
Recognition of suddenly appearing
obstacles using optical flow
for autonomous vehicles
Master’s thesis in Systems, Control and Mechatronics

JOHAN EDDELAND

Department of Signals and Systems
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2016

Master’s thesis EX030/2016

Recognition of suddenly appearing obstacles using
optical flow for autonomous vehicles

JOHAN EDDELAND

Department of Signals and Systems
Image Analysis and Computer Vision

Chalmers University of Technology
Gothenburg, Sweden 2016

Recognition of suddenly appearing obstacles using optical flow for autonomous ve-
hicles
JOHAN EDDELAND

© JOHAN EDDELAND, 2016.

Supervisor: Fredrik Kahl, Department of Signals and Systems
Examiner: Fredrik Kahl, Department of Signals and Systems

Master’s Thesis EX030/2016
Department of Signals and Systems
Image Analysis and Computer Vision
Chalmers University of Technology
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Cover: Top right and top left show subsequent frames from a video recorded and
used for analysis in this thesis. Bottom left shows the calculated optical flow field,
where the focus of expansion is marked with a red circle with black border. Bottom
right shows the segmentation result when using an angle threshold of π/2, clearly
indicating that the bicyclist seen coming in from the right in the two frames has
been detected.

Typeset in LATEX
Gothenburg, Sweden 2016

iv

Recognition of suddenly appearing obstacles using optical flow for autonomous ve-
hicles
JOHAN EDDELAND
Department of Signals and Systems
Chalmers University of Technology

Abstract
The problem of designing autonomous vehicles poses many interesting questions,
among them the issue of active safety. To make sure an autonomous vehicle does
not damage its environment or itself, many measures need to be taken with the help
of sensors that help it acknowledge the world around it.

This thesis presents works in the area of safety for autonomous vehicles. More
specifically, it regards the development of a small part of a safety system, which
uses a single camera pointing forward to recognize when there are potential objects
present that need to be avoided. The approach is to calculate optical flow in the
video from the camera, then find the focus of expansion from the optical flow, and
finally segment the given image for angle deviations based on a model where flow
vectors are expected to diverge from the focus of expansion.

The results from evaluating the algorithm on recorded routes show that using the
presented model leads to an over-segmentation of objects in the optical flow fields.
This results in a system that when implemented would not allow the vehicle in ques-
tion to drive autonomously as much as needed, as it would find too many potential
objects where there are in fact none. In certain situations, however, the results show
that some obstacles can be found and that the vehicle can make decisions that cor-
respond well to intuitive manual analysis of the situations. The conclusion of this is
that the work presented in this thesis can act as a framework for future development
of an active safety system for autonomous vehicles, where improvements could be
made by including more sensor information and optimizing parameter values for
different parts of the system.

Keywords: optical flow, computer vision, obstacle avoidance, obstacle recognition,
focus of expansion

v

Contents

List of Figures ix

List of Tables xi

1 Introduction 1
1.1 Background . 1
1.2 Purpose and Objectives . 2

1.2.1 Recognizing when obstacles are present 2
1.2.2 Creating decisions for different scenarios 2
1.2.3 Evaluating performance of algorithm using pre-recorded data . 2
1.2.4 Evaluating the performance of certain optical flow algorithms 3

1.3 Related Work . 3
1.3.1 Optical flow . 3
1.3.2 Calculating the focus of expansion 3

1.4 Contributions . 4
1.5 Limitations . 4

2 Theory 5
2.1 Image Processing . 5

2.1.1 Reducing resolution . 5
2.2 Optical Flow . 6

2.2.1 Gradient constraint equation 7
2.2.2 Optical flow based on polynomial expansion 7
2.2.3 Nearest neighbor field . 8
2.2.4 Principal component analysis 9

2.3 Focus of Expansion and Expected Motion 9
2.3.1 Expected motion model . 9
2.3.2 Calculating the FOE with a matched filter 10

2.4 Receiver Operating Characteristic . 11

3 Methods 13
3.1 Recording Routes for Evaluation . 13

3.1.1 Reducing resolution . 13
3.2 Generating a Ground Truth for Recognition of Obstacles 13
3.3 Optical Flow . 14

3.3.1 Approximate Runtimes . 14
3.3.2 Using different frame jumps 16

vii

Contents

3.4 Calculating the FOE . 16
3.5 Performing Segmentation to Recognize Objects 16
3.6 Implementation Details . 17

3.6.1 Recording equipment . 18
3.6.2 Parameters used . 18

4 Results 21
4.1 Varying the Frame Jump . 21
4.2 Varying the Angle Threshold . 23

5 Discussion 25
5.1 Recording Routes . 25
5.2 Optical Flow . 25
5.3 FOE Calculations . 26
5.4 Binary Decisions . 26
5.5 Individual Pixels of Segmentation . 27
5.6 Future Work . 29

6 Conclusion 31

Bibliography 33

viii

List of Figures

1.1 An example of an object that should be avoided. The image is taken
from a video which is recorded and used in this thesis work. A bicy-
clist, marked with a red rectangle, comes in from the right and creates
a risk of collision with the camera. 1

2.1 An illustration of what an image pyramid is. At the bottom of the
pyramid is the original image, and each subsequent layer above is a
version of the image below, but reduced in size. 5

2.2 Color coding of flow vectors, where direction is colored by hue and
length is coded by saturation. 6

2.3 An example of how optical flow can be visualized. The left image is
the first frame, and the middle image is the second frame. The right
image is a visualization of the resulting optical flow, as calculated by
the EPPM algorithm [1]. 6

2.4 The different phases of a randomized nearest neighbor algorithm. (a)
patches are initially randomly assigned. (b) the blue patch checks
above/green and left/red neighbors to see whether they improve the
blue mapping. (c) the patch searches for improvements randomly [2]. 8

2.5 An example of how the optical flow vectors are expected to look
around the FOE. The FOE is marked with a red dot. [3] 10

3.1 Illustration of the difference of the four different optical flow algo-
rithms presented in this thesis. The flow fields are calculated for a
pair of images from a video recorded and used in the thesis. Top
left and top right shows frame one and two, respectively. Middle
left shows the flow calculated by Farnebäck’s algorithm, middle right
shows the flow calculated by PCA-Flow, bottom left shows the flow
calculated by PCA-Layers, and bottom right shows the flow calcu-
lated by EPPM. It is obvious that the flows calculated from different
algorithms are far from identical, which also means that the final
segmentation results will be different. 15

3.2 Illustration of the meaning of frame jumps by the use of a 9-image
sequence. The top row shows which are the first two frames used
for optical flow calculations when frame jump is 1. The middle row
shows frame jump 4, and the bottom row shows frame jump 8. The
used frames are highlighted compared to the other ones. 16

ix

List of Figures

4.1 TPR for individual pixel values, showing the impact of varying the
frame jump and the angle threshold. Left shows angle threshold π/2,
middle shows angle threshold π/3, and right shows angle threshold
π/4. For all three subplots, the frame jump is varied between 1, 4
and 8. 22

4.2 FPR for individual pixel values, showing the impact of varying the
frame jump and the angle threshold. Left shows angle threshold π/2,
middle shows angle threshold π/3, and right shows angle threshold
π/4. For all three subplots, the frame jump is varied between 1, 4
and 8. 22

4.3 ROC curves of individual pixel values, illustrating what happens when
the angle threshold varies and the frame jump is kept constant. The
top figure shows frame jump 1, the middle figure shows frame jump
4, and the bottom figure shows frame jump 8. In all three figures,
angle threshold are varying through the values π/2, π/3, π/4. 23

4.4 ROC curves of binary decisions, illustrating what happens when the
angle threshold varies and the frame jump is kept constant. The top
figure shows frame jump 1, the middle figure shows frame jump 4,
and the bottom figure shows frame jump 8. In all three figures, angle
threshold are varying through the values π/2, π/3, π/4. Note that the
values shown are only between 0.8 and 1 for both x-axis and y-axis. . 24

5.1 An illustration of when the algorithm gives a satisfactory result. Top
left and top right shows frame one and frame two, respectively. Bot-
tom left shows the optical flow field as calculated by PCA-Flow, where
the FOE has been marked with a red circle with black border. Bottom
right shows the segmentation result when using an angle threshold of
π/2. As the frames are subsequent in the video used, the frame jump
in this example is 1. 27

5.2 An illustration of when the algorithm finds objects that are not there
in the ground truth (e.g. false positives). Top left and top right
shows frame one and frame two, respectively. Bottom left shows the
optical flow field as calculated by PCA-Flow, where the FOE has
been marked with a red circle with black border. Bottom right shows
the segmentation result when using an angle threshold of π/2. As
the frames are subsequent in the video used, the frame jump in this
example is 1. 28

x

List of Tables

3.1 Approximate timings for each optical flow algorithm, as reported on
the benchmark KITTI flow 2012. 14

3.2 All the different parameter values used in the implemented algorithm. 19

4.1 Parameter combinations shown in results figures. 21

xi

List of Tables

xii

1
Introduction

1.1 Background
The possibility of fully autonomous vehicles is coming closer and closer to reality,
but together with exciting ideas about what can be done in a driver-less environ-
ment, the safety issues also make themselves apparent. To prevent casualties and
damage, the autonomous vehicles must have advanced safety systems. This master
thesis project is a small part of such an advanced safety system, where the main
focus is to recognize when a suddenly appearing object appears in front of an au-
tonomous vehicle with a single camera pointing forward. An example of an object
that should be avoided can be found in Figure 1.1, where a bicyclist comes in from
the right and creates a risk of collision with the camera.

Figure 1.1: An example of an object that should be avoided. The image is taken
from a video which is recorded and used in this thesis work. A bicyclist, marked
with a red rectangle, comes in from the right and creates a risk of collision with the
camera.

Recognizing when there are objects in front of the vehicle is no simple task and
it could be achieved in multiple different ways. The approach chosen here is to
make use of optical flow, which is a technique that estimates how regions or pixels
are moving in between two images. In other words, the work presented makes
no attempt at distinguishing what kind of objects are in front of the vehicle, like
trees or pedestrians, but rather whether there are any objects at all that should be
avoided in some way. Since pedestrians standing still definitively should be avoided,

1

1. Introduction

it is important that this work should be used in collaboration with other safety
techniques for autonomous vehicles.

1.2 Purpose and Objectives

The purpose of the project is to create a part of a safety system for autonomous
vehicles. The system created is supposed to be implementable on relatively low-cost
hardware in real-time applications, which means that the calculation times for all
parts of the program are very important. A desirable goal for such a system is that
it should react quicker to dangerous situations than a human would, meaning that
an investment into autonomous vehicles could pay off in the way of less accidents.

The objectives for the project can be divided into several smaller parts, as introduced
in the following sections.

1.2.1 Recognizing when obstacles are present

To be able to evaluate if the algorithm can recognize when obstacles are present,
it is important to define what an object refers to in this context. An object is in
this case a cluster of pixels which moves in a direction different to what could be
expected of it, based on a motion model with velocity vectors moving away from a
certain point called the focus of expansion. This aim consists of the fact that the
created program should be able to tell whether or not there are any objects present
in between a given pair of images (as part of a video). This information should then
be used to decide what control action will be used for the vehicle.

1.2.2 Creating decisions for different scenarios

Given that an obstacle is present, it is not trivial to decide how the autonomous
vehicle should react. Depending on how fast the object is moving, and whether it
is moving towards the edge of the images or towards the center, there might be
different choices playing a part of how to influence the speed of the vehicle based on
this analysis.

1.2.3 Evaluating performance of algorithm using pre-recorded
data

Evaluating an algorithm that is supposed to recognize when obstacles are present is
not straightforward, since there is no obvious ”ground truth” to compare to. This
objective of the project consists of coming up with a consistent way of measuring
how well the algorithm is performing based on some manual analysis of pre-recorded
routes.

2

1. Introduction

1.2.4 Evaluating the performance of certain optical flow al-
gorithms

This thesis makes use of developed optical flow algorithms that have been presented
by researchers in the area. This final objective of the report is to compare the per-
formance of these optical flow algorithms against each other, to provide an outlook
of a new application of optical flow.

1.3 Related Work
The work performed in this thesis is based on combining research from a few different
sub-fields of computer vision, mainly optical flow and focus of expansion calculations.
The idea to use optical flow to create systems that avoid obstacles has been presented
before [4, 5], but in these cases the use of a motion model based on the calculated
focus of expansion has not been tested. Optical flow in itself is chosen because
it gives rise to a fairly simple motion model that, if it turns out to approximate
real-world motion well enough, can be used for an obstacle avoidance scheme more
easy to adjust than far more advanced techniques (e.g. SLAM [6], where instead of
just considering the image plane, a more complex 3D-mapping of the environment
is attempted).

1.3.1 Optical flow
The area of optical flow has been heavily researched since the beginning of the
1980s, when the work on global methods and local methods for flow calculations
were presented by Horn & Schunk [7] and Lucas & Kanade [8], respectively. Since
then, there have been many branches of research focusing on different aspects of the
problems with approximating optical flow, like large displacement flow [9, 10] and
real-time flow computations [11, 12, 13].

Almost all of the papers on optical flow do however focus on the flow calculations
themselves, and not so much on the possible applications. In this thesis, the optical
flow algorithms evaluated are fast, meaning that flow calculation times are in the or-
der of one second on a standard CPU. The algorithms used are created by Farnebäck
[14], Bao et al [1], and Wulff & Black [15]. These algorithms are explained more
thoroughly in Sections 2.2.2 - 2.2.4.

1.3.2 Calculating the focus of expansion
When a camera moves while filming, the Focus of Expansion (FOE) is the projected
point on the image which the camera is moving towards. Many different methods of
calculating the FOE have been presented in literature, most of which can be divided
into discrete and continuous methods [16, 17]. The continuous methods are the ones
which rely on the use of optical flow, which make them the most relatable to this
thesis.

3

1. Introduction

One approach to approximating the FOE is to calculate it as the least-square solution
to the pseudo-intersection of optical flow vectors [18]. Another method is to count
the number of positive and negative horizontal flow components, take the difference
and average over rows and columns to find the x- and y-components of the FOE
separately [19]. The method used in this report is based on a matched filter technique
[3], which accurately finds the FOE if it is in the image (which is not always the
case e.g. if the vehicle with the camera is turning at a high rate).

1.4 Contributions
The main contribution of this thesis is the idea and evaluation of a new kind of
method to avoid collisions between autonomous vehicles and suddenly appearing
objects. As such, it is a base for further research and improvement with other exist-
ing techniques of active safety for vehicles, even though the created algorithm has
not been implemented on a real prototype.

This report also provides an insight into whether or not it is suitable to use such a
simple motion model to try and characterize dangerous situations for autonomous
vehicles, in an attempt to be able to reduce accidents on roads. As it uses several
previously presented optical flow algorithms, it provides information about how
optical flow algorithms perform in such a kind of an application, as well as what
properties of optical flow can be important in cases of detection of object presence
for autonomous vehicles.

1.5 Limitations
Time constraints for the project lead to some major boundaries that could be worked
on in future related projects. The algorithms created only consider making use of
a forward-pointing camera as the only sensor on an autonomous vehicle. Any au-
tonomous vehicle will likely be equipped with numerous auxiliary sensors, which
could be used to enhance the performance of the proposed algorithm and make its
part in a safety system even bigger.

It is also important to be clear about the fact that this thesis makes no attempt to
try to identify any obstacles (e.g. pedestrians, other cars etc). This is of course a big
limitation, as the created program would not be able to identify a child standing still
in front of the moving self-driving vehicle – the algorithm considers only obstacles
which are moving in a way that the motion of the camera can not easily predict.

4

2
Theory

This chapter presents the theory of the different parts needed to create a real-time
algorithm for recognition of quickly-moving obstacles.

2.1 Image Processing
To be able to understand some of the methods used in this report, some basic
concepts of image processing are needed. This section provides a quick insight
in how to reduce the resolution of an image, something which is important when
optimizing image or video calculations with respect to time.

2.1.1 Reducing resolution
Assume an image with resolution M × N . This means that the image is a matrix
with M rows and N columns, and the goal of performing one resolution reduction
can be reached by the use of Gaussian pyramids [20]. Imagine a pyramid of images,
where the original image is the base of the pyramid, and each upper layer is a version
of the lower one with reduced size, as illustrated in Figure 2.1.

Figure 2.1: An illustration of what an image pyramid is. At the bottom of the
pyramid is the original image, and each subsequent layer above is a version of the
image below, but reduced in size.

Consider the original image to be the base Gi of the Gaussian pyramid. The next
level Gi+1 is created by convolving the image with the Gaussian kernel

5

2. Theory

1
16

1 4 6 4 1
4 16 24 16 4
6 24 36 24 6
4 16 24 16 4
1 4 6 4 1

 , (2.1)

and afterwards removing every even-numbered row and column. This results in an
image which has the resolution M

2 ×
N
2 , which is exactly one quarter of the original

resolution.

2.2 Optical Flow
Optical flow is the approximation of velocities in a pair of images, which can be cal-
culated in many different ways. In this section, ways of calculation that are relevant
to this thesis are presented.

An optical flow algorithm produces images where each point, corresponding to a
pixel in the original pair of images, is represented by a two-dimensional vector.
To visualize the flow vectors in a concise way, [21] propose a color coding scheme
where direction of the vectors is coded by hue and length of the vectors is coded by
saturation (see Figure 2.2).

Figure 2.2: Color coding of flow vectors, where direction is colored by hue and
length is coded by saturation.

An example of how the visualization of optical flow looks can be found in Figure
2.3.

Figure 2.3: An example of how optical flow can be visualized. The left image is
the first frame, and the middle image is the second frame. The right image is a
visualization of the resulting optical flow, as calculated by the EPPM algorithm [1].

6

2. Theory

2.2.1 Gradient constraint equation
The standard constraint to assume when calculating optical flow is the brightness
constancy assumption, which means that a certain area or object moving between
two images I1 and I2 have the exact same intensity. This is mostly not true for
real applications due to lightning, camera properties and shadows in the real world,
but is a good starting point for optical flow estimation. Let I(x, y, t) be the image
intensity at the point (x, y) and time t, then the assumption is described by [22]

I(x, y, t) = I(x+ u, y + v, t+ 1). (2.2)
In this case, u is the velocity in x-direction and v is the velocity in y-direction.
The displaced image can be approximated by a Taylor-series, ignoring higher-order
terms:

I(x+ u, y + v, t+ 1) ≈ I(x, y, t) + u · Ix(x, y, t) + v · Iy(x, y, t) + It(x, y, t). (2.3)

Ix and Iy denote spatial derivatives of the image I and It denotes the temporal
derivative. Substituting this approximation into Equation (2.2) yields the gradient
constraint equation:

Ixu+ Iyv + It = 0. (2.4)
The unknowns in this equation, u and v, are the components of the optical flow. As
can be clearly seen, Equation (2.4) is underdetermined with one equation and two
unknowns. This means that the flow velocity (u, v) cannot be computed without
introducing more constraints [7]. The different methods that come up for calculating
optical flow usually depend on which more constraints are included.

2.2.2 Optical flow based on polynomial expansion
In 2003, Farnebäck introduced the idea of approximating the neighborhood of each
pixel in an image with a polynomial to then calculate optical flow [14]. Expressed
in a local coordinate system, this can be written as

I(x) ∼ xT Ax+ bTx+ c, (2.5)
where A is a symmetric matrix, b is a vector and c is a scalar. Let us now consider
displacement of a neighborhood with a vector d. Consider the first neighborhood
to be approximated by

I1(x) = xT A1x+ bT
1 x+ c1. (2.6)

The new neighborhood, affected by displacement d, is expressed by

I2(x) = I1(x− d) = (x− d)T A1(x− d) + bT
1 (x− d) + c1

= xT A1x+ (b1 − 2A1d)Tx+ dT A1d− bT
1 d + c1

= xT A2x+ bT
2 x+ c2.

(2.7)

7

2. Theory

Equating the different coefficients from the two polynomials I2(x) and I1(x − d)
yields

A2 = A1 (2.8)
b2 = b1 − 2A1d (2.9)
c2 = dT A1d− bT

1 d + c1. (2.10)

Equation (2.9) can be solved for the translation d if A1 is non-singular. Since d
is what we search for when trying to approximate optical flow, the solution in this
case is

d = −1
2A−1

1 (b2 − b1). (2.11)

2.2.3 Nearest neighbor field
One of the optical flow methods used in this thesis is an algorithm by Bao et al.
which uses approximate Nearest Neighbor Field (NNF) [1]. The algorithm is local,
which means that it does not optimize over the entire image, resulting in a shorter
execution time. The main idea is to consider patches in the image, initializing
random correspondence fields and iteratively propagating guesses among pixels that
are nearby [2]. A good illustration of what this means is shown in Figure 2.4.

Figure 2.4: The different phases of a randomized nearest neighbor algorithm. (a)
patches are initially randomly assigned. (b) the blue patch checks above/green and
left/red neighbors to see whether they improve the blue mapping. (c) the patch
searches for improvements randomly [2].

Assume that two patches with radius r, centered at location a(xa, ya) in image A
and location b(xb, yb) in image B, are supposed to be matched. The cost function
originally used between the two patches is

8

2. Theory

d(a,b) =
∑

∆(∆x,∆y):|∆x|≤r,|∆y|≤r

‖IA(a + ∆)− IB(b + ∆)‖2, (2.12)

where IA and IB denote the CIELab color appearances of image A and B, respec-
tively [23].
The algorithm produced by Bao et al. uses modifications of this patch cost, together
with more adjustments and approximations to increase the speed of the optical flow
calculations.

2.2.4 Principal component analysis
Yet another idea of calculating optical flow is presented by Wulff & Black [15] in
a report that shows a trained algorithm via Principal Component Analysis (PCA).
PCA is a multivariate statistical technique that is used to extract only the most
important information from a set of data [24], to compress the size of the set and,
in this case specifically, simplifying the description of the set to in the end perform
quicker optical flow calculations. This means that the algorithm in itself consists
of two parts; the first step is an offline part where the principal components are
calculated from a set of training data (in this case commercial movies), and the
second step is the online part where the optical flow is calculated quickly using the
principal components previously extracted.

The underlying assumption is that the optical flow fields in question can be ap-
proximated by a weighted sum of basis flow fields bn, n = 1 . . . N , with weights
wn

u ≈
N∑

n=1
wnbn. (2.13)

In this particular case, u and bn are vectorized optical flow fields, where the hori-
zontal and vertical components are stacked as column vectors: u = (uT

x ,uT
y)T .

2.3 Focus of Expansion and Expected Motion

The Focus of Expansion (FOE) is the pixel in the image corresponding to the inter-
section of the three-dimensional (3D) velocity vector describing the camera move-
ment and the projection plane [3]. It is characterized (in the ideal case) by the fact
that the optical flow vector at the FOE has zero magnitude and that all of the other
optical flow vectors diverge radially from it, as can be seen in Figure 2.5.

2.3.1 Expected motion model
The FOE is calculated with respect to angles of the optical flow vectors, and the way
to distinguish which pixels in the image belong to an object or to the background
is also based on angles. More specifically, let u(x, y) be the horizontal component

9

2. Theory

Figure 2.5: An example of how the optical flow vectors are expected to look around
the FOE. The FOE is marked with a red dot. [3]

of the optical flow velocity vector and v(x, y) be the vertical component. The angle
α(x, y) for a given flow vector can be calculated according to

α(x, y) = arctan v(x, y)
u(x, y) . (2.14)

A pixel at position (x, y) in the image is considered to be part of an object if
|α(x, y)−β(x, y)| is larger than some predefined angle threshold value. Here β(x, y) is
the expected angle based on the FOE position in the image, which can be calculated
as

β(x, y) = arctan y − yc

x− xc

, (2.15)

where (xc, yc) is the position of the FOE.

2.3.2 Calculating the FOE with a matched filter
In [3], Sazbon et. al. present a method of finding the FOE of an image in a robust
way, given that the FOE is inside the image. The approach is based on the assump-
tion presented previously, namely that all optical flow vectors around the FOE are
expected to diverge away from it. The algorithm presents a two-dimensional filter
which optimizes a cost function that only attempts to match expected directions of
flow vectors (hence not taking magnitude of the optical flow into account).

Assume a two-dimensional filter with filter size (2w+1)× (2w+1), where each pixel
in the filter represents the angle between its corresponding grid point and the origin
(i.e. the middle point of the filter). This gives the filter

F (m,n) = arctan n

m
− w ≤ m ≤ w, −w ≤ n ≤ w, (2.16)

where m and n are coordinates in y− and x−directions, respectively (cf. Equation
(2.14)). The FOE is the pixel in the optical flow that minimizes

(x̂F OE, ŷF OE) = arg min
(x,y)

S(x, y), (2.17)

where S(x, y) is the cost function defined as

10

2. Theory

S(x, y) = Ψ(u(x, y), v(x, y))
w∑

m=−w

w∑
n=−w

(
(F (m,n)− α(u(x+m, y + n), v(x+m, y + n)))2 (2.18)

Φ(u(x+m, y + n), v(x+m, y + n))
)
.

Here α(u(x, y), v(x, y)) is defined as in Equation (2.14) and Φ(u(x, y), v(x, y)) is a
weight function defined as

Φ(u(x, y), v(x, y)) =

1 u(x, y)2 + v(x, y)2 ≥ t

0 otherwise,
(2.19)

where t is a predefined threshold value. This threshold is used to prevent opti-
cal flow vectors with close to zero magnitude from affecting the sum in Equation
(2.18), as their angle can be considered to unsure. In Equation (2.18), the term
Ψ(u(x, y), v(x, y)) is then

Ψ(u(x, y), v(x, y)) =
(w∑

m=−w

w∑
n=−w

Φ(u(x+m, y + n), v(x+m, y + n))
)−1

, (2.20)

meaning that Ψ(u(x, y), v(x, y)) is the number of neighbors that actually participate
to form the sum of the weighted square differences for the (x, y) pixel.

To speed up the calculations somewhat, and also to not find false FOE in image
pairs where the true FOE is not inside the flow image, the additional constraint
proposed by Kumar et. al. in [25] is used. This means that only optical flow vectors
that have a magnitude below some threshold are considered as possible candidates
for being the FOE. More formally, this can be explained as setting the cost function
value to infinity for flow vectors with magnitude below the threshold value, and
otherwise calculating the cost function value according to Equation (2.18).

2.4 Receiver Operating Characteristic
A receiver operating characteristic (ROC) is a plot that illustrates the performance
of a system where binary classifiers are used. Binary classifiers are used to separate
test results into two groups, in the case of this report the groups ”object” and ”not
object”. This ROC curve can be used to determine how well a given algorithm or
test setting is working for different sets of parameters, and proves useful when hav-
ing many cases of varying parameters.

When evaluating the performance of the algorithm in this report, there will be a
ground truth that describes where in the image there are objects that should be
avoided. The algorithm will also generate a set of objects that should be avoided,
and these two classifications can then be compared to see how well the algorithm

11

2. Theory

matches to the ground truth (which is, in this case, manual analysis).

Having two cases of binary classification means a total of four scenarios that can
happen. The comparisons are made in a pixel-by-pixel fashion, which is summarized
in the following way:

• When a pixel is marked as part of an object in the ground truth and in the
automatic analysis, it is called a true positive

• When a pixel is marked are part of an object in the ground truth but not in
the automatic analysis, it is called a false negative

• When a pixel is not marked as part of an object in the ground truth, but it
is marked as part of an object in the automatic analysis, it is called a false
positive

• When an object is not marked as part of an object in neither the ground truth
nor the automatic analysis, it is called a true negative

Another type of result presented in Section 4 is ROC curves for binary decisions. A
binary decision is in this case a simple control decision for the autonomous vehicle,
which serves as an indicator of whether or not the algorithm proposed in this the-
sis is viable for real-life use or not. For both the ground truth and the automatic
analysis, the binary decision will be ”GO” if there are no objects in the image, and
”STOP” if there is at least one object in the image. The different combinations of
binary decisions give these classifications:

• When both the ground truth and the automatic analysis make the binary
decision ”STOP”, it is called a true positive

• When the ground truth makes the binary decision ”STOP” and the automatic
analysis makes the binary decision ”GO”, it is called a false negative

• When the ground truth makes the binary decision ”GO” and the automatic
analysis makes the binary decision ”STOP”, it is called a false positive

• When both the ground truth and the automatic analysis make the binary
decision ”GO”, it is called a true negative

The ROC curve is created by plotting the True Positive Rate (TPR) against the
False Positive Rate (FPR). The TPR is calculated as

TPR = number of true positives
number of true positives + number of false negatives , (2.21)

and the FPR is calculated as

FPR = 1− number of true negatives
number of true negatives + number of false positives . (2.22)

Note that TPR is also called sensitivity, and FPR is equal to 1 minus the specificity.

12

3
Methods

This chapter explains the steps that have been used to design the recognition of
obstacles and evaluate the results of the algorithm.

3.1 Recording Routes for Evaluation
To be able to evaluate the algorithms created, data is needed. To best imitate a
system that contains cheap, accessible hardware, the data was gathered by the use
of ordinary cameras, such as smartphone cameras, mounted on bicycles and cars.
The quality of the videos vary as the circumstances of each recording are not exactly
the same, but the important theme of the videos are that they are recorded in an
urban setting.

The videos are recorded in central Gothenburg, and each video is around 1 minute
long. The number of objects which should be avoided vary, since there is no special
setup for this and the objects in the videos are mostly cars, bicyclists and pedestrians
that sometimes move in ways that are deemed unsafe when performing manual
analysis of the recordings.

3.1.1 Reducing resolution
As the end goal of the main program created is to be implementable on a real-time
system, computation times are of high importance. As such, the videos have their
resolution reduced by a factor of 4 before undergoing any further computations. The
resolution of each image in the video is reduced in a standard fashion by constructing
Gaussian image pyramids as explained in section 2.1.1. Reducing the resolution of
an image from M ×N to M

2 ×
N
2 is done by convolving each image with a Gaussian

kernel, which is performed one time to reach the desired resolution. The lower
resolution results in a less detailed optical flow but faster calculations in general.

3.2 Generating a Ground Truth for Recognition
of Obstacles

To be able to tell if the algorithm is performing well or not, it is important to have
a ground truth to compare the calculations against. Since it is not entirely clear
what an ”object” is at all times in a video, it is decided quite arbitrarily in a manual

13

3. Methods

pre-analysis. The objects are selected by bounding rectangles. This means that each
time in a video that any object shows up that should be avoided due to possibility
of collision with the vehicle, a rectangle overlay is created that fully surrounds the
object in the image. These rectangle overlays are stored to be used at the evaluation
process of the automatic recognition of objects in the program.

3.3 Optical Flow

Optical flow calculations are at the core of the proposed approach to recognize when
obstacles are present. As such, four algorithms are implemented and compared in
this thesis project:

• Farnebäck’s algorithm based on polynomial expansion [14]
• Fast Edge Preseving PatchMatch (EPPM) by Bao et. al. [1]
• PCA-Flow by Wulff & Black [15]
• PCA-Layers by Wulff & Black [15]

For each pair of images in a given recorded video, the optical flow is calculated
with each of the four algorithms presented above. This means that the number of
calculated optical flow vector fields for each algorithm is one less than the number
of frames in a video. It is the calculated flow fields that are considered for the rest
of the work in the thesis, where the motion model used takes only the angles of the
flow into account. A comparison between the four different optical flow algorithms
is shown in Figure 3.1, where the flow is calculated for a pair of images from a video
recorded and used in the thesis.

3.3.1 Approximate Runtimes

The optical flow algorithms chosen in this thesis are used because they are relatively
fast algorithms when evaluated on the optical flow benchmark KITTI flow 2012 [26].
The official timings reported for each algorithm in the benchmark are shown in Table
3.1. The timings reflect approximately how long time it takes to perform one optical
flow calculation for a pair of images.

Table 3.1: Approximate timings for each optical flow algorithm, as reported on
the benchmark KITTI flow 2012.

Algorithm Time
Farnebäck’s algorithm 1 s
EPPM 0.25 s
PCA-Flow 0.19 s
PCA-Layers 3.2 s

14

3. Methods

Figure 3.1: Illustration of the difference of the four different optical flow algorithms
presented in this thesis. The flow fields are calculated for a pair of images from a
video recorded and used in the thesis. Top left and top right shows frame one and
two, respectively. Middle left shows the flow calculated by Farnebäck’s algorithm,
middle right shows the flow calculated by PCA-Flow, bottom left shows the flow
calculated by PCA-Layers, and bottom right shows the flow calculated by EPPM. It
is obvious that the flows calculated from different algorithms are far from identical,
which also means that the final segmentation results will be different.

15

3. Methods

3.3.2 Using different frame jumps
As has been stated before, an optical flow calculation is naturally carried out on
a pair of frames. In reality, most cameras capture the environment at around 30
frames per second, which means that the optical flow algorithms can not be expected
to be able to calculate flow for each subsequent pair of frames in a video. A choice
has to be made in regards to exactly which two frames are used for each calculation.
The solution chosen to be able to test different approaches are so called frame jumps.
A frame jump of 1 means that each algorithm performs optical flow calculations
on each subsequent pair of images. A frame jump of 2 does however mean that
every other frame is skipped, leading to less computations per second in a real-
time environment, and also leading to larger flows in the image due to the camera
motion being larger between the two chosen frames. In this report, the frame jumps
evaluated are 1, 4 and 8, to get a good overview of how the frame jumps affect the
algorithm as a whole. An illustration of what frame jumps mean can be seen in
Figure 3.2.

Figure 3.2: Illustration of the meaning of frame jumps by the use of a 9-image
sequence. The top row shows which are the first two frames used for optical flow
calculations when frame jump is 1. The middle row shows frame jump 4, and the
bottom row shows frame jump 8. The used frames are highlighted compared to the
other ones.

3.4 Calculating the FOE
The calculation of the FOE is made with a matched filter according to Section 2.3.2.
It is also important to store information about whether or not an FOE was actually
found in the given optical flow field or not. To illustrate how this is done, Algorithm
1 contains pseudo-code of how the computations are made.

3.5 Performing Segmentation to Recognize Ob-
jects

When both the optical flow and the FOE are calculated, these parts are put to-
gether to examine whether there are any obstacles present that should be avoided

16

3. Methods

Algorithm 1 FOE calculation
1: minimal_cost← inf
2: FOE_found← False
3: for vector (u(x, y), v(x, y)) in optical flow field do
4: if u2 + v2 > mag_threshold then
5: Ignore this vector
6: else
7: Calculate S(x, y)
8: if S(x, y) < minimal_cost then
9: minimal_cost← S(x, y)

10: if minimal_cost < inf then
11: FOE_found← True

or not. A vector in the flow field is considered to be part of an object if the absolute
value of the angle difference between the vector and the expected angle is larger
than a predefined threshold value, as explained in Section 2.3.1. Performing this
segmentation for all vectors in the flow results in a binary image where white pixels
correspond to objects and black pixels correspond to background. To avoid a lot of
small clutterings of objects where the optical flow might be of low quality, objects
smaller than a certain area threshold value are removed. The motivation for this
object removal is to reduce the number of false positives when segmenting objects.
As the area threshold is very small, it should not impact the safety of the program
severely, but rather help to make the vehicle run smoother in cases where the optical
flow has small regions of lower quality flow calculations.

Based on the binary image, analysis can determine how well the segmentation per-
forms (see Chapter 4 for details). However, a binary decision is also made based on
whether any objects are present in the segmented image or not. The binary decision
is simply to tell the vehicle to ”STOP” if there are any objects and to ”GO” if
there are no objects. If the FOE was not found for the image, the binary decision is
”STOP” automatically, since it in this case is unsure how the motion model should
look like at all. This binary classification gives a quicker understanding to how well
a certain algorithm and parameter set performs with regards to the end goal of ob-
stacle avoidance.

Algorithm 2 shows how the segmentation is performed in a short and concise way.
This algorithm can be seen as a continuation of Algorithm 1.

3.6 Implementation Details
The optical flow algorithms, the FOE calculations and the rest of the program cre-
ated in this thesis have been implemented partly on a Windows computer and partly
on a Mac computer, using MATLAB and the programming language Python. The
code presented for the EPPM algorithm in the paper by Bao et. al. runs on a
GPU on Windows, and the code presented by Wulff & Black runs on Mac. The

17

3. Methods

Algorithm 2 Object segmentation
1: binary_image← zero matrix dimensioned like flow field
2: if FOE_found =True then
3: for vector (u(x, y), v(x, y)) in optical flow field do
4: if |α(x, y)− β(x, y)| > angle_threshold then
5: binary_image(x, y)← 1
6: else
7: binary_image(x, y)← 0
8: remove objects smaller than area_threshold in binary_image
9: if sum(binary_image) = 0 then

10: binary_decision←’GO’
11: else
12: binary_decision←’STOP’
13: else if FOE_found =False then
14: binary_decision← ’STOP’

implementation of Farnebäck’s optical flow algorithm is a built-in function in the
Python library OpenCV [27]. To be clear, the code for each optical flow algorithm
is unaltered by the author of this master thesis, and used as presented in respective
article or report.

Each video is cut into parts of about 600 frames, equaling to around 20 seconds of
video at 30 frames per second, due to memory limitations of the available computers.
For each of these 600 frame videos, the program is run for all four optical flow
algorithms, three different values for angle threshold, and three different values
of frame jump. To perform computation of one 600 frame video of all these 36
scenarios takes around three days, meaning that there is a severe time constraint
when evaluating the videos. It is important to note that one of the reasons that
the calculations take relatively long time to perform is that one of the algorithms
(PCA-Layers) has a significantly higher average computation time than the other
algorithms, as seen in table 3.1. Also, the FOE calculations are chosen with respect
to giving a good FOE rather than performing in the most time-optimal way – this
could be changes in different ways (for example by varying the matched filter window
size w).

3.6.1 Recording equipment
The majority of the videos have been recorded with a GoPro camera, which records
videos in resolution 1280× 960. These videos have the resolution reduced according
to Section 3.1.1, resulting in a final resolution of 640× 480 used for computations.

3.6.2 Parameters used
Even though the approach used throughout this report is based on a simple model,
there are many possible variations of parameters. The different parameters chosen

18

3. Methods

are based on what seems usable in a scenario where the algorithm is implemented
on a real-life prototype. However, because of the time constraints mentioned earlier,
some parameters have not been changed (e.g. the resolution, which is kept at 640×
480). An overview of all the parameters used are shown in Table 3.2.

Table 3.2: All the different parameter values used in the implemented algorithm.

Parameters Values
Angle threshold π/2 π/3 π/4
Frame jump 1 4 8
Area threshold 1000
Resolution 640× 480

19

3. Methods

20

4
Results

The results of the recognition of objects are presented with the aid of ROC curves
and bar graphs. The metrics that are deemed interesting for evaluation of the
algorithm are:

• Individual pixel values – Each pixel of each segmented image is compared
to the ground truth

• Binary decisions – Based on whether or not there are any objects in a
segmented image, the binary decision created is compared to the one for the
ground truth

As the results shown are dependent on a lot of parameter combinations (based on
differences in frame jump and angle threshold), Table 4.1 shows an overview of which
parameter combinations are shown in which figure.

Table 4.1: Parameter combinations shown in results figures.

Figure Subfigure Curve type Frame jump Angle threshold
4.1 Left Pixels TPR 1, 4, 8 π/2

Middle Pixels TPR 1, 4, 8 π/3
Right Pixels TPR 1, 4, 8 π/4

4.2 Left Pixels FPR 1, 4, 8 π/2
Middle Pixels FPR 1, 4, 8 π/3
Right Pixels FPR 1, 4, 8 π/4

4.3 Top Pixels ROC 1 π/2, π/3, π/4
Middle Pixels ROC 4 π/2, π/3, π/4
Bottom Pixels ROC 8 π/2, π/3, π/4

4.4 Top Decisions ROC 1 π/2, π/3, π/4
Middle Decisions ROC 4 π/2, π/3, π/4
Bottom Decisions ROC 8 π/2, π/3, π/4

4.1 Varying the Frame Jump

In this section, bar graphs are presented that show the impact of varying the frame
jump between 1, 4 and 8 frames, while the angle threshold stays constant. The true
positive rate is shown in Figure 4.1, and the false positive rate is shown in Figure
4.2. Both the TPR and the FPR are shown for individual pixel values.

21

4. Results

1 4 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Angle threshold pi/2, frame jump varying

Frame jump

T
ru

e
 P

o
s
it
iv

e
 R

a
te

 (
T

P
R

)

1 4 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Frame jump

T
ru

e
 P

o
s
it
iv

e
 R

a
te

 (
T

P
R

)

Angle threshold pi/3, frame jump varying

1 4 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Angle threshold pi/4, frame jump varying

Frame jump

T
ru

e
 P

o
s
it
iv

e
 R

a
te

 (
T

P
R

)

Farnebäck

PCA−Flow

PCA−Layers

EPPM

Figure 4.1: TPR for individual pixel values, showing the impact of varying the
frame jump and the angle threshold. Left shows angle threshold π/2, middle shows
angle threshold π/3, and right shows angle threshold π/4. For all three subplots,
the frame jump is varied between 1, 4 and 8.

1 4 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Angle threshold pi/2, frame jump varying

Frame jump

F
a
ls

e
 P

o
s
it
iv

e
 R

a
te

 (
F

P
R

)

1 4 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Frame jump

F
a
ls

e
 P

o
s
it
iv

e
 R

a
te

 (
F

P
R

)

Angle threshold pi/3, frame jump varying

1 4 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Angle threshold pi/4, frame jump varying

Frame jump

F
a
ls

e
 P

o
s
it
iv

e
 R

a
te

 (
F

P
R

)

Farnebäck

PCA−Flow

PCA−Layers

EPPM

Figure 4.2: FPR for individual pixel values, showing the impact of varying the
frame jump and the angle threshold. Left shows angle threshold π/2, middle shows
angle threshold π/3, and right shows angle threshold π/4. For all three subplots,
the frame jump is varied between 1, 4 and 8.

22

4. Results

4.2 Varying the Angle Threshold
In this section, the ROC curves shown indicate what happens with the algorithm
when the frame jump is kept constant and the angle threshold varies between the
values π/2, π/3 and π/4. In these curves, angle threshold π/2 is connected to angle
threshold π/3, and angle threshold π/3 is connected to angle threshold π/4. In the
case of individual pixels, the endpoints of the angle threshold ranges are once again
connected to coordinates (0, 0) and (1, 1) to make it easier to see the trend of the
curves.
Figure 4.3 shows the ROC curves for individual pixels, and Figure 4.4 shows the
ROC curves for binary decisions.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

False Positive Rate (FPR)

T
ru

e
 P

o
s
it
iv

e
 R

a
te

 (
T

P
R

)

Pixel values at frame jump 1, angle thresh varying

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

False Positive Rate (FPR)

T
ru

e
 P

o
s
it
iv

e
 R

a
te

 (
T

P
R

)

Pixel values at frame jump 4, angle thresh varying

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

False Positive Rate (FPR)

T
ru

e
 P

o
s
it
iv

e
 R

a
te

 (
T

P
R

)

Pixel values at frame jump 8, angle thresh varying

Farnebäck

PCA−Flow

PCA−Layers

EPPM

Farnebäck

PCA−Flow

PCA−Layers

EPPM

Farnebäck

PCA−Flow

PCA−Layers

EPPM

Figure 4.3: ROC curves of individual pixel values, illustrating what happens when
the angle threshold varies and the frame jump is kept constant. The top figure shows
frame jump 1, the middle figure shows frame jump 4, and the bottom figure shows
frame jump 8. In all three figures, angle threshold are varying through the values
π/2, π/3, π/4.

23

4. Results

0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1
0.8

0.85

0.9

0.95

1

False Positive Rate (FPR)

T
ru

e
 P

o
s
it
iv

e
 R

a
te

 (
T

P
R

)

Binary decisions at frame jump 1, angle thresh varying

0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1
0.8

0.85

0.9

0.95

1

False Positive Rate (FPR)

T
ru

e
 P

o
s
it
iv

e
 R

a
te

 (
T

P
R

)

Binary decisions at frame jump 4, angle thresh varying

0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1
0.8

0.85

0.9

0.95

1

False Positive Rate (FPR)

T
ru

e
 P

o
s
it
iv

e
 R

a
te

 (
T

P
R

)

Binary decisions at frame jump 8, angle thresh varying

Farnebäck

PCA−Flow

PCA−Layers

EPPM

Farnebäck

PCA−Flow

PCA−Layers

EPPM

Farnebäck

PCA−Flow

PCA−Layers

EPPM

Figure 4.4: ROC curves of binary decisions, illustrating what happens when the
angle threshold varies and the frame jump is kept constant. The top figure shows
frame jump 1, the middle figure shows frame jump 4, and the bottom figure shows
frame jump 8. In all three figures, angle threshold are varying through the values
π/2, π/3, π/4. Note that the values shown are only between 0.8 and 1 for both x-axis
and y-axis.

24

5
Discussion

In this chapter, a discussion of the presented methods and results is presented.
Both practical aspects and limitations of the route recording and theoretical notes
regarding optical flow and focus of expansions calculations are discussed. Finally,
the future work needed in order to make the algorithm work on a real autonomous
vehicle is examined

5.1 Recording Routes
The recording of the routes is done with equipment that is easily available to any-
one, which fits well into the problem description as the point of the thesis is an
autonomous system which utilizes low-cost hardware. The result of this is however
that the videos are more or less shaky, resulting in optical flow fields that some-
times do not provide much useful information in regards to finding objects. This
is because if the camera shakes violently between two given frames (for example
because of a rock on the road, or unsteady handling of the bicycle from which the
recording is taken place), the dominant motion is more to the side than the cam-
era motion forward. This results in the motion model presented in section 2.3.1
being faulty, which makes the segmentation of objects of bad quality and almost al-
ways resulting in an over-segmentation of objects. The evaluation of the algorithm
would probably entirely different if more focus was put on image stabilization, both
in the cases of better cameras and better equipment for holding the cameras in place.

Since the route recording took place in central Gothenburg, the environment was
uncontrolled and the camera had to stop moving sporadically to make place for
pedestrians, cars or other moving objects. Standing entirely still provides problems
with the presented algorithm, as there is no FOE present in the image in that case.
This leads to either no FOE being found at all, or a faulty FOE being found, which
most likely results in an over-segmentation of objects. Neither of these cases are
preferable, which shows that the algorithm in its current state is not adapted to
images where the optical flow vectors are all close to zero (i.e. when there is close
to no camera motion).

5.2 Optical Flow
In this thesis, four different optical flow algorithms are used as basis for the recog-
nition of when objects are present. It is clear that the results vary based on which

25

5. Discussion

optical flow algorithm is used, and exactly how they vary is analyzed here.

One issue that is a clear problem in the field of optical flow is large displacement
flow. The large displacements are caused by both fast motion of the camera and
usage of higher frame jump (i.e. using a frame jump of 8 at a constant velocity
would yield an average of 8 times larger magnitude of the flow field, compared to
using frame jump 1). It is important that the provided optical flow algorithms can
handle high velocities of the camera, but it is also important to be able to use higher
values of frame jump than 1. Using a higher frame jump helps reduce the effect of
shaky recordings, as the shaking of the camera is high-frequency but low-magnitude
motion, while the forward motion of the camera is in most cases rather steady. This
makes it more likely to find the FOE, which increases the chance of a well-performed
object segmentation.

5.3 FOE Calculations
Calculating the focus of expansion using a matched filter can take a lot of time,
especially if the given optical flow has many vectors with magnitude less than the
magnitude threshold (cf. Algorithm 1). The filter size w also greatly impacts the
time used, however in this thesis the main focus of the calculations have been to find
the best FOE possible, rather than perform time-optimal computations (i.e. this
report uses a rather large w to make sure the algorithm is as correct as possible). The
optical flow algorithms used can also make an impact in the choice of the threshold
values t and mag_threshold used in the FOE calculations, however for this report
these parameters have had constant values.

5.4 Binary Decisions
The binary decisions, which are introduced in section 2.4, can be seen as the main
output of the program. It is a simplified way to look at how an autonomous vehicle
should avoid the obstacles that have been recognized to be present – if there are
any objects present at all, the vehicle should be ordered to stop altogether. This
approach may seem naïve, but the main focus of this report has been to evaluate
how optical flow and FOE calculations can be used in order to recognize presence
of objects, rather than to generate control input for the autonomous vehicle in itself.

As the thesis can be characterized to be about safety, the most important aspect
of the different parameter values (angle threshold and frame jump) are that they
produce results that indicate safety of the vehicle in first hand, and liveness of the
vehicle in second hand. In this case, safety means to avoid collisions, while liveness
means that the vehicle should keep moving forward. By looking at Figure 4.4, it
can be seen that both the TPR and FPR of the binary decisions are close to 1 for
all algorithms. The important characteristic is that the binary decisions have a high
TPR, meaning that when there are object present, the algorithm manages to find
them. In terms of the curves, it is therefore important that the points found are in

26

5. Discussion

the top of the coordinate system (meaning a high TPR). The further to the left (i.e.
the lower the FPR), the more live the vehicle will be as the decisions will not as
often be ”STOP” when there in reality are no objects to avoid. In this sense, Figure
4.4 shows that using angle threshold π/2 and frame jump 8 provides the best binary
decisions for the EPPM algorithm – however, since the FPR is still around 0.85,
it is clear that the model used is perhaps to simple to be useful in a real situation
involving a control input for an autonomous vehicle.

An example of when the algorithm manages to find an object (in this case a bicyclist)
can be found in Figure 5.1. The manual analysis does in this case show and object at
approximately the same position as the one found in the segmentation. An example
of when the algorithm finds objects that are not there in the manual analysis (e.g.
false positives) is shown in Figure 5.2. Both of these examples are created using
PCA-Flow for the flow calculations, frame jump 1, and angle threshold π/2.

Figure 5.1: An illustration of when the algorithm gives a satisfactory result. Top
left and top right shows frame one and frame two, respectively. Bottom left shows
the optical flow field as calculated by PCA-Flow, where the FOE has been marked
with a red circle with black border. Bottom right shows the segmentation result
when using an angle threshold of π/2. As the frames are subsequent in the video
used, the frame jump in this example is 1.

5.5 Individual Pixels of Segmentation
In Figures 4.1, 4.2 and 4.3, the characterization of the segmented pixels can be
shown. For ROC curves, the ideal point for a certain parameter point to result in
is the top left corner of the graph (i.e. TPR equal to 1 and FPR equal to 0). It is
evident from looking at the ROC curves and bar graphs that the data presented is

27

5. Discussion

Figure 5.2: An illustration of when the algorithm finds objects that are not there
in the ground truth (e.g. false positives). Top left and top right shows frame one
and frame two, respectively. Bottom left shows the optical flow field as calculated
by PCA-Flow, where the FOE has been marked with a red circle with black border.
Bottom right shows the segmentation result when using an angle threshold of π/2.
As the frames are subsequent in the video used, the frame jump in this example is
1.

28

5. Discussion

far from ideal. For safety aspects however, it is once again important that the TPR
is high for a given combination, as this means that there is a low probability that
true objects are missed in the automatic segmentation. This seems to propose that
the ideal angle threshold of the ones presented is π/4 (cf. Figure 4.3), however this
also shows evidence of quite much over-segmentation. The fact stands that to arrive
at a decent TPR, there will be much over-segmentation due to the nature of the
simple motion model presented, and the fact that only angles of optical flow vectors
(and not magnitudes) are considered.

5.6 Future Work
The base assumption of the work presented in this thesis is a rather simple motion
model, which also fails to deliver the results necessary to prove useful in a hypothet-
ical environment with an autonomous vehicle. However, the work presented can be
considered a basis of further work, where more ideas can be used in collaboration
with the approach of using optical flow and FOE calculations to reach a desired
safety system for e.g. self-driving cars.

The work in its current form makes no attempt to guess where the FOE is in the
image, based on where it was in the previous calculation. Such an a priori esti-
mation of the FOE could be done, if previous optical flow and FOE positions are
used in conjunction with more sensors than just a camera (e.g. accelerometer and
gyroscope). This might also help decreasing the time needed to perform FOE calcu-
lations, as they in the algorithms current form can take several seconds depending
mostly on the magnitudes of the optical flow vectors.

Using more sensors of different kinds would also be convenient to make the algorithm
able to more efficiently consider situations where there is no FOE available in the
image, for example when the vehicle is standing still or it has a high turning-rate
compared to the forward speed. Such an identification is crucial when aiming to con-
struct a system that not only creates binary decisions such as ”STOP” and ”GO”,
but more complex ones such as indicating in which direction potentially dangerous
objects currently are moving.

Another factor which is possible to evaluate is the usage of different cameras. As the
approach is centered on the safety of a vehicle, it could be interesting to use more
wide-angle cameras that capture more of the environment. As of right now, the im-
pact of different types of camera on the performance of the algorithm is still unclear.

Finally, the parameters used for this thesis could be varied through more extensive
values, given the time for a more complete evaluation. The angle threshold and
frame jumps parameters have many more potential values that should be examined,
and parameters that have been static in this thesis (area threshold and resolution)
could also be varied to see the impact it has on the final segmentation results.

29

5. Discussion

30

6
Conclusion

In this thesis, a new approach to detecting when obstacles are present in front of
an autonomous vehicle was presented. The approach utilizes optical flow and focus
of expansion calculations to try and detect when the vehicle should keep moving or
stop, solely based on a single camera pointing forward. The algorithm presented
uses a simple motion model which characterizes flow vectors as objects if they de-
viate too much from a certain expected angle. The expected angle is based on the
assumption that all flow vectors should diverge from the focus of expansion, mean-
ing that objects in this case are regions in the images that move in a different way
than their environment.

The presented algorithm was evaluated on routes that were recorded with standard
cameras, using four different optical flow algorithms and varying parameters. The
parameters used to vary the results were angle threshold, which defined how much
each flow vector could deviate from its expected angle, and frame jump, which speci-
fies with respect to how many frames in the past the optical flow calculations should
be made.

The results were presented with binary classification and ROC curves, where it can
be shown that more effective ways of recognition of objects were connected with
lower angle threshold and higher frame jump. However, the calculations very often
result in finding many false positives (i.e. finding objects where there actually are
none), meaning that in reality the algorithm would not allow an autonomous vehicle
to drive much at all due to it finding potentially dangerous objects in the way at
almost all times.

The conclusion of these results is that the algorithm as presented in its current
form is not yet ready for implementation on a real autonomous vehicle. Instead,
it can be seen as a basis for future work in development of safety systems for e.g.
self-driving cars. Some proposals are made regarding what are the most obvious
potential improvements, such as optimizing FOE calculations for time and using
more sensors than just a camera.

31

6. Conclusion

32

Bibliography

[1] Linchao Bao, Qingxiong Yang, and Hailin Jin. Fast edge-preserving patchmatch
for large displacement optical flow. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 3534–3541, 2014.

[2] Connelly Barnes, Eli Shechtman, Adam Finkelstein, and Dan Goldman. Patch-
match: A randomized correspondence algorithm for structural image editing.
ACM Transactions on Graphics-TOG, 28(3):24, 2009.

[3] Didi Sazbon, Héctor Rotstein, and Ehud Rivlin. Finding the focus of expansion
and estimating range using optical flow images and a matched filter. Machine
Vision and Applications, 15(4):229–236, 2004.

[4] Kahlouche Souhila and Achour Karim. Optical flow based robot obstacle avoid-
ance. International Journal of Advanced Robotic Systems, 4(1):13–16, 2007.

[5] Dong-Wan Yoo, Dae-Yeon Won, and Min-Jea Tahk. Optical flow based collision
avoidance of multi-rotor uavs in urban environments. International Journal
Aeronautical and Space Sciences, 12(3):252–259, 2011.

[6] Dirk Holz, David Droeschel, Hartmut Surmann, Stefan May, and Sven Behnke.
Fast 3D perception for collision avoidance and SLAM in domestic environments.
INTECH Open Access Publisher, 2010.

[7] Berthold K Horn and Brian G Schunck. Determining optical flow. In 1981
Technical symposium east, pages 319–331. International Society for Optics and
Photonics, 1981.

[8] Bruce D Lucas, Takeo Kanade, et al. An iterative image registration technique
with an application to stereo vision. In IJCAI, volume 81, pages 674–679, 1981.

[9] Thomas Brox, Christoph Bregler, and Jagannath Malik. Large displacement
optical flow. In Computer Vision and Pattern Recognition, 2009. CVPR 2009.
IEEE Conference on, pages 41–48. IEEE, 2009.

[10] Frank Steinbrücker, Thomas Pock, and Daniel Cremers. Large displacement
optical flow computation withoutwarping. In Computer Vision, 2009 IEEE
12th International Conference on, pages 1609–1614. IEEE, 2009.

[11] Andrés Bruhn, Joachim Weickert, Timo Kohlberger, and Christoph Schnörr.
A multigrid platform for real-time motion computation with discontinuity-
preserving variational methods. International Journal of Computer Vision,
70(3):257–277, 2006.

[12] Christopher Zach, Thomas Pock, and Horst Bischof. A duality based approach
for realtime tv-l 1 optical flow. In Pattern Recognition, pages 214–223. Springer,
2007.

33

Bibliography

[13] Andreas Wedel, Thomas Pock, Christopher Zach, Horst Bischof, and Daniel
Cremers. An improved algorithm for tv-l 1 optical flow. In Statistical and Ge-
ometrical Approaches to Visual Motion Analysis, pages 23–45. Springer, 2009.

[14] Gunnar Farnebäck. Two-frame motion estimation based on polynomial expan-
sion. In Image Analysis, pages 363–370. Springer, 2003.

[15] Jonas Wulff and Michael J Black. Efficient sparse-to-dense optical flow es-
timation using a learned basis and layers. In Computer Vision and Pattern
Recognition (CVPR), 2015 IEEE Conference on, pages 120–130. IEEE, 2015.

[16] Shahriar Negahdaripour and Berthold KP Horn. A direct method for locating
the focus of expansion. Computer Vision, Graphics, and Image Processing,
46(3):303–326, 1989.

[17] Ignacio S McQuirk, Berthold KP Horn, Hae-Seung Lee, and John L Wyatt Jr.
Estimating the focus of expansion in analog vlsi. International Journal of Com-
puter Vision, 28(3):261–277, 1998.

[18] M Tistarelli, E Grosso, and G Sandini. Dynamic stereo in visual navigation. In
Computer Vision and Pattern Recognition, 1991. Proceedings CVPR’91., IEEE
Computer Society Conference on, pages 186–193. IEEE, 1991.

[19] Chris McCarthy, Nick Barnes, and Robert Mahony. A robust docking strategy
for a mobile robot using flow field divergence. Robotics, IEEE Transactions on,
24(4):832–842, 2008.

[20] Edward H Adelson, Charles H Anderson, James R Bergen, Peter J Burt, and
Joan M Ogden. Pyramid methods in image processing. RCA engineer, 29(6):33–
41, 1984.

[21] Simon Baker, Daniel Scharstein, JP Lewis, Stefan Roth, Michael J Black, and
Richard Szeliski. A database and evaluation methodology for optical flow.
International Journal of Computer Vision, 92(1):1–31, 2011.

[22] David Fleet and Yair Weiss. Optical flow estimation. In Handbook of Mathe-
matical Models in Computer Vision, pages 237–257. Springer, 2006.

[23] Xing Mei, Xun Sun, Mingcai Zhou, Shaohui Jiao, Haitao Wang, and Xiaopeng
Zhang. On building an accurate stereo matching system on graphics hardware.
In Computer Vision Workshops (ICCV Workshops), 2011 IEEE International
Conference on, pages 467–474. IEEE, 2011.

[24] Hervé Abdi and Lynne J Williams. Principal component analysis. Wiley In-
terdisciplinary Reviews: Computational Statistics, 2(4):433–459, 2010.

[25] S Santhosh Kumar, Preetham Shankpal, KR Prashanth, Saima Mohan,
Narasimha Reddy, Govind R Kadambi, and SR Shankapal. Simulation studies
on horn and schunck optical flow algorithm and focus of expansion for au-
tonomous navigation of unmanned vehicles.

[26] Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we ready for au-
tonomous driving? the kitti vision benchmark suite. In Conference on Com-
puter Vision and Pattern Recognition (CVPR), 2012.

[27] G. Bradski. The OpenCV Library. Dr. Dobb’s Journal of Software Tools, 2000.

34

	List of Figures
	List of Tables
	Introduction
	Background
	Purpose and Objectives
	Recognizing when obstacles are present
	Creating decisions for different scenarios
	Evaluating performance of algorithm using pre-recorded data
	Evaluating the performance of certain optical flow algorithms

	Related Work
	Optical flow
	Calculating the focus of expansion

	Contributions
	Limitations

	Theory
	Image Processing
	Reducing resolution

	Optical Flow
	Gradient constraint equation
	Optical flow based on polynomial expansion
	Nearest neighbor field
	Principal component analysis

	Focus of Expansion and Expected Motion
	Expected motion model
	Calculating the FOE with a matched filter

	Receiver Operating Characteristic

	Methods
	Recording Routes for Evaluation
	Reducing resolution

	Generating a Ground Truth for Recognition of Obstacles
	Optical Flow
	Approximate Runtimes
	Using different frame jumps

	Calculating the FOE
	Performing Segmentation to Recognize Objects
	Implementation Details
	Recording equipment
	Parameters used

	Results
	Varying the Frame Jump
	Varying the Angle Threshold

	Discussion
	Recording Routes
	Optical Flow
	FOE Calculations
	Binary Decisions
	Individual Pixels of Segmentation
	Future Work

	Conclusion
	Bibliography

