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Estimation of position and orientation of truck kinematic frames
EDVIN AGNAS
MARCUS JERENVIK
Department of Signals and System
Chalmers University of Technology

Abstract
This thesis investigates the possibility to estimate the cabin’s position and orien-
tation relative to the chassis as well as the position, orientation and trajectory of
the chassis in a world frame. The intention is to enable the usage of cabin mounted
sensors such as LIDAR and cameras for localization even if the motion of the cabin
differs from the rest of the truck. The thesis clarifies the importance of different
sensor combinations and the influence of using constraints in the motion model to
connect two vehicle bodies. The estimation process consists of measurements from
three GNSS sensors, an embedded velocity sensor and two inertial measurement
units (IMU) consisting of gyroscope and accelerometer. These measurements are
filtered with a Cubature Kalman filter that is able to handle nonlinear motion and
measurement models. These models are based on rigid body dynamics and the filter
is used offline. The filter is analyzed with simulated data generated from an ad-
vanced truck model provided by Volvo Trucks and with real data gathered from real
test scenarios. Results with the accurate simulation model show that it is possible
to estimate the position and orientation of both bodies with the mentioned filter.
The filter seems to perform well with real data but cannot be verified due to insuf-
ficient orientation information from the reference system. It is noticeable that the
GNSS sensors struggle with receiving signals when the truck is moving and that it
is difficult to select a good prior using real data.

Keywords: Truck, Chassis, Cab, Estimation, Position, Orientation, GNSS, IMU,
Gyroscope, Accelerometer, Sensor fusion, Cubature Kalman Filter, Rigid body dy-
namics.
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1
Introduction

This thesis investigates the possibility to estimate the position and orientation of a
truck cabin relative to the chassis and the position, orientation and trajectory of the
chassis in a world frame to enhance sensor information for autonomous trucks. This
chapter contains a problem formulation explaining the importance of this estimation
process followed by the objectives, related works, proposed solution and a brief
outline of the thesis.

1.1 Problem formulation

It is safe to say that mankind has always striven for a better and more comfortable
lifestyle with inventing products that simplifies everyday life. Just look at products
such as autonomous lawn mowers or vacuum cleaners that perform household chores
without complaining. Nowadays people do not even want to drive their own vehicles
anymore. This together with other aspects puts pressure on research teams in the
vehicle industries and high demands on sensor performance.

The fundamentals of an autonomous navigation system is to know where the system
is positioned, how it is oriented and how it is located to the surroundings. Au-
tonomous vehicles often use cameras, LIDAR and RADAR sensors to create maps
over their surroundings and use IMU, GNSS or other inertial sensors to know their
orientation and position.

An autonomous truck requires at least the same set of sensors to be able to navigate
autonomously, but there is a problem. The truck cabin is suspended from the chas-
sis and differs in motion compared to the actual motion of the truck. This means
that it is not preferable to mount sensors on the cabin due to the fact that their
information may be misleading. However, there are several advantages of mounting
sensors on the cabin. GNSS sensors that are mounted on the cabin roof are able to
get a clear sight to surrounding satellites and it is possible to increase the field of
view for cameras and LIDAR sensors.

To be able to use information from cabin mounted sensors in precise autonomous
navigation, this thesis will investigate the possibility to estimate the position and
orientation of the cabin relative to the chassis and the chassis’ position, orientation
and trajectory in a world frame using GNSS and IMUs sensors together with a
velocity sensor. These states will enable fusion of multiple sensors such as cameras,
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1. Introduction

LIDAR and RADAR sensors mounted on different bodies to enhance the quality in
creating maps of the surroundings.

1.2 Objectives
The main objective is to investigate the possibility to determine the position and
orientation of a truck cabin relative to the chassis as well as the chassis’ position,
orientation and trajectory in a world frame. The outcome is important for Volvo
Trucks to know if the GNSS sensors are able to provide precise information about
the position and orientation of the truck and to enable the usage of cabin mounted
sensors for accurate measurements. Following list explains the objectives of the the-
sis.

1. Determine the orientation and position of the truck cabin relative to the chas-
sis using GNSS-sensors, a velocity sensor and IMU sensors consisting of gyro-
scopes and accelerometers.

2. Determine the orientation, position and trajectory in the world frame of the
chassis using above stated sensors.

3. Evaluate the result with both real and simulated data.
4. Analyze the influence of different sensor combinations.
5. Analyze the outcome of using motion constraints in filtering to connect two

bodies.

1.3 Related work
Position and orientation estimation is a common subject in the research for au-
tonomous vehicles. Although there has been a variety of research in this area, no
specific theory on how to estimate cabin motions relative to the chassis has been
found. Westerlund and Jakobsson Larsson, (2015) [12] have made similar approaches
with both GNSS and IMUs to successfully estimate the position of the truck but
have ignored the movement of the cabin. Another report that have made similar
approaches with both GNSS and IMU is the one from Elisson and Gässler, (2015)
[23], though their research was focused to estimate the relative position between two
cars. An article written by Stenborg and Hammastrand, (2016) [14] describes the
use of GNSS and IMU setup with success and is related to this thesis in the fact
that they use carrier phase measurements without base stations to estimate the rela-
tive position and orientation, though on a car. Even if these reports are not directly
applicable, their results are very important and have inspired the work in this thesis.

Another important aspect in this thesis is to create a motion model for the sys-
tem. Truck dynamics is fortunately a well researched area and there are a lot of
information about these kinds of vehicle models. A report whose findings is not
related to this thesis in the sense of positioning, is written by Ibrahim, (2004) [13],
but provides useful information about how to set up an accurate dynamical truck
model.

2



1. Introduction

1.4 Proposed solution
Three GNSS sensors, two gyroscopes, two accelerometers and one velocity sensor is
the proposed sensor setup for this thesis. The GNSS sensors together with one set
of gyroscope and accelerometer will be mounted on the cabin and the others on the
chassis. These sensors will be fused together by filtering the measured data with
a Kalman filter in ambition to provide information about position and orientation
of both chassis and cabin. The filter will be tested with different motion models
and different combinations of sensors. The filter will then be evaluated with both
simulated and real data.

Simulated vehicle measurement data such as position, orientation, speed and accel-
eration of the bodies will be generated with the help of an advanced vehicle model
from Volvo Trucks’ own Simulink toolbox called Virtual Transport Model, VTM.

The simulation results will be used to investigate if the proposed solution is feasible
while the real result will show the performance of the sensors and if this is achievable
with real data. The results from the real data will then be validated with a reference
system called VBOX.

1.5 Thesis outline
The thesis starts with a system overview that describes the sensor setup, the simula-
tion environment and how data are simulated. This is followed by a theory chapter
that describes the theoretical background required to understand all details of the
thesis. The next chapter, filter design, describes how the theories are applied to cre-
ate filters where the result chapter evaluates the filters that are created with data
generated from the simulation environment and from scenarios using real hardware.
The thesis ends with a discussion of the results and a short conclusion of the stated
objectives.

3
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2
System overview

The system overview chapter declares how the whole system intends to work, in
terms of sensors, how they are used together, how to gather data from them and
how they are simulated. The chapter starts with the system setup and follows with
describing the hardware components and concludes with a description over the sim-
ulation environment.

The sensor setup (see Figure 2.1) consists of three GNSS sensors, two inertial mea-
surement units (IMU), equipped with gyroscopes and accelerometers and the speed
sensor of the Truck. Other sensors that are used for this thesis but not in the actual
filter is a reference system called VBOX that is used to validate the estimated states.

Figure 2.1: A system overview illustrating the setup of the sensors.

The GNSS antennas are placed on the roof of the cabin in a triangle, two antennas
in the front and one in the back (see Figure 2.2), with the intention to measure
both position and orientation. The data is transferred from the antennas through
an evaluation unit that outputs raw GNSS data with serial communication to a
computer. This data is processed with bit conversion in the computer to provide
correct information.

The IMUs are placed at two different positions on the truck. One on the cabin roof,
centered in the back and one on the chassis, centered as close to the front axle as
possible. The IMU data does not provide any information about when the signal was
transmitted and requires being timestamped with the same time base as the GNSS
sensors. This is done by using a system called MicroAutobox together with a Garmin
GPS sensor where the IMU signals are transferred with CAN communication to the
system and then timestamped with the GPS sensor.

5



2. System overview

(a) Truck displayed from above.
(� CPAC IMU, � GNSS sensors,
� Garmin GPS, � VBOX IMU)
L1 = 1.78 [m], L2 = 1.00 [m]

(b) Truck displayed from the side.
(� CPAC IMU)

Figure 2.2: A description over sensor positions.

2.1 Hardware components

This section intends to describe each component briefly to provide an understanding
in which kind of components that are used and why they are used.

2.1.1 U-Blox GNSS antennas

The U-Blox Global Navigation Satellite System (GNSS) sensors are affordable sen-
sors that are able to gather satellite information from most satellite systems orbiting
the earth. U-Blox has a lot of different GNSS sensors but the ones used in this thesis
are called EVK-M8T. Each sensor contains one active antenna with 3 m cable, and
an evaluation kit including a GNSS time module that are used to provide GNSS
data [21]. These sensors are used to provide information about the position of the
truck and hopefully the orientation with the proposed mounting plan.

Figure 2.3: Image of a U-blox GNSS sensor [21].
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2. System overview

2.1.2 Inertial measurement unit - IMU

Inertial measurement units (IMU) are able to provide information about inertial
motion of the bodies they are attached to, where the information depends on which
sensors the IMUs are equipped with. A common setup is gyroscopes, accelerometers
and magnetometers that are able to measure angular velocity, translational acceler-
ation and surrounding magnetic fields. The IMUs used in this thesis are prototypes
delivered by CPAC Systems and are able to provide angular velocity and transla-
tional acceleration every 4 ms of the body they are mounted to.

The integrated gyroscope is a three-axis vibratory MEMS-gyroscope, which means
that it has three built in MEMS-gyroscopes to provide rotation rate about each
axis in three dimensions. The integrated accelerometer is a three axis MEMS-
accelerometer containing three separated proof masses used to provide acceleration
information in each axis [19].

2.1.3 MicroAutobox

The microAutobox II from dSPACE is what the supplier calls a prototyping system
or a "Real-time system for performing fast function prototyping" and can be used for
several applications for example testing control algorithms [28]. The system is used
as a central unit in this thesis, meaning that except for timestamping the IMU data
it is used to log data from the reference system and from integrated truck sensors.

Figure 2.4: Image of a MicroAutobox II [28].

2.1.4 Garmin GPS

Garmin is a known supplier of navigation solutions and the GPS receiver that is used
in this thesis is of type GPS 18x LVC. This product consists of an antenna with an
embedded receiver that is able to transmit information needed for navigation and
timestamping. The unit provides a highly accurate pulse-per-second (PPS) aligned
to the start of each GPS second with a following message containing the time the
pulse occurred [20]. This PPS signal together with the mentioned message are used
for timestamping the IMU signals.
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Figure 2.5: Image of a Garmin GPS [20].

2.1.5 Reference system - VBOX

VBOX systems from Racelogics are actually a variety of different products used for
automotive testing. The reference system that is used in this thesis is a VBOX 3i
Dual Antenna system together with a RTK DGPS base station and a VBOX IMU.
The dual antennas are able to provide information about for example yaw rate, true
heading and pitch or roll angle, depending on how the antennas are mounted. If
this system is added with a VBOX IMU it could provide additional information of
both pitch and roll angle and improve the yaw rate measurements. The accuracy of
the VBOX system with GNSS dual antenna, base station and VBOX IMU is shown
in Table 2.1 [25].

Figure 2.6: Image of a VBOX reference system [25].

Table 2.1: VBOX accuracy with GNSS dual antenna, base station and VBOX
IMU.

Accuracy
Absolute position 2 cm
Heading 0.06◦ RMS
Roll angle < 0.047◦ RMS
Pitch angle 0.06◦ RMS

8



2. System overview

2.2 Simulation environment
A simulation environment is often used to evaluate the performance of a system be-
fore it is tested with real data and preferable when testing the abilities of a system
to determine if a proposed solution is feasible. This thesis makes use of an advanced
truck model provided by Volvo Trucks from their own Simulink library called Vir-
tual Transport Model (VTM). The vehicle model that is used is similar to the real
truck. This section describes how this vehicle model is used to generate simulated
reference states and simulated measurement values for the GNSS, IMU and velocity
sensors.

This truck model is used to provide information of the truck motion in terms of
position, velocity, acceleration, angle, angular velocity and angular acceleration for
both the cabin and the chassis. The position of the truck is also simulated to be on
the surface of the earth and in the global coordinate frame ECEF by using a real
GNSS position measurement. This information is used as references.

The simulated measurements for the IMUs are generated from the local angular ve-
locity and the local acceleration of the points where the IMUs are attached. These
data are then added with normal distributed random values with the same variance
as the real sensors to match the real measurements as much as possible. The velocity
measurements are generated with the same approach but with data provided by the
norm of the chassis’ velocity.

The GNSS measurements are generated a bit differently because these measure-
ments represent the distance between receiver and satellites. To be as accurate as
possible, real ephemeris data from satellites are being used to simulate the position
and orbits of the satellites. The position of these satellites is then used to simulate
the distance between satellites to three fixed points on the cabin roof, one for each
sensor position. This data are then added with simulated receiver drifts, explana-
tion about what this is can be found in the theory chapter, gathered from a real
measurement and normal distributed random values with the same variance as a
real sensor.
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3
Theory

The theory chapter includes useful information needed to understand certain the-
oretical parts of the thesis. It starts with theory about coordinate frames followed
by rotations and dynamical systems and continues with theory about sensors and
concludes with sensor fusion theory.

3.1 Coordinate frames
An object’s position can be described in many different ways, with various ap-
proaches and precisions. A coordinate frame that specifies the position with a value
along a specific axis is the most common method for positioning in science. Such
coordinate frame is often used in GNSS-theory and this section will clarify two types
that are being used in this thesis.

3.1.1 Earth-centered, Earth-fixed - ECEF
The Earth-Centered, Earth-Fixed (ECEF) coordinate frame (see Figure 3.1) is as
the name declare, an Earth fixed frame with the origin at the center of the ellipsoid
modeling the Earth surface, approximately Earth’s center of mass. The z-axis is
direct along Earth’s rotation axis, the x-axis to the IERS Reference Meridian (IRM)
and the y-axis according to the right-handed orthogonal set [1].

Xecef

Yecef

Zecef

IR
M

Figure 3.1: Earth-Centered, Earth-Fixed (ECEF) coordinate frame.
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3.1.2 East, north, up - ENU
The East, North, Up (ENU) coordinate frame is a local navigation frame that de-
pends on a predefined reference position (see Figure 3.2). The system is based on an
orthogonal plane at the reference position with the y-axis pointing towards north.
This coordinate frame is often used at small limited areas, where the surface of
Earth can be approximated to a tangent plane [1].

Xecef

Yecef

Zecef

λ

φ

IR
M

Yenu

Xenu

Zenu

Figure 3.2: East, North, Up (ENU) coordinate frame.

3.1.3 Transformation between ECEF and ENU
The local ENU coordinate frame is preferable to use when dealing with objects on
the ground. The transformation between the ECEF to the ENU coordinate frame
is sometimes useful since some objects are described in the ECEF coordinate frame.

Figure 3.3: Transforming between ECEF to ENU [24].

Figure 3.3 illustrate that two rotations are required to switch between the frames,
namely the x- and z- axis. Rotation of 90 − ϕ around x-axis and 90 + λ around

12



3. Theory

z-axis, where longitudinal coordinate ϕ and latitudinal coordinate λ are ellipsoidal
coordinates.

The transformation equation between ENU and ECEF areXecef

Yecef
Zecef

 = Rz(−(π2 + λ))Rx(−(π2 − ϕ))

Xenu

Yenu
Zenu

 , (3.1)

Xenu

Yenu
Zenu

 = Rx(
π

2 − ϕ))Rz(
π

2 + λ)

Xecef

Yecef
Zecef

 , (3.2)

where the rotation matrices Rx and Rz are described in the next section.

3.2 Rotations
To be able to determine the position and orientation of an object in three dimensions
it is important to know how rotations are defined. The two most common ways is
to either express rotation with Euler angles, that represents rotation around three
consecutive axes or with Quaternions, rotation with complex numbers. The Euler
angle approach is more intuitive than Quaternions but the Euler angles are always
at risk of losing one degree of freedom that occur when the angels are at values that
makes two Euler axes coincide, a singularity event often stressed as Gimbal lock [15].
It is therefore important to understand the motions of the object before determine
which approach to represent rotations. This thesis will make use of both Euler
angles and Quaternions and the following sections describe common basics of these
representations, how to rotate between coordinate frames and how to differentiate
rotations.

3.2.1 Euler angles
As mentioned earlier, Euler angles are angles that describe rotations around three
consecutive axes

Rx(θ) =

1 0 0
0 cos θ − sin θ
0 sin θ cos θ

 , (3.3)

Ry(ϕ) =

 cosϕ 0 sinϕ
0 1 0

− sinϕ 0 cosϕ

 , (3.4)

Rz(ψ) =

cosψ − sinψ 0
sinψ cosψ 0

0 0 1

 . (3.5)

The order of these axes is important because two different sequences results in two
different orientations, a rule is that two consecutive rotations should never rotate
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around the same axis, hence it only counts as one rotation. The most common
sequence in vehicles and aircrafts are the z-y-x rotation or often referred as the
Roll-Pitch-Yaw rotation

Rzyx = Rz(ψ)Ry(ϕ)Rx(θ), (3.6)XY
Z

 = Rzyx

x1
y1
z1

 , (3.7)

where the inverse and the transpose (R−1 = RT ) reverse the transformationx1
y1
z1

 = RT
zyx

XY
Z

 . (3.8)

This is often described in a body fixed coordinate frames where the roll angle is
expressed as θ, pitch as ϕ and yaw as ψ, collected to ε = [θ ϕ ψ]T . These three
angles, θ, ϕ and ψ are preferable to use not only in rotation matrices to transform
between different coordinate frames but also to describe the orientation of a vehicle
in three dimensions.

3.2.2 Quaternions
Quaternions are another way of describing rotations, a rather complex representation
but commonly used in situations where Gimbal lock is a possibility for Euler angles.
This report will not explain quaternions in detail but rather how to use them for
orientation purpose. A quaternion can be described as following

q =
[
q0 q1 q2 q3

]T
, (3.9)

where the first component q0 is the scalar real part and q1, q2 and q3 is the imaginary
vector part of the quaternion

q = q0 + iq1 + jq2 + kq3 (3.10)

and the norm of the quaternion is equal to one

‖q‖ =
√
q2

0 + q2
1 + q2

2 + q2
3 = 1. (3.11)

There are some theory that are useful when estimating the orientation of a body,
for example how to rotate between different coordinate frames and how to express
the quaternion derivative.

A rotation matrix can be derived by converting the unit quaternion[8][11] as

Rzyx = Q(q) =

2q2
0 − 1 + 2q2

1 2q1q2 − 2q0q3 2q1q3 + 2q0q2
2q1q2 + 2q0q3 2q2

0 − 1 + 2q2
2 2q2q3 − 2q0q1

2q1q3 − 2q0q2 2q2q3 + 2q0q1 2q2
0 − 1 + 2q2

3

 , (3.12)
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and it is also possible to reverse the operation by using a rotation matrix to derive
the quaternions[18]

q = Q−1(Rzyx) =


1
2
√
R11 +R22 +R33 + 1

(R23 −R32)/4(1
2
√
R11 +R22 +R33 + 1)

(R31 −R13)/4(1
2
√
R11 +R22 +R33 + 1)

(R12 −R21)/4(1
2
√
R11 +R22 +R33 + 1)

 , (3.13)

where Rij represent the value at row i, column j in the rotation matrix Rzyx. It
is often useful to derive the time derivative of a quaternion that is the quaternion
rates which are related to the angular rate

q̇ = 1
2S(ω)q = 1

2S̄(q)ω, (3.14)

where

S(ω) =


0 −ωx −ωy −ωz
ωx 0 ωz −ωy
ωy −ωz 0 ωx
ωz ωy −ωx 0

 , S̄(q) =


−q1 −q2 −q3
q0 −q3 q2
q3 q0 −q1
−q2 q1 q0

 , (3.15)

and ω is the angular rate along each axis. The relation between the quaternion rate
and the angular rate allows translations between these descriptions.

3.2.3 Derivative of vector in rotating frames
The derivative of rotating coordinate frames is not as simple as for translational
derivatives, since the change of the direction of unit vectors has to be taken into
account. Let the transformation of a constant vector to another coordinate frame
be investigated [16]

rP = RzyxrP/O. (3.16)

The angles θx1 , θy1 and θz1 denotes the rotations to respective axis in the rotation
matrix Rzyx and the derivative of equation (3.16) becomes

ṙP/O = ω × rP/O, (3.17)

where ω = [θ̇x1 θ̇y1 θ̇z1 ]T . This is true for any constant vector in a rotating coordinate
frame, that is the vector does not need to be a position

ḃ = ω × b. (3.18)

This can also be used to find the derivative of a time dependent vector

ḃ = d

dt
(bxex + byey + bzez), (3.19)

since the unit vectors are constant equation (3.18) can be applied

ḃ = ḃxex + ḃyey + ḃzez + bxω × ex + byω × ey + bzω × ez (3.20)

= db

dt
+ ω × b (3.21)
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and the derivative for the time dependent vector becomes

ḃ = db

dt
+ ω × b. (3.22)

This can be used to derive the relative motion of a rigid body.

3.3 Rigid body dynamics - Relative motion
The dynamics of a body is often used to improve the performance of filtering. The
motion of a body can be derived from the body dynamics, due to forces and torques,
and a prediction of the next state can be done in the filter. The dynamics is divided
into two main parts, kinematics that deals with motion constraints and kinetics that
concern the influence of forces and torques.

This section is mainly inspired by Boström (2015)[16] and treat equations to deter-
mine the motion of a rigid body. The section starts with a description of general
equations of motion and follows with explaining relative motion of rotating and
translating bodies.

3.3.1 General equations of motion
The general equation of motions for a rigid body can simply be derived from New-
ton’s second law and the law of angular momentum. A rigid body can be seen as a
quantity of particles with the total mass m. The translation motion is equal to the
sum of the forces ∑

F = ma (3.23)

and the rotation is described by a sum of torques,∑
MO = L̇O, (3.24)

where LO is the angular momentum of the particles about a the fixed point O,

LO =
N∑
i=0
ri/O ×mivi. (3.25)

If the sum is modified to an integral with infinitely many particles with small mass
dm

LO =
∫
r × vdm, (3.26)

together with the property that v can be reduced to ω × r, LO can be formulated
as

LO =
∫
r × ω × rdm. (3.27)
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The angular momentum is rewritten with inertia matrix IO as

LO = IOω, (3.28)

IO =

 Ixx −Ixy −Ixz
−Ixy Iyy −Iyz
−Ixz −Iyz Izz

 . (3.29)

It is always good to keep in mind that a rotation coordinate frame affects the
derivative according to equation (3.22)

L̇O = dLO
dt

+ Ω×LO. (3.30)

Other derived laws that may come in handy for dynamical systems are springs and
dampers

Linear springs

F = kpx̄, (3.31)

Linear dampers

F = cp ¯̇x, (3.32)

Torsion springs

M = kεε̄, (3.33)

Torsion dampers

M = cε ¯̇ε, (3.34)

where kp, kε denotes the spring constants, cp, cε denotes the damping constants, x̄ is
the spring elongation and ε̄ is the rotation angle.

3.3.2 Relative angular velocity and angular acceleration

The relative angular rate and angular acceleration of a rigid body are truly important
for the description of the motion. The ability to describe angular motion in different
correlated coordinate frames, where a rotation in one frame can affect another, are
useful for both motion models and measurement models when designing the filter.
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O1

x1

y1

z1

rO2/O1

ψ1

ϕ1

θ1

O2

x2

y2

z2

ψ2

θ2

ϕ2

Figure 3.4: Rotating coordinate frames [29].

The relative angular rate of a rotating coordinate frame defined in another rotating
coordinate frame, is simply the sum of the rates

ω = θ̇1ex1 + ϕ̇1ey1 + ψ̇1ez1 + θ̇2ex2 + ϕ̇2ey2 + ψ̇2ez2 (3.35)
= ω1 +Rzyxω2

= RT
zyxω1 + ω2.

If rotations are defined in the same coordinate frame the angular rate simply becomes

ω = ω1 + ω2. (3.36)

The angular acceleration gets slightly more complicated if the angles are defined in
a rotation coordinate frame (with angular rate Ω), as discussed in Section 3.2.3.
The angular acceleration is defined as the time derivative of the angular rate

α = ω̇ = d

dt
(ωxex + ωyey + ωzez). (3.37)

By using equation (3.22) the relative angular acceleration becomes

α = dω

dt
+ Ω× ω (3.38)

and if the angles are defined in the same coordinate frame (Ω = ω)

α = dω

dt
+ ω × ω = dω

dt
. (3.39)

Both the angular rate and angular acceleration are necessary components to describe
the relative translational velocities and accelerations of a body, which is further
described in next section.
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3.3.3 Relative velocity and acceleration
The relative velocity and acceleration of a body can be used in filtering. Let the
coordinate frame O′ be a translating and rotating frame in the fixed frame O and
point P be a moving point in frame O′ (see Figure 3.5). The vector can then be
described as

rP/O = rO′/O + rP/O′ . (3.40)

O

X

Y

Z

rO′/O

O′

x

y

z

rP/O′

Figure 3.5: Moving point P in translating and rotating coordinate frame.

With the property of differentiating vectors in rotating frames, discussed in 3.2.3,
the derivative of rP/O becomes

vP = ṙP/O = vO′/O + (vO′)O + ωO′ × rO′/O (3.41)
+ (vP )O′ + ωP × rP/O′ ,

and the acceleration is

aP = v̇P = aO′/O + (aO′)O +αO′ × rO′/O (3.42)
+ 2ωO′ × (vO′)O + ωO′ × (ωO′ × rO′/O)

where (vO′)O and (aO′)O are defined as the velocity and acceleration of the O′
coordinate frame in the O coordinate frame.

3.4 Global navigation satellite systems - GNSS
Global Navigation Satellite Systems (GNSS) is the generic name for navigation sys-
tems that use orbiting satellites to determine the position of an object placed on
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earth. Well known systems, as the American NAVSTAR GPS, more commonly
known as GPS, the Russian GLONASS as well as the Chinese Beidou and the Eu-
ropean Galileo are all examples of Global Navigation Satellite Systems.

There are several advantages using satellite information from all kinds of system.
More areas of the earth can be covered due to different orbits of satellites and
increasing amount of available satellites leads to higher precision in positioning. The
downside is that the protocols differ depending on which system that is used. For
example some systems provide satellite position directly when some only provides
variables to calculate the position and predict the orbit of the satellites. However,
the basics of positioning are the same for all kinds of system and will be described
in Section 3.4.1.

3.4.1 Positioning

The principles of positioning or more accurately, signal-based positioning is the same
for all kinds of satellite systems. The basics is to measure the distance between a
satellite with a known position and a receiver whose position is to be determined.
This distance is calculated by taking the difference in time between a transmitted
signal and a received signal and multiplying it with the speed of the signal, namely
the speed of light, c [10],

d = ∆t c. (3.43)

If an object’s position should be determined in one dimension, equation (3.43) would
be enough because one unknown variable is solvable with one equation. However,
this is only true if the satellite and the receiver clock are synchronized. This would
require a very accurate clock, for example an atomic clock, in the receiver and it
is not economically viable. Another solution is to add measurements from another
satellite with known position to calculate the difference between the satellite clock
and the receiver clock [10]. A simple example to explain this can be seen in Fig-
ure 3.6.

Figure 3.6: Concept of positioning in one dimension with two satellites and one
receiver.
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The previous example is only for positioning in one dimension, this means that n+1
satellites are required for n dimensions, meaning that four satellites are required for
positioning in three dimension, one for each dimension and one for time [10].

Figure 3.7: An illustration of the need of 4 satellites.

It is important to keep in mind that this is just the basic of positioning. The distance
calculation is a bit more complicated than just multiplying the time difference with
the speed of light. There are several ways to determine this distance but this thesis
will only provide theory of two common ones. The first one is by using the message
from pseudorange code measurements and the second is to calculate the length of
the carrier wave phases, more on this in Section 3.4.3 and 3.4.4.

3.4.2 Satellite positioning - Ephemeris data

To be able to determine the position of a receiving object using radio wave signals
it is important to know from where and when the signal was transmitted, that is, to
know where the satellites are located. The determination of satellite position may
differ depending on the system being used. This thesis will only provide theory for
determine the position of GPS satellites.

GPS satellites transmits a message every hour containing several variables called
ephemeris parameters, see Table 3.1. These variables are then used to calculate
the position and the proposed orbit of the satellites to get information about future
positions until the next ephemeris message. The proposed orbits are predictions and
get worse over time, but as long as the messages are being received this will not be
a problem.
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Table 3.1: Ephemeris parameters [22].

Ephemeris Data
Name Description Units
M0 Mean anomaly at reference time semi-circles
∆n Mean motion difference from computed value semi-circles/s
e Eccentricity -√
A Square root of the semi-major axis

√
m

Ω0 Longitude of ascending node of orbit plane
at weekly epoch

semi-circles

i0 Inclination angle at reference time semi-circles
ω Argument of perigee semi-circles
Ω̇ Rate of right ascension semi-circles/s

IDOT Rate of inclination angle semi-circles/s
Cuc Amplitude of the cosine harmonic correction

term to the argument of latitude
radians

Cus Amplitude of the sine harmonic correction
term to the argument of latitude

radians

Crc Amplitude of the cosine harmonic correction
term to the orbit radius

m

Crs Amplitude of the sine harmonic correction
term to the orbit radius

m

Cic Amplitude of the cosine harmonic correction
term to the angle of inclination

radians

Cis Amplitude of the sine harmonic correction
term to the angle of inclination

radians

toe Reference time ephemeris s

Table 3.2: Required WGS 84 parameters [22].

WGS 84 constants
constants Description
µ = 3.986005 ∗ 1014 m3/s2 Earth’s gravitational constant
Ω̇e = 7.2921151467 ∗ 10−5 radians/s Earth’s rotation rate

With the information in Table 3.1 together with the constants in Table 3.2 the
position of the satellite in the ECEF coordinate frame can be derived by using the
equations in Table 3.3.
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Table 3.3: Equations regarding position of satellite [22].

Equations to provide XYZ position of satellite
Equations Description

A = (
√
A )2 Semi-major axis

n0 = µ
A3 Computed mean motion

tk = t− toe Time from ephemeris reference epoch

n = n0 + ∆n Corrected mean motion

Mk = M0 + ntk Mean anomaly

Mk = Ek − e sinEk Kepler’s equation of eccentric anomaly

vk = tan−1
{

(
√

1−e2 sinEk)/(1−e cosEk)
(cosEk−e)/(1−e cosEk)

}
True anomaly

Ek = cos−1
{
e+cos vk

1+e cos vk

}
Eccentric anomaly

Φk = vk + ω Argument of latitude

δuk = Cus sin 2Φk + Cuc cos 2Φk Argument of latitude Correction
δrk = Crs sin 2Φk + Crc cos 2Φk Radius correction
δik = Cis sin 2Φk + Cic cos 2Φk Inclination correction

uk = Φk + δuk Corrected argument of latitude
rk = A(1− e cosEk) + δrk Corrected radius
ik = i0 + δik + (IDOT )tk Corrected inclination

x′k = rk cosuk positions in orbital plane
y′k = rk sin uk positions in orbital plane

Ωk = Ω0 + (Ω̇− Ω̇e)tk − Ω̇etoe Corrected longitude of ascending node

xk = x′k cos Ωk − y′k cos ik sin Ωk X-coordinate in ECEF coordinate frame
yk = x′k sin Ωk + y′k cos ik cos Ωk Y-coordinate in ECEF coordinate frame
zk = y′k sin ik Z-coordinate in ECEF coordinate frame

The time from ephemeris reference epoch tk must take week crossovers into account
when calculating the position, this means that tk need to be subtracted with 604 800
seconds if tk is greater than 302 400 seconds and added with 604 800 seconds if less
than −302 400 seconds. Another note is that Kepler’s equation of eccentric anomaly
is solved numerically [22].

3.4.3 Pseudorange code positioning
Pseudorange positioning is a common method to determine an object’s position on
the surface of the earth using satellite information. The approach is the same as de-
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scribed in Section 3.4.1, namely calculating the signal travel time between satellite
and receiver. For pseudorange positioning the time is derived using the informa-
tion regarding the satellite clock readings provided by a navigation message that is
transmitted together with a pseudo random noise code, hereinafter PRN-code, over a
carrier wave. There are some different PRN codes depending on which satellites that
are used but they all have at least one in common, namely the Coarse/acquisition-
code hereinafter C/A-code, which is the one that will be concerned in this thesis [3].
The C/A-code is a 1023 bit long message and is used by the receiver to determine
which satellite the signal originates from, meaning that every satellite has its own
C/A-code [9].

The GPS satellites have in turn two different carrier waves, L1 and L2 that are run-
ning at different frequencies. L1 is running at 1575.42MHz and L2 at 1227.60MHz.
L1 is the one used in positioning for civilians due to the fact that L2 is reserved for
the US military and other authorized users. The C/A-code is amplitude modulated
on the L1 carrier wave at a frequency of 1.023 MHz. The wavelength of this signal
can be calculated accordingly, where c is the speed of light and fc/a is the frequency

λc/a = c

fc/a
= 299792458

1.023 ∗ 106 ≈ 293 [m] (3.44)

where the maximum precision of this positioning method can be approximated to
1 % of the wavelength, namely ∼ 3 m [2].

3.4.4 Carrier phase positioning
Carrier phase positioning is similar to the Pseudorange code method in a sense
that both uses the same carrier wave L1 together with the PRN code to determine
transmitting satellites. The difference is that instead of using the satellite clock
readings from the navigation message it calculates the distance between satellite and
receiver by counting the number of carrier waves between them [3]. By applying the
same formula as in equation (3.44) but with the frequency of the L1 carrier wave,
namely 1575.42 MHz, the wavelength gets approximately 0.19 m,

λL1 = c

fL1
= 299792458

1575.42 ∗ 106 ≈ 0.19 [m]. (3.45)

It is though important to use the exact answer of this formula and not the rounded
number 19 cm because small numbers multiplied with the speed of light gets quite
large,

0.1902 c = 5.7021 ∗ 107,

0.19 c = 5.6961 ∗ 107,

∆d = 5.9958 ∗ 104.

Maximum precision of this method can be approximated in the same way as with
pseudorange. 1 % of the wavelength provides a precision of ∼ 0.0019 m meaning
accuracy at millimeter level [2].
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This method has unfortunately one drawback. Although the length of one carrier
wave is known there is no information about the number of waves in total. A term
often referred as the ambiguity term, N , displayed in Figure 3.8.

Figure 3.8: Carrier phase positioning with Ambiguity term [9].

Apart from this there are other terms that can cause errors, for example the receiver
and satellite clock biases. These terms are important when it comes to using the
measurements in a filter for estimation since a model is used to describe the mea-
surements, see Section 3.6.2 for further information.

A simplified model of the carrier phase measurements is as following, where tropo-
spheric, ionospheric and multipath errors are left out [3]

λL1Φs
r(t) = ρsr(t) +N + δr(t) + δs(t), (3.46)

ρsr(t) =
√

(Xs(t)−Xr)2 + (Y s(t)− Yr)2 + (Zs(t)− Zr)2, (3.47)

where Φ is the carrier phase measurement, r and s stands for receiver and satellite,
δ is clock bias and ρ is the geometrical distance between the receiver and the satellite.

For situations where the exact position is not necessary but millimeter precision is
desired it is preferable to use relative positioning. The advantage is then that several
error terms can be cancelled or neglected by phase difference techniques [3]. These
techniques are further described in Sections 3.4.4-3.4.4. However, measurements
from four satellites are still required to provide information about the position.

Single differencing

Single difference is a technique to cancel the satellite clock bias from the carrier phase
measurements. The method requires two receivers and one satellite per measurement
since the difference is derived between two carrier phase measurements from the same
satellite at the same time epoch [3]. To keep the receivers apart they are denoted
by A and B and the satellite is denoted by j

λL1Φj
A(t) = ρjA(t) + λL1N

j
A + cδA(t) + cδj(t), (3.48)

λL1Φj
B(t) = ρjB(t) + λL1N

j
B + cδB(t) + cδj(t). (3.49)

The difference of equations (3.48)-(3.49) are then

λL1Φj
BA(t) = ρjBA(t) + λL1N

j
AB + cδBA, (3.50)
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where

Φt
BA(t) = Φj

B(t)− Φj
A(t),

ρtBA(t) = ρjB(t)− ρjA(t),
N j
BA = N j

B −N
j
A,

δtBA(t) = δB − δA.

The satellite clock bias is eliminated due to the difference between the phase mea-
surements for each receiver.

Double differencing

Double differencing uses the same approach as the single differencing but is adding
another satellite to the equations. The receivers are still denoted by A and B and
the satellites by j and k. This technique is actually the difference between two single
differences [3]

λL1Φj
BA(t) = ρjBA(t) + λL1N

j
AB + cδBA, (3.51)

λL1Φk
BA(t) = ρkBA(t) + λL1N

k
AB + cδBA. (3.52)

The difference of equations (3.51)-(3.52) is then

λL1Φkj
BA(t) = ρkjBA(t) + λL1N

kj
AB, (3.53)

where

Φkj
BA(t) = Φk

BA(t)− Φj
BA(t),

ρkjBA(t) = ρkBA(t)− ρjBA(t),
Nkj
BA = Nk

BA −N
j
BA.

The receiver clock bias is then eliminated which is the main reason why this method
is used due to the fact that the receiver bias is much greater than the satellite clock
bias and even greater because multiplied with the speed of light.

Triple differencing

Single and double differencing have cancelled nearly all the extra terms but one, the
ambiguity term, N . As long as the receiver has phase lock between two epochs t
the ambiguity term does not change, meaning a difference between two epochs will
eliminate this term. Triple differencing is actually the difference between two double
differences in two consecutive time epochs [3]

λL1Φkj
BA(t1) = ρkjBA(t1) + λL1N

kj
AB, (3.54)

λL1Φkj
BA(t2) = ρkjBA(t2) + λL1N

kj
AB. (3.55)
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The difference of equations (3.54)-(3.55) is then

λL1Φkj
BA(t2 − t1) = ρkjBA(t2 − t1), (3.56)

where

Φkj
BA(t2t1) = Φk

BA(t2)− Φj
BA(t1),

ρkjBA(t2t1) = ρkBA(t2)− ρjBA(t1),

and the ambiguity term is eliminated as long as it remains constant between the
epochs.

Time differencing

Another approach to cancel out the ambiguity term is to skip both the single and
double difference steps and take the difference between two epochs t directly using
only one receiver, denoted by A, and one satellite, denoted by j, per measurement

λL1Φj
A(t1) = ρjA(t1) + λL1N

j
A + cδA(t1) + cδj(t1), (3.57)

λL1Φj
A(t2) = ρjA(t2) + λL1N

j
A + cδA(t2) + cδj(t2). (3.58)

The difference of equations (3.57)-(3.58) is then

λL1(Φj
A(t2)−Φj

A(t1)) = (ρjA(t2)−ρjA(t1))+c(δA(t2)−δA(t1))+c(δj(t2)−δj(t1)). (3.59)

The ambiguity term is then cancelled but the clock biases are remaining. The
satellite clock bias can be neglected due to accurate clock in the satellites but the
receiver clock bias need to be estimated, for example by a Kalman filter [14].

3.5 Inertial measurement unit - IMU
Inertial measurement unit (IMU) is as the name reveals a device that is able to
measure an object’s inertial motion where the measurement depends on the sensors
that the unit is equipped with. The usual setup is accelerometers to measure the
accelerations of the object, gyroscopes to measure the angular rate and magnetome-
ters to measure surrounding magnetic fields. The last sensor is not always included
in the units but can be at help in finding directions, for example where north is. The
IMUs are getting cheaper and are frequently used in products that need to know
its orientation, from autonomous vehicles to ordinary products as mobile phones.
The IMUs in this thesis are not equipped with magnetometers so there will be no
theory of this sensor. The following two sections will instead describe gyroscopes
and accelerometers.

3.5.1 Gyroscope
Gyroscopes are sensors that measure the rate of rotation of an object. There are
several different types of gyroscopes, for example the one with the spinning disc seen
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in Figure 3.9a that may be the best known but not suitable for embedded systems.
Then there are high precision gyroscopes such as ring-laser or fiber-optic sensors
that are too expensive to use in mass produced products such as vehicles and mo-
bile phones. Another gyroscope is the small MEMS-sensor, which by its light weight
and fair price becomes a great substitution to the expensive ones. The MEMS sen-
sor is a combination of both electrical and mechanical systems at a microscopically
level, hence the name Micro ElectroMechanical System[26] (see Figure 3.9b).

There are different kinds of MEMS sensors and as described in Section 2.1.2 the
sensor that will be used in this thesis is a vibratory MEMS-sensor. This type can
be briefly explained as a sensor without rotating or bearing parts as the ordinary
gyroscope. This sensor is instead equipped with a vibrating proof-mass suspended
by flexible beams that induces Coriolis force when it gets an orthogonal angular rate
input. The Coriolis force then give rise to energy that gets translated to a rotation
rate and when there are no rotation rate inputs the sensor should output zeros [26].

(a) Original Gyroscope[26]. (b) MEMS gyroscope[27].

Figure 3.9: Two different kinds of gyroscopes.

3.5.2 Accelerometer

Accelerometers, as the name points out, are sensors that measure translational accel-
eration of an object. There are several different accelerometers, some more applicable
to problems like this and some not. The basic theory is based on Newton’s second
law, that is, a force acting on a body with mass m causes the body to accelerate,
F = ma.

The accelerometer sensor used in this thesis is a MEMS sensor described in Section
2.1.2. This sensor uses a proof mass connected to a spring where the force produces
energy that is translated to acceleration (see Figure 3.10). When the object is
stationary it will measure the force acting to stop it from falling, the gravitational
force g.
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Figure 3.10: Simplified Accelerometer description [5].

3.6 Sensor fusion and filtering
The basics of sensor fusion are to combine data from multiple sensors to enhance the
quality of gathered information using statistical theory. A sensor used for position
determination merged with a sensor for angular rate may provide more information
of the measured object than if used separately. Sensor fusion is not only about
combining different kinds of sensors. Equal kinds of sensors are also able to improve
the measurements by redundancy [7].

The name sensor fusion is only the concept of merging sensors where filtering per-
forms the actual merging and this is where the statistical theory comes in place.
The filtering in this thesis is restricted to Bayesian filtering which refers to methods
for estimating time-varying systems.

Bayesian filtering refers to computation of the "marginal posterior distribution or
filtering distribution of the state xk at each time step k given the history of the mea-
surements up to the time step k"[4]. This recursive algorithm consists of two steps,
a prediction step and an update step where the algorithm requires initialization by
a prior distribution p(x0).

The prior distribution serves to help the estimation process to faster converge to
desired values by providing it with known information before the actual filtering
starts. For example, a starting position of an object, which position is being esti-
mated. This is especially important for systems that are nonlinear since there is
more than one possible outcome.

The prediction step makes use of a process model, often referred to as the motion
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model of the system, to predict the next state at time step k by computing the
Chapman-Kolmogorov equation

p(xk|y1:k−1) =
∫
p(xk|xk−1)p(xk−1|y1:k−1) dxk−1, (3.60)

where y1:k−1 are measurements up to time k−1 and xk describes the state at time k.

The update step makes use of the all sensors available, often referred to as the
measurement model of the system, at time step k to update the predicted states by
using Bayes’ rule

p(xk|y1:k) = p(yk|xk)p(xk|y1:k−1)∫
p(yk|xk)p(xk|y1:k−1) dxk

. (3.61)

The selection of motion models and measurement models depends on the system
being estimated and the sensors that are applied, see Sections 3.6.1-3.6.2 for further
description.

The choice of filter depends on the properties of these models. The Kalman filter is a
well known filter that applies Bayesian equations for state estimation. Although the
Kalman filter is great for estimation using linear models it is not able to handle non-
linear ones. However, there are extensions for this filter to make this possible. This
thesis will concern three kinds of Kalman filters, namely the ordinary Kalman filter,
the Extended Kalman filter and the Cubature Kalman filter [4], see Section 3.6.3.

3.6.1 Motion model
The motion model describes the behaviour of the estimated system and its uncer-
tainties as a Markov sequence [4]. This means that the state xk given xk−1 depends
only on the previous state and not on states occurred before xk−1 [6], thus the
density function becomes

p(xk|xk−1,xk−2, . . . ,x0) = p(xk|xk−1). (3.62)

The motion model is displayed in continuous time as

ẋ(t) = f̃(x(t)) + q̃(t), (3.63)

and in discrete time as
xk = f(xk−1) + qk−1, (3.64)

where the motion noise is described as

qk−1 ∼ N (0,Qk−1), (3.65)
Qk−1 = cov(qk−1) = cov(xk|xk−1) = cov(x(t+ T )|x(t)).

30



3. Theory

The complexity of these models varies depending on the system being estimated.
Two models that are commonly used to describe vehicle motions are the constant
velocity (CV) model and constant acceleration (CA) model. A vehicle in one di-
mension with the state vector x(t) = [p(t) v(t)], where p(t) is the position and v(t)
is the velocity, can be modeled as a CV model

ẋ(t) =
[
0 1
0 0

]
x(t) +

[
0
1

]
q(t) (3.66)

which gives a good representation of a vehicle with constant velocity. The vehicle
can be modeled as a CA model by adding an acceleration a(t) to the state vector,
x(t) = [p(t) v(t) a(t)],

ẋ(t) =

0 1 0
0 0 1
0 0 0

x(t) +

0
0
1

 q(t) (3.67)

which gives a good representation of a vehicle with constant acceleration. These are
two examples of how continuous motion models can look like.

Computer based filters operates in discrete time which means that it is necessary
to discretize the models before using them in the filter. There are different ways
to discretize a time continuous model and this thesis will explain two different ap-
proaches, The Analytic solution and the Euler discretization method.

Both methods works well if the motion models are linear and the filter is sampled
at high frequency, meaning a small sample time T, hence the models becomes very
similar (see equation (3.69)-(3.70)). However, the Euler method gets inaccurate if
the frequency is low and the analytic solution is then preferable. The downside for
the analytic solution is though that this method is only adapted to linear models
when the Euler method is not.

The linear motion function is often denoted

f(xk−1) = Ak−1xk−1 (3.68)

and the continuous transition matrix Ã is discretized using the analytic solution
where the exact discretization becomes

Ak−1 = e(T Ãk−1) = I + T Ã+ T 2

2 Ã
2 + · · · , (3.69)

or by using the Euler method where the approximated discretization is

Ak−1 = I + T Ã. (3.70)

The nonlinear motion function is discretized with the Euler method as

f(xk−1) = xk−1 + T f̃(xk−1) (3.71)
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where f̃ denotes the continuous function.

The discretization of the motion noise covariance matrix can be derived with the
analytic solution, where the exact discretization is

Qk−1 =
∫ T

0
eÃτQ̃eÃ

T τdτ (3.72)

or with the Euler method, where the approximated discretization is

Qk−1 = T Q̃, (3.73)

where Q̃ = ΓQΓT .

The stated CV model in equation (3.66) can be discretized with the Euler method
as [

xk
ẋk

]
=
[
1 T
0 1

] [
xk−1
ẋk−1

]
+
[
0
1

]
︸︷︷︸

Γ

qk−1, (3.74)

Qk−1 = T

[
0
1

]
σ2
[
0 1

]
=
[
0 0
0 Tσ2

]
(3.75)

and the stated CA model in equation (3.67) asxkẋk
ẍk

 =

1 T 0
0 1 T
0 0 1


xk−1
ẋk−1
ẍk−1

+

0
0
1


︸︷︷︸

Γ

qk−1, (3.76)

Qk−1 = T

0
0
1

σ2
[
0 0 1

]
=

0 0 0
0 0 0
0 0 Tσ2

 . (3.77)

3.6.2 Measurement model
The measurement model relates the current states to the measurements being made.
If there are two kinds of sensors then the measurement model requires two func-
tions, one for each type of sensor. For example, a gyroscope that measures angular
rate should be related to a current angular rate state. The measurement model is
p(yk|xk) and could be displayed in continuous time as

y(t) = h(x(t)) + r(t), (3.78)

and in discrete time as
yk = h(xk) + rk, (3.79)

where h is the measurement function and r is the measurement noise with the dis-
tribution N (0,R).
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By using the same approach as for the motion noise, the measurement noise covari-
ance matrix is derived as

R = CRmatC
T ,Rmat = Inrvec, (3.80)

where C is a matrix that relates the noise to correct measurements, similar to the
motion vector Γ.

3.6.3 Filter
This section describes three mentioned filters, namely the ordinary Kalman filter,
the Extended Kalman filter and the Cubature Kalman filter.

Kalman filter - KF

The Kalman filter is a Bayesian filter for systems with linear motion- and measure-
ment models. The Kalman filter is the linear minimum mean square error (LMMSE)
estimator and is a commonly used filter for linear problems where the motion- and
measurement model can be described as

xk = f(xk−1) + qk−1 = Ak−1xk−1 + qk−1, (3.81)
yk = h(xk) + rk = Hkxk + rk. (3.82)

A is an n × n matrix and H is an m × n matrix, where N is the amount of states
and M the amount of measurements[4].

The prediction step provides the predicted estimated state x̂k|k−1 together with the
covariance matrix Pk|k−1 based on the current estimated state by using the linear
motion model and covariance matrix Q as

x̂k|k−1 = Ak−1x̂k−1|k−1, (3.83)
Pk|k−1 = Ak−1Pk−1|k−1A

T
k−1 +Qk−1. (3.84)

The update step corrects the prediction based on the Kalman gainKk, the innovation
vk and the innovation covariance Sk as

x̂k|k = x̂k|k−1 +Kkvk, (3.85)
Pk|k = Pk|k−1 −KkSkK

T
k , (3.86)

where

Kk = Pk|k−1H
T
k S
−1
k , (3.87)

vk = yk −Hkx̂k|k−1, (3.88)
Sk = HkPk|k−1H

T
k +Rk. (3.89)

The innovation vk describes the difference between the measurement and the pre-
dicted state, the Kalman gain determines the creditability of the new information
and the Sk is the innovation covariance [17].
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Extended Kalman filter - EKF

The Extended Kalman Filter (EKF) is an extension of the Kalman Filter that is
capable of filtering nonlinear problems

xk = f(xk−1) + qk−1, (3.90)
yk = h(xk) + rk. (3.91)

The filter utilizes the linearization of the system by the partial derivative of the
motion- and measurement model in the region of the estimated state

f ′x(x) = δf(x)
δx

, (3.92)

h′x(x) = δh(x)
δx

. (3.93)

Matrices A and H from the KF, in Section 3.6.3, are approximated to f ′x(x) re-
spectively h′x(x).

The EFK tends to perform well when the models are not too nonlinear and the
partial derivative linearization is a good approximation in the region of interest [17].

Cubature Kalman filter - CKF

Highly nonlinear filter problems cannot be efficiently solved by the Extended Kalman
Filter, since the partial derivative linearization at the area of interest can be a bad
approximation of the distribution.

Another way to filter highly non-linear problems is with Gaussian moment matching
[4], by approximating measurements h(x) to fit the Gaussian integrals of the form∫

h(x)N (x|x̂,P ). (3.94)

There are many different methods to approximating the integral, such as Gauss
–Hermite cubature, Gauss–Hermite quadrature and Spherical cubature integration,
but this section will focus on the Cubature Kalman filter (CKF) that utilizes the
Spherical cubature integration.

The moment matching in the prediction step is based on a distribution of unit sigma
points ξ that in turn are based on the amount of states n as

ξ(i) =
{

+
√
nei, i = 1, ..., n

−
√
nei−1, i = n+ 1, ..., 2n . (3.95)

The unit sigma points ξ are used to produce sigma points χk−1 to propagate through
the model

χ
(i)
k−1 = x̂k−1|k−1 +

√
Pk−1|k−1ξ

(i) i = 1, ..., 2n, (3.96)
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where
√
P is a matrix square root defined by P =

√
P
√
P
T .

The mean of the propagated sigma points is calculated to estimate the predicted
state x̂k|k−1 and the covariance matrix can be obtained as

x̂k|k−1 ≈
1

2N

2N∑
i=1

f(χ(i)
k−1), (3.97)

Pk|k−1 ≈
1

2N

2N∑
i=1

(f(χ(i)
k−1)− x̂k|k−1)(f(χ(i)

k−1)− x̂k|k−1)T +Qk−1. (3.98)

A Cubature update step is quite similar to the prediction step. Firstly the sigma
points is created

χ
(i)
k = x̂k|k−1 +

√
Pk|k−1ξ

(i) i = 1, ..., 2n, (3.99)

where the unit sigma points ξ(i) are the same as in the prediction. The sigma points
are used to create corresponding measurements

Y (i)
k = h(χ̂(i)

k ). (3.100)

The desired moments can be computed as

ŷk|k−1 ≈
1

2N

2N∑
i=1

Y (i)
k , (3.101)

where

vk = yk − ŷk|k−1, (3.102)

Sk = 1
2N

2N∑
i=1

(Y (i)
k − ŷk|k−1)(Y (i)

k − ŷk|k−1)T +Rk, (3.103)

Ck = 1
2N

2N∑
i=1

(χ(i)
k − x̂k|k−1)(Y (i)

k − ŷk|k−1)T , (3.104)

Kk = CkS
−1
k . (3.105)

The innovation vk, the innovation covariance Sk and the Kalman gain Kk can be
calculated and used to estimate the state, as in Section 3.6.3.
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4
Filter design

This chapter describes how the filter was designed in detail. It will start with a brief
motivation that explains the selection of the filter. Then it continues with describing
two different motion models, denoted as separated and merged model. The chapter
then ends with describing the measurement models used in this thesis.

There are of course a variety of filters that can be used for this type of estimation
but some filters are more suitable than others depending on the motion and mea-
surement models. The models in this system are all nonlinear as seen in Sections
4.1-4.2. From the filters described in Section 3.6 there are two that handles nonlin-
earities, namely the Extended Kalman Filter, EKF and the Cubature Kalman Filter,
CKF. There are of course a variety of other filters that handles this but these are
the one mentioned in this thesis. To avoid linearizing the models and to use an EKF
on a system that may be too nonlinear it is preferable to use a Cubature Kalman
filter even though it is a high dimensional system that results in a lot of sigma points.

The theory chapter describes two different measurement models for GNSS sensors,
one using the triple differencing method and another with time differencing. How-
ever, the filter will only use one of the methods in this thesis, namely the time
differencing (see Section 3.4.4). This means that six additional states, drift and
drift velocity for each GNSS sensor, are required in the state vector.

4.1 Motion model
The Cubature Kalman filter are constructed with two kinds of motion models. The
first is with no connection between the bodies and is therefore denoted as the sep-
arated body motion model (SB). The second is with constraints and is therefore
denoted as the merged body motion model (MB). It is quite obvious that the mo-
tion model without any connection between the bodies may drift away from each
other. However this model is used to evaluate the influence of connecting bodies
with motion constraints in filtering.

4.1.1 Separated bodies
The separated body model (SB) consists of 44 states and is mostly based on Constant
Accelerating (CA) and Constant Velocity (CV) motion models, discretized with Eu-
ler method. The cabin and chassis has it is own positions p = [x y z]T , velocity
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ṗ, and acceleration p̈ in the global coordinate frame (ECEF) and orientations are
explained through quaternions q = [q0 q1 q2 q3]T to prevent a possible Gimbal lock.
However, the motion of the quaternions is made with angular velocities ω and an-
gular accelerations ω̇ as rotations about each axis. The receiver clock biases δi are
also included in the state vector but as the difference in bias between two epochs,
often referred as the drift

∆δ = 1
t1 − t2

δ1(t2)− δ1(t1)
δ2(t2)− δ2(t1)
δ3(t2)− δ3(t1)

 . (4.1)

The quaternion rates are depended by angular rates as described in Section 3.2.2,

q̇ = fq(q,ω) = 1
2S(Q(q)Tω)q. (4.2)

The states is combined to the state vector X where the function f(X) describes
the motion

Xk = f(Xk−1) + Γqk−1, (4.3)



pcabink

ṗcabink

p̈cabink

qcabink

ωcabink

ω̇cabink

pchassisk

ṗchassisk

p̈chassisk

qchassisk

ωchassisk

ω̇chassisk

∆δk
∆δ̇k


︸ ︷︷ ︸

Xk

=



ACA

p
cabin
k−1
ṗcabink−1
p̈cabink−1


qcabink−1 + fq(qcabink−1 ,ω

cabin
k−1 )T

ACV

[
ωcabink−1
ω̇cabink−1

]

ACA

p
chassis
k−1
ṗchassisk−1
p̈chassisk−1


qchassisk−1 + fq(qchassisk−1 ,ωchassisk−1 )T

ACV

[
ωchassisk−1
ω̇chassisk−1

]

ACV

[
∆δk−1
∆δ̇k−1

]


︸ ︷︷ ︸

f(Xk−1)

+



06×3 · · · · · · · · · · · ·
I3 03×3 · · · · · · · · ·

07×3 · · · · · · · · · · · ·
03×3 I3 03×3 · · · · · ·
06×3 · · · · · · · · · · · ·
03×3 · · · I3 03×3 · · ·
07×3 · · · · · · · · · · · ·
03×3 · · · · · · I3 03×3
03×3 · · · · · · · · · · · ·
03×3 · · · · · · · · · I3


︸ ︷︷ ︸

Γ



qcabin
p

k−1

qcabin
ω

k−1

qchassis
p

k−1

qchassis
ω

k−1

q∆
k−1


︸ ︷︷ ︸

qk−1

,

where In is an identity matrix of size n and 0n×m is a matrix of size n×m consisting
of zeros. The quaternions are iteratively normalized to size 1, q := q

‖q‖ and the
matrices ACV and ACA are

ACV =
[
1 T
0 1

]
ACA =

1 T 0
0 1 T
0 0 1

 . (4.4)

38



4. Filter design

The motion noise qk is modeled as Gaussian distributed with covariance matrix Q
as

q ∼ N (0,Q) (4.5)

and the discrete covariance matrix Qk can be calculated as

Qk = TΓQΓ, (4.6)

where T is the sample time, shown in equation (3.70).

4.1.2 Merged bodies

The Merged body model (MB) is a more advanced model than the SB model but
with one less state, that is 43 states. The chassis position p = [x y z]T , velocity
ṗ, and acceleration p̈ are defined in the global coordinate frame (ECEF) and the
orientation is described with quaternions q = [q0 q1 q2 q3]T to prevent possible
Gimbal lock as in the SB model. The cabin’s position and orientation are defined as
a displacement between the chassis. The cabin’s position, velocity, and acceleration
are in the chassis local coordinate frame and since the relative rotations will remain
around zero the Euler angles ε = [θ ϕ ψ]T will be at no risk for ending up in Gimbal
lock and are therefore used to describe the orientation. The motion of the orientation
for both the chassis and the cabin is made with angular velocities ω and angular
accelerations ω̇ as rotations about each axis, but the chassis states are defined in
the global coordinate frame (ECEF) and the cabin’s in the chassis local coordinate
frame. The differences of the three GNSS receiver clock biases δi, are also included
as states in the same manner as for the SB model

∆δ = 1
t1 − t2

δ1(t2)− δ1(t1)
δ2(t2)− δ2(t1)
δ3(t2)− δ3(t1)

 . (4.7)

The chassis’ position is modeled as a CA model and the quaternion rates are de-
pended by angular rates as described in Section 3.2.2,

q̇ = fq(q,ω) = 1
2S(Q(q)Tω)q. (4.8)

The cabin’s motion is based on rigid body dynamics, Section 3.3. Each translation
and rotation axis has been added with springs and dampers, forcing the cabin to an
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equilibrium point. The translation equation of motion becomes

ma =
∑
F , (4.9)

m(p̈cabin + Q(qchassis)T p̈chassis) = −

kx ky
kz


︸ ︷︷ ︸

kp

(pcabin −

x0
y0
z0


︸ ︷︷ ︸
pr

) (4.10)

−

cx cy
cz


︸ ︷︷ ︸

cp

ṗcabin,

and can be simplified to

p̈cabin = fp(X) (4.11)

= −kp
m

(pcabin − pr)− cp
m
ṗcabin −Q(qchassis)T p̈chassis.

The chassis’ angular acceleration is rotated to the body frame of the cabin and every
inertia in the inertia matrix IO are for simplicity selected to the same value Ixyz

IO =

1 0 0
0 1 0
0 0 1

 Ixyz, (4.12)

which eliminates terms in equation (4.16) and reduces the number of coefficients to
determine.

The angular momentum becomes

L̇O = δLO
δt

+ (ωcabin + Q(qchassis)Tωchassis)×LO (4.13)

= δLO
δt

+ 0

= ω̇cabin + Q(qchassis)T ω̇chassis,

and the rotational equation of motion becomes

L̇O =
∑
MO, (4.14)

Ixyz(ω̇cabin + Q(qchassis)T ω̇chassis) = −

kθ kϕ
kψ


︸ ︷︷ ︸

kε

(εcabin − εr) (4.15)

−

cθ cϕ
cψ


︸ ︷︷ ︸

cε

(ωcabin − ε̇r).
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and can be simplified to

ω̇cabin = fε(X) (4.16)

= − kε
Ixyz

(εcabin − εr)− cε
Ixyz

(ωcabin − ε̇r))−Q(qchassis)T ω̇chassis.

The εr describes how the relative angle should be if the cabin’s position differs from
its equilibrium point (see Figure 4.1). It should be the same as the angle between
the position vector and the chassis local z-axis and is calculated as

εr = sin−1
(
ez ×

pcabin

‖pcabin‖

)
. (4.17)

Figure 4.1: An illustration of the concept of the reference angle εr by showing
the pitch angle ϕr.

The states are combined to the state vector X where the function f(X) describes
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the motion

Xk = f(Xk−1) + Γqk−1, (4.18)



pcabink

ṗcabink

p̈cabink

εcabink

ωcabink

ω̇cabink

pchassisk

ṗchassisk

p̈chassisk

qchassisk

ωchassisk

ω̇chassisk

∆δk
∆δ̇k


︸ ︷︷ ︸

Xk

=



pcabink−1 + ṗcabink−1 T
ṗcabink−1 + p̈cabink−1 T

fp(Xk−1)

εcabink−1 + ε̇cabink−1 T
ε̇cabink−1 + ε̈cabink−1 T
fε(Xk−1)

ACA

p
chassis
k−1
ṗchassisk−1
p̈chassisk−1


qchassisk−1 + fq(qchassisk−1 ,ωchassisk−1 )T

ACV

[
ωchassisk−1
ω̇chassisk−1

]

ACV

[
∆δk−1
∆δ̇k−1

]


︸ ︷︷ ︸

f(Xk−1)

+



06×3 · · · · · · · · · · · ·
I3 03×3 · · · · · · · · ·

06×3 · · · · · · · · · · · ·
03×3 I3 03×3 · · · · · ·
06×3 · · · · · · · · · · · ·
03×3 · · · I3 03×3 · · ·
07×3 · · · · · · · · · · · ·
03×3 · · · · · · I3 03×3
03×3 · · · · · · · · · · · ·
03×3 · · · · · · · · · I3


︸ ︷︷ ︸

Γ



qcabin
p

k−1

qcabin
ω

k−1

qchassis
p

k−1

qchassis
ω

k−1

q∆δ
k−1


︸ ︷︷ ︸

qk−1

,

where In is an identity matrix of size n and 0n×m is a matrix of size n×m consisting
of zeros. The quaternions are iteratively normalized to size 1, q := q

‖q‖ and the
matrices ACV and ACA are

ACV =
[
1 T
0 1

]
ACA =

1 T 0
0 1 T
0 0 1

 . (4.19)

The motion noise qk is modeled as Gaussian distributed with covariance matrix Q
as

q ∼ N (0,Q) (4.20)

and the discrete covariance matrix Qk can be calculated as

Qk = TΓQΓ, (4.21)

where T is the sample time, shown in equation (3.70).

4.2 Measurement model
There are three different kinds of measurements that need to be related to the states
with three different measurement models, GNSS, IMU and velocity measurements.
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For each measurement there will be two different models depending on which motion
model that are used, one for the separated body (SB) and one for the merged body
(MB).

The complete measurement model can be derived asy
GNSS
k

yIMU
k

yvk

 =

hGNSS(xk)
hIMU(xk)
hv(xk)

+

r
GNSS
k

rIMU
k

rvk

 , rk ∼ N (0,R). (4.22)

The measurement noise covariance matrix R is described in Section 4.2.4.

4.2.1 GNSS measurements
These measurement models are based on the time difference theory found in Sec-
tion 3.4.4. The basics are to relate the difference between two carrier phase mea-
surements at two consecutive time epochs with the difference in receiver position
over two epochs together with a difference in receiver clock bias. The measurement
model is

yGNSSk = λ(Φreci
k − Φreci

k−kg
) = hGNSS(xk) + rGNSSk (4.23)

= (ρk − ρk−kg) + c(δk − δk−kg) + rGNSSk ,

where

ρk =
√

(xrk − xsk)2 + (yrk − ysk)2 + (zrk − zsk)2, (4.24)

ρk−kg =
√

(xrk−kg
− xsk−kg

)2 + (yrk−kg
− ysk−kg

)2 + (zrk−kg
− zsk−kg

)2, (4.25)
kg = TGNSS/TsampleT ime. (4.26)

The term kg is used because the filter is sampled faster than the GNSS measure-
ments, which are sampled with TGNSS and the variables denoted with an s are known
satellite positions.

These measurements are then related to the states but the receiver positions are not
in the state vector. The position of each receiver is instead related to the cabin’s
position state. There will be two different models depending on how the cabin states
are described one in global and one in the chassis coordinate frame.

The relations for the separated body model, where the cabin’s position is global are

(δk − δk−kg) = ∆δ̂k TGPS, (4.27)x
r
k

yrk
zrk

 = p̂cabink + Q(q̂cabink )

xreci

yreci

zreci

 , i = 1, 2, 3, (4.28)

x
r
k−kg

yrk−kg

zrk−kg

 = p̂cabink−kg
+ Q(q̂cabink−kg

)

xreci

yreci

zreci

 , i = 1, 2, 3. (4.29)
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The relations for the merged body model, where the cabin’s position is described in
the chassis coordinate frame are

(δk − δk−kg) = ∆δ̂k TGPS, (4.30)
x

r
k

yrk
zrk

 = p̂chassisk + Q(q̂chassisk )(p̂cabink +Rzyx(ε̂k)

xreci

yreci

zreci

) , i = 1, 2, 3, (4.31)

x
r
k−kg

yrk−kg

zrk−kg

 = p̂chassisk−kg
+ Q(q̂chassisk−kg

)(p̂cabink−kg
+Rzyx(ε̂k−kg)

xreci

yreci

zreci

) , i = 1, 2, 3. (4.32)

Variables denoted with rec are constants describing the position of different receivers
and states denoted with k − kg are old estimated states. It is not correct by the
Markov chain assumption to use old states in Kalman filters but it is a pragmatic
solution. How to use previous states in measurement models are left for discussion
and future work.

4.2.2 IMU measurements
The IMU sensors measure the angular velocity and the acceleration of the body
from the point they are installed. This means that the measurement models for the
two IMUs may differ in appearance but they will follow the same basic principles.
A gyroscope measurement may be modeled as

y = ω + µ+ rGyrok , (4.33)

where ω is the local angular velocity and µ is a bias that can be estimated or calcu-
lated and then used as a constant depending on how much it will drift.

Accelerometer measurement are a bit different and may be modeled as

y = Rzyx(ẍ+ g0) + µ+ rAcck , (4.34)

where ẍ is the acceleration of the point, g0 is the gravity vector and Rzyx a rotation
matrix. The IMU measurement consists of four measurements, two for each IMU.

yIMU
k =


yCabinGyrok

yChassisGyrok

yCabinAcck

yChassisAcck

 (4.35)

Depending on which motion model that are used there will be two different sets of
IMU measurement models with the same motivation as with GNSS.
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The first one is with the separated body motion model where the global angular
velocities in the state vector can be related to the local gyroscope measurements
with a rotation matrix seen in equations (4.36)-(4.37), together with biases, µ, that
are calculated and used as constants

yCabinGyrok = Q(q̂cabink )T ω̂cabink + µCabinGyro + rCabinGyrok , (4.36)
yChassisGyrok = Q(q̂chassisk )T ω̂chassisk + µChassisGyro + rChassisGyrok . (4.37)

The global acceleration states of the bodies need to be transformed to the local
acceleration of the point where the IMUs are placed. This is done by using equation
(3.42) from the theory chapter where the acceleration and the velocity terms of the
IMU in the global coordinate frame is zero. The acceleration measurement models
are then

yCabinAcck = Q(q̂cabink )T
[
¨̂pcabink + [ ˙̂ωcabink ×Q(q̂cabink )pIMU1 ] · · · (4.38)

+
[
ω̂cabink × [ω̂cabink ×Q(q̂cabink )pIMU1 ]

]
+ g

p̂cabink

‖p̂cabink ‖

]
+ µCabinAcc + rCabinAcck

and

yChassisAcck = Q(q̂chassisk )T
[
¨̂pchassisk + [ ˙̂ωchassisk ×Q(q̂chassisk )pIMU2 ] · · · (4.39)

+
[
ω̂chassisk × [ω̂chassisk ×Q(q̂chassisk )pIMU2 ]

]
+ g

p̂chassisk

‖p̂chassisk ‖

]
+ µChassisAcc + rChassisAcck .

The second one is with the merged body motion model where the measurement
models used for the IMU on the chassis is the same as for the separated body model
seen in equations (4.37) and (4.39). However, the other models are changed since
the cabin states depend on the chassis states, hence the cabin states are no longer
global. The gyroscope model will be derived using equation (3.35). The global
angular velocities of the chassis are first rotated to the local coordinate frame of the
chassis, the same as the cabin’s angular velocity is in. The sum of these two is then
rotated to the local coordinate frame of the cabin to match the angular measured
by the gyroscope,

yCabinGyrok = Rzyx(ε̂k)T
[
ω̂cabink + Q(q̂chassisk )T ω̂chassisk

]
+ µ̂cabink + rCabinGyrok . (4.40)

The accelerometer model becomes a bit more complicated. Instead of having two
position vectors, r as in equation (3.40) there will be a differentiation of three
vectors. The chassis states will be rotated from global to the local coordinate frame
of the chassis, where the sum of all terms in the chassis coordinate frame will be
rotated to the local coordinate frame of the cabin to match the acceleration of the
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cabin IMU

yCabinAcck = Rzyx(ε̂k)T
[
Q(q̂chassisk )T ¨̂pchassisk + ¨̂pcabink · · · (4.41)

+ [Q(q̂chassisk )T ˙̂ωchassisk × p̂cabink ] + [2Q(q̂chassisk )T ω̂chassisk × ˙̂pcabink ] · · ·

+ [Q(q̂chassisk )T ω̂chassisk × [Q(q̂chassisk )T ω̂chassisk × ˙̂pcabink ]] · · ·

+ [[Q(q̂chassisk )T ˙̂ωchassisk + ˙̂ωcabink ]×Rzyx(ε̂k)pIMU1 ] · · ·
+
[
[Q(q̂chassisk )T ω̂chassisk + ω̂cabink ]× [[Q(q̂chassisk )T ω̂chassisk + ω̂cabink ]×Rzyx(ε̂k)pIMU1 ]

]
· · ·

+ gQ(q̂chassisk )T p̂chassisk

‖p̂chassisk ‖

]
+ µCabinAcc + rCabinAcck .

The biases are calculated and used as constants as in the previous case.

4.2.3 Velocity measurements
The velocity measurements are related to the velocity of the truck which is assumed
to be the norm of the chassis velocity states

yvk = ‖ ˙̂pchassisk ‖+ rvk. (4.42)

This means that it will be the same for both motion models.

4.2.4 Measurement noise covariance matrix
All measurements have a noise scalar/vector denoted as rik where the complete noise
vector can be seen in equation (4.22). The measurement noise covariance matrix R
can be calculated as

R = CRmatC
T , (4.43)

Rmat = In

r
GNSS
k

rIMU
k

rvk

 =

r
GNSS
k 0 0

0 rIMU
k 0

0 0 rvk

 , (4.44)

C =

CGNSS 0 0
0 CIMU 0
0 0 Cv

 . (4.45)

The C matrix connects the measurements with correct noise and In is an identity
matrix with the same size as the noise vector.
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Results

The result chapter describes the performance of the filter and the characteristics of
the sensors that are used in both simulation and with real data measurements. The
chapter is divided in four sections, reference system - VBOX, sensor characteristics,
filter with simulated data and filter with real data. The results are mainly focused
on simulated data because the reference system was not able to provide enough in-
formation as first intended. The reason to this is explained in Section 5.1.

The sensor characteristics section provides results regarding the performance of the
sensors such as variances and noise characteristics. The variances are in turn used
in the measurement models for every filter in both real and simulated environments.
The sample time for both filters are chosen to be 1 ms to handle asynchronous IMU
measurements that have sample time 4 ms. The GNSS measurements have sample
time 200 ms and the velocity measurements have 40ms.

5.1 Reference system - VBOX

The VBOX reference system with the GNSS dual antenna together with the base
station and the IMU, described in Section 2.1.5, could not be used as intended.
The system encountered problems with initiating the IMU and could therefore not
provide reference angles about all axes as desired (see Table 5.1). The system is
still able to provide reference in position, heading and roll angel but not in the
pitch angle. Another remark is that this reference system is only able to provide
information about the cabin’s motion in a global coordinate frame and not the
cabin’s motion relative the chassis nor the chassis’ motion.

Table 5.1: VBOX accuracy with GNSS dual antenna and base station.

Accuracy Desired
Absolute position 2 cm 2 cm
Heading 0.1◦ 0.06◦ RMS
Roll angle < 0.047◦ RMS < 0.047◦ RMS
Pitch angle none 0.06◦ RMS
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5.2 Sensor characteristics
This section describes the characteristics of the sensors such as accuracy, noise and
performance. The section is divided into three parts, one for each sensor. The data
used for characterizing the GNSS and IMU sensors are gathered during 2 minutes
in a stationary position with the engine running. The velocity data is gathered
when driving at approximately constant acceleration because no constant velocity
was found in the real data and that the sensors outputs zero when the truck stands
still.

5.2.1 GNSS antennas
The noise variances of the carrier phases are supplied by the U-Blox sensor in each
epoch and for each satellite and GNSS receiver. The mean of each receivers variances
are shown in Table 5.2, where receivers are denoted as REC.

Table 5.2: Mean variance of the GNSS noise characteristics in meters [m].

REC1 REC2 REC3
Mean variance 0.00085053 0.00076972 0.00086828

A discovery made from using these GNSS sensors is that the sample frequency tends
to diverge from the assigned 5 Hz when exposed to movement (see Figure 5.1).

Figure 5.1: A description over varying sample frequency of GNSS signals.

However, the sampling frequency in simulation is fixed to 5 Hz.

5.2.2 Inertial measurement unit - IMU
The IMU sensor characteristics starts with describing the gyroscopes and follows
with an explanation of the accelerometers where the cabin mounted IMU sensor is
denoted as 1 and the chassis as 2.
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Gyroscope

The noise of the gyroscopes is shown in Figure 5.2 as histograms together with
Gaussian approximations of the distributions. The variances and mean values of
the noise are stated in Table 5.3.

(a) Noise characteristics of gyroscopes
for IMU 1, (� noise histograms, �

approximated distribution)

(b) Noise characteristics of gyroscopes
for IMU 2, (� noise histograms, �

approximated distribution)

Figure 5.2: Noise characteristics for integrated gyroscopes.

It can be seen that the approximations of the distributions are similar to the his-
tograms about the x- and z-axis for IMU 1 but not for the others, (see Figure 5.2).

Table 5.3: The variance and mean values of gyroscopes noise characteristics in
[deg/s].

About IMU1 IMU2

Variances
x 0.0047282 0.01127
y 0.027785 0.061623
z 0.0014584 0.015652

Mean values
x 77.8773 76.8622
y -77.2444 -76.3403
z -78.6804 77.3339

Accelerometer

The noise of the accelerometer is shown in Figure 5.3 as histograms together with
Gaussian approximations of the distributions. The variances and mean values of the
noise are stated in Table 5.4.
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(a) Noise characteristics of
accelerometers for IMU 1, (� noise

histograms, � approximated
distribution)

(b) Noise characteristics of
accelerometers for IMU 2, (� noise

histograms, � approximated
distribution)

Figure 5.3: Noise characteristics for integrated accelerometers.

It can be seen that the approximations of the distributions are similar to the his-
tograms about the z-axis for IMU 1 and the y-axis for IMU 2 but not for the others,
(see Figure 5.3).

Table 5.4: The variance and mean values of the accelerometers noise
characteristics in [m/s2].

IMU1 IMU2

Variances
x 0.0095881 0.0049537
y 0.032604 0.019439
z 0.0038512 0.01782

Mean values
x -0.0010449 0.0010867
y 0.00084368 -0.0054679
z -9.8192 -9.8229

5.2.3 Velocity sensor

The noise of the velocity sensor is shown in Figure 5.4 as histograms together with
Gaussian approximations of the distributions. The variance of the noise is calculated
with a set of data collected during an approximately constant acceleration where
the trends are removed. The variance is 0.0012 [m/s].
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(� noise histograms, � approximated
distribution)

Figure 5.4: Noise characteristics of velocity sensor.

5.3 Filter with simulated data

This section contains estimation result in simulation from both the filter with the
separated body model (SB) and the filter with the merged body model (MB). As
described in Section 4.1, the separated body model may not be a great model for
estimating the relative position of the cabin and the chassis due to no connection
between the two parts. However, it may provide information about the influence of
adding motion constraints or not. To not lose focus from the merged body results
that are more relevant to the main subject, these results are mainly found in ap-
pendix A.
Both filters are tested with a scenario where the truck is stationary for 10 seconds,
drives forward with constant acceleration in 20 seconds where it starts to perform
S-turns and then ends with as hard brake.

To make the illustrations in Figure 5.5 and Figure 5.12 to 5.18 more intuitive, the
states have been rotated to a local coordinate frame by using the rotation between
ECEF to ENU, stated in Section 3.1.3. The orientation states are shown in Euler
angles, that is, θ- roll, ϕ- pitch and ψ- yaw, described in Section 3.2.1.

5.3.1 Separated bodies
The results in this section are with the motion model where there is no connection
between the two bodies (SB), described in Section 4.1.1. The intention with the
results in this section are to show what happens if there are no motion constraints
available between two bodies. This means that both the cabin and the chassis states
are in the global coordinate frame and the orientation are defined with quaternions.
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Figure 5.5 and 5.6 displays how the filter estimates the position and the orientation
with present measurements from the GNSS, IMU and velocity sensors. It is notice-
able that these measurements are able to estimate the position and the motions of
the angles for the cabin, though with an offset when the truck starts to move. The
chassis position has a drift and a step in the z-axis and offsets are visible in z- and
y-axis. The orientation estimation for the chassis is similar to the cabin.

- estimated states, - references

Figure 5.5: Estimated position states for the SB model using GNSS, IMU and
velocity sensors.
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- estimated states, - references

Figure 5.6: Estimated orientations states shown with Euler Angles for the SB
model using GNSS, IMU and velocity sensors.

The evaluation of this filter can be seen in Figures 5.7 - 5.8 where the first one is for
the cabin states and the second for the chassis states. These figures illustrate the
root mean square (RMS) error between the references and the estimated states.
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Figure 5.7: RMS value for different sensor combinations for the cabin with the
SB model.

Figure 5.8: RMS value for different sensor combinations for the chassis with the
SB model.

It can be seen that there is no difference in estimation performance for the cabin
states when adding a velocity sensor but it is a clear improvement for the chassis.
Likewise, the GNSS has no impact on the chassis but improves both the position and
orientation for the cabin. Additional results using this filter with different sensor
combinations can be seen in Appendix A.
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5.3.2 Merged bodies
Following results in this section are with the motion model where two bodies are
merged (MB) with springs and dampers, described in Section 4.1.2. The cabin states
are in the coordinate frame of the chassis and the orientation is defined with Euler
angels, where it is important to notice that these states are relative to the chassis.
The chassis states are in the global coordinate frame and the orientation is defined
with quaternions. The values of the coefficients used for the springs and dampers
(see Table 5.5) in this model are selected by trial and error.

The first part of this section describes the motion model’s influence on the cabin
states without any measurements to provide result over the accuracy of the motion
model itself, where the chassis states are considered known (see Figures 5.9 - 5.10).
The second part describes the estimation results using different combination of sen-
sor information, each denoted by a bold text describing which measurements that are
used. The chapter then concludes with an evaluation of these sensor combinations
described with a bar chart.

Table 5.5: Used coefficients for the MB model.

Value Unit
kx 140 N/m
ky 90 N/m
kz 140 N/m
cx 25 Ns/m
cx 10 Ns/m
cx 25 Ns/m
m 1 kg
kθ 110 N/deg
kϕ 250 N/deg
kpsi 1500 N/deg
cθ 10 Ns/deg
cϕ 50 Ns/deg
cψ 70 Ns/deg
Ixyz 1 kgm2

x0 0 m
y0 0 m
z0 1.3015 m

Motion model evaluation

The performance of the motion model for the cabin is evaluated using the values
in Table 5.5 together with simulated translational- and angular accelerations of the
chassis. These accelerations are considered known and used as inputs to the mo-
tion model to predict the relative motion between the chassis and the cabin using
no measurements at all. The cabin’s position and angles are then compared with
simulated references (see Figure 5.9 - 5.10). The root mean square (RMS) errors
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between output and the simulated reference are seen in Table 5.6.

- estimated states, - references, - error.

Figure 5.9: Predicted position states for the cabin together with the MB model.
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- estimated states, - references, - error

Figure 5.10: Predicted orientation states shown with Euler Angles for the cabin
together with the MB model.

Table 5.6: Position and orientation RMS value for the prediction.

RMS Unit
x 0,001445 m
y 0,006618 m
z 0,000898 m
θ 0,20263 deg
ϕ 0,0592 deg
ψ 0,014138 deg
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GNSS

Figure 5.11 and 5.12 displays how the filter estimates the position and the orientation
with measurements from GNSS sensors. It is noticeable that these measurements
are able to estimate both the cabin and the chassis states, though there is an offset
after the truck starts to move in the chassis angle states and in the z-axis.

- estimated states, - references

Figure 5.11: Estimated position states for the MB model using GNSS sensors.
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- estimated states, - references

Figure 5.12: Estimated orientation states shown with Euler Angles for the MB
model using GNSS sensors.
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IMU

Figure 5.13 and 5.14 displays how the filter estimates the position and the orien-
tation with only measurements from the IMU sensors. It is noticeable that these
measurements are able to estimate the cabin states but fails for the chassis position.
The chassis orientation states gets an offset after the truck starts to move.

- estimated states, - references

Figure 5.13: Estimated position states for the MB model using IMU sensors.
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- estimated states, - references

Figure 5.14: Estimated orientation states shown with Euler Angles for the MB
model using IMU sensors.
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GNSS and IMU

Figure 5.15 and 5.16 displays how the filter estimates the position and the orienta-
tion with measurements from GNSS and IMU sensors. It is noticeable that these
measurements are able to estimate the cabin states and the chassis position, though
there is an offset in the chassis orientation after the truck starts to move.

- estimated states, - references

Figure 5.15: Estimated position states for the MB model using GNSS and IMU
sensors.
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- estimated states, - references

Figure 5.16: Estimated orientation states shown with Euler Angles for the MB
model using GNSS and IMU sensors.
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GNSS, IMU and truck velocity

Figure 5.17 and 5.18 displays that there are no larger differences if the velocity
measurements are included with the GNSS and IMU sensors or not.

- estimated states, - references

Figure 5.17: Estimated position states for the MB model using GNSS, IMU and
velocity sensors.
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- estimated states, - references

Figure 5.18: Estimated orientation states shown with Euler Angles for the MB
model using GNSS, IMU and velocity sensors.

Filter evaluation

The evaluation of this filter can be seen in Figures 5.19 - 5.20 where the first one
is for the cabin states and the second for the chassis states. These figures illustrate
the root mean square (RMS) error between the reference and the estimated states.
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Figure 5.19: RMS value for different sensor combinations for the cabin with the
MB model.

Figure 5.20: RMS value for different sensor combinations for the chassis with the
MB model.

It can be seen that there is small improvements by adding a velocity sensor for the
chassis but nearly unchanged for the cabin. The GNSS sensor creates lower RMS
values for the chassis than the IMU but the other way around for the cabin.
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5.4 Filter with real data
This section contains estimation results with real data using the separated body
model (SB) since the references is complete for the cabin’s absolute position. How-
ever, the references are not sufficient for the orientation and to be able to validate
the estimation with real data is it compared to a simulated version of the real sce-
nario.

The scenario is when the truck is first stationary for 5 seconds, followed by accel-
erating in 5 seconds and ends with a hard brake. The simulated scenario is tested
with different sources of errors to explain certain behaviors of the estimation with
real data.

To make the illustrations in Figure 5.21 to 5.29 more intuitive, the states have been
rotated to a local coordinate frame by using the rotation between ECEF to ENU,
stated in Section 3.1.3. The orientation states are shown in Euler angles, that is, θ-
roll, ϕ- pitch and ψ- yaw, described in Section 3.2.1.

Figure 5.21 and 5.22 shows estimation with real data. The estimated position follows
the reference quite well, but the orientation is hard to evaluate. This is instead
valuated in the following section together with common sources of errors to explain
the behavior of the estimations.
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- estimated states, - references, - error

Figure 5.21: Estimated position states for the SB model using GNSS and IMU
sensors with real data.
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- estimated states

Figure 5.22: Estimated orientation states shown with Euler Angles for the SB
model using GNSS and IMU sensors with real data.
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5.4.1 Sources of error
Common errors to explain the behavior of the estimates are inaccurate prior, varying
GNSS frequency, incorrect distances between the sensors and incorrectly rotated
accelerometer measurements. When the filter is not affected by any of the above
mentioned errors it behaves as in Figure 5.23 and 5.24.

- estimated states, - references, - error

Figure 5.23: Estimated position states for the SB model using GNSS and IMU
sensors with simulated data without any source of error.
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- estimated states, - references, - error

Figure 5.24: Estimated orientation states shown with Euler Angles for the SB
model using GNSS and IMU sensors with simulated data without any source of

error.
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When an inaccurate prior of the orientation is introduced (see Figure 5.25 - 5.26),
the filter is still able to estimate the trajectory of the position, but the orientation
estimated states are incorrect. A high frequency error is also observed in the position
states.

- estimated states, - references, - error

Figure 5.25: Estimated position states for the SB model using GNSS and IMU
sensors with simulated data with a wrong prior.
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- estimated states, - references, - error

Figure 5.26: Estimated orientation states shown with Euler Angles for the SB
model using GNSS and IMU sensors with simulated data with a wrong prior.
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If the GNSS receivers lose reception and the frequency varies (see Figure 5.1), the
estimation gets worse. It can be seen that an offset is introduced in the position as
well as steps in the orientation states after 15 s if receiver 1 and 3 gets sampled at
1.25Hz and receiver 2 at 1.67Hz instead of 5Hz (see Figure 5.27 and 5.28).

- estimated states, - references, - error

Figure 5.27: Estimated position states for the SB model using GNSS and IMU
sensors with simulated data with varying GNSS frequency.
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- estimated states, - references, - error

Figure 5.28: Estimated orientation states shown with Euler Angles for the SB
model using GNSS and IMU sensors with simulated data with varying GNSS

frequency.
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Both the errors mentioned above are introduced in the filter (see Figure 5.29 and
5.30). The behavior of the estimated position is clearly similar to the estimated
states with real data (see Figure 5.21). However, the estimated orientation is still
hard to evaluate.

- estimated states, - references, - error

Figure 5.29: Estimated position states for the SB model using GNSS and IMU
sensors with simulated data with wrong prior and varying GNSS frequency.
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- estimated states, - references, - error

Figure 5.30: Estimated orientation states shown with Euler Angles for the SB
model using GNSS and IMU sensors with wrong prior and varying GNSS

frequency.

The filter is not sensitive to errors regarding inaccurate measured distances between
sensors or to slightly incorrect rotations of the accelerometers when tested in simu-
lation. There are no figures to illustrate this because all look very similar to Figure
5.23 and 5.24.
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6
Discussion

The discussion chapter is divided into four topics. The first concerns a discussion
about the sensor characteristics, the second is a general discussion about the filter
results, the third a general discussion of the whole thesis and the fourth concerns
future work.

Sensor characteristics

The GNSS receivers have a tendency of losing reception when the truck is moving,
that is a decreased sampling frequency. It is known that GNSS signals are sensitive
for disturbances, but not at open areas. Why the sensors are behaving like this is
unknown but the problem seems to be in the actual sensors with loss of phase lock.
A solution to this may be to use a slower sample time or to further investigate what
the problem is before changing the sensors. Another approach is to investigate the
possibility to manage this problem in simulation by imitating this behavior. The
GNSS measurement variance is directly received from the U-Blox sensors and as-
sumed to be correct but not verified since the thesis have focused on simulated data.
A further investigation could be necessary when dealing with real data.

The results from the sensor characteristics indicates that the approximation of the
Gaussian distributions of the noise for both the gyroscope and the accelerometer are
inaccurate, especially for the IMU mounted on the chassis denoted as IMU 2. The
distributions show more similarity with two mixed Gaussian distributions with in-
dividual mean values. Since the phenomenon appears in almost all sensors for IMU
2, namely the one closest to the engine, a hypothesis can be that these appearances
are caused by vibrations from the motor.

The velocity sensor noise characteristic is investigated when the truck has a constant
acceleration, which may not be the best approach. A constant velocity would be
preferable, but could not be performed due to missing data. Another interesting
aspect is that the velocity measurement is assumed related to the norm of the
chassis velocity states. Another approach could be to further investigate the velocity
measurement for example by including the steering angle together with the velocity
of the wheels to provide a better relation for the integrated velocity sensor.
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Estimation results
The results from the separated body model are rather expected. The GNSS sensors
are not able to position the chassis because there is not a connection between the
two bodies and the velocity sensor are not improving the cabin estimates due to the
same motivation. The results indicate that the combination using only IMU sensors
is better in estimating the chassis’ position than the cabin’s position, which may
depend on larger motions for the cabin.

Another interesting aspect is that the shape of the estimated cabin angles is very
similar in the estimations using either only GNSS or only IMU. This is an indication
that the triangular setup may be better at estimating the angular velocity rather
than the angles of the cabin. This is not that surprising since the GNSS sensors
accurately measures the difference of the position in two time instances. Various
test scenarios in simulation, like driving in circles, could have been used to further
investigate this hypothesis.

The results from the merged body model shows that it is possible to use measure-
ments from sensors that are mounted on one body to improve the estimates of
another when they are connected, for example the cabin mounted GNSS sensors
are now able to estimate the chassis states. The cabin’s position and orientation
relative to the chassis are accurate but the difference in using GNSS or IMUs is not
large. This means that if only the relative position and orientation are required,
then it is enough to use only the IMUs, which has the positive side effect of a faster
computation time for the filter. This type of motion model has therefore been shown
to be very helpful and important in this thesis. However, the chassis model could
be improved with a more suitable motion model for a truck, for example a bicycle
model that is able to capture the real movement of a vehicle. This may help solving
the offset for the chassis angle estimates, but has not been further investigated since
focus has been on the relative motion between the chassis and the cabin.

The coefficient values of the merged body model (see Table 5.5) are probably not
optimal, since the selection was made by trial and error. It would be preferable
to select these values with some kind of minimum error estimator, like a minimum
mean square error method. However, this is hard to accomplish with the real sys-
tem, since there is no reference of the relative position and orientation. It would
therefore be interesting to evaluate the need of accurate coefficients.

The reference orientation data, roll and yaw, that are provided by the VBOX sys-
tem is not showed in the evaluation of the real data. The reason for this is that
they require a transformation that is hard to validate compared to dealing with the
position reference. This validation has not been a priority since the reference pitch
angle could not be provided.

By comparing Figures 5.21 to and 5.23 it is clear that the simulated estimate is
better than the real one. The interesting aspect is however that when the simulated
data are exposed to errors such as inaccurate prior and varying GNSS frequency

80



6. Discussion

the errors in position are very similar to the position error of the real data (see
Figure 5.21 and 5.29). This means that the prior in the real data filtering is prob-
ably incorrect. The angles may not have the same appearance but the used prior
error is maybe not the exact same prior error that is used in the real data. Finding
this accurate error prior should require the same effort as finding the real prior. A
complete reference, fixed frequency GNSS sensors, accurate prior and some tuning
may result in good estimates using real data.

General discussion
There are different approaches to solve the stated problem that is usually the case
when the subject is rather new and unexplored. A Cubature Kalman Filter may
not be the best suitable filter in this multidimensional case due to the fact that
the number of sigma points is doubled to the number of states. This results in
slow filtering but not to forget, the filter is able to cope with the nonlinearities.
An Extended Kalman Filter may handle the nonlinearities and it would have been
interesting to compare the performance to the Cubature Kalman Filter. It would
also be interesting to further investigate different kind of filtering methods than the
ones mentioned in this thesis, for example a particle filter. If these filters are going
to be used for online control algorithms or similar there must be either a decrease
in number of states or a faster algorithm.

Another interesting question is if the time differencing method for the GNSS mea-
surement model is enough or if there are other errors that are not handled when
taking two measurements in two different time epochs. It would have been inter-
esting to evaluate the triple difference method in these filters, which would have
decreased the number of states due to no drift estimation, but increased the number
of calculations. In an early stage of this thesis it was some tests to compare these
two measurement models using a very simple motion model. The time differencing
method was actually better to estimate the angles than the triple method and the
hypothesis is that the triple difference method is more suitable to determine the dis-
tance between two receivers. This means that it measures a distance between two
receivers that is considered fixed and therefore independent of whether the truck is
stationary or not. This type of measurement model would instead be preferable if
base stations are used and with that measure the distances between a base station
and every receiver. Another possible reason to use the triple differencing method
is that the drift estimation in the time differencing method is very sensitive and
requires an accurate prior with small motion noise to work properly.

Future work
This thesis has used an old estimated state to describe an earlier state in the Kalman
filter, which goes against the Markov chain assumption. The solution is therefore
pragmatic and the filter could be improved by not using this approach. A future
work could be to find a way to accurately describe old states in the state vector.
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An accurate prior seems, from the filter evaluation of real data, to be required for
the filters to work properly but it is rather expected when the model is nonlinear, de-
scribed in Section 3.6. It is suggested to develop some kind of algorithm to determine
the prior. A solution can be for example to use a particle filter to sift out good priors.

It has been found that an accurate motion model provides a better result for the
cabin estimation. An accurate model over the chassis motion could be an approach
to get an even better estimation in the chassis angles and the whole system.
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7
Conclusion

This thesis have concluded that it is possible in simulation to estimate the position
and orientation of a truck cabin relative to the chassis and the chassis’ position
and orientation in a world frame using GNSS-sensors, gyroscopes, accelerometers
and a velocity sensor. An accurate prior is found to be very important to make the
estimation feasible, and the motion model has been shown to be of great significance.
Springs and dampers are great in simulating the real connection between the chassis
and the cabin, and they provide satisfying results when used in the motion model.
The merged model works well in estimating the relative position and orientation
between the chassis and the cabin, and it allows GNSS measurements to improve
the states of the chassis.
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A
Results regarding filter with
separated motion model

The results in this appendix are from the filter with the separated body model,
where there are no connections between the two bodies. Important to notice is that
the cabin and the chassis states are both in the global coordinate frame and the
orientation are defined with quaternions. The filter is tested with a specific scenario
where the truck is stationary for 10 seconds, drives forward with constant accelera-
tion in 20 seconds, then performs several S-turns, and ends with a hard brake.

To make illustrations in Figure A.1 to A.6 more intuitive, the states have been
rotated to a local coordinate frame by using the rotation between ECEF to ENU,
stated in Section 3.1.3. The orientation states are shown in Euler angles, θ- roll, ϕ-
pitch and ψ- yaw , further described in Section 3.2.1.

GNSS

Figure A.1 and A.2 display how the filter estimates the position and the angles with
only measurements from the GNSS sensors. It is noticeable that these measurements
enable the filter to estimate the trajectory of the cabin’s position and that it captures
the motion of the orientation but not the states for the chassis. It is clearly displayed
that the estimated z, θ and ϕ capture the motion but there is an offset when the
truck moves.
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- estimated states, - references

Figure A.1: Estimated position states for the SB model using GNSS sensors.
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- estimated states, - references

Figure A.2: Estimated orientations states shown with Euler Angles for the SB
model using GNSS sensors.
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IMU

Figure A.3 and A.4 display how the filter estimates the position and the orientation
with only measurements from the IMU sensors. It is noticeable that these mea-
surements are able to capture the motion of the orientation of both the chassis and
the cabin, though with an offset when the truck starts to move. However, the filter
is not able to estimate the position states for neither of the bodies except for the
chassis’ y position that follows a similar trajectory as the reference.

- estimated states, - references

Figure A.3: Estimated position states for the SB model using IMU sensors.
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- estimated states, - references

Figure A.4: Estimated orientations states shown with Euler Angles for the SB
model using IMU sensors.
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GNSS and IMU

Figure A.5 and A.6 display how the filter estimates the position and the orientation
with measurements from both GNSS and the IMU sensors. It is noticeable that
these measurements are able to estimate the position and the motions of the angles
for the cabin, though with an offset when the truck starts to move. The states of
the chassis remain unchanged from the measurements with only IMU’s.

- estimated states, - references

Figure A.5: Estimated position states for the SB model using GNSS and IMU
sensors
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- estimated states, - references

Figure A.6: Estimated orientations states shown with Euler Angles for the SB
model using GNSS and IMU sensors.
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