
0 10 20 30 40 50 60 70

0

5

10

15

20

25

30

35

40

45

50

Optimisation of Parking Layout
A Mixed Integer Linear Programming Formulation for Maxi-
mum Number of Parking Spots, Applicable for Evaluation of
Autonomous Parking Benefits

Master’s Thesis within the division of Systems, Control and Mechatronics

MALIN KARLSSON
RICHARD PETERSSON

EX033/2016

Department of Signals and Systems (S2)
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2016

Master’s thesis

Optimisation of Parking Layout

A Mixed Integer Linear Programming Formulation for Maximum
Number of Parking Spots, Applicable for Evaluation of Autonomous

Parking Benefits

MALIN KARLSSON
RICHARD PETERSSON

Department of Signals and Systems
Chalmers University of Technology

Gothenburg, Sweden 2016

Optimisation of Parking Layout
A Mixed Integer Linear Programming Formulation for Maximum Number of Parking
Spots, Applicable for Evaluation of Autonomous Parking Benefits
MALIN KARLSSON
RICHARD PETERSSON

© MALIN KARLSSON, RICHARD PETERSSON, 2016.

Supervisors: Martin Fabian, Department of Signals and Systems, Chalmers Univer-
sity of Technology;
Nenad Lazic, Active Safety, Volvo Car Group
Examiner: Martin Fabian, Department of Signals and Systems

Master’s Thesis EX033/2016
Department of Signals ans Systems (S2)
Division of Systems, Control and Mechatronics
Chalmers University of Technology
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Cover: Parking layout generated by pattern formulation program written in Mat-
lab, showing an unintuitive yet optimal parking layout.

Typeset in LATEX
Gothenburg, Sweden 2016

iv

Optimisation of Parking Layout
A Mixed Integer Linear Programming Formulation for Maximum Number of Parking
Spots, Applicable for Evaluation of Autonomous Parking Benefits
MALIN KARLSSON
RICHARD PETERSSON
Department of Signals and Systems
Chalmers University of Technology

Abstract
One of motorism’s greatest challenges is that it takes up a lot of urban space per
passenger. Volvo Car Group is working together with the City of Gothenburg to
investigate how autonomous cars and autonomous parking can affect cars’ impact
on urban environments. The goal of this thesis is to, with mathematical methods,
optimise the distribution of parking spots in a two-dimensional parking area in
order to maximise the number of spots. To facilitate comparison between regular
and autonomously parking cars, a program to design parking layouts is developed.

The thesis considers two independent approaches to parking spot placement.
The first approach is a Mixed Integer Linear Programming (MILP) formulation of
the optimisation of spot placement. In this approach, each parking spot is placed
individually. However, this turns out to be computationally expensive to such an
extent that a second approach is required. This second, and main, approach is
a pattern-based MILP formulation that considers rows of parking spots as items.
Optimality is found for the vertical distribution of horizontal rows. The pattern-
based approach also includes heuristics in order to choose the order of parking rows
with respect to vertical roads. The pattern-based approach is analysed for potential
benefits of autonomous parking with values based on standard dimensions used by
the Gothenburg City Parking Company. The spot placement formulation is not
analysed.

Using data from the Gothenburg City Parking Company, we show that although
narrower parking spots require more manoeuvre space, there is an increase in area
utilisation from using narrower parking spots.

Keywords: optimisation, mixed integer linear programming, MILP, parking lay-
out, autonomous parking, packing problem, permutations analysis, two-dimensional
packing problem.

v

Dedicated to Adolph Lohström,
who showed the importance of camaraderie in successful school
attendance, through his performance as a student at Chalmers

University of Technology. Without owning the physical conditions of
his comrades, he managed to achieve exemplary attendance and also

had time to engage in the student union-life. His example is proof that
an active social life and good study presence can exist in harmony, at

least in theory.

Acknowledgements
We would like to sincerely thank our supervisor and examiner at Chalmers Uni-
versity of Techonlogy, Martin Fabian, for pleasant meetings and patient guidance
throughout the whole thesis. We would also like to thank Nenad Lazic, our Super-
visor at Volvo Car Group, for his support and joyful comments.

Further, we would like to give Oskar Wigström a special thank, for guidance
during a period when we were stuck. Also, Marcus Rothoff from Volvo Car Group
deserves to be acknowledged, as well as Stefan Gröndahl, Maria Berntsson, Anna
Svensson and the rest of all the helpful people at the Gothenburg City Parking
Company and the City Planning Office of Gothenburg.

Our squad of opponents, Albin Hjalmarsson, Henrik Johansson, Madeleine Yt-
tergren and Anton Zita, we thank for their helpful contribution in reviewing and
improving our work.

The project would not had been this fun without the fika group of thesis workers
at Volvo; Erik Henriksson, Viktor Kardell, Pontus Petersson and again Anton Zita.
Finally, we thank our family and friends, who helped us reach here and all the way
through the thesis.

Malin Karlsson and Richard Petersson, Gothenburg, June, 2016

ix

Contents

Acronyms xv

Variable Notations xvii

List of Figures xix

List of Tables xxi

1 Introduction 1
1.1 Background . 1
1.2 Problem Definition . 2
1.3 Purpose and Objective . 2
1.4 Delimitations . 4

1.4.1 General Delimitations . 4
1.4.2 Program Delimitations . 4

1.5 Solution Overview . 5
1.6 Thesis Organisation . 6

2 Theory 7
2.1 Computational Complexity . 7
2.2 Optimisation Methods . 8

2.2.1 Mixed Integer Linear Programming 8
2.2.2 Constraint Programming . 9
2.2.3 Stochastic Optimisation . 10

2.3 Optimisation Theory . 10
2.4 Classical Problems . 11
2.5 Technical Specifications . 13

3 Related Work 17

I Spot Formulation 21

4 Spot Formulation 23
4.1 Overview . 23
4.2 Delimitations . 25
4.3 Optimisation Method . 26

xi

Contents

5 MILP Formulation 27
5.1 Objective Function . 27
5.2 Car Park Bounds . 27
5.3 Shelfing . 28
5.4 Lowest Index Placement . 29
5.5 Overlap Avoidance . 29
5.6 Manoeuvre Space . 29

6 Computational Complications 33

II Pattern Generation 35

7 Pattern Formulation 37
7.1 Overview . 37

7.1.1 Manoeuvre Rows . 38
7.1.2 Double Rows . 38
7.1.3 Result Generation . 40

7.2 Optimisation Method . 40
7.3 Indata . 40
7.4 XML Reading . 41
7.5 Solvers . 42

8 MILP Formulation 43
8.1 Sets . 43
8.2 Objective Function . 43
8.3 Total Length . 43
8.4 Manoeuvre Rows . 44
8.5 Double Rows . 44

9 Post Processing 47
9.1 Permutations . 47
9.2 Mirroring Tilted Parking Rows . 49
9.3 Vertical Roads . 49
9.4 Presentation of Results . 50
9.5 Iteration . 51

10 Results and Analysis 53
10.1 Result Generation Data . 53
10.2 Parking Spot Reductions . 53

10.2.1 Horizontal Layout - Skeppsbron 55
10.2.2 Vertical Layout . 59
10.2.3 Square Layout . 61
10.2.4 Impact of Orientation . 61
10.2.5 General Trends . 64

10.3 Car Park Dimension Iteration . 64
10.4 Counterintuitive Layouts . 65

xii

Contents

11 Conclusion and Discussion 69
11.1 Objectives . 69

11.1.1 Mathematical Methods . 69
11.1.2 Applicability for Autonomous and Manual Parking 69
11.1.3 Program Output . 70

11.2 Results . 70
11.3 Future Work . 71

11.3.1 Adapting to Heuristics . 71
11.3.2 Additional Functions . 71
11.3.3 Obstacles . 72
11.3.4 Spot Formulation . 72
11.3.5 Ethical and Sustainability Matters 73

Bibliography 77

A Appendix 1 I

xiii

Contents

xiv

Acronyms

CP Constraint Programming

IP Integer Programming

LP Linear Programming

MILP Mixed Integer Linear Programming

NP Non-deterministic Polynomial time

SO Stochastic Optimisation

xv

Acronyms

xvi

Variable Notations

Pattern Formulation
length vertical length of the parking spot1

lengthAcross length of the long side of the biggest possible
rectangle within the parallelogram constitut-
ing the parking spot1

manLength vertical length of the manoeuvre space1

ϕ angle between the long side of a parking spot
and the manoeuvre spaces1. Takes values in
[0°,90°]

spotsLost number of spots the solution is decreased with,
when adding vertical roads

type vector containing the types of spots, e.g. the
different angles

unusedLength vertical waste for spots where its angle is not
0° or 90°. In double rows this can be used to
save vertical space1

unusedWidth horizontal waste for spots where its angle is
not 0° or 90°. Horizontal space that can not
be of use for any spot1

width horizontal width of a parking spot1

widthAcross width measured as a line perpendicular to
the long sides of a parking spot1

Spot Formulation
hi binary variable that takes value 1 if spot i is

rotated by 90° (horizontal), and takes value
0 if spot i is rotated 0° (vertical)

l length of a single spot
LW the ratio of the width of a parking spot di-

vided by the width of the whole parking area
M Big M, a great enough value to activate or

deactivate constraints
ni binary variable that takes value 1 if spot i

is present in the solution, and takes value 0
otherwise

1see Figure 7.2

xvii

Variable Notations

w width of a single spot
xGreatij binary variable that takes value 1 if the right-

most side of spot j is to the left of the left-
most side of spot i, and takes value 0 other-
wise

xi x-value of spot i
xLessij binary variable that takes value 1 if the left-

most side of spot j is to the left of the right-
most side of spot i, and takes value 0 other-
wise

xwl x-value of the left wall
xwr x-value of the right wall
yGreatij binary variable that takes value 1 if xGreatij

and xLessij are both 1 (i.e. they are over-
lapping horizontally), and takes value 0 oth-
erwise

yi y-value of spot i
ywb y-value of the bottom wall
ywt y-value of the upper wall

xviii

List of Figures

1.1 Black box illustration of the program. 3
1.2 System overview of inputs, functions, external tools and outputs. . . . 5

2.1 Example considering point (3,2), for which the constraint is inactive. 11
2.2 A closed solution space: The triangle enclosed by the constraints lines. 12
2.3 Convention for angle definition in parking design. 14
2.4 Illustrations of width and length for different car park orientations. . 15

3.1 Comparison of guillotine cuttable pattern, and non-guillotine cuttable
pattern. 18

4.1 Single spot, ϕ = 90°. 23
4.2 Parking spots with different rotations. 23
4.3 Parking spots with different rotations and minimum distance to wall

on the left side. 24
4.4 Five spots placed in the desired order, spot ni+1 is to the right of spot

ni if possible, otherwise above and to the far left. 25
4.5 Parking spots ni and ni+1 placed with minimum distance to each

other, with respect to the x-axis. 25

5.1 Shelfing. Three spots are placed, where spot 2 is above the dashed,
grey line created from spot 1, and spot 3 is above the dashed line
created from spot 2. 28

5.2 Variables xLessij, xGreatij and yGreatij depend on the horizontal
placement of spots i and j. 30

5.3 Each spot is assured manoeuvre space on at least one side. This fails
for parking spot 5 which is blocked by parking spot 6. 31

7.1 Example of a resulting parking layout, using the pattern formulation. 37
7.2 Parameter used to denote the dimensions of a tilted parking spot. . . 39
7.3 Vertical space saved by placing two spots of the same type adjacent

to each other. 39
7.4 A double row, with single spots at both ends. 41

8.1 Two double rows, both requiring two halves of manoeuvre rows, yet
can only share one manoeuvre row. 45

9.1 Tilted parking rows must create the same driving direction. 49

xix

List of Figures

9.2 Two combinations of the same car park, 32 m by 51 m, with vertical
roads. 50

9.3 Car park, 107 m by 87 m, with vertical roads, spots = 430. 51

10.1 Layout of the planned car park Skeppsbron, Göteborg. 55
10.2 A piece of the Skeppsbron layout, with no obstacles but columns. . . 56
10.3 Small Skeppsbron layout, using same dimensions as existing layout. . 56
10.4 Four resulting output layouts for the Small Skeppsbron layout. 57
10.5 Increase in spots and decrease in area per spot in Small Skeppsbron

for decreasing values on widthAcross and manLength. 57
10.6 Two resulting output layouts for the Big Skeppsbron layout. 58
10.7 Increase in spots and decrease in area per spot in Big Skeppsbron for

decreasing values on widthAcross and manLength. 58
10.8 Three layouts for the Vertical Layout when widthAcross is reduced

and with manLength ±0° for all layouts. 59
10.9 Three layouts for the Vertical Layout. 60
10.10Increase in spots and decrease in area per spot in the Vertical Layout

for decreasing values on widthAcross and manLength. 60
10.11Two resulting output layouts for the Square Layout. 61
10.12Increase in spots and decrease in area per spot in the Square Layout

for decreasing values on widthAcross and manLength. 62
10.13Comparison between vertical and horizontal orientation for the Small

Skeppsbron layout, vertical roads included and set to 4 m. 64
10.14Percentual change in fitness values for varying values on widthAcross

and manLength, a comparision between the four layouts. 65
10.15Change in total number of spots, depending on the dimensions of the

car park. 66
10.16Change of length efficiency, spots / required length, for car park widths

1 m - 200 m. 67
10.17Comparison between intuitive and counterintuitive layout for car park

of size 20 m by 11.1 m. 68
10.18Comparison between intuitive and counterintuitive layout for car park

of size 60 m by 58 m. 68

A.1 Full drawing of the Skeppsbron layout. II

xx

List of Tables

2.1 Comparison of computation time, depending on time complexity func-
tion, for different input sizes. 8

6.1 Binary decision variables generated for different values of nspots. . . . 33

8.1 Variables and parameters used in the pattern formulation. 46

10.1 Values applied on the variables changed in the result generation. . . . 54
10.2 Dimensions for each parking spot in the Skeppsbron layout. 55
10.3 Results using the Vertical Layout, in its original orientation and a

corresponding horizontal layout. 63
10.4 Results using the Small Skeppsbron layout, in its original orientation

and in its corresponding vertical layout. 63
10.5 Dimensions on parking spot types used in this chapter. Data are

taken from [22]. 67

xxi

List of Tables

xxii

1
Introduction

Urbanisation is globally growing and by 2045 the urban population is expected to
surpass six billion [1]. As cities grow bigger and denser, more and more people
are questioning the distribution of urban space between cars and people [2], [3].
Parking takes up a great amount of city area and Litman [2] estimates that modern
cities devote at least as much area for roads and off-road parkings as for housing.
When areas devoted to cars are to decrease, those existing need to be efficiently
used. Optimising these spaces is a subject of interest today and with that comes
the parking areas.

The task of distributing parking spots in a car park is an optimisation problem
today solved manually. As the task is highly complex, a resource to support the
architect could improve the result. A human might miss a good solution if it is not
intuitive, relating to the persons own preferences. A well-formed computer program
designed to evaluate all possible parking spot locations can find solutions a human
would miss, since it lays nothing but mathematical valuation in its calculations.
Thus, a computer can provide the human architect with new perspectives or even
better solutions, potentially in less time than the architect would require. However,
this does not mean it is a menial task for a computer. For a person it might come
naturally that adjacent parking spots probably should be parallel, while a computer
might see each parking spot individually.

In a not too distant future, cars will possibly drive and park themselves. Volvo
Car Group envisions a concept called Valet parking reimagined. In this concept, a
driver could exit his or her car outside a car park and let the car do the full search
and park procedure on its own. If this is possible, it would also be conceivable to
build car parks dedicated to such cars, in which the spots could be tighter and roads
narrower, effectively packing more cars onto a smaller area. In such a scenario, a
computer could be of aid for comparing layouts for different dimensions of parking
spots.

1.1 Background
One of motorisms greatest challenges is that it takes up a lot of urban space per
passenger. A modern, dense and growing city simply does not have the ability to
lease the large areas that traditional traffic requires. In many places around the
world discussions are ongoing regarding car free city centers and the desire to let
cars take less space and be less visible in the cities [3]. In Gothenburg there is a
vision that higher shares of parking spots should be relocated from the roadsides to

1

1. Introduction

bigger car parks [4].
Volvo Car Group are working on a project called Drive Me. It is a coopera-

tion between Volvo Car Group, the Swedish Transport Administration (Trafikver-
ket), Swedish Transport Agency (Transportstyrelsen), Lindholmen Science Park,
Chalmers, Autoliv, Gothenburg City Parking Company (Göteborgs Stads Parker-
ings AB) and the city of Gothenburg. The purpose is to study the social benefits
of autonomous driving and for Volvo Car Group to become the leading company on
sustainable mobility [5]. Within this project is also to investigate new possibilities
gained from the abilities of autonomous cars, to better be able to face the future
needs and challenges in building effective and sustainable car parks.

To facilitate the analysis of parking differences between different cars, a tool for
automated parking spot distribution would be useful. Such a tool would allow for
unbiased comparisons, since there is little or no risk that the car park design is influ-
enced by chance. Beyond the use of comparison, such a tool would facilitate overall
design of new car parks. Car park design is currently done manually by experienced
architects. This is sometimes time consuming work where human thinking is wasted
on calculations that could be done faster by a computer.

The programming problem of fitting items within bounds is a classic in combi-
natorial optimisation, operations research and theoretical computer science. The
problem has many names and variations such as the knapsack problem, the cutting
stock problem and the bin packing problem. They are all similar in the way that
they revolve around fitting objects within given bounds, whether it is volume, weight
or area. These are further described in Section 2.4.

1.2 Problem Definition
For the companies designing car parks some data are known, e.g. the layout of
the area, specified sizes of the parking spots etc. Desired is a solution, given these
parameters, that gives the highest number of spots. The solution must as well meet
all requirements, such as reachability for all spots.

The problem faced in this thesis is given as the System part in Figure 1.1. The
result of this thesis shall enable a person to give inputs according to the figure and
within a reasonable amount of time receive the results to evaluate. The maximum
limit of a reasonable time is decided to be 24 hours for an area of 1000 m2. The
input values are subject to variation from the user but the program should always
be able to compute an optimal solution, or if that is not possible, a near optimal
solution. The result should be presented with coordinates and graphically, as well
as with one or several fitness values. Fitness values are measures from the solution
proposed used in order to compare different solutions, for instance, how many spots
that fit in the solution proposed.

1.3 Purpose and Objective
The goal of the thesis is to, with mathematical methods, optimise the distribution
of parking spots in a parking area in order to maximise the number of spots. The

2

1. Introduction

System

Parking spot dimensions

Car park dimensions

Maneuvering space

Other inputs

Parking spot distribution

Graphical representation

Fitness values

Figure 1.1: Black box illustration of the program.

optimisation methods should be applicable for use with both autonomous and man-
ual vehicles. The purpose is to allow for better area utilisation of car parks, and
also to enable analysis of potential benefits of valet parking and assisted parking
solutions.

In order to achieve the set goal, a functioning tool is developed in Matlab. The
tool’s purpose is to optimise the distribution of parking spots in car parks. The user
should be able to specify measurements such as walls and parking spot sizes.

The objectives of this thesis can be stated as:

• Develop a program that can interpret given inputs. This Master’s Thesis does
not include work on a Graphical User Interface (GUI). It is therefore sufficient
that the input is managed in a text environment, such as XML. The end user
is assumed to be familiar with such an environment.

• Develop another program that defines the constraints, formulates an optimi-
sation problem and sends it to a solver. It is of importance that the program
can handle the inputs given and that it produces output that the solver can
handle.

• Choose an appropriate solver for the optimisation problem.

• Develop a program that handles the result given by the solver and presents
it in a clear way. It should present the result as coordinates of each parking
spot, as well as graphically for easy comparison. Fitness values for comparison
of result should be presented as well.

For the distribution of parking spots to make sense, there is a list of criteria each
spot has to fulfil. The program must take into account the following constraints:

• Parking spots can only be placed at allowed areas. Due to this, no parking
spot can be placed outside of the area, or in a way that it is not compromised
by other spots.

• All parking spots should have enough manoeuvring space in order to allow
cars to park on them, via manual or autonomous parking.

• Parking spots cannot intersect with each other or manoeuvring areas.

• All parking spots are accessible by roads, i.e. the road should be continuous
so that every spot is reachable from everywhere, without leaving the road.

3

1. Introduction

1.4 Delimitations
The problem of packing items is highly complex. This thesis is therefore delim-
ited in a number of ways. The delimitations are divided into general delimitations
and program delimitations. The general delimitations concerns which areas work
is executed in, for example that no vehicle modeling is included. Programming
delimitations concerns what inputs the program developed can handle.

1.4.1 General Delimitations
The thesis and the final program only considers the two-dimensional case of car
parks. This means that no multistorey parking houses are considered, nor is the
height of cars of any interest.

This Master’s Thesis is solely focused on distribution of parking spots and the
space they require. The program developed can be used to evaluate the potential
benefits of new driving systems, such as autonomous cars. This thesis does not how-
ever include any investigation of the functionality of autonomous parking systems,
nor of their capabilities. One of the purposes of this thesis is to allow for investiga-
tion of potential gain in number of spots, by shrinking parking spot dimensions for
autonomously parked cars. With the technique of today, the cars park themselves
with marginally better precision than an average driver. However, as the technique
develops, systems of significantly higher precision will arise. Instead of adjusting
this thesis to what can be achieved today, the user is provided with a tool that gives
a result depending on what input values are estimated for the car to handle. The
results in Chapter 10 are examples of potential improvements, based on dimensions
that are estimated to be manageable in the future.

As mentioned in Section 1.3, the thesis does not include work with a Graphical
User Interface, GUI, of the final product. The end user needs to be familiar with
the environment used, such as Matlab. Lastly, the thesis does not include any
modelling of vehicle movements, but takes parameters such as turning radius and
required manoeuvre space from developers and regulations.

1.4.2 Program Delimitations
For the programming problem to be of adequate complexity, the program is also
limited in several ways. The program is limited to only function with the following
inputs:

• car park dimensions, excluding obstacles such as columns, where the car park
is of rectangular shape

• parking spot size, limited to one size for each run

• manoeuvring requirements, i.e. dimensions of open space around parking spot

The program does not take into account any placement of entrance or exit, this
is left to the user to implement manually.

4

1. Introduction

1.5 Solution Overview
This thesis suggests two, unrelated, approaches to parking spots placement. The
first, spot formulation, places each spot individually, but computes in reasonable
time only for a small number of parking spots.

The second, pattern formulation, places horizontal rows of parking spots and ma-
noeuvre rows. This approachs works for large car parks. It also includes a function
for iterating lengths in a small interval, useful for checking if there is something to
gain from increasing or decreasing the car park area.

Both solutions have approximately the same architecture, as illustrated in Figure
1.2. The input is entered through a XML-file which is then read by the program.
The XML data is then used to write a .lp file which is sent to an external solver,
CPLEX or Gurobi.

XML readerindata.xml

parameter
generation

double row
generation

write .lp-file

run solver CPLEX/Gurobi

find
permutations

evaluate
permutationsfitness values

plot
permutations

plot and
coordinates

input/output functions external programs

Figure 1.2: System overview of inputs, functions, external tools and outputs.

For the spot formulation, the program ends by plotting the parking spots within
the car park. For the pattern formulation, the results from the solver are used to
find all possible permutations of the pattern proposed. The patterns are evaluated
with respect to access of roads, a process placed outside of the optimisation. Finally

5

1. Introduction

the result is given as a plot of a suggested layout, coordinates of the spots and fitness
values to evaluate the solution are provided as well.

The two approaches are unrelated to each other. Only the second, pattern based
formulation is analysed and evaluated. It is not required to understand the spot
formulation in order to understand the pattern formulation.

1.6 Thesis Organisation
Chapter 2 provides theory related to the subject; complexity of the problem, similar
problems and optimisation theory, as well as technical specifications. In Chapter
3, related work is presented. The thesis is thereafter divided into two parts for the
different approaches. The parts are independent of each other, and one is not needed
to understand the other.

In Part I, a spot placement formulation to the problem is presented. Chapter 4
describes how the formulation is constructed. Further on, its MILP formulation is
presented in Chapter 5. In Chapter 6, the computational challenges of this method
are explained.

Part II proposes a pattern based formulation of how the problem can be expressed.
First, in Chapter 7, a system overview is given, explaining how the formulation is
structured. Secondly, Chapter 8 defines the corresponding MILP formulations and
lastly, Chapter 9 describes all heuristics that processes the solution proposed by the
solver.

In Chapter 10, results from the generated program in Part II are presented and
analysed. Finally, conclusions from the results are given in Chapter 11, as well
as discussions upon the results, and suggestions of future work for the second ap-
proach.

6

2
Theory

This chapter reviews the theory behind the methods described in this report as
well as theory useful to understand why these methods are used. This chapter
includes sections on computational complexity, 2.1, optimisation methods, 2.2 and
classical problems 2.4. The last section of the chapter, 2.5, explains the technical
specifications of the thesis.

2.1 Computational Complexity

Computational complexity is used to describe how much computational resources
are required to solve a given task. In other words, to describe the size of the number
of computations required. Knowing how much time a computation takes, this can
be translated into how much time a given task takes.

One of the most fundamental classes of complexity is called Non-deterministic
Polynomial time (NP). What is meant by a problem being of NP complexity is that
it is verifiable in polynomial time. This means that given a proposed solution to the
problem, the solution can be verified to be true or false in polynomial time.

Within the class NP are also classes P and NP-complete. A problem that is in P
can not only be verified in polynomial time, but also be solved in polynomial time.
A problem that is in NP-complete however, cannot1. The class NP-complete is the
intersection between classes NP and NP-hard. The class NP-hard implies that the
problem is at least as hard as the hardest problems in NP. To illustrate with an
example, assume that the decision problem "can value X be exceeded without exceed-
ing limit Y?" is NP-complete. In that case, the optimisation problem "Maximise
value without exceeding limit Y" is NP-hard. A problem that is NP-complete cannot
be solved in polynomial time. Instead, the calculation time for such problems are
of sub-exponential, exponential or even greater size. Table 2.1 gives an overview
of how calculation times vary depending on complexity function. The table shows
how the computation time varies for polynomial and exponential time complexity
functions, relating to the number of inputs, n.

To find out if a problem is NP-complete is a complex task. The common approach
is to prove that it is equally hard as a similar problem which has been proven to
be NP-hard already. The definition of when a problem is complicated enough to
be classified as NP-complete originates from the Cook-Levin theorem, developed by
Stephen Cook and Leonid Levin [6]. The theory was soon after expanded to a list

1This is on the assumption that P 6= NP .

7

2. Theory

of 21 NP-complete problems by Richard Karp in his paper "Reducibility Among
Combinatorial Problems" [7].

Table 2.1: Comparison of computation time, depending on time complexity
function, for different input sizes.

Time
complexity
function

Size n

10 20 30 40 50 60
n 0.00001

seconds
0.00002
seconds

0.00003
seconds

0.00004
seconds

0.00005
seconds

0.00006
seconds

n2 0.0001
seconds

0.0004
seconds

0.0009
seconds

0.0016
seconds

0.0025
seconds

0.0036
seconds

n3 0.001
seconds

0.008
seconds

0.027
seconds

0.064
seconds

0.125
seconds

0.216
seconds

n5 0.1
seconds

3.2
seconds

24.3
seconds

1.7
minutes

5.2
minutes

13.0
minutes

2n 0.001
seconds

1.0
seconds

17.9
minutes

12.7
days

35.7
years

366
centuries

3n 0.059
seconds

58
minutes

6.5
years

3855
centuries

2× 108

centuries
1.3×1013

centuries

2.2 Optimisation Methods
There are multiple ways to approach optimisation. MILP and Constraint Program-
ming (CP) are two similar methods, both proving an optimum, although through
different courses of actions. Stochastic Optimisation (SO) is another approach which
includes stochasticity in the search for an optimum.

2.2.1 Mixed Integer Linear Programming
MILP is the combination of Linear Programming (LP) and Integer Programming
(IP). LP and IP are methods of reaching the best possible answer in a mathematical
model. In LP, problems are expressed as linear equalities or inequalities on con-
tinuous variables with a linear objective function to minimise or maximise. In IP,
problems are expressed similarly, with the exception that all variables are restricted
to be integers. MILP is when a model includes both linear and integer variables.
This is useful to represent values that cannot be fractions, in an otherwise linear
model. Examples of such variables are; the number of cars built, yes or no ques-
tions, or to model logical statements, such as if-statements. MILP, LP and IP are
often solved using the simplex algorithm. The simplex algorithm bases its search for

8

2. Theory

the optimum on the fact that the optimal point must be in a point of intersection
between two constraints, or on one constraint.

Large amounts of integers always result in a vast number of combinations and is
often problematic. MILP is no exception. To use integers in linear programming,
a LP relaxation is performed. In the LP relaxation, all integers are treated as
continuous variables. The course of action is as follows:

• If the solution to the LP relaxation results in all original integer variables
taking integer values, the optimal solution has been found. Such a solution is
said to be naturally integer.

• Often however this is not the case, and the original integers in the LP relaxation
are solved to be fractions.

• In general, it can be said that to round the solution of an LP relaxation to
the nearest integer is almost certainly non-optimal and may be infeasible. The
solution process is instead to use a tree search procedure.

• In the tree search procedure, two or more additional problems are generated in
each iteration. One where the original integer is constrained to be less than or
equal to the rounded down fraction, and one where the integer is constrained
to be greater than or equal to the rounded up fraction.

• Both of these problems are then solved, and branched further if the solution
is yet to be integer for all original integer variables.

The more variables to perform the relaxation on, the more time consuming the
procedure becomes [8].

2.2.2 Constraint Programming
CP is a programming method where all variables are related to each other by con-
straints. CP differs from MILP by the way they search for a solution. CP searches
for a solution by constraint propagation. What this means is that a solution is
reached through pruning the domain for each variable, using inference.

Thorsteinsson [9] states that CP programs solve feasibility problems rather than
optimisation problems. Typical feasibility problems are the n-queens problem and
the map colouring problem. The goal of the n-queens problem is to place N queens
on an N by N chess board, such that no queen can capture another. The goal of the
map colouring problem is to colour all fields on a map such that adjacent regions
have different colours, using as few colours as possible. This is known to always be
possible with four colours.

Thorsteinsson also states that there is only a superficial difference between search-
ing for an optimal solution and a feasible solution. By inserting a new bound on
the objective function every time a new feasible solution is found, the feasible set
gradually becomes smaller, finally only including the optimal feasible solution.

The objective function is better utilised in MILP however. There it is used to
find a search direction. This hastens the search, since suboptimal parts of the search
tree thereby can be eliminated.

9

2. Theory

2.2.3 Stochastic Optimisation
SO differs from both MILP and CP. MILP and CP both set out to search for the
global optimum in a given set, investigating each node in theory. They are both
methodical processes that only gives a result if they conclude it to be the best value
achievable of all possible values. As the name implies, SO does not work in this
structured way. SO often utilises an objective function much like MILP and CP. The
difference is however that SO randomly chooses search direction within the feasible
set. Randomly however is a truth with modification. SO often keeps an internal
value of fitness for each solution, and tries new solutions as a combination of previous
ones. The almost randomness of the procedure comes from the fact that high fitness
solutions have a higher probability of being combined into a new solution. For
non-convex or otherwise highly complex problems, the fact that all solutions have a
chance of combination is the key to finding the optimum. Without this possibility,
the method would often find a local optimum and stay there. Otherwise complex
problems are for example, problems with large amounts of integer decision variables.
This is where SO has an advantage over MILP and CP.

Where SO has a disadvantage is in the purpose of comparing results for different
cases. Since stochasticity is involved, there is always a difference in computation
time for SO. This is often handled by placing a time limit for the program on how
long it is allowed to run. This however implies that there is a possibility that
the global optimum is not reached, even for convex problems. When there is no
guarantee that the global optimum is reached, the results depend on chance. This
in turn, is not good when different cases are to be compared.

2.3 Optimisation Theory
Mathematical optimisation is a large field of science. To facilitate the reading of this
report, basic concepts and terminology of mathematical optimisation are presented
below.

An optimisation problem always includes certain elements. There is an objective
function, parameters, variables and constraints.

• The parameters describe fixed values. Such as: There are 2 guests; guests = 2.

• The variables describe values to be determined during optimisation. E.g. num-
ber of plates; plates.

• The objective function described what is aimed to optimise. For example:
maximise the number of plates; Max plates.

• Lastly, the constraints describe the relationships between all variables and
parameters. E.g. Each guest can have at most two plates; plates ≤ 2guests.

The constraints can be equalities or inequalities. Equality constraints are always
active, while inequalities can be active or inactive. An active constraint is something
that actively limits the solution, depending on where we are looking in the solution
space. The example given above can be seen as a two dimensional graph in Figure

10

2. Theory

2.1. If the point guests = 2, plates = 3 is considered, Figure 2.1 shows that this
point is not hindered by the constraint. The number of plates can be increased by 1
before hitting the constraint. The constraint is therefore said to be inactive in (3, 2).
If the number of plates is increased, so that there are 4 plates for the 2 guests, then
the constraint hinders the adding of additional plates. The optimal solution is then
reached at 4 plates.

plates

guests

0 1 2 3 4 5 6 7 8
0

1

2

3

4

×

Figure 2.1: Example considering point (3,2), for which the constraint is inactive.

To illustrate the concept of solution space, consider the following extension of the
previous example. If the number of guests is changed to being a variable instead
of parameter and constraints are added saying that the number of plates must be
non-negative and that at most there can be 4 guests, the solution space is the two-
dimensional triangle enclosed by the constraints. This example is given in Figure 2.2.
If starting in the same point as the previous example, guests = 2, and plates = 3,
Figure 2.2 shows that 1 plate can be added before hitting the limit on number
of plates for 2 guests. However the number of guests can still be increased. By
increasing the number of guests and plates to both their limits, the optimal solution
is reached at 4 guests and 8 plates.

2.4 Classical Problems
The task of maximising the number of parking spots in a car park is comparable to
at least three classical problems, briefly mentioned in Chapter 1. The three problems
are; the knapsack problem, the cutting stock problem and the bin packing problem.
They are quite similar between themselves and are therefore described in further
detail below.

The knapsack problem revolves around fitting items within a single container. In
this problem, items often have different sizes and values. The goal is to pack items
so that the total value inside the container is maximised. To exemplify, consider the
following case:

Given a set of items, A, each item, i ∈ A, has a value, vi, and a weight
wi. A binary variable xi denotes if the item is packed or not. The task is

11

2. Theory

plates

guests

0 1 2 3 4 5 6 7 8
0

1

2

3

4

Figure 2.2: A closed solution space: The triangle enclosed by the constraints
lines.

to maximise the value packed in a knapsack, ∑
vixi, while not exceeding

the knapsacks weight limit; ∑
wixi ≤ L.

The bin packing problem revolves around fitting items in as few bins as possible.
The items given must all be packed. Because of this, item values are of no matter.
The number of item sizes are often many. If all item sizes are equal or few, the
problem is more related to the cutting stock problem. The following is an example
of a traditional bin packing problem:

Given a set of items, A, and an infinite set of bins, B. Each item,
i ∈ A, has a length, li. Each bin, j ∈ B, has length, L, and a binary
variable bj which denotes if the bin is used. The binary variable xij

denotes that item i is packed in bin j. The task is to minimise the
number of bins used, ∑

bj, while not exceeding the length limit for any
bin; ∑

i lixij ≤ Lbj,∀j ∈ B. Each item must be packed in one of the bins
used, ∑

j xij = 1,∀i ∈ A.

The cutting stock problem originates from the problem of cutting pieces of stock
material into smaller pieces of requested size to fulfill a demand, while minimising
the needed number of stock pieces. The item sizes do not vary, and the number
of items to fit can exceed the required minimum. The stock pieces can also alter
between a number of sizes. To exemplify, consider the following case:

Given a set of item types, A, an infinite set of stock pieces, B, and a
list of all possible combinations of how stock pieces can be cut into item
types (often called "patterns"), P . Each item type, i ∈ A, has a length,
li, and has a demand, di, which denotes how many are required to be
made. The stock pieces all have length L. For each pattern, j ∈ P , an
integer variable, xj, denotes how many times pattern j is used. Each
pattern also has a parameter, aij, which denotes how many times item
type i is used in pattern j. The task is to minimise the number of stock
pieces used, ∑

j xj, while fullfilling the demand, ∑
j aijxj ≥ di,∀i ∈ A.

12

2. Theory

Bin packing and cutting stock are especially similar since they both attempt to
minimise the number of bins, or stock pieces used. A way to understand the differ-
ence between bin packing and cutting stock is to examine the way their solutions
look. The solution to a cutting stock problem will often be a list of packing patterns
and how many times they are used. For example, if all item sizes are equal, there
will be only one pattern. In the bin packing problem, each bin may have a unique
packing pattern.

By viewing each parking spot as an individual rectangle and delimiting the prob-
lem to handle car parks only of rectangular shapes, it is clear that the problem of
parking placement is very similar to these three classical formulations. Since the
knapsack problem is also a maximisation problem, this is the closest relative. The
individual parking spot optimisation problem can be viewed as a special case of
knapsack problem, where all values and sizes are equal, however with added con-
straints. The added constraints are formulated to take into account the need for
manoeuvre space next to each spot, and the fact that every spot must be accessible
by a road from a given entry point in the car park. One can speculate whether these
added constraints reduce the solution space to such a degree that the problem is
no longer NP. The model presented in Chapter 4 does however not show any such
tendencies. Since all of the classical optimisation problems have been proven to
be NP-hard; it can be assumed that by extension, the parking spot optimisation
problem is also NP-hard.

2.5 Technical Specifications
Traditionally, angles are given in the sense of the unit circle, with the polar coor-
dinate system. In parking design however, angles are defined in a mirrored sense.
Figure 2.3a shows the case of a parking spot with angle 90°. Note how the angle
is measured, clock-wise from the left of the horizontal axis, labelled a. Thus, for
a parking spot, the angle is measured from the axis a to the left long side of the
parking spot, as illustrated in the figure. The parking spot is fixed in the origin by
its lower left corner, also illustrated in the figure. In Figure 2.3b, the spot now has
an angle of 60°, measured in the same way. Parking spots takes values in the range
[0°,90°] as described here. Although, spots can be rotated in the other direction,
but in that case it is mirrored, and it is the corner on the other side of the short
edge that is fixed in the origin.

Values on dimensions for different parking spots are based on standard dimen-
sions, given from the Gothenburg City Parking Company (Göteborgs Stads Parker-
ings AB). During the result generation these values are used as the basic dimensions,
hence all results of improvements when changing any dimensions are correlated to
them.

No evaluation is done to establish what dimensions are suitable for autonomous
cars of today. This is partly because of the limitations in today’s systems and the
possibilities of that of tomorrow. In addition, it is regarded as a subject outside of the
scope of this thesis, to examine the capabilities of the movement of an autonomously
parking car. Instead, all dimensions chosen and their corresponding result are seen
as what profit can be achieved, if the system handles the parameters chosen.

13

2. Theory

90°

b

a

d

c0°

90°

(a) Parking spot with ϕ = 90°.

60°0°

b

a

d

c

90°

(b) Parking spot with ϕ = 60°.

Figure 2.3: Convention for angle definition in parking design.

Considering the lines of the parking spots, they are seen as infinitely thin during
calculations. This means that the cars are allowed to be positioned on the line, since
lines for parking spots in reality of course have a width when painted.

When denoting the car park area, width is denoted correspondingly to the x-
axis in a Cartesian coordinate systems. In a similar way, the length is denoted
correspondingly to the y-axis in such a system. This is illustrated in Figure 2.4 and,
these annotations are regardless of which dimension is larger.

When the width is larger than the length of the car park, the car park is said to
be of horizontal orientation. When the length instead is larger than the width, the
car park is said to be of vertical orientation.

14

2. Theory

0 5 10 15 20 25 30 35 40
0

2

4

6

8

10

12

14

16

18

20

width

le
ng

th

(a) A horizontally oriented car park.

0 5 10 15 20
0

5

10

15

20

25

30

35

40

width

le
ng

th

(b) A vertically oriented car park.

Figure 2.4: Illustrations of width and length for different car park orientations.

15

2. Theory

16

3
Related Work

In the literature there are many approaches to packing items within bounds. The
most interesting related work comes from Porter et al. [10] in the report Optimi-
sation of car park designs. In the report, the problem faced is to maximise the
number of parking spots within any car park. The car parks are allowed to contain
internal obstacles, but the perimeter must be of polygonal shape. Three approaches
to the problem are presented; Tile and trim, optimising the road, and optimising
over road networks. Theory regarding optimal parking angle for maximum parking
spot density is presented in [10] with the result shown to be 90°, which means a
perpendicular parking spot. This is however with the assumption that maneuver
row length is a function of angle according to

L(α) = w + lsin(α), (3.1)
where L stands for maneuver length, w denotes spot width and l spot length.
The Tile and Trim approach is to use the optimal parking angle and tile this to

cover the complete car park area. The tile is then rotated until an optimal placement
is found. The spots not completely inside the car park area are then trimmed away.
This sometimes leads to unused portions of area large enough for other angles of
spots. The authors attend to this by constructing a program in Matlab which can
optimise the number of cars in such a space.

The third approach in [10] describes a way to place nodes in road networks inside
the area, based on the assumption that along every road there are parking spots
to each side. It is not however described how this optimisation would operate but
one could speculate that it would involve stochastic optimisation, rather than linear
programming.

For one-dimensional multiple bin packing problems and cutting stock problems,
column generation or pattern generation as described by Lundgren et al. [11] is a well
known method. The pattern generation method involves creating a set of patterns
of items, and then through iteration create and find the most efficient patterns that
fulfill the given item requirements.

This method is excellent for one-dimensional problems but not as good for higher
dimensions. Carvalho et al. [12] formulates one method for use in two-dimensional
problems. This method is interesting, since the problem is similar to the parking
spot packing problem faced in this thesis. As many other methods however, it
relies on the guillotine cutting constraint which heavily shrinks the feasible set. The
guillotine cutting constraint is not applicable to the problem faced in this thesis,
since it would over-constrain and remove otherwise potential optimal solutions. The
guillotine cutting constraint guarantees that all items are placed such that they can

17

3. Related Work

all be separated using only orthogonal cuts that bisect one dimension of the sheet.
Figure 3.1 illustrates the difference between a guillotine cuttable sheet, and a non-
guillotine cuttable sheet. In Figure 3.1a, it is always possible to separate items by
a single cut through the full area, then repeat the procedure for the resulting parts.
In Figure 3.1b however, it is not possible to cut through all the area from edge to
edge, without destroying another item.

(a) Guillotine cuttable pattern. (b) Non-guillotine cuttable pattern.

Figure 3.1: Comparison of guillotine cuttable pattern, and non-guillotine
cuttable pattern.

Lodi et al. [13] surveys methods for two dimensional bin packing, based on strip
packing. Such methods base their packing heuristics on the division of total area
into strips that are searched for the optimal packing. The use of heuristics is a
common approach. According to [14], and universally accepted, linear and dynamic
programming approaches are capable of finding the optimum only for small-scale
problems, and for larger problems heuristics is a must.

Saadi et al. [15] formulates another approach. Using exact branch and bound and
precalculated lower bounds a solution is computed. Each node in the branch and
bound corresponds to a feasible internal packing rectangle. The internal rectangles
are obtained via vertical or horizontal builds of items. These vertical or horizontal
builds however work in such a way that a new item is always placed above or next
to the already existing rectangle of items.

Pisinger [16] has a similar approach. By using a heuristic which places items
on the contour of predeceasing items, a solution is obtained. The solution is then
described as a sequence pair. The sequence pairs describe in what order the items
lies, from top left to bottom right, as well as from bottom left to top right. These
sequence pairs can thus be permuted and the corresponding placements tested. One
way of finding better permutations of the sequence pairs is by a simulated annealing
algorithm.

Egeblad and Pisinger in [17] drafts a MILP formulation of the two and three
dimensional knapsack problem. The formulation has 6n2 + n binary variables and
3n continuous variables. Egeblad and Pisinger claims that even though the size of
binary variables are not alarming, the problem is hard to solve. This is said to be
mainly because of the use of conditional constraints which, during LP-relaxation,
will lose their effect.

Huang and Korf [18] approaches the problem through assigning each item an x-
coordinate first and its y-coordinate second. Huang and Korf claim to outperform all

18

3. Related Work

other algorithms in the given benchmarks. The benchmarks however never exceed
a limit of 32 items at most.

In conclusion, a lot of work has been done in the field of optimal packing, but
not as much on the subject of packing cars, especially not on autonomous parking
cars. Since the goal of this thesis is to develop a deterministic approach, useful for
comparison of different parking cases, none of the previous approaches described in
this chapter are applicable. They are however a source of inspiration.

19

3. Related Work

20

Part I

Spot Formulation

4
Spot Formulation

In this chapter an exact, but incomplete, formulation of the optimisation problem is
described. This formulation was the first attempt to find the optimal distribution of
parking spots in a car park. However the search space grows quickly with the number
of parking spots, making the computing time grow to unmanageable proportions
even for 15 parking spots. This phenomenon is described in general in Section 2.1,
and specifically for this case in Chapter 6.

4.1 Overview
The main components of the formulation are the parking spots and the key task
is to place them in an optimal way in order to maximise the number of spots.
The parking spots are described by their coordinates (xi, yi) and rotation ϕ. The
coordinates describe the point located in the spots lower left corner when standing,
as shown in Figure 4.1. All spots are the same size and they have length l and width
w.

w

l

Figure 4.1: Single spot, ϕ = 90°.

The spots can also be rotated by an angle ϕ, with the location of the spot still
in the same corner, see Figures 4.2a and 4.2b.

w

l

(a) Parking spot, ϕ = 0°.

w

l

(b) Parking spot, ϕ = 60°.

Figure 4.2: Parking spots with different rotations.

The various rotations of a spot changes the limitations on the spot coordinates in
order to stay within the given area. The car park is defined by its outer coordinates.

23

4. Spot Formulation

If the left wall of the car park is given as a straight, vertical line, the limitations on
xi will vary with the rotation on the spot according to (4.1a) - (4.1d).

xi ≥ l cosϕ+ xwall, ∀ϕ ∈ [0, 90] (4.1a)
xi ≥ xwall, ∀ϕ ∈ (90, 180] (4.1b)
xi ≥ w(cosϕ+ 1) + xwall, ∀ϕ ∈ (180, 270] (4.1c)
xi ≥ w cosϕ+ l cosϕ− 270 + xwall, ∀ϕ ∈ (270, 360) (4.1d)

In the same way, upper limitations on xi are formed, as well as upper and lower
limitations on yi. Figure 4.3a and 4.3b show parking spots with minimum distance
to the left wall, for two different rotations. This means that the constraint (4.1a) is
active.

w

l

(a) Parking spot, ϕ = 0°, minimum
distance to wall on the left side.

w

l

(b) Parking spot, ϕ = 60°, minimum
distance to wall on the left side.

Figure 4.3: Parking spots with different rotations and minimum distance to wall
on the left side.

The parking spots have not only the outer bounds in form of walls to take into
account, no spot must intersect with any other spot. This means that spot ni+1
must be either to the right of, to the left of, above or below spot ni. This statement
quickly increases the search space as the number of parking spaces increases, since
both a solution where spot ni is to the left of spot ni+1 as well as the other way
around are true solutions. To decrease the number of possible solutions the spots
are decided to be packed in numerical order, where spot ni+1 has to be to the right
of spot ni. If it is not possible to place spot ni+1 to the right of spot ni, it can be
placed above instead. Figure 4.4 shows five spots placed as described.

Due to the rotation of the spots the least distance allowed on the x-axis between
two spots can vary as 0 ≤ xdist ≤ l + w. Figure 4.5a and 4.5b shows two possible
cases, where the least distance is w and 0, respectively.

In order to design a functional (and traditional) parking space, the spots cannot
be packed too densely - there must be room for a road as well as the manoeuvre
space. In Figure 4.4, spots 1 and 2 are not reachable. A first step to this is that at
least one side of each spot must have a certain space free, in this case, spot 4 and 5
would have to move.

Even if all spots in the system each have a manoeuvring space big enough for
the car to move into the spot, this is not enough if the spot is not accessible from
the entry. Thus, all manoeuvring spaces need to be connected, maybe via some free
space.

24

4. Spot Formulation

1 2 3

4 5

Figure 4.4: Five spots placed in the desired order, spot ni+1 is to the right of
spot ni if possible, otherwise above and to the far left.

(xi, yi) (xi+1, yi+1)

(a) Two parking spots, ϕ = 90°, least
distance on x = w.

(xi, yi) (xi+1, yi+1)

(b) Two parking spots, = 0° and 90°,
least distance on x = w.

Figure 4.5: Parking spots ni and ni+1 placed with minimum distance to each
other, with respect to the x-axis.

Obstacles can also affect the placement of the spots. Examples of such obstacles
are columns, stairs and elevators. Adjustment of spot placement with regard to such
obstacles can be made in the same manner as the constraints for no spot intersection.

4.2 Delimitations
In order to be able to solve the layout problem within reasonable time, a number
of delimitations are made. These are mainly done to reduce the number of discrete
variables.

• Spots can only alternate between two angles, 0° and 90°.

• The car park is defined as a rectangular space.

• All spots have the same dimensions.

The first delimitation is due to several reasons. The chosen optimisation method
MILP only handles linear equations. Trigonometric expressions can therefore not
be used with continuous variables. An alternative is a binary variable for each angle
and spot. However, adding more of these integer or binary variables associated
with each spot, would make the combinatorial challenge insurmountable for a lower
number of spots. Since the spots are symmetric, angles 0° and 90° are identical to
orientations 180° and 270°, which therefore need not be included.

25

4. Spot Formulation

The second delimitation is made to reduce the complexity of the wall constraints,
since these are assumed not to be the most limiting constraints.

The last delimitation is made in order to reduce the complexity of the formulation.
If multiple sizes of spots was available, more discrete variables would be needed which
would make the approach of packing spots in numerical order obsolete. If multiple
sizes of spots was available, the program would need to evaluate all permutations of
the numerical order.

4.3 Optimisation Method
Three methods to optimise the formulation was investigated in Section 2.2. At the
end, MILP was chosen as the method to use. This might seem like a peculiar choice
of method, considering the statement in 2.4 that claims the parking optimisation
problem to be NP-hard, and brute force solutions to those kinds of problems are
time consuming. In these cases, SO can find a solution in less time, but it does not
ensure global optimality. One of the main purposes of this thesis is to compare the
number of spots fitting in an area for normal parking and for autonomous parking.
Due to this, results that varies between runs makes comparison uncertain. Hence
SO was out ruled as the optimisation method.

The choice between CP and MILP fell on MILP for practical reasons; it is a
known method for the authors of this Master’s Thesis and Chalmers University of
Technology provides access to expertise within the field.

26

5
MILP Formulation

The constraints described in text in Section 4.1 are here translated into expressions
formulated for use by a MILP solver. All constraints are applied to all spots i ∈ I
unless otherwise stated, where I = {1, 2, .., nspots}. There are nspots available, where
nspots is a number slightly greater than the number of spots that can possibly fit
into the area. The value of nspots is calculated from the total area of the car park
and the area of a parking spot.

5.1 Objective Function
The objective function that describes the objective for the whole optimisation is
given in (5.1). There, ni is a binary decision variable that takes value 1 if the spot
fits in the solution and 0 otherwise.

maximise
nspots∑

i=1
ni (5.1)

5.2 Car Park Bounds
The constraints (5.2a)-(5.2c) make sure that each spot is to the right of the left wall,
above the lower wall and below the top wall. The parameters xwl, ywt and ywb are
coordinates stating the x and y-bounds of the car park. The subscript w stands for
wall, l for left, r for right, b for bottom and t for top. The decision variable hi is
active if the spot has a rotation of 0°, i.e. if it is horizontal.

The constraint (5.2d) says that a spot can be to the right of the right wall, but
in that case ni = 0, and ni does not contribute to the objective function. Such
constraints, of the type if... else, can in MILP be modelled using the big M method
[19]. In these formulations, M is assigned some value big enough to activate or
deactivate a constraint. If it activates it or not depends on the value of the decision
variable it is combined with. In this case, M deactivates the constraint in (5.2d) if
ni take the value 0, thus the spot i can be outside of the car park, on its right side.

xi − l × hi ≥ xwl (5.2a)
yi ≥ ywb (5.2b)

yi + w × hi + l(1− hi) ≤ ywt (5.2c)
xi + w(1− hi) ≤ xwr +M(1− ni) (5.2d)

27

5. MILP Formulation

5.3 Shelfing
To avoid unnecessary permutations as described in Section 4.1, shelfing is imple-
mented. The term shelfing refers to the fact that the parking spots are packed as if
they were books in a shelf; by filling one shelf at a time, from left to right, as well as
from bottom to top. A constraint is formulated to place the spots in this manner,
illustrated in Figure 4.4. The constraint works as following. Each spot, i, creates a
diagonal line in the upward and left direction. The subsequent spot, i+ 1, must lie
above this line. In order for the constraint not to be overly limiting, the constraint
is formulated such that the constraint is active when:

• Spots i and i+ 1 lie in the same point. Feasible only when spot i is horizontal
and spot i+ 1 is vertical.

• Spot i is horizontal and in the bottom right corner, and spot i + 1 is vertical
and to the far left as illustrated in Figure 5.1.

In order to achieve this, the straight line equation of the diagonal is formulated
in a particular way. The gradient, denoted LW (Least Width), is set to the width
of a spot divided by the width of the car park, see (5.3a). The Y-intercept is set
equal to the spot width. The straight line constraint describing spot i for the case
when i is in the bottom right corner is shown in (5.3b), while (5.3c) is the constraint
imposed on spot i+ 1 for the same case.

LW = w

(xwr − xwl)
(5.3a)

yi = −LW × xi + w (5.3b)
yi+1 ≥ −LW × xi+1 + w (5.3c)

Combining (5.3b) and (5.3c) thus gives the following relationship between the
coordinates for any pair of spots i and i+ 1.

LW × xi+1 + yi+1 ≥ LW × xi + yi, ∀i = 1, 2, . . . , nspots − 1 (5.4)

1 2

3

Figure 5.1: Shelfing. Three spots are placed, where spot 2 is above the dashed,
grey line created from spot 1, and spot 3 is above the dashed line created from

spot 2.

28

5. MILP Formulation

5.4 Lowest Index Placement
Another way to avoid unnecessary permutations of the solution is to make sure that
the number of spots that fit in the area have the lowest index i possible. To enforce
this, constraint (5.5) is formulated.

ni+1 ≤ ni, ∀i = 1, 2, . . . , nspots − 1 (5.5)

This make sure that if ni = 0, then ni+1 must also be zero.

5.5 Overlap Avoidance
To make sure that the spots do not overlap each other, the constraints (5.6a) - (5.6d)
are formulated. The constraint (5.6a) activates the binary decision variable xLessij

if the leftmost side of spot j is to the left of the rightmost side of spot i. In the
same way the constraint (5.6b) activates the binary decision variable xGreatij if the
rightmost side of spot j is to the right of the spot i. If both xLessij and xGreatij
are active, the spots i and j are overlapping horizontally. Therefore yGreatij is also
set to active by constraint (5.6c), effectively forcing spot j to be placed above spot
i by constraint (5.6d). These three variables and the three relationships that two
spots can have are illustrated in Figure 5.2.

With yGreatij active, the constraint (5.6d) is also activated and creates a relation
between yi and yj, making sure yj is above yi.

xj − l × hj +M × xLessij > xi + w(1− hi) (5.6a)
xj + w(1− hj) < xi − l × hi +M × xGreatij (5.6b)

xLessij + xGreatij − yGreatij ≤ 1 (5.6c)
yi + l(1− hi) + w × hi ≤ yj +M(1− yGreatij) (5.6d)

∀i = 1, 2, ..., nspots − 1, j = i+ 1, ..., nspots

5.6 Manoeuvre Space
In a functional car park, all spots must be possible to move into and out of, without
crossing any other parking spot. In other words, every parking spot needs a ma-
noeuvre space adjacent to it. The constraints attempting to model this requirement
are described in this section.

To realise the demand of free space next to each spot, new decision variables are
introduced, various combinations of acr and vert; across and vertical. These are to
decide upon weather there is free space next to the spot, horizontally and vertically.
Each spot can have up to three sides that are next to a wall or another spot.

The constraints (5.7a) - (5.7d) sets value of acrLi, acrRi, vertBi and vertTi to 1
if spot i is next to the left, right, bottom or top wall. The variable man is a constant
that describes the least value required between a spot and another spot or a wall.

29

5. MILP Formulation

i j

xGreatij = 1

xLessij = 0

(a) i is to the left of j.

j i

xGreatij = 0

xLessij = 1

(b) i is to the right of j.

i

j

xLessij = 1
xGreatij = 1

y
G

re
a
t i

j
=

1

(c) i and j overlap.

Figure 5.2: Variables xLessij, xGreatij and yGreatij depend on the horizontal
placement of spots i and j.

xi > xwl +man+ l × hi −M × acrLi (5.7a)
xi < xwr −man− w(1− hi) +M × acrRi (5.7b)
yi > ywb −man+M × vertBi (5.7c)
yi < ywt −man+M × vertTi − w × hi + l(hi − 1) (5.7d)

To find out if a spot j is placed within distance man to the right side of another
spot i, i.e. a neighbour on its right side, constraints (5.8a) - (5.8d) are formed. In
these constraints, the four binary decision variables δ are used to turn constraints
on or off. If all four δ’s are set to value 1, spot j is indeed a neighbour of spot i,
on its right side. The decision variable acrij is then set to 1. This is regulated in
constraint (5.8e).

xj ≤ xi +M × δ1ij − 1 (5.8a)
xj − l × hj > xi −M × δ2ij + w(1− hi) +man (5.8b)

yj + l(1− hj) + whj ≤ yi +M × δ3ij (5.8c)
yj ≥ yi −M × δ4ij + l(1− hi) + w × hi (5.8d)

δ1ij + δ2ij + δ3ij + δ4ij − acrij ≤ 3 (5.8e)

In the same way as in constraints (5.8), a spot j can be the upper neighbour of a
spot i. The constraints (5.9a) - (5.9d) sets the value of the binary decision variables
δ5ij - δ8ij.

xj + w(1− hj) < xi +M × δ5ij − l × hi (5.9a)
xj − l × hj ≥ xi −M × δ6ij + w(1− hi) (5.9b)

yj < yi +M × δ7ij (5.9c)
yj > yi −M × δ8ij + l(1− hi) + w × hi +man (5.9d)

30

5. MILP Formulation

If δ5ij - δ8ij are set to 1, spot j is an upper neighbour of spot i and the variable
vertij is set to 1.

δ5ij + δ6ij + δ7ij + δ8ij − vertij ≤ 3 (5.10)

Instead of rewriting similar constraints for looking at left and lower neighbours,
acrji are set to the same value as acrij, using symmetry. This also decreases the use
of binary decision variables, δ. See constraints (5.11a) and (5.11b).

acrij = acrji (5.11a)
vertij = vertji (5.11b)

Finally, for each spot i, constraint (5.12a) is formulated to make sure at least one
of the sides is without neighbour.

nspots∑
j=1

acrij + 2acrLi + 2acrRi + 2vertBi + 2vertTi ≤ 6 (5.12a)

∀i = 1, 2, ..., nspots, j 6= i

These constraints, formulated to ensure free space next to every parking spot are
however not functional. Figure 5.3 illustrates how the solver does what it is told, but
it is an erroneous way of mathematically describing what is desired. In the figure,
parking spot 5 is blocked by parking spot 6 but according to the constraints has
its left side free. In order to assure a functional manoeuvre space constraint, these
constraints would need to be adjusted. Because of the computational complexity
problems discussed in Chapter 6, this way of modelling the problem is deemed unfit,
since it cannot work for large sizes of car parks. The constraints are therefore not
modified further.

0 20 40 60 80

0

10

20

30

40

50

60

70

80

90

100

1

2

3

4

5

6

Figure 5.3: Each spot is assured manoeuvre space on at least one side. This fails
for parking spot 5 which is blocked by parking spot 6.

31

5. MILP Formulation

32

6
Computational Complications

This formulation is not complete to solve the problem: it does not consider obstacles
such as columns, does not describe how roads are to be placed and does not have
a complete solution to ensure that each spot has a manoeuvre space big enough to
allow for a car to park in the space. Even so, the formulated constraints result in an
explosion of integer variables already, with only a few input variables. Specifically
the number of binary variables increases drastically, which affects the computational
time. The number of binary decision variables that are generated without including
the constraints in Section 5.6, that make sure that some manoeuvre space is included
for each spot in the solution, are described by (6.1a). Further, (6.1b) expresses how
many binary decision variables that are generated with these decision variables for
manoeuvre space included.

2nspots + 3
nspots−1∑

k=1
k (6.1a)

12nspots + 15
nspots−1∑

k=1
k (6.1b)

To get a perception of how many variables this is, Table 6.1 gives some examples.
The left column, number of spots, shows the value of nspots.

Table 6.1: Binary decision variables generated for different values of nspots.

No of
spots

Binary variables

without space with space
5 40 210
10 155 795
50 3775 18 975
100 15 050 75 450
500 375 250 1 877 250

By adding further constraints and working with the existing ones a solution can
be reached, however the computational time will be so high that it is not possible
to solve in reasonable time for useful sizes of car parks. No solution is found for car
parks including more than 20 parking spots.

33

6. Computational Complications

34

Part II

Pattern Generation

7
Pattern Formulation

This chapter describes a formulation that, given a set of input parameters of the
system, finds a solution with optimal placement of parking rows. This placement is
modified with heuristics in order to make the car park functional with regards to
accessibility by road. A final solution is proposed, with coordinates for each spot
and fitness values to compare its efficiency, these are further explained in Section
9.4. The pattern formulation is separated from the spot formulation in Part I, thus
no information given on the spot formulation is inherited, if not otherwise stated.

7.1 Overview
Instead of placing each spot individually as described in Part I, the pattern formula-
tion treats entire rows of parking spots as items, as well as rows of manoeuvre spaces.
An example of a layout is presented in Figure 7.1. In the figure, the horizontal free
space is manoeuvre rows, while the corresponding vertical space is vertical roads,
further explained below.

0 10 20 30 40 50 60 70

0

5

10

15

20

25

30

35

40

Figure 7.1: Example of a resulting parking layout, using the pattern formulation.

The program is given a list of parking angles to choose from, complete with
dimensions and requirements on manoeuvre space. These different parking angles
are commonly in this part referred to as types. The program calculates for each type
how many spots can fit within the car park horizontally when placed in a row next
to each other. Thus, a value is produced for each type. The rows are always placed
horizontally, but the car park can be defined vertically or horizontally by the user.
As in the spot formulation, the shape of the car park is limited to be rectangular,
as stated in the general delimitations in Section 1.4.2. The optimisation problem is
to decide how many rows of each type to include, given the length of the car park.
The optimisation problem does not include placement of accessibility roads to travel
between manoeuvre rows, this is adjusted for after the optimisation is done.

37

7. Pattern Formulation

The solver outputs a solution with maximum number of spots for the given input
parameters. The solution is a list of how many of each parking row type and each
associated manoeuvre row to include. Furthermore, the solution contains the total
number of parking spots and how much vertical space is unused. The output does
not include in which order the rows should be placed.

After the optimisation is done, heuristics are executed to find the optimal ordering
of the given rows, with respect to placement of vertical roads for connecting the
manoeuvre rows. This is described in further detail in Section 7.1.3. Vertical roads
are the roads added in the heuristics, connecting the horizontal manoeuvre rows
in order to allow for circulation in the car park, further explained in Section 9.3.
Heuristics is a set of commonsense rules, used to solve a problem in a good way,
but not necessarily the best way. Heuristics are applied when placing vertical roads
and choosing parking row ordering, since adding it to the optimisation model would
increase the complexity of the optimisation model greatly.

Figure 7.2 illustrates a parking row with three parking spots. The dimensions are
named accordingly to the figure, and these expressions are henceforth used in the
thesis. It is assumed that the manoeuvre rows are dimensioned for one way drive.
For cars to able to drive both ways, the manoeuvre rows might need to be longer.
The length of manoeuvre rows is also a parameter set by the user.

7.1.1 Manoeuvre Rows

Each parking spot requires a manoeuvre space adjacent to it as described in Section
5.6. The same applies to parking rows, and in the same manner as parking spots
combined to a row, manoeuvre spaces also combine to form manoeuvre rows. The
width of these manoeuvre rows are the same as the width of the car park, see Figure
7.1. The length however, depends on the orientation, i.e. the angle of the associated
parking spots, see Figure 7.2. Typically, vertical parking spots (90°) require the
longest manoeuvre rows, while parking spots with low angles, such as 30° or parallel
parking (0°) has the shortest requirements.

A single manoeuvre row can be used by two parking rows, since there can be one
parking row situated on each side of the manoeuvre row. The parking rows need
not be of the same type, however in such a case it is important that the manoeuvre
row fulfils the highest requirements on length. For example, if a parking row of
90° shares manoeuvre row with a parking row of 0°, the manoeuvre row must be of
length as required by the 90° parking row.

7.1.2 Double Rows

For parking spot rows with angles that are not 0° or 90°, the spot can be seen as
a parallelogram. Still, the car using the spot is of rectangular shape and can not
use all the area. Because of this, there will be some waste in the top and bottom
of the spot. The wasted space is marked grey and named tiltedWaste in Figure 7.2.
There is also an equally large triangle at the opposite side of each spot. This area
is however not seen as waste, since it is passed during parking.

38

7. Pattern Formulation

ϕ

le
n

g
th

len
gthA

cross

width

widthAcro
ss

≥
m

a
n

L
en

g
th

unusedWidth

u
n

u
se

d
L

en
g
th

tiltedWaste

Figure 7.2: Parameter used to denote the dimensions of a tilted parking spot.

However, by placing two parking rows of the same type next to each other (verti-
cally) this space can be utilised, as shown in Figure 7.3. This results in a reduction
of row length, since it can be viewed as overlapping between the two rows. The
reduction in length for the two rows combined is calculated according to (7.1). Two
rows of the same type, combined to utilize the wasted space between them, are
referred to as one double row.

unusedLength = widthAcross× cos(ϕ) (7.1)

75°

Figure 7.3: Vertical space saved by placing two spots of the same type adjacent
to each other.

39

7. Pattern Formulation

7.1.3 Result Generation
A MILP problem is formulated from the description in this chapter, in order to give
a solver the information required to find the optimal distribution of parking rows.
The MILP problem is described in Chapter 8.

After the optimisation is done, heuristics are used to evaluate what order the rows
should be placed in, with respect to vertical roads. Then, the result is presented
graphically, along with fitness values and coordinates. This process is described in
Chapter 9.

7.2 Optimisation Method
The reasoning regarding optimisation method for the pattern formulation is the
same as for the spot formulation, described in section 4.3. MILP is chosen as the
optimisation method, mainly due to familiarity and access to expertise.

7.3 Indata
The indata that is entered by the user consists of four parts; main settings, car park,
parking spot types, and iteration settings. The main settings to specify are:

• Which solver to use

• If to include double rows

• If to include vertical roads

• If to automatically flip the car park to a horizontal layout

• If to allow the program to calculate parking spot dimensions, or use the values
given by the user

It is possible to calculate all parking spot dimensions for all angles, given only the
length of 90° spots, the width across and parking spot angles. However, this might
not always be desired. Hence the last setting. The user can specify as many types
of spots as desired in the same optimisation, given that the following parameters
are specified for each type:

• ϕ

• widthAcross

• length

• manLength

The indata to specify for the car park are its dimensions; width, carParkWidth,
length, carParkLength, and the width of vertical roads, roadWidth. It is also possible
for the user to iterate over the dimensions of the car park, and then perform another
optimisation for that area. This is further explained in Section 9.5. For the iteration

40

7. Pattern Formulation

settings the user must specify if to iterate over width or length, step size, and number
of steps.

Given the indata specified by the user, the program calculates the row value for
each type, with and without vertical roads. The value is the number of spots that fit
on a row of each type, given the width of the car park. The program also calculates
the area occupied for each spot type and the dimensions for double rows, if these
are included. The row values with and without vertical roads are calculated for all
non-double rows according to (7.2) and (7.3). In (7.3), pValueRoadi is the value
when vertical roads are included.

pV aluei = carParkWidth− unusedWidthi

widthi

, (7.2)

pV alueRoadi = carParkWidth− 2roadWidth− unusedWidthi

widthi

, (7.3)

Double rows spots are created by combining two parking spots as described in
Section 7.1.2. Each double spot in a double row counts as two parking spots. The
value for double rows are calculated similarly to regular parking rows. The addition
for double rows is that at both ends of the parking row, there is a possibility that
a single spot can fit where a double spot does not. If these spots are present, they
are included in the value for the double row. This is illustrated in Figure 7.4 where
single spots at the ends of a double row are displayed.

0 5 10 15 20 25 30 35 40

0

5

10

15

20

25

30

35

40

Figure 7.4: A double row, with single spots at both ends.

For the result generation, the area occupied by all spots is evaluated. This area
is calculated for each rectangle or parallelogram shaped spot by multiplying spot
width and spot length.

7.4 XML Reading

The indata is read by Matlab through a program xml_read.m. The program
was created by [20]. The reason for the XML format is that it is well known and
that there are libraries for handling XML-files. Such libraries could be of use if the
program developed is to undergo further development in the future, for example
incorporating a GUI to facilitate input to the program.

41

7. Pattern Formulation

7.5 Solvers
The solver is activated through writing a .lp-file in Matlab and then calling a solver
from Matlab. The solvers used are CPLEX and Gurobi, however any solver that
can use standardised .lp-files can work.

42

8
MILP Formulation

In Chapter 7, a formulation based on rows of parking spots is described. The rows
are to be combined in such a way that a maximum number of spots fit in the given
area. From here, a MILP problem is to be formulated, in order to let a solver find
the optimal solution.

8.1 Sets
There are certain variables and parameters associated with each type of spot, these
are listed in Table 8.1. All variables or parameters in the table indexed i are applied
for all i ∈ I, if not stated otherwise. The vector type describes the types of spots and
can take values between 0 and 90. Typical values are, type = [90, 75, 60, 45, 30, 00].

Unless otherwise stated, all constraints are applied for all i ∈ I, where I =
{1, 2, ..., ntypes} and ntypes is the number of types. In the example with type above,
ntypes = 6. Important is that all vectors indexed over i are sorted so that type is
always decreasing. It is assumed that types of angles 90° and 0° are always available.
Regarding other angles, it is up to the user to define them and include them as types.
Furthermore, all variables are constrained to be non-negative. All variables in this
chapter are listed in Table 8.1, found at the end of the chapter.

8.2 Objective Function
The objective function to maximise is the total number of spots and is formulated
as (8.1). The variable totalValue represents the number of spots in the car park in
the final solution. The vector pValue indicates how many spots that fit on one row
of type i while pNri declares how many rows of type i is in the final solution.

maximise totalValue,

totalValue =
ntypes∑

i=1
pValuei × pNri (8.1)

8.3 Total Length
The sum of all lengths of parking rows and manoeuvre rows must not exceed the
length of the car park area. To enforce this, constraint (8.2) is formulated. This is

43

8. MILP Formulation

also where the unused vertical space, wastedSpace, is calculated, as this is the slack
variable between summed row length and total car park length.

totalLength = wastedSpace + totalManLength +
ntypes∑

i=1
pLengthi × pNri (8.2)

The variable totalManLength is defined by constraint (8.3), that sums the length
of all present manoeuvre rows.

totalManLength =
ntypes∑

i=1
mLengthi ×mNri (8.3)

8.4 Manoeuvre Rows
To fulfil the demand that each parking row has access to a manoeuvre row of at
least its required manoeuvre length, constraints (8.4a) - (8.4b) are formulated. As
described in Section 7.1.1, manoeuvre rows of a type with higher angle are also
accepted since they are assumed to be of equal or greater length.

Since a manoeuvre row can be shared by two parking rows of different type, an
integer variable mOpeni is included. If mOpeni is nonzero, this denotes that there
exists a manoeuvre row, of type i, that is only used on one side. It is thus open to
use for any lower order parking type. The reason for it being constrained according
to (8.4b) is that for any type, it is not allowed to include a manoeuvre row that is
completely unused by its corresponding parking row type.

mOpeni = 2mNri − pNri + mOpeni−1 (8.4a)
mOpeni ≤ 1 (8.4b)
mOpen0 = 0

8.5 Double Rows
When double rows as described in Section 7.1.2 are allowed, some variables change.
A double row is seen as one single item. This means that for each type, other than
0° and 90°, a sibling is created. The vector type thus grows according to (8.5).

type = [90, 75D, 75, 60D, 60, 45D, 45, 30D, 30, 00] (8.5)
Thus, also I grows to I ′ = {1, 2, ..., n′types}. Correspondingly, all other vectors

spanning over I also grow. Introduced is also the set J , a subset of I, which denotes
the indices of types that are double rows. As an example, from the current vector
type, J would be

J = {2, 4, 6, 8}. (8.6)
Since one double parking row requires two manoeuvre rows, additional constraints

are formulated. For regular parking rows, constraint (8.4) applies as usual. For

44

8. MILP Formulation

double rows however, when i ∈ J , constraint (8.4a) is replaced by (8.7a) and (8.4b)
is replaced by (8.7b)

mOpeni = 2mNri − 2pNri + mOpeni−1 (8.7a)
mOpeni ≤ 2 (8.7b)

When double rows are present, the formulation for sharing manoeuvre rows be-
tween different parking types becomes significantly more complicated. This is due
to the fact that double rows require a manoeuvre row on each side. Consider the
example illustrated in Figure 8.1. Two double parking rows of different type each
require two manoeuvre rows. For each parking row, the manoeuvre rows are only
used from one side. According to how the ordinary parking rows are constrained,
this would mean that they could share two manoeuvre rows. However, since the
manoeuvre rows orientation around the double parking rows are fixed, only one ma-
noeuvre row can be shared in practice. In the figure, manoeuvre rows are marked
with m and are coloured blue while parking rows are marked with p. The dashed
line of the manoeuvre row indicates that it is open for use to other parking rows.
The filled line adjacent to the parking row indicate that the manoeuvre row is used
by the parking row in question. The figure shows how two double rows with four
manoeuvre rows that all have one side open for use can be combined such that they
all together use three manoeuvre rows, leaving two manoeuvre rows open for use.

m75

p75D

m75

m60

p60D

m60

m75

p75D

m75

p60D

m60

Figure 8.1: Two double rows, both requiring two halves of manoeuvre rows, yet
can only share one manoeuvre row.

To model this situation, additional constraints are added, (8.8a) - (8.8c). Con-
straint (8.8a) is added to all types, while (8.8b) and (8.8c) are only added for types
where i ∈ J . These constraints include variables mRowOpeni and pExisti . Variable
pExisti is used to balance constraint (8.8a) and as a slack for transferring open ma-
noeuvre rows, in the case when the current type i is non-existent. Constraint (8.8a)
is the key expression where variable mRowOpeni is used to constrain the double
rows to behave in the way described above.

mRowOpeni = 0.5mOpeni + 0.5mOpenSlacki (8.8a)
pExisti + pNri = mNri + mRowOpeni−1 ,∀i ∈ J (8.8b)

pNri ≤M × pExisti ,∀i ∈ J (8.8c)

45

8. MILP Formulation

Variable mRowOpen0 does not need to be defined. Constraint (8.8b) is only used
for double rows, i.e. when i ∈ J . Since it is assumed that 90° rows are always
included, i ∈ J will never occur for i = 1.

Table 8.1: Variables and parameters used in the pattern formulation.

Variable Description
mNri Number of manoeuvre rows of type i in the solution
mOpeni Number of manoeuvre rows of type i that are open for use
mRowOpeni Variable used to ensure manoeuvre rows of type i are shared

correctly between rows, when double rows are activated
pExisti Binary variable saying if type i exist, only applied for all i ∈ J .

Used to ensure manoeuvre rows of type i are shared correctly
between rows, when double rows are activated

pNri Number of parking rows of type i in the solution
totalManLength The combined length of all manoeuvre rows in the solution
totalValue Total number of spots in the solution
wastedSpace Length of the car park that is not used

Parameter Description
mLengthi Length of the manoeuvre row of type i
ntypes Number of types, defined by the user (also including double

rows, if they are included)
pLengthi Length of the parking row of type i
pValuei Number of spots of type i that fits on one row, given the width

of the car park
totalLength Length of the car park
typei Angle of type i, also indicating if the type is a double row or

not

46

9
Post Processing

The optimal solution for the distribution of horizontal rows is obtained, without
taking into account placement of vertical roads to connect the manoeuvre rows.
This is adjusted for by heuristics.

The solver proposes a solution with a maximum number of spots, totalValue, for
the given input parameters. The solution is a list of quantities of each parking row
and manoeuvre row, along with the number of spots they generate and how much
vertical space is unused, the value of wastedSpace.

9.1 Permutations
The output from the solver says nothing about how the rows are placed; not on
which coordinates they are placed or even in which order. The only thing the
output declares is the number of rows, of each type. The first thing to investigate
with the result is how the rows can be placed, and in how many ways. To do so,
combinations are extracted. A set of parking rows and manoeuvre rows in a certain
order is denoted a combination. The vector combination1, as shown in (9.1) is one
combination of the existing rows. In the combination vector, p90 indicates a parking
row of 90° and m90 indicates a manoeuvre row of corresponding angle.

combination1 = [p90,m90, p60, p60,m60, p00] (9.1)

A combination vector is read in such a way that the first index indicates the row
type placed at the bottom of the car park. The subsequent index is placed above
it, and so forth. Another combination could be

combination2 = [p90,m60, p00, p60,m90, p60]. (9.2)

However, this is not a feasible solution since the p90 row only has access to am60 row,
which is too small. Finding all possible permutations of a vector generates a large
number of combinations. As an example, there are 3 628 800 possible permutations
of a vector [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]. For this reason, only unique combinations are
extracted. This would mean that a vector [1, 2, 2], only can be permutated as [2, 1, 2]
and [2, 2, 1]. The possibility to switch places of the two 2’s is theoretically also a
permutation of the original vector, but since the result is the same it is not of
interest. Going back to the former example but changing the last number of the
vector to a nine, [1, 2, 3, 4, 5, 6, 7, 8, 9, 9], would still generate 3 628 800 combinations
if non-unique solutions was included. However, if only unique combinations are

47

9. Post Processing

allowed, the number of permutations is decreased to 1 814 400, i.e. they decreased
by a factor 2.

The expressions for calculating the number of permutations is n! for non-unique
permutations, where n is the amount of items. For unique permutations the amount
of permutations is expressed as

n!
n1! n2! ... nk! . (9.3)

Still, for reasonably large car parks in this thesis, the number of rows become big
enough to create a high number of permutations, causing the computational time
to increase substantially. Since permutations grow factorial with the inputs, the
result of decreasing the number of inputs is noticeable even for small changes. Due
to this, the manoeuvre rows are excluded from the combinations vectors and saved
elsewhere. The combination1 vector from before would now take the form:

combination1 = [p90, p60, p60, p00]. (9.4)

Since it is optimal for two parking rows to share one manoeuvre row, at least one
third of the values in the combination vectors will be removed. Removing at least one
third of the elements in the vectors result in a significant decrease of permutations.

After all possible combinations have been generated, there will probably be com-
binations that does not fulfil the criteria for being a valid combination. A combi-
nation where a parking row of type 90° only has access to a manoeuvre row of type
60°, as shown in (9.2), is an example of a false combination. To exclude all false
combinations, the known numbers of different manoeuvre rows, saved from before,
are used. The permutation vectors are expanded with zeros in the positions for
the manoeuvre rows to retake its original size. That would make the combination1
vector take the form:

combination1 = [p90, 0, p60, p60, 0, p00]. (9.5)

For each permutation generated, the combination is run through and for all posi-
tions that are zero, the neighbouring positions with parking row types decides what
type of manoeuvre row needs to be inserted. For the first zero in the combination1
vector of (9.5), the manoeuvre row must be of type 90, since its neighbour with
highest value is of type 90. After iterating through all elements in the combinations,
the manoeuvre rows included are compared to the manoeuvre rows available. If the
included manoeuvre rows do not match the available, the solution is not valid and
the whole combination is discarded.

Before finishing the permutation process, another addition is made. If the last
position in the combinations vector is a manoeuvre row, all valid combinations are
duplicated and the duplicates flipped, in the sense that the last position becomes
the first, and so on. This is necessary since the manoeuvre rows are not included
in the process of finding all possible combinations, and when inserting manoeuvre
rows, it is assumed that the first row is a parking row. To illustrate this, two new
vectors, combination′1 and combination′2 , are created, see (9.6). Since they have
a manoeuvre row in the end of the vector, only combination′1 is found by earlier

48

9. Post Processing

mentioned processes. By flipping them, both combinations are found.

combination′1 = [p90,m90, p60, p60,m60]
combination′2 = [m60, p60, p60,m90, p90] (9.6)

When double rows are included in the result from the solver, the whole process
of finding permutations is done by considering any double rows as two single rows.
After the process, all double rows are recreated. Although the process of eliminating
invalid combinations also takes into account those combinations where it is not
possible to create the right number of double rows from the temporary single ones.

9.2 Mirroring Tilted Parking Rows
When all possible combinations are extracted, the rest of the heuristics make the
solution feasible for actual parking, and within that causing as little loss of spots as
possible.

The rows that are tilted can not all be tilted the same way since their manoeuvre
rows are dimensioned for one-way drive. If the tilted parking rows are all tilted the
same way, a contradiction would occur, illustrated in Figure 9.1a. The spots in the
lower parking row are made for entering from the left, as shown by the leftmost
arrow. At the same time, the upper parking row is made for entering from the right,
as shown by the rightmost arrow.

By simply mirroring the upper row vertically, a result as in Figure 9.1b is created,
where both parking rows are made for being entered from the left side, as both arrows
in the figure show.

(a) Tilted spots requiring different
driving directions.

(b) Tilted spots requiring the same
driving directions.

Figure 9.1: Tilted parking rows must create the same driving direction.

9.3 Vertical Roads
As mentioned in Section 7.1, the solution is modified by adding vertical roads to
connect the manoeuvre rows and make them function as roads as well, thus making
all spots in the solution reachable. The roads are added in the far left and far right.

49

9. Post Processing

The vertical roads could really be added anywhere. However, to avoid unnecessary
waste space, as illustrated in Figure 7.2, they are placed in the margins.

By using the width of the vertical roads, as specified by the user as an input
parameter, a new attribute is calculated for each road type. This is the number
of spots fitting on one row if the row has a vertical road on each side, making the
width of the row shrink by two times the width of the vertical road.

Combining this information with the allowed combinations, the best combination
(or combinations) can be found, since they lose less spots. Logically it is better to
have row types of a lower angle shortened by the vertical road, since they lose less
spots than types of higher angle. Figure 9.2 illustrates how two different combina-
tions of the same solution can differ due to the vertical roads. The dimensions of
the car park is 32 m by 51 m. The combination in Figure 9.2a contains 57 spots and
lost 16 spots from the solution without vertical roads, the variable spotsLost is used
to describe this number. The combination in Figure 9.2b only lost 12 spots, and
contains 61 spots.

0 5 10 15 20 25 30

0

5

10

15

20

25

30

35

40

45

50

(a) spotsLost = 16.

0 5 10 15 20 25 30

0

5

10

15

20

25

30

35

40

45

50

(b) spotsLost = 12.

Figure 9.2: Two combinations of the same car park, 32 m by 51 m, with vertical
roads.

9.4 Presentation of Results
When all feasible combinations of the solution from the solver has been found, po-
tentially flipped and vertical roads have been added (if so requested), the heuristics
are done. The next step is to plot the result and calculate fitness values. To start
with, fitness values are calculated. The fitness values are measures for how good the

50

9. Post Processing

solution is and are calculated to allow for comparison between different solutions,
since this is one of the purposes of the program. Except for the already available to-
tal number of spots in the solution, another value is calculated. This is areaPerSpot
and as the name suggests, it is a measure of the total car park area over the number
of spots, as:

areaPerSpot = totalArea

totalV alue− spotsLost
. (9.7)

Since these values depend on the combination of the solution, the fitness values
are saved for each combination.

Finally, the solution is to be presented in a graphical way, easy for the user to
understand. This is done using the plotting tools in Matlab. Within the functions
of plotting is also the function of saving the coordinates of each individual spot, the
coordinates are the four corners of the spot. The coordinates are calculated from
their angle and dimensions given as input, in combination with information about
which way the row tilts and if there are vertical rows. The spots are always placed
as far to the left as possible. Figure 9.3 shows a plot of a car park with a proposed
solution containing double rows.

0 10 20 30 40 50 60 70 80 90 100

0

10

20

30

40

50

60

70

80

Figure 9.3: Car park, 107 m by 87 m, with vertical roads, spots = 430.

9.5 Iteration
An iteration function can be turned on or off in order to evaluate results from
modifying the dimensions of the car park slightly. The whole optimisation process
will run as many times as specified in the input, changing the size of the length or
width of the car park accordingly to the specification in the input. When iteration
is used, a plot displaying how the number of fitted spots change for the different car
park dimensions is also output. Such a plot may show that for a small change in

51

9. Post Processing

car park dimension, there is a large change in number of spots, which might be of
interest.

Another possibility is to compare the results from changing the dimensions of the
parking and the manoeuvre rows. This is useful for analyses of autonomous parking
effects, if the dimensions are decreased, maybe more spots fit into the solution.

52

10
Results and Analysis

The goal of this thesis has been to develop a tool for optimal distribution of parking
spots, while allowing modification of input parameters as stated in Section 1.3.
The tool also allows for comparison of potential increase in number of spots if the
dimensions of the spots are reduced, e.g. for autonomous parking. All within the
delimitations stated in Section 1.4.

In this chapter, results from the pattern formulation of the problem, as described
in chapters 7-9, are presented and analysed. First, three examples of car parks are
analysed, with regard to spot dimensions. One is a real car park in Gothenburg,
called Skeppsbron, with a horizontal layout. The second car park has a vertical,
layout while the third is a larger, square layout. These two layouts are fictive
layouts, with dimensions set to test the program in various situations. Thereafter,
an example of how the number of spots varies with the length or width of the car
park is presented. Lastly, general data on different types of parking spots is analysed,
showing how intuitive solutions can differ from optimal solutions.

10.1 Result Generation Data
Throughout this chapter, six angles are given the solver to optimise the solution,
resulting in 10 types. The types are

type = [90, 75D, 75, 60D, 60, 45D, 45, 30D, 30, 00]. (10.1)

For all results in this chapter, no value is given to how the solution affects the time
to perform an actual parking. Neither is any evaluation done on how the driver
(or the autonomous car) experiences the difficulty level of parking. However, all
solutions are estimated to be feasible, as long as they contain vertical roads. In
order to compare changes in parameters, vertical roads are not always included in
the solution presented.

10.2 Parking Spot Reductions
In this section, three different car park layouts are used as input parameters, re-
turning results to evaluate. Two of the spot dimensions are modified for compari-
son of possible increase in number of spots, as potentially usable by autonomously
parking cars. These dimensions are widthAcross and manLength. The values
that are tested are given in tables 10.1a and 10.1b. Every combination of differ-
ent measurements, within the given sets, is evaluated in 12 different cases. One

53

10. Results and Analysis

of Volvo’s widest cars, the Volvo XC90, has a width of 2.01 m including folded
rear view mirrors [21]. Considering this, 2.1 m is regarded a suitable lower value
of widthAcross. The dimensions used during analysis are taken from a parking
layout guidebook [22], used by the Gothenburg City Parking Company. According
to this source, a decrease in widthAcross requires an increase of manLength. So
for lower values of widthAcross, manLength is first scaled up to fit that value,
and the upscaled value possibly reduced, by a maximum of 15 %. In [22], graphs
and expressions for angles in the range [0°, 90°] shows this connection between the
two variables, for widthAcross taking the values 2.5, 2.4, 2.3 m. To extract more
extreme cases, a linear connection between the three is assumed and corresponding
values for widthAcross of 2.1 m are calculated.

In this chapter, the combination where widthAcross takes the value 2.5 and
manLength is scaled accordingly, without any decrease, is referred to as the standard
dimensions. The full list of measurements for the angles included in the analysis
are shown in Table 10.5. Regardless of which case of widthAcross and manLength
is considered, the length of all parking spots are always such that the lengthAcross
is 5 m, except for the 0° spot type. The dimensions for 0° spots are somewhat
divergent. The parking rows of 0° have a width of 6 m, instead of 5 m, in order to
allow for parallel parking manoeuvres. The type also has a length of 2 m, instead of
2.5 m, like the others, since parking spots of this type do not block each other where
the car doors would open.

In the following subsections, it is shown that depending on the size of the car
park, reduced manoeuvre rows leads to one of two results; either an extra row of
spots fit or the existing rows will "straighten up" to be rows of higher angles. The
first case mostly applies for big car parks where many rows fit. Then the collective
length from all reduced manoeuvre rows results in extra rows. If there are not many
rows to start with, it is more likely that the result will be that the rows take types of
higher angles instead, since no extra rows can be fitted into the solution efficiently.

Table 10.1: Values applied on the variables changed in the result generation.

(a) Values assigned to widthAcross..

widthAcross [m]
2.5
2.3
2.1

(b) Reduction on manLength.

manLength reduction [%]
-0
-5
-10
-15

In order to decrease the number of parameters affecting the result, vertical roads
are not included in most of the results generated. This allows for fair comparison
between results, since the program cannot handle obstacles.

Also noteworthy is that for each of the results presented, only one combination
(see Section 9.1) will be displayed. For each layout there might be more combina-
tions, the more type of rows in the solution the more possible combinations. Since

54

10. Results and Analysis

the results are extracted without vertical roads, the order of placement of parking
rows does not affect the number of spots fitting in the car park and for this reason
different combinations of layouts are not presented.

10.2.1 Horizontal Layout - Skeppsbron
A planned car park in Göteborg, Skeppsbron, has the layout according to Figure
10.1. The figure is scaled to fit the thesis page, for a upscaled design, see Appendix
A. Although the design of Skeppsbron is already decided, it is a part of the Drive
Me project and is evaluated for autonomous parking.

Figure 10.1: Layout of the planned car park Skeppsbron, Göteborg.

The dimensions of the spots in the existing layout are shown in Table 10.2.

Table 10.2: Dimensions for each parking spot in the Skeppsbron layout.

Variable Value [m]
lengthAcross 5.0
manLength 4.4
widthAcross 2.4
ϕ 70°

The program created in this thesis does not handle obstacles such as elevator
shafts, that are included in the existing layout. Therefor, a smaller part of the
layout is chosen as input values on the car park. This part is illustrated by the red
rectangle in Figure 10.2, with dimensions 66.75 m by 30.74 m, making it a total of
2052 m2. This layout will be referred to as Small Skeppsbron.

Ignoring the fact that this piece of layout contains columns, it is suitable for
comparison with a layout generated by the program. A comparison between the
existing Small Skeppsbron layout and the layout the program generates, when given
the values listed in Table 10.2, is thus done. The layout from the program is seen
in Figure 10.3. Since the original layout includes 70° rows, this is included in this
single comparison as well. For all other results, including the reduction analysis of
Small Skeppsbron, 70° rows are not included. The layout from the program includes
three such rows; one double 70° row, one single, and also one 75° row. The existing
layout contains 100 spots, and the layout from the program generates 101 spots.
This indicates that the program produces a layout that is not only the same as an
existing layout, designed by an architect, but also gives a corresponding amount of

55

10. Results and Analysis

Figure 10.2: A piece of the Skeppsbron layout, with no obstacles but columns.

spots in its solution. The solution of the program is one spot better, although the
actual Small Skeppsbron contains columns.

0 10 20 30 40 50 60
0

5

10

15

20

25

30

Figure 10.3: Small Skeppsbron layout, using same dimensions as existing layout.

Analysis of the Small Skeppsbron with regard to reduction of widthAcross and
manLength is also performed. The layout when using the standard dimensions
of widthAcross and manLength includes in 99 spots, one less than the number
in the existing layout. Note that the dimensions in the existing layout have a
smaller value on widthAcross, which results in more spots even without reducing
the manLength value, as will be shown in this chapter. When decreasing the values
of these parameters, the largest number of parking spots fitting in the same area was
114 spots. Figure 10.4 shows four output results from the program, where the red
part in the top of each figure is the wasted space, not claimed by any type of rows.
In Figure 10.4a and 10.4b the value for widthAcross is the same, namely 2.5 m. The
reduce in their manLength value on the other hand differs; 0 % compared to 15 %.
As shown in 10.4b, the manoeuvre length is reduced enough to allow for rows of
90° spots, which are most efficient, in terms of width. In the same way, the results
in Figure 10.4c and 10.4d have the same value on widthAcross, 2.1 m, but have
different reduction on their manLength values, 0 % compared to 15 %. Even though
the reduction is not big enough for allowing for rows of only 90° the program fits
two such rows in Figure 10.4d.

56

10. Results and Analysis

0 10 20 30 40 50 60
0

5

10

15

20

25

30

(a) widthAcross = 2.5 m,
manLength ±0 %, spots = 99.

0 10 20 30 40 50 60
0

5

10

15

20

25

30

(b) widthAcross = 2.5 m,
manLength −15 %, spots = 104.

0 10 20 30 40 50 60
0

5

10

15

20

25

30

(c) widthAcross = 2.1 m,
manLength ±0 %, spots = 108.

0 10 20 30 40 50 60
0

5

10

15

20

25

30

(d) widthAcross = 2.1 m,
manLength −15 %, spots = 114.

Figure 10.4: Four resulting output layouts for the Small Skeppsbron layout.

The graph in Figure 10.5 shows the increase of number of spots from the decrease
of the parameters. The values in the graph has been normalised to compare all values
with the standard dimensions.

0 5 10 15
0

5

10

15

Percentual decrease in manoeuvre length [%]

P
e

rc
e

n
tu

a
l
c
h

a
n

g
e

 i
n

 n
u

m
b

e
r

o
f

s
p

o
ts

 [
%

]

widthAcross = 2.5 m

widthAcross = 2.3 m

widthAcross = 2.1 m

(a) Percentual change in number of
spots.

0 5 10 15
−15

−10

−5

0

Percentual decrease in manoeuvre length [%]

P
e

rc
e

n
tu

a
l
c
h

a
n

g
e

 i
n

 a
re

a
 p

e
r

s
p

o
t

[%
]

widthAcross = 2.5 m

widthAcross = 2.3 m

widthAcross = 2.1 m

(b) Percentual change in area per spot.

Figure 10.5: Increase in spots and decrease in area per spot in Small Skeppsbron
for decreasing values on widthAcross and manLength.

To get an estimate of how many spots that fit in the full Skeppsbron layout, a
car park of dimensions 265 m by 30.74 m, making 8146 m2, is evaluated in the same
way in the program. These dimensions are referred to as Big Skeppsbron from here

57

10. Results and Analysis

on, and the width is chosen from the dimensions in the layout; the width of the
oblong, rectangular part. As given in Figure 10.1, there are many obstacles in this
part, thus a comparison of the existing and the resulting layout is not fair.

The resulting types of rows are the same for Big Skeppsbron as for Small Skepps-
bron, two examples of the Big Skeppsbron layouts are shown in Figure 10.6a and
10.6b.

0 50 100 150 200 250
0

20

(a) widthAcross = 2.5 m, manLength ±0 %, spots = 404.

0 50 100 150 200 250
0

20

(b) widthAcross = 2.1 m, manLength −15 %, spots = 468.

Figure 10.6: Two resulting output layouts for the Big Skeppsbron layout.

The increase in number of spots is shown in Figure 10.7. The fact that the same
types of rows are generated for both layouts makes the percentual graphs similar.
The first figure shows 404 spots while the second shows 468, thus an increase of
15.8 %.

0 5 10 15
0

5

10

15

Percentual decrease in manoeuvre length [%]

P
e
rc

e
n
tu

a
l
c
h
a
n
g
e
 i
n
 n

u
m

b
e
r

o
f
s
p
o
ts

 [
%

]

widthAcross = 2.5 m

widthAcross = 2.3 m

widthAcross = 2.1 m

(a) Percentual change in number of
spots.

0 5 10 15

−15

−10

−5

0

Percentual decrease in manoeuvre length [%]

P
e

rc
e

n
tu

a
l
c
h

a
n

g
e

 i
n

 a
re

a
 p

e
r

s
p

o
t

[%
]

widthAcross = 2.5 m

widthAcross = 2.3 m

widthAcross = 2.1 m

(b) Percentual change in area per spot.

Figure 10.7: Increase in spots and decrease in area per spot in Big Skeppsbron
for decreasing values on widthAcross and manLength.

58

10. Results and Analysis

10.2.2 Vertical Layout
The Skeppsbron layout is horizontal and with such a low value on the car park
length, the solver is limited to few possible solutions. What happens when the
car park has a vertical layout instead? This section presents the result from the
solver, given a car park with dimensions 42 m by 96 m and a total area of 4032 m2,
henceforth referred to as the Vertical Layout.

Three results of letting widthAcross taking values 2.5 m, 2.3 m and 2.1 m while
manLength is not reduced at all are presented in Figure 10.8. The layouts differ in
types of angles. Using standard dimensions results in almost exclusively 90° rows.
When widthAcross is reduced, more rows are added, but of lower angle that requires
shorter values on manLength. In the case with 2.1 m on widthAcross, some of the
rows straighten up, increasing the value on the angles. Their resulting numbers of
spots are 190, 211 and 216, respectively.

0 10 20 30 40
0

10

20

30

40

50

60

70

80

90

(a) widthAcross = 2.5 m,
spots = 190.

0 10 20 30 40
0

10

20

30

40

50

60

70

80

90

(b) widthAcross = 2.3 m,
spots = 211.

0 10 20 30 40
0

10

20

30

40

50

60

70

80

90

(c) widthAcross = 2.1 m,
spots = 216.

Figure 10.8: Three layouts for the Vertical Layout when widthAcross is reduced
and with manLength ±0° for all layouts.

Figure 10.9a and Figure 10.9b shows the case where the value on the variable
widthAcross is fixed, 2.5 m, but decrease on manLength differs; 5 % and 15 %.
These can be compared to the case with the standard dimensions, in Figure 10.8a.

The case where manLength is reduced by 5 % results in two rows of 0° parking
rows, that probably is not the intuitive choice of row type. The choice of coun-
terintuitive types is further analysed in Section 10.4. As in previous examples, the
values of the angles is reduced somewhat for reduced dimensions, in order to fit
more rows. Comparing the standard dimensions to cases where the manLength is
reduced result in solutions containing 190, 194 and 200 spots, respectively. Figure
10.9c shows the case with highest reduction on both variables, widthAcross is 2.1 m
and manLength is reduced by 15 %. The increase in number of spots between the

59

10. Results and Analysis

0 10 20 30 40
0

10

20

30

40

50

60

70

80

90

(a) widthAcross = 2.5 m,
manLength −5 %, spots

= 194.

0 10 20 30 40
0

10

20

30

40

50

60

70

80

90

(b) widthAcross = 2.5 m,
manLength −15 %, spots

= 200.

0 10 20 30 40
0

10

20

30

40

50

60

70

80

90

(c) widthAcross = 2.1 m,
manLength −15 %, spots

= 232.

Figure 10.9: Three layouts for the Vertical Layout.

standard dimensions and that in Figure 10.9c is 22.1 %. This yields an increase from
190 spots to 232 spots. The percentual increment is illustrated in Figure 10.10.

0 5 10 15
0

5

10

15

20

Percentual decrease in manoeuvre length [%]

P
e
rc

e
n
tu

a
l
c
h
a
n
g
e
 i
n
 n

u
m

b
e
r

o
f
s
p
o
ts

 [
%

]

widthAcross = 2.5 m

widthAcross = 2.3 m

widthAcross = 2.1 m

(a) Percentual change in number of
spots.

0 5 10 15
−22

−20

−18

−16

−14

−12

−10

−8

−6

−4

−2

0

Percentual decrease in manoeuvre length [%]

P
e

rc
e

n
tu

a
l
c
h

a
n

g
e

 i
n

 a
re

a
 p

e
r

s
p

o
t

[%
]

widthAcross = 2.5 m

widthAcross = 2.3 m

widthAcross = 2.1 m

(b) Percentual change in area per spot.

Figure 10.10: Increase in spots and decrease in area per spot in the Vertical
Layout for decreasing values on widthAcross and manLength.

60

10. Results and Analysis

10.2.3 Square Layout
To complete the results from previous sections, a square layout is evaluated as well.
The dimensions are chosen as 130 m by 130 m, resulting in a total area of 16 900 m2.
As such, this layout is the biggest in terms of area, and is referred to as the Square
Layout.

0 20 40 60 80 100 120
0

20

40

60

80

100

120

(a) widthAcross = 2.1 m, manLength
±0 %, spots = 957.

0 20 40 60 80 100 120
0

20

40

60

80

100

120

(b) widthAcross = 2.1 m, manLength
−15 %, spots = 1009 spots.

Figure 10.11: Two resulting output layouts for the Square Layout.

As in the case of the Vertical Layout, the number of rows in the result with
standard dimensions are enough to create new rows when shrinking the value of
manLength. This is exemplified in Figure 10.11. In Figure 10.11a, widthAcross
takes value 2.1 m and the manoeuvre length is reduced by 0 %. The number of
parking rows in the layout is 18, when double rows are counted as two rows, and
the total number of spots is 957. In the case where widthAcross has the same value
but manLength is reduced by 15 % the corresponding layout shows 20 parking rows
and a total 1009 spots. Thus, reducing the length of the manoeuvre rows by 15 %
in this case renders 52 extra spots, or a percentual increment by 5.4 %. The overall
percentual increase is 19.1 %, comparing the standard dimensions that results in 847
spots to the dimensions in Figure 10.11b, that yields 1009 spots. The complete data
for the fitness values of the Square Layout are shown in Figures 10.12.

10.2.4 Impact of Orientation
The program created does not evaluate the orientation of the car park. For a square
layout, as the one in Section 10.2.3, this obviously does not matter. In a case where
the car park layout is rectangular and not square, the orientation will affect the
resulting number of spots that fits in the solution. Intuitively, a horizontal car park
would generate better results, since there are less parking rows that will lose spots

61

10. Results and Analysis

0 5 10 15
0

2

4

6

8

10

12

14

16

18

Percentual decrease in manoeuvre length [%]

P
e

rc
e

n
tu

a
l
c
h

a
n

g
e

 i
n

 n
u

m
b

e
r

o
f

s
p

o
ts

 [
%

]

widthAcross = 2.5 m

widthAcross = 2.3 m

widthAcross = 2.1 m

(a) Percentual change in number of
spots.

0 5 10 15

−18

−16

−14

−12

−10

−8

−6

−4

−2

0

Percentual decrease in manoeuvre length [%]

P
e
rc

e
n
tu

a
l
c
h
a
n
g
e
 i
n
 a

re
a
 p

e
r

s
p
o
t
[%

]

widthAcross = 2.5 m

widthAcross = 2.3 m

widthAcross = 2.1 m

(b) Percentual change in area per spot.

Figure 10.12: Increase in spots and decrease in area per spot in the Square
Layout for decreasing values on widthAcross and manLength.

due to the vertical roads added after the optimisation, compared to its vertical
counterpart.

A comparison is made by running the program for two of the layouts in previous
sections, comparing its counterpart in orientation. First, the Vertical Layout is eval-
uated. Table 10.3 shows the result from evaluating the Vertical Layout, described
in Section 10.2.2, as well as for the same layout rotated by 90°. The most extreme
cases with parameters widthAcross and manLength are also compared. The table
shows that a horizontal layout results in more spots than its vertical counterpart
when vertical roads are added to the solution. Without vertical roads, the ordinary
Vertical Layout contains four spots more than its horizontal counterpart. When the
roads are added however, the vertical layout result in 184 spots, compared to 216
for the horizontal Layout. This applies when using a width of 4 m for the vertical
roads, as stated in Table 10.3. The difference is 32 spots, or a 17.4 % increase.

In the case of Small Skeppsbron, described in Section 10.2.1, the horizontal layout
generates more spots than its corresponding vertical layout, with or without vertical
roads. Table 10.4 shows the corresponding results for Small Skeppsborn. A vertical
version of Small Skeppsbron can fit up to 112 spots without vertical roads, while
the horizontal layout fits 114. Adding vertical roads reduces spots for both cases.
The vertical layout of Small Skeppsbron fits 88 spots with vertical roads, while the
corresponding horizontal layout fits 107 spots. This is illustrated in Figure 10.13.
Contrary to the results from the vertical layout, given in Table 10.3, the percentual
increase in number of spots when reducing manLength and widthAcross is here
bigger for the horizontal layout, considering the case of vertical roads included in

1Using the standard dimensions as described in Section 10.2.
2Using least value on widthAcross and highest reduction on manLength.

62

10. Results and Analysis

Table 10.3: Results using the Vertical Layout, in its original orientation and a
corresponding horizontal layout.

Layout Road Spots Spots Spot Area / spot Area / spot
width [m] min1 max2 incr. [%] max1 [m2] min2 [m2]

Vertical 0 190 232 22.1 21.68 17.38
Vertical 4 160 195 21.9 25.20 20.68
Horizontal 0 196 228 16.3 20.57 17.68
Horizontal 4 184 216 17.4 21.91 18.67

the solution.

Table 10.4: Results using the Small Skeppsbron layout, in its original orientation
and in its corresponding vertical layout.

Layout Road Spots Spots Spot Area / spot Area / spot
width [m] min1 max2 incr. [%] max1 [m2] min2 [m2]

Vertical 0 96 112 16.7 21.37 18.32
Vertical 4 78 88 12.8 26.31 23.32
Horizontal 0 99 114 15.2 20.72 18.00
Horizontal 4 93 107 15.1 22.06 19.18

The orientation also affects the computational time, since higher numbers of rows
leads to a possibility of more unique permutations if there are different types of rows.
The case of Big Skeppsbron is an example of this. When rotating its layout into a
vertical one, the solver returns the following types of parking rows (manoeuvre rows
are not included since they do not affect the total number of permutations): 30 rows
with angle 90°, 2 rows with angle 75° and 2 rows with angle 0°. Even though it is only
three types of rows, it generates 278 256 unique permutations, according to (9.3).
The number of permutations in total is n!, resulting in 2.95 × 1038 permutations,
when counting non-unique permutations. This requires a lot of computer power,
and when trying to generate all permutations, Matlab ran out memory3. Even if
a more powerful computer is used for the task, 2.95 × 1038 is still an unreasonable
number of permutations and preferably another way to find all unique permutations
is required.

3Using these computer specifications : Intel Core i7-4810MQ CPU @ 2.80GHz, Windows 7
Enterprise, 64-bit.

63

10. Results and Analysis

0 10 20 30
0

10

20

30

40

50

60

(a) widthAcross = 2.1 m,
manLength −15 %, spots = 88.

0 10 20 30 40 50 60
0

5

10

15

20

25

30

(b) widthAcross = 2.1 m, manLength −15 %,
spots = 107.

Figure 10.13: Comparison between vertical and horizontal orientation for the
Small Skeppsbron layout, vertical roads included and set to 4 m.

10.2.5 General Trends
Comparing the percentual increment in number of spots for the evaluated layouts
shows that the trend is similar for all four. In Figure 10.14, fitness values of all
layouts evaluated are merged for comparison. Figure 10.14a shows that both reduc-
tions in manLength and widthAcross generate an increase in number of spots. The
increase from widthAcross reduction however is slightly larger. Figure 10.14a shows
that the percentual number of extra spots generated from reducing manLength by
10 % yields at least the same results as reducing widthAcross by 8 % (0.2 m). By
reducing widthAcross by 16 % (0.4 m) compared to the standard dimensions gives
a further increment in percent of number of spots. There is no general answer to
the question of which dimension modification that is most efficient, however, these
results would suggest that widthAcross is slightly more favourable.

10.3 Car Park Dimension Iteration
During real world creation of car parks, the dimensions of the car park are often
variable, within some interval. It can then be of interest to evaluate how the parking
spot layout changes, if one dimension of the car park is slightly modified. To allow
for such investigations, an iterative functionality is included in the program, as
described in Section 9.5. This iterative functionality is illustrated in Figure 10.15.
This figure show iteration of car park dimensions, width and length, with a step size
of 0.25 m and 10 iterations in both positive and negative direction from the original
size, 60 m by 60 m. Figure 10.15a illustrates how the number of spots change with
car park width. A pattern is shown in Figure 10.15a, illustrating that the value

64

10. Results and Analysis

Percentual decrease in manoeuvre length [%]

0 5 10 15

P
e

rc
e

n
tu

a
l
in

c
re

a
s
e

 i
n

 n
u

m
b

e
r

o
f

s
p

o
ts

 [
%

]

0

5

10

15

20

(a) Percentual change in
number of spots in all four

layouts.

Percentual decrease in manoeuvre length [%]

0 5 10 15

P
e
rc

e
n
tu

a
l
d
e
c
re

a
s
e
 i
n
 a

re
a
 p

e
r

s
p
o
t
[%

]
-18

-16

-14

-12

-10

-8

-6

-4

-2

0

(b) Percentual change in
area per spot in all four

layouts.

Percentual decrease in manoeuvre length [%]

0 5 10 15

P
e

rc
e

n
tu

a
l
d

e
c
re

a
s
e

 i
n

 a
re

a
 p

e
r

s
p

o
t

[%
]

-18

-16

-14

-12

-10

-8

-6

-4

-2

0
widthAcross = 2.5 m, Small Skeppsbron

widthAcross = 2.3 m, Small Skeppsbron

widthAcross = 2.1 m, Small Skeppsbron

widthAcross = 2.5 m, Big Skeppsbron

widthAcross = 2.3 m, Big Skeppsbron

widthAcross = 2.1 m, Big Skeppsbron

widthAcross = 2.5 m, Vertical Layout

widthAcross = 2.3 m, Vertical Layout

widthAcross = 2.1 m, Vertical Layout

widthAcross = 2.5 m, Square Layout

widthAcross = 2.3 m, Square Layout

widthAcross = 2.1 m, Square Layout

(c)

Figure 10.14: Percentual change in fitness values for varying values on
widthAcross and manLength, a comparision between the four layouts.

changes in ramps when the width changes. This shows the fact that the value does
not change until a certain width is reached, at which, many rows simultaneously fit
one additional spot. To maximise how the area is used, it is preferable to be placed
just above a ramp.

As for the length, the increase in number of spots varies in a more irregular way.
This depends on the fact that the program changes the type of rows used in the
solution, with the varying length of the car park. In this case, as in Figure 10.15b,
the original dimensions 60 m by 60 m are well placed on the graph, just above a
steep part.

10.4 Counterintuitive Layouts
Intuitively, 90° rows are considered most efficient when it comes to planning the car
park. This is due to the fact that the spots create no waste space; not in the actual
spot or at the edge as unusedWidth, see Figure 7.2.

The approach Tile and Trim as described by Porter et al. [10], follows this
intuitive assumption that 90° parking spots are optimal and tiles such spots in each
car park as a rough estimate of maximum number of parking spots.

When investigating which angle of parking is most efficient, one way of looking at
efficiency is according to (10.2). In this expression, i denotes the different parking
types in the same way as throughout this chapter, with the exception that no double
types are included. The term pV aluei is calculated as specified in (7.2).

efficiencyi = 2pV aluei

2pLengthi +manLengthi

(10.2)

Assuming a length precisely matching the length of two parking rows of the same

65

10. Results and Analysis

55 60 65

−8

−6

−4

−2

0

2

4

6

8

Car park width [m]

P
e

rc
e

n
tu

a
l
c
h

a
n

g
e

 i
n

 n
u

m
b

e
r

o
f

s
p

o
ts

 [
%

]

(a) Number of spots depending on car
park width.

55 60 65

−8

−6

−4

−2

0

2

4

6

8

Car park length [m]

P
e

rc
e

n
tu

a
l
c
h

a
n

g
e

 i
n

 n
u

m
b

e
r

o
f

s
p

o
ts

 [
%

]

(b) Number of spots depending on car
park length.

Figure 10.15: Change in total number of spots, depending on the dimensions of
the car park.

type, and a corresponding manoeuvre row, efficiency is calculated. Since pV aluei

depends on the width of the car park, the efficiency is given regarding that.
This way of describing efficiency is interesting because it resembles the way the

program in this thesis works, which is: checking number of fitted spots horizontally,
and then fitting combinations of rows vertically. As mentioned in Section 10.2,
standard dimensions for a parking spot are widthAcross and manLength, such
that the spot always fits a rectangle of 2.5 m by 5 m. This data is also included in
Table 10.5. Using this data, efficiency numbers have been calculated for car park
widths between 1 m and 200 m. For each car park width, the number of spots fitted
horizontally has been calculated, and is then divided by the length of two parking
rows of the corresponding angle, and one manoeuvre row. The results are presented
in Figure 10.16.

To allow for easier comparison between angles, the graph has been normalised by
division with the current car park width. As given in the figure, angles 90° and 75°
are most efficient in this aspect. Again, one could then assume that these angles of
spots would be best for any car park, this is however not true. Unless the car park
dimensions are open for manipulation in order to exactly fit rows of these angles,
the true optimum parking angles will depend on the length of the car park.

One example of when the optimal packing includes counterintuitive parking an-
gles is shown in Figure 10.17. In this figure, a car park of dimensions 20 m by 11.1 m
is input to the program. The length is precisely enough to fit one row of 90° park-
ing spots with corresponding manoeuvre length. As shown the figure however, the
program instead chooses to include one row of 60° and 0° spots each. This leads to
one additional spot being fitted into the car park.

Another, larger, example of counterintuitive packing is shown in Figure 10.18. In
this figure, two examples of packing for a car park of dimensions 42 m by 41 m are
displayed. Figure 10.18a shows the layout when angles of {90, 75, 60, 45, 30, 00}
degrees are allowed. Figure 10.18b shows the layout when only using 90° spots. The

66

10. Results and Analysis

0 20 40 60 80 100 120 140 160 180 200
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

Area width [m]

N
u

m
b

e
r

o
f

s
p

o
ts

 p
e

r
h

e
ig

h
t

a
n

d
 a

re
a

 w
id

th
 [

n
r/

m
2
]

w=2.5, angle=90°

w=2.5, angle=75°

w=2.5, angle=60°

w=2.5, angle=45°

w=2.5, angle=30°

w=2.5, angle=00°

Figure 10.16: Change of length efficiency, spots / required length, for car park
widths 1 m - 200 m.

Table 10.5: Dimensions on parking spot types used in this chapter. Data are
taken from [22].

Corresponding
dimensions [m]

Parking spot angle

90° 75° 60° 45° 30° 0°
width 2.50 2.59 2.89 3.54 5.00 6.00
widthAcross 2.50 2.50 2.50 2.50 2.50 2.00
unusedWidth 0 1.47 3.22 5.30 8.08 0
length 5.00 5.48 5.58 5.30 4.66 2.00
manLength 6.10 4.50 3.50 3.50 3.50 3.50

parking spot dimensions used are according to the parking layout guidebook [22].
The number of spots for the two is 78 for Figure 10.18a and 64 for Figure 10.18b.

67

10. Results and Analysis

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

(a) Counterintuitive layout, spots = 9.

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

(b) Intuitive layout, spots = 8.

Figure 10.17: Comparison between intuitive and counterintuitive layout for car
park of size 20 m by 11.1 m.

0 5 10 15 20 25 30 35 40
0

5

10

15

20

25

30

35

40

(a) Counterintuitive layout, spots = 78.

0 5 10 15 20 25 30 35 40
0

5

10

15

20

25

30

35

40

(b) Layout including only 90° parking
spots, spots = 64.

Figure 10.18: Comparison between intuitive and counterintuitive layout for car
park of size 60 m by 58 m.

68

11
Conclusion and Discussion

This chapter will discuss the results of the thesis, compared to the goal stated in
Chapter 1. It will also discuss the results of the analysis presented in Chapter 10
and finish up with a review on possible future work.

11.1 Objectives
Stated in Section 1.3 is the goal of this thesis:

The goal of the thesis is to, with mathematical methods, optimise the
distribution of parking spots in a parking area in order to maximise the
number of spots. The optimisation methods should be applicable for use
with both autonomous and manual vehicles.

This section will conclude how the developed program fulfils all parts of the goal
that was set.

11.1.1 Mathematical Methods
The program which has been developed throughout the thesis is based on MILP, a
sub-genre of mathematical programming and optimisation. It also utilises heuristics
which use mathematics to efficiently find permutations. The use of MILP assures
that whatever solution is reached, it is the optimum for the problem modelled. The
MILP model is formulated as to maximise the number of parking spots within a
given area, thus returning an optimal distribution of parking spots in this sense.

11.1.2 Applicability for Autonomous and Manual Parking
The program’s input parameters are car park dimensions, parking spot dimensions,
including manoeuvre requirements, and parking spot angles. These parameters are
sufficient to model different kinds of parking vehicles such as manually driven and
autonomously parking vehicles, as shown in Chapter 10 when the parking spots are
made narrower and manoeuvre rows shorter. The only requirements on the inputs is
that 90° spots and 0° spots are included, because of the way the program is written.
Adding a correct number of types of spots is important. The user might include
all integer angles within the range [0°,90°], but the more angles added, the longer
the computational time will be. This is partially on account of the solver, that has
more decision variables to take into account. Secondly, the more types of parking

69

11. Conclusion and Discussion

rows included in the solution from the solver, the more unique combinations for the
heuristics to find, which by extension also leads to longer computation times.

When defining the car park dimensions, the user can specify them as to model the
car park vertically or horizontally. As we show in Chapter 10, it is often favourable
to layout a horizontal car park, since they are both faster to calculate and give better
result, especially when including vertical roads.

11.1.3 Program Output
The program generates results for all car parks tested, of which the largest was
130 m by 130 m. The upper limit on how large car parks the program can handle is
hard to say. Partly because it depends on how many angles are included as inputs,
but mainly because it depends on the solution that the solver generates. It is not
necessarily the decision of which parking rows to use that is the hard part, but in
which order they should be placed, with respect to vertical roads.

It is in some cases possible to achieve the same number of spots through more
than one set of rows. For example, for some size of car park, the same number of
spots might be achieved by using one 90° parking row, as the number of spots when
using one 60°, and one 0° parking row. In such cases, the rows that the solver outputs
depend on circumstances, such as the computer or solver used. Such cases has been
found by using the program on two different computers. In its current state, the
solver only outputs one set of rows, and it is not possible for the user to know if there
are other possible sets that achieve the same result. From a maximum parking spot
point of view, different sets are of no interest. However, from an architects point of
view, who might further manipulate the layout to include obstacles for example, it
may well be of importance.

11.2 Results
The results from the analysis in Chapter 10 show a number of things. First and
foremost they show that the program can be used to generate practical parking
layouts. The comparison with an existing layout done in Section 10.2.1 show that the
layout generated by the program is in level with the layout created by an architect.
They are similar both in number of spots, and in choosing which parking rows to
include.

The analysis done in Section 10.2 show that the program can be used to com-
pare different kinds of parking models, such as autonomously parking and manually
parking vehicles. The results show that there is potential benefits to be had if
autonomously parking vehicles can operate on spaces with the dimensions used dur-
ing the analysis. The trends for different parking layouts also show that there is
more advantages to be achieved by reducing the measurement on widthAcross, than
reducing the measurement correspondingly on manLength.

How the program can be used to evaluate different orientations and measurements
of car park dimensions is also exhibited, in sections 10.2.4 and 10.3. In Section 10.2.4
we see that, for the dimensions evaluated, it is more advantageous to let the car park
assume a horizontal orientation. Section 10.3 show that the relation between car

70

11. Conclusion and Discussion

park dimensions and number of spots is non-linear. With that stated, it is clear that
the program can be used to evaluate potential benefits of changing aforementioned
dimensions.

Lastly, Section 10.4 presents especially unintuitive layouts, further establishing
the fact that sometimes the optimal solution is very hard to guess. The program
however has no problem finding it for car parks of such size that the heuristics can
handle the rows included. As stated in Section 11.1.3, it is hard to know where this
limit is.

As previously stated, no general mappings for relationships between any input
and number of spots is done. This is because of the complexity of the problem. The
number of spots depend on all variables simultaneously.

11.3 Future Work
The program in its current state works well and fulfils the requirements specified for
the thesis. It is a good tool for analysing the effect of parking spots with decreased
dimensions, maybe due to capabilities of autonomously parking cars, and to get a
draft of the design to work on. To get even better results, that requires less after-
treatment by the user, some functions could be implemented. These functions are
discussed in this subsection.

11.3.1 Adapting to Heuristics
The optimisation is performed with regard to the full width of the car park, even if
vertical roads are included. If vertical roads are included, the rows in the solution
are optimised for the full car park width and then cut off if they are not placed in
the top or bottom of the car park, as shown in Figure 9.2. A better way might be to
estimate how many rows will be in the solution. If this number is large enough that
most spots will be in a row next to the vertical roads, the optimisation is performed
with regard to the width of the car park minus the two vertical roads instead, adding
spots for the rows in the top and bottom. In this way, the solution would be closer
to the true optimum, since it is less modified by heuristics than the solution in this
thesis.

11.3.2 Additional Functions
Multiple sizes of parking spots, together with desired fractions of each size could
be of use to generate layouts which include both spots for autonomous parking and
manual parking. This could be used to include handicap parking spots as well.

A lot of focus during parking layout design is put on not making the roads include
large, unnecessary, driving distances. This has not been included in the thesis, but
could be implemented as a heuristic after optimisation. Important to consider when
including more heuristics is that the more heuristics, the higher the likelihood that
the result deviates from the optimal solution.

A function that would increase the usefulness of the program is if it could be
designed to handle car park areas that are not of rectangular shape. As it is designed

71

11. Conclusion and Discussion

now, it is possible to split an area into smaller rectangles and find the best solution
for each of them. This might give results that do not match up well, for example
if the parking rows are placed on different lengths, making a manoeuvre row match
up with a parking row.

11.3.3 Obstacles
Possibilities to include obstacles in the formulation could help architects find new
ways to fit parking spots around obstacles. In the current formulation however,
our guess is that optimising around such obstacles would be difficult, but including
them in heuristics would be possible. The reason for this is that the MILP for-
mulation is modelled in one dimension, the length dimension, since all rows share
the same width. If obstacles like columns where to be included, the solver has to
handle another dimension, the width dimension. Also, the solver does not handle
any positions in the current formulation, it only sees to that the rows fit in some
combination. An obstacle would have a position, thus positions must be included
in the formulation as well.

Including obstacles in the heuristics instead would mean that the optimal so-
lution is modified and hence introducing a risk of a non-optimal solution. This
might be acceptable, as in the case with the vertical roads, and with the different
combinations the best can be found. The implementation of including obstacles is
still difficult to implement, since it requires taking into account the position of all
spots, in two dimensions. In the program, this is not taken into account before the
presentation of the result. Furthermore, as complicated as it is to calculate the im-
pact of obstacles interfering with parking spots, it may be even more complicated to
evaluate how obstacles interfere with manoeuvre rows. This would introduce more
decisions regarding roads to bypass the obstacle.

11.3.4 Spot Formulation
The computational complexity of the spot formulation from Part I shows how com-
plicated optimisation problems of this kind can be. In its current state, the spot
formulation is not useful, since it cannot generate layouts for car parks of interesting
size.

The problem with the current formulation is that it generates large numbers of
integer variables. In order to make the spot formulation work for larger sizes of car
parks, one would have to find some way of formulating the problem in order to avoid
these integer variables. Especially, some way of avoiding the need for variables for
each pair of parking spots would improve the formulation.

If it is possible to formulate the problem in such a way that its computation time
is decreased enough to solve the problem, its solution would be at least as good as
that of the pattern formulation. Assuming that it would be possible to formulate
the spot formulation as to allow any degree on parking spot, the feasible region
of the spot formulation would be a superset of the feasible region of the pattern
formulation. If the spot formulation would not be able to handle other angles than
0° and 90°, it would not necessarily be better than the current pattern formulation.

72

11. Conclusion and Discussion

11.3.5 Ethical and Sustainability Matters
When building and travelling an area, to save space is to save money. Less required
space means a smaller lot to occupy and less material to expend into building the
structure. Shorter distance to travel means less fuel to consume, assuming that the
speed at which vehicles can operate within the area is uncorrelated to the dimensions.
Maximising the number of vehicles within an area is equivalent to minimising the
needed area for a given number of vehicles. To minimise the needed area is to
conserve money. Assuming that a parking space has a regular width of 2.5 meters
and assuming that the average car is approximately 2 meters wide, it is clear to
see that just the matter of stepping out the car before driving into the spot, can
save up to 20 % of space [21] [22]. In the local environment, less space occupied by
unwanted structures, such as parking areas, means more space left for people. The
continued possibility to use cars increases our independence and freedom.

It could be argued that by making cars take up less space, we enable the use of
more cars. From an environmental viewpoint, this is not sustainable. Cars currently
account for 30 % of Sweden’s carbon dioxide emissions [23]. Even if all cars were
made to run on electricity completely, it is still not sustainable to build such large
constructions as cars for each person, considering our ever increasing population.

Automation in large can be used to perform tasks currently handled by people.
One can argue for both positive and negative impacts of this. The program created in
this thesis in its current state is nowhere near replacing a human car park architect.
In its current shape, it is a helpful tool for giving an architect a good start to work
from, and also useful for comparing different cases, when such options exist.

73

11. Conclusion and Discussion

74

Bibliography

[1] United Nations Department of Economic and Social Affairs, World’s pop-
ulation increasingly urban with more than half living in urban areas, [Ac-
cessed 18 January 2016], Jul. 2014. [Online]. Available: https://www.un.
org / development / desa / en / news / population / world - urbanization -
prospects.html.

[2] Todd Litman, Land for vehicles or people?, [Accessed 11 February 2016], Nov.
2014. [Online]. Available: http://www.planetizen.com/node/72454/land-
vehicles-or-people.

[3] J. Nyhus, I framtidens stadstrafik tar bilen mindre plats, [Accessed 11 February
2016. Article in Swedish], Dec. 2015. [Online]. Available: http://www.gp.se/
nyheter/debatt/1.2920477- i- framtidens- stadstrafik- tar- bilen-
mindre-plats.

[4] G. Grahn-Hinnfors, Och bilarna ska gömmas i p-hus, Mar. 2010. [Online].
Available: http://www.gp.se/nyheter/goteborg/1.324678-och-bilarna-
ska-gommas-i-p-hus.

[5] Lindholmen Science Park, Volvo car group initierar världsunikt pilotprojekt
med självkörande bilar, Dec. 2013. [Online]. Available: http://www.lindholmen.
se/nyheter/volvo-car-group-initierar-varldsunikt-pilotprojekt-
med-sjalvkorande-bilar.

[6] S. Cook and L. Levin, “The complexity of theorem proving procedures”, 1971.

[7] R. Karp, “Reducibility among combinatorial problems”, Complexity of Com-
puter Computations, 1972.

[8] A. Kobetski, “Optimal coordination of flexible manufacturing systems with
automatic generation of collision- and deadlock-free working schedules”, PhD
thesis, Chalmers University of Technology, 2008.

[9] E. S. Thorsteinsson, “Hybrid approaches to combinatorial optimisation”, PhD
thesis, Carnegie Mellon University, May 2001.

75

https://www.un.org/development/desa/en/news/population/world-urbanization-prospects.html
https://www.un.org/development/desa/en/news/population/world-urbanization-prospects.html
https://www.un.org/development/desa/en/news/population/world-urbanization-prospects.html
http://www.planetizen.com/node/72454/land-vehicles-or-people
http://www.planetizen.com/node/72454/land-vehicles-or-people
http://www.gp.se/nyheter/debatt/1.2920477-i-framtidens-stadstrafik-tar-bilen-mindre-plats
http://www.gp.se/nyheter/debatt/1.2920477-i-framtidens-stadstrafik-tar-bilen-mindre-plats
http://www.gp.se/nyheter/debatt/1.2920477-i-framtidens-stadstrafik-tar-bilen-mindre-plats
http://www.gp.se/nyheter/goteborg/1.324678-och-bilarna-ska-gommas-i-p-hus
http://www.gp.se/nyheter/goteborg/1.324678-och-bilarna-ska-gommas-i-p-hus
http://www.lindholmen.se/nyheter/volvo-car-group-initierar-varldsunikt-pilotprojekt-med-sjalvkorande-bilar
http://www.lindholmen.se/nyheter/volvo-car-group-initierar-varldsunikt-pilotprojekt-med-sjalvkorande-bilar
http://www.lindholmen.se/nyheter/volvo-car-group-initierar-varldsunikt-pilotprojekt-med-sjalvkorande-bilar

Bibliography

[10] R. Porter, “Optimisation of car park designs”, University of Bristol, Tech.
Rep., 2013.

[11] J. Lundgren, M. Rönnqvist, and P. Värbrand, Optimization. Lund, Sweden:
Studentlitteratur, 2010.

[12] R. Macedo, C. Alves, and J. M. V. V. de Carvalho, “Exact algorithms for the
two dimensional cutting stock problem”, in Column Generation, 2008.

[13] A. Lodi, S. Martello, and D. Vigo, “Recent advances on two-dimensional bin
packing problems”, Discrete Applied Mathematics, vol. 123, Nov. 2002.

[14] T.-Y. Yu, J.-C. Yang, Y.-L. Lai, and H.-Y. Chang, “Applying an enhanced
heuristic algorithm to a constrained two-dimensional cutting stock problem”,
Applied Mathematics & Information Sciences, vol. 9, Feb. 2015.

[15] M. Hifi, R. M’Hallah, and T. Saadi, “Approximate and exact algorithms for the
double-constrained two-dimensional guillotine cutting stock problem”, Com-
putational Optimization and Applications, vol. 42, Mar. 2009.

[16] D. Pisinger, “Denser packings obtained in O(n log log n) time”, INFORMS
Journal on Computing, vol. 19, Jul. 2007.

[17] J. Egeblad and D. Pisinger, “Heuristic approaches for the two- and three-
dimensional knapsack packing problems”, Department of Computer Science,
University of Copenhagen, Tech. Rep., 2006.

[18] E. Huang and R. Korf, “Optimal rectangle packing: An absolute placement
approach”, Journal of Artificial Intelligence Research, vol. 46, 2012.

[19] Brooks/Cole, 4.10 - the big m method, http://www.columbia.edu/~cs2035/
courses/ieor3608.F05/david-bigM.pdf, [accesed 2016-06-16], 2003.

[20] Jaroslaw Tuszynski,Xml_read.m, [Accessed 6 June 2016], 2006. [Online]. Avail-
able: http://www.mathworks.com/matlabcentral/fileexchange/12907-
xml-io-tools/content/xml_read.m.

[21] Volvo Car Group, Volvo car support - ägarmanual online (owner’s manual
online), [Accessed 30 May 2016], Feb. 2016. [Online]. Available: http : / /
support . volvocars . com / se / cars / Pages / owners - manual . aspx ? mc =
v526hbat&my=2016&sw=15w46&article=871e942e897ca77dc0a801511788660a.

[22] Ingenjörsvetenskapsakademin, Transportforskningskommissionen, Parkeringsan-
läggningar. Stockholm, Sweden: Kommissionen, 1969.

76

http://www.columbia.edu/~cs2035/courses/ieor3608.F05/david-bigM.pdf
http://www.columbia.edu/~cs2035/courses/ieor3608.F05/david-bigM.pdf
http://www.mathworks.com/matlabcentral/fileexchange/12907-xml-io-tools/content/xml_read.m
http://www.mathworks.com/matlabcentral/fileexchange/12907-xml-io-tools/content/xml_read.m
http://support.volvocars.com/se/cars/Pages/owners-manual.aspx?mc=v526hbat&my=2016&sw=15w46&article=871e942e897ca77dc0a801511788660a
http://support.volvocars.com/se/cars/Pages/owners-manual.aspx?mc=v526hbat&my=2016&sw=15w46&article=871e942e897ca77dc0a801511788660a
http://support.volvocars.com/se/cars/Pages/owners-manual.aspx?mc=v526hbat&my=2016&sw=15w46&article=871e942e897ca77dc0a801511788660a

Bibliography

[23] Trafikverket, Vägtrafikens utsläpp, Jun. 2013. [Online]. Available: http://
www.trafikverket.se/om-oss/var-verksamhet/sa-har-jobbar-vi-med/
miljo-och-halsa/klimat/transportsektorns-utslapp/vagtrafikens-
utslapp/.

77

http://www.trafikverket.se/om-oss/var-verksamhet/sa-har-jobbar-vi-med/miljo-och-halsa/klimat/transportsektorns-utslapp/vagtrafikens-utslapp/
http://www.trafikverket.se/om-oss/var-verksamhet/sa-har-jobbar-vi-med/miljo-och-halsa/klimat/transportsektorns-utslapp/vagtrafikens-utslapp/
http://www.trafikverket.se/om-oss/var-verksamhet/sa-har-jobbar-vi-med/miljo-och-halsa/klimat/transportsektorns-utslapp/vagtrafikens-utslapp/
http://www.trafikverket.se/om-oss/var-verksamhet/sa-har-jobbar-vi-med/miljo-och-halsa/klimat/transportsektorns-utslapp/vagtrafikens-utslapp/

Bibliography

78

A
Appendix 1

I

A. Appendix 1

Figure A.1: Full drawing of the Skeppsbron layout.

II

	Acronyms
	Variable Notations
	List of Figures
	List of Tables
	Introduction
	Background
	Problem Definition
	Purpose and Objective
	Delimitations
	General Delimitations
	Program Delimitations

	Solution Overview
	Thesis Organisation

	Theory
	Computational Complexity
	Optimisation Methods
	Mixed Integer Linear Programming
	Constraint Programming
	Stochastic Optimisation

	Optimisation Theory
	Classical Problems
	Technical Specifications

	Related Work
	I Spot Formulation
	Spot Formulation
	Overview
	Delimitations
	Optimisation Method

	MILP Formulation
	Objective Function
	Car Park Bounds
	Shelfing
	Lowest Index Placement
	Overlap Avoidance
	Manoeuvre Space

	Computational Complications

	II Pattern Generation
	Pattern Formulation
	Overview
	Manoeuvre Rows
	Double Rows
	Result Generation

	Optimisation Method
	Indata
	XML Reading
	Solvers

	MILP Formulation
	Sets
	Objective Function
	Total Length
	Manoeuvre Rows
	Double Rows

	Post Processing
	Permutations
	Mirroring Tilted Parking Rows
	Vertical Roads
	Presentation of Results
	Iteration

	Results and Analysis
	Result Generation Data
	Parking Spot Reductions
	Horizontal Layout - Skeppsbron
	Vertical Layout
	Square Layout
	Impact of Orientation
	General Trends

	Car Park Dimension Iteration
	Counterintuitive Layouts

	Conclusion and Discussion
	Objectives
	Mathematical Methods
	Applicability for Autonomous and Manual Parking
	Program Output

	Results
	Future Work
	Adapting to Heuristics
	Additional Functions
	Obstacles
	Spot Formulation
	Ethical and Sustainability Matters

	Bibliography
	Appendix 1

