flexible, i.e., for a fixed memory length the
frame length can be varied. If memory size is not a constraint, the PLR performance
of FA-CSA will be improved by increasing the memory size and adjusting the frame
length.
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4.4 A Comparison With Spatially Coupled Coded

Slotted ALOHA

SC-CSA has previously been investigated in [16], where similar improvement of the
decoding threshold was observed to that of FA-CSA with boundary effect. SC-CSA
is a frame synchronous system, where a degree-l VN connects one edge to a randomly
selected CN from each of l consecutive frames. Furthermore, w + l − 1 frames are
grouped into a super-frame. The CNs of the l− 1 first and last frames of the super-
frame exhibit a lower average degree, creating a boundary effect in both ends of the
super-frame.

In [16, Table I] iterative decoding thresholds of SC-CSA are presented for Λ(x) =
xl with l = 2, 3, 4, 5 and 6. Surprisingly, the thresholds of SC-CSA are identical
to the thresholds for FA-CSA-FB and FA-CSA-UB, with the corresponding VN de-
gree distributions, given in Table 4.1. This is remarkable because the systems are
quite different, indeed SC-CSA is more structured and enforces the spatially coupled
structure, whereas it is inherent to FA-CSA. However, outside of the boundaries,
the CN degree distributions of FA-CSA and SC-CSA are identical (again the con-
nectivity of FA-CSA-FB is slightly different). This result suggests that there is a
fundamental limit on the graph density for which iterative decoding of CSA can be
successfully maintained once a decoding wave has been initiated. It also poses the
question of how ”small” a boundary can be in order to create a decoding wave that
will propagate through the system.

Because of the similarities between SC-CSA and FA-CSA with boundary effect,
we present a comparison of FA-CSA-FB, SC-CSA and FS-CSA in the finite frame
length regime in terms of PLR and delay.

In order to make a fair comparison of SC-CSA, FA-CSA-FB and FS-CSA, we
need to make some modifications to the system model for SC-CSA as it is described
in [16]. For our comparison, we consider slot-by-slot Poisson user model, where g is
the expected number of users joining per slot. Regular VN-degree distributions are
considered, i.e., of the form Λ(x) = xl. Furthermore the SC-CSA system is frame-
synchronous with frames of length n/l. A user that joins the system in SC-CSA
will send one replica in each of the l frames following the frame it joined in. We say
that a user is active the whole duration of these l frames. This way, the largest span
of a users replicas is equal when comparing SC-CSA, FA-CSA-FB and FS-CSA.
Furthermore, we consider a SC-CSA system with boundary effect, i.e., there are
no active users in the beginning, meaning that CNs of the first l − 1 frames will
exhibit lower expected degree than other CNs. We do not terminate the SC-CSA
system which would give the CNs of the last l−1 frames have lower expected degree
too, since this is not done for FA-CSA-FB. Decoding of SC-CSA is performed in
the same way as for FA-CSA. Simulation results on the PLR for n = 120 and
l = 3 are depicted in Fig. 4.8 for FA-CSA-FB, SC-CSA and FS-CSA. As expected,
the WF performance of FA-CSA-FB and SC-CSA is similar. However, in the EF
FA-CSA-FB performs remarkably better than SC-CSA, which has even worse EF
than FS-CSA. The reason for this is that in SC-CSA each replica is forced into
a smaller frame of size n/l. This makes the probability that two users selects the
l same slots for transmission much larger. In fact, the probability can easily be
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Figure 4.8: Simulated PLR (solid) and EF approximations (dotted) for FA-CSA-FB, FS-CSA
and SC-CSA with n = 120 and Λ(x) = x3.
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Figure 4.9: Simulated average delay (solid) and 90th percentile delay (dashed) for FA-CSA-FB,
FS-CSA and SC-CSA with n = 120 and Λ(x) = x3.
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computed and used as an EF prediction for SC-CSA, as follows,

p̄SC ≈
∞∑
m=0

m

(
l

n

)l
e−gn/l(gn/l)m

m!
=

(
l

n

)l
gn

l
, (4.1)

which is plotted with dotted lines in Fig. 4.8.
Additionally, average and 90th percentile curves for the delay are given in Fig. 4.9.

For SC-CSA and FA-CSA-FB the delay behavior is similar. Both systems allow a
packet to be decoded past the reception of its last replica, which is why the 90th
percentile delay is dramatically increased for loads corresponding to the WF-region
of the PLR. The delay of FA-CSA-FB is better compared to SC-CSA, because a user
that joins the system in SC-CSA needs to wait for the next frame before sending its
first replica. Of course, since the time a user in FS-CSA waits after joining before
its first replica is sent is even longer, the delay is even worse for FS-CSA.
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Chapter 5

Conclusions and Future Work

In this thesis, we considered uncoordinated multiple access using a frame asyn-
chronous adaptation of CSA called FA-CSA. We showed that FA-CSA is a promis-
ing technique for scenarios that demand reliable and low latency multiple access in
dynamic networks.

The DE equations that characterize the asymptotic behavior of FA-CSA were
derived and we showed that systems with so called boundary effect achieve greatly
improved decoding thresholds as compared with systems without boundary effect.
This is due to a wave-like decoding effect induced at the boundary and is similar
to the effect of spatial coupling for LDPC codes. Moreover, we found that FA-CSA
has identical decoding threshold to previously considered spatially coupled version
of CSA, SC-CSA, where the spatially coupled structure is enforced.

For the finite frame length regime, we derived EF approximations for FA-CSA,
based on the probability of occurrence of the most dominant stopping sets. We
further showed that FA-CSA is superior to FS-CSA in terms of WF, EF, and delay.
Furthermore, we made comparisons of FA-CSA and FS-CSA with constraints on
maximum delay and receiver memory length. Because of the similarities of FA-CSA
and SC-CSA in the asymptotic regime, we compared their performance also in the fi-
nite frame length regime. We showed that, in general, FA-CSA outperforms SC-CSA
in terms of both EF and delay, whereas the performance in the WF region is similar.

In future works it would be interesting to investigate the wave-like decoding
effect of FA-CSA further. Perhaps it is possible to induce a decoding wave simply
by having a load that varies over time, which in many systems can be a realistic
model. It would indeed be interesting to find out how large variations of the load
are necessary to create a decoding wave. One could also make a more thorough
comparison of FA-CSA and FS-CSA in terms of complexity, by limiting the number
of decoding iterations and the receiver memory length. Furthermore, it could be
possible in practice to consider the capture effect for FA-CSA, i.e., the possibility
to decode packets in slots that are of degree larger than 1 with some probability.
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Appendix A

List of Minimal Stopping Sets

We give in this appendix a list of the properties of all minimal stopping sets (see Def-
inition 4) with µ (S) ≤ 5. The stopping sets were found by an exhaustive computer
search. The quantities v(S), ν (S), µ (S), and c(S) are defined at the beginning of
Section 3.3.

Notation v(S) ν (S) µ (S) c(S)

S1 [0, 2, 0, 0, 0, 0] 2 1 1
S2 [0, 0, 2, 0, 0, 0] 2 2 1
S3 [0, 2, 1, 0, 0, 0] 3 2 2
S4 [0, 0, 0, 2, 0, 0] 2 3 1
S5 [0, 1, 1, 1, 0, 0] 3 3 3
S6 [0, 0, 3, 0, 0, 0] 3 3 6
S7 [0, 0, 2, 1, 0, 0] 3 3 6
S8 [0, 3, 0, 1, 0, 0] 4 3 6
S9 [0, 2, 2, 0, 0, 0] 4 3 12
S10 [0, 0, 0, 0, 2, 0] 2 4 1
S11 [0, 1, 0, 1, 1, 0] 3 4 4
S12 [0, 0, 2, 0, 1, 0] 3 4 6
S13 [0, 0, 1, 2, 0, 0] 3 4 12
S14 [0, 0, 1, 1, 1, 0] 3 4 12
S15 [0, 0, 0, 3, 0, 0] 3 4 24
S16 [0, 0, 0, 2, 1, 0] 3 4 12
S17 [0, 2, 1, 0, 1, 0] 4 4 12
S18 [0, 2, 0, 2, 0, 0] 4 4 24
S19 [0, 1, 2, 1, 0, 0] 4 4 24
S20 [0, 1, 2, 1, 0, 0] 4 4 24
S21 [0, 0, 4, 0, 0, 0] 4 4 72
S22 [0, 1, 2, 0, 1, 0] 4 4 24
S23 [0, 1, 1, 2, 0, 0] 4 4 48
S24 [0, 0, 3, 1, 0, 0] 4 4 144
S25 [0, 0, 3, 1, 0, 0] 4 4 24
S26 [0, 0, 3, 0, 1, 0] 4 4 24
S27 [0, 0, 2, 2, 0, 0] 4 4 48
S28 [0, 0, 2, 2, 0, 0] 4 4 48
S29 [0, 4, 0, 0, 1, 0] 5 4 24
S30 [0, 3, 1, 1, 0, 0] 5 4 72
S31 [0, 2, 3, 0, 0, 0] 5 4 144
S32 [0, 0, 0, 0, 0, 2] 2 5 1
S33 [0, 1, 0, 0, 1, 1] 3 5 5
S34 [0, 0, 1, 1, 0, 1] 3 5 10
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S35 [0, 0, 1, 0, 2, 0] 3 5 20
S36 [0, 0, 0, 2, 1, 0] 3 5 30
S37 [0, 0, 1, 0, 1, 1] 3 5 20
S38 [0, 0, 0, 2, 0, 1] 3 5 30
S39 [0, 0, 0, 1, 2, 0] 3 5 60
S40 [0, 0, 0, 1, 1, 1] 3 5 30
S41 [0, 0, 0, 0, 3, 0] 3 5 60
S42 [0, 0, 0, 0, 2, 1] 3 5 20
S43 [0, 2, 0, 1, 0, 1] 4 5 20
S44 [0, 2, 0, 0, 2, 0] 4 5 40
S45 [0, 1, 2, 0, 0, 1] 4 5 30
S46 [0, 1, 1, 1, 1, 0] 4 5 20
S47 [0, 1, 1, 1, 1, 0] 4 5 30
S48 [0, 1, 1, 1, 1, 0] 4 5 60
S49 [0, 1, 0, 3, 0, 0] 4 5 180
S50 [0, 0, 3, 0, 1, 0] 4 5 180
S51 [0, 0, 2, 2, 0, 0] 4 5 120
S52 [0, 0, 2, 2, 0, 0] 4 5 60
S53 [0, 0, 2, 2, 0, 0] 4 5 120
S54 [0, 1, 1, 1, 0, 1] 4 5 60
S55 [0, 1, 1, 0, 2, 0] 4 5 120
S56 [0, 1, 0, 2, 1, 0] 4 5 120
S57 [0, 1, 0, 2, 1, 0] 4 5 120
S58 [0, 0, 3, 0, 0, 1] 4 5 180
S59 [0, 0, 2, 1, 1, 0] 4 5 120
S60 [0, 0, 2, 1, 1, 0] 4 5 240
S61 [0, 0, 2, 1, 1, 0] 4 5 120
S62 [0, 0, 2, 1, 1, 0] 4 5 120
S63 [0, 0, 2, 1, 1, 0] 4 5 60
S64 [0, 0, 1, 3, 0, 0] 4 5 360
S65 [0, 0, 1, 3, 0, 0] 4 5 360
S66 [0, 0, 1, 3, 0, 0] 4 5 360
S67 [0, 1, 0, 2, 0, 1] 4 5 60
S68 [0, 1, 0, 1, 2, 0] 4 5 120
S69 [0, 0, 2, 1, 0, 1] 4 5 60
S70 [0, 0, 2, 1, 0, 1] 4 5 120
S71 [0, 0, 2, 0, 2, 0] 4 5 120
S72 [0, 0, 2, 0, 2, 0] 4 5 240
S73 [0, 0, 1, 2, 1, 0] 4 5 120
S74 [0, 0, 1, 2, 1, 0] 4 5 120
S75 [0, 0, 1, 2, 1, 0] 4 5 240
S76 [0, 0, 1, 2, 1, 0] 4 5 120
S77 [0, 0, 1, 2, 1, 0] 4 5 120
S78 [0, 0, 1, 2, 1, 0] 4 5 240
S79 [0, 0, 1, 2, 1, 0] 4 5 120
S80 [0, 0, 0, 4, 0, 0] 4 5 240
S81 [0, 0, 0, 4, 0, 0] 4 5 360
S82 [0, 0, 0, 4, 0, 0] 4 5 1440
S83 [0, 0, 1, 2, 0, 1] 4 5 120
S84 [0, 0, 1, 1, 2, 0] 4 5 240
S85 [0, 0, 1, 1, 2, 0] 4 5 120
S86 [0, 0, 0, 3, 1, 0] 4 5 720
S87 [0, 0, 0, 3, 1, 0] 4 5 360
S88 [0, 0, 0, 3, 1, 0] 4 5 120
S89 [0, 0, 0, 3, 0, 1] 4 5 60
S90 [0, 0, 0, 2, 2, 0] 4 5 120
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S91 [0, 0, 0, 2, 2, 0] 4 5 240
S92 [0, 3, 1, 0, 0, 1] 5 5 60
S93 [0, 3, 0, 1, 1, 0] 5 5 180
S94 [0, 2, 2, 0, 1, 0] 5 5 240
S95 [0, 2, 2, 0, 1, 0] 5 5 120
S96 [0, 2, 1, 2, 0, 0] 5 5 240
S97 [0, 2, 1, 2, 0, 0] 5 5 120
S98 [0, 2, 1, 2, 0, 0] 5 5 240
S99 [0, 1, 3, 1, 0, 0] 5 5 360
S100 [0, 1, 3, 1, 0, 0] 5 5 360
S101 [0, 1, 3, 1, 0, 0] 5 5 360
S102 [0, 0, 5, 0, 0, 0] 5 5 1440
S103 [0, 2, 2, 0, 0, 1] 5 5 120
S104 [0, 2, 1, 1, 1, 0] 5 5 240
S105 [0, 2, 1, 1, 1, 0] 5 5 120
S106 [0, 2, 0, 3, 0, 0] 5 5 720
S107 [0, 1, 3, 0, 1, 0] 5 5 360
S108 [0, 1, 3, 0, 1, 0] 5 5 720
S109 [0, 1, 3, 0, 1, 0] 5 5 120
S110 [0, 1, 2, 2, 0, 0] 5 5 480
S111 [0, 1, 2, 2, 0, 0] 5 5 480
S112 [0, 1, 2, 2, 0, 0] 5 5 480
S113 [0, 1, 2, 2, 0, 0] 5 5 480
S114 [0, 1, 2, 2, 0, 0] 5 5 240
S115 [0, 0, 4, 1, 0, 0] 5 5 2880
S116 [0, 0, 4, 1, 0, 0] 5 5 1440
S117 [0, 0, 4, 1, 0, 0] 5 5 1440
S118 [0, 1, 3, 0, 0, 1] 5 5 120
S119 [0, 1, 2, 1, 1, 0] 5 5 120
S120 [0, 1, 2, 1, 1, 0] 5 5 240
S121 [0, 1, 2, 1, 1, 0] 5 5 240
S122 [0, 1, 1, 3, 0, 0] 5 5 720
S123 [0, 1, 1, 3, 0, 0] 5 5 720
S124 [0, 0, 4, 0, 1, 0] 5 5 1440
S125 [0, 0, 4, 0, 1, 0] 5 5 120
S126 [0, 0, 3, 2, 0, 0] 5 5 1440
S127 [0, 0, 3, 2, 0, 0] 5 5 1440
S128 [0, 0, 3, 2, 0, 0] 5 5 720
S129 [0, 0, 3, 2, 0, 0] 5 5 720
S130 [0, 0, 3, 2, 0, 0] 5 5 1440
S131 [0, 0, 3, 2, 0, 0] 5 5 720
S132 [0, 0, 4, 0, 0, 1] 5 5 120
S133 [0, 0, 3, 1, 1, 0] 5 5 360
S134 [0, 0, 3, 1, 1, 0] 5 5 360
S135 [0, 0, 2, 3, 0, 0] 5 5 720
S136 [0, 0, 2, 3, 0, 0] 5 5 1440
S137 [0, 5, 0, 0, 0, 1] 6 5 120
S138 [0, 4, 1, 0, 1, 0] 6 5 480
S139 [0, 4, 0, 2, 0, 0] 6 5 720
S140 [0, 3, 2, 1, 0, 0] 6 5 720
S141 [0, 3, 2, 1, 0, 0] 6 5 720
S142 [0, 2, 4, 0, 0, 0] 6 5 2880
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