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Abstract

Testing an AUTOSAR application destined for an automotive Electronic Control
Unit (ECU) can become an unpredictable situation, since the hardware availabil-
ity of the target platform can be limited, if at all available. This thesis set out to
provide developers with a virtual testing platform that would emulate the hardware
behaviour in the shape of a Linux C-based application. The study was extended
towards evaluating potential performance gains from running the developed appli-
cation on high-end computers with similar performance levels as current powerful
ECU hardware, which are able to host a UNIX-based operating system and execute
multiple threads in parallel using the POSIX standard. The assessment of the gen-
erated results is realised in terms of correctness of a predefined execution scenario,
performance comparison to a set of reference results and standard real-time timing
constraints for automotive software.

Keywords: Linux, Adaptive AUTOSAR, POSIX, Operating Systems, Embedded
Systems, Real-Time Systems.
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1

Introduction

This chapter is a synopsis of the content of the thesis project. It begins with a small
background to Electronic Control Unit (ECU) development and why this Master’s
thesis is relevant, in the context of the problem definition. We then continue on
with a brief description of the previous work done in the related fields, following up
with the project goal. Finally we elaborate on the project limitations and potential
risks that may apply to our thesis work.

1.1 Background

In the past, all control mechanisms in a conventional vehicle were implemented me-
chanically [1]. During the 1980s, there was a major shift towards electronic control,
with a first joint attempt from Intel and Ford, producing the first fully electronic
control unit, which they called Electronic Engine Control (EEC) (nowadays known
as ECU). The basis of this ECU was a modified version of the Intel 8061 processor
family. It is remarkable how 8061 and its successors were the basis of almost all
ECUs produced by Ford until 2000 [2]. Early ECUs were based on analog circuitry,
because analog circuits are not clock-speed-dependent. There was a brief switch to
hybrid ECU systems, comprising both analog and digital logic, right before the final
transition to entirely digital circuitry ECU systems around 1987.

The transition from analog to digital took place because it coincided with the time
when digital electronics became fast enough to be able to process data and respond
in a real-time concept [3]. Digital systems illustrated better performance and eas-
ier manipulation as the ECU technology progressed. Nevertheless, this revolution
in automotive electronics led to an immense growth in ECU software applications,
which were created to perform crucial vehicle operations.

Newly developed vehicle applications started to grow in size and complexity, moti-
vated by many heterogeneous factors. According to [4] the propelling elements of
this growth are indicatively the following:

o The continuous demand for lower costs, better comfort and higher security.

o A substantial rise in the number of ECUs used in a single vehicle, as well as
in the functionality shared amongst the included units.

o The target ECU hardware along with the network interfaces (e.g. LIN, CAN,
FlexRay and recently Ethernet) is constantly diversifying.
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With the structure and shape of ECU-targeted applications becoming quite com-
plex, the idea for a standardisation of the software architecture and the development
methods started gaining increased attention within the automotive industry. To that
end, different stakeholders have agreed on a standardisation of basic software func-
tionality of automotive ECUs, known as AUTOSAR (AUTomotive Open System
ARchitecture) [5]. The motivation behind this collaboration was mainly focused in
containing the complexity produced from the expansion of the implemented func-
tionality, as well as providing the products with some plasticity; enabling them to
easily incorporate upgrades and modifications. Moreover, providing scalability for
the developed software would improve its achieved quality and reliability.

This breakthrough has signaled the beginning of a new era in automotive applica-
tion development, simplifying the process of creating additional functionality for a
control unit. The impact of AUTOSAR on the automotive software development
habits is becoming more significant with time and the automotive tool chain area was
the first to be heavily affected. As a concept, AUTOSAR allows the development
process to shift from actual implementation steps towards a series of configuration
stages instead, which unchains the whole procedure from additional complexity by
automatising it. Naturally, this revolutionised the development’s tool world as well,
since AUTOSAR enables new capabilities and features [6].

A plethora of software companies adopted the new standard and built development
environments tailored to the AUTOSAR specifications. One of the software compa-
nies that embraced the AUTOSAR standard was ARCCORE AB, the host company
of this project. Since September 2009 ARCCORE is an appointed Associate Mem-
ber of the AUTOSAR consortium, a collaboration that signaled the beginning of
a new era for the company itself [7]. Some significant players in this business area
are Vector, Mentor Graphics, QTronic Infineon, Artop and ETAS. Each of these
companies provide some sort of AUTOSAR software development solution, some
also expand into hardware development, Renesas [8] being an example.

1.2 Problem Definition

Providing such a friendly environment for AUTOSAR applications’ developers, led
to a speed up in the process of ECU modules integration. This created the need
for a more frequent and accurate testing environment that would exhibit the tar-
get hardware platform’s properties. Considering that all ECU applications are so
hardware-dependent, the ideal case would be to provide every designer with an actual
board in order to download the application and test it while still in the development
phase. Nevertheless, this is usually not the case for reasons that are explained in
Section 1.4 along with the contribution of our work towards that end.

The obstacle that this project set out to lift, is to facilitate the test and verifica-
tion process of AUTOSAR ECU software applications that are in the development
phase. Since the intended hardware is usually a restricted resource by nature and
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sometimes it is even simultaneously being developed, the lack of adequate testing
gives rise to a precarious situation. This will be addressed by developing a verifi-
cation platform, which will help reduce the risks and costs of developing new ECU
software, invoking the target hardware board for testing only in the latter stages
of the process. This platform, can be classified as a Virtual Machine (VM) that
incorporates the AUTOSAR OS functionality on top of a Linux distribution. Since
it falls outside the scope of our thesis project to focus on the aspect of VMs, we will
briefly provide a definition and a visual example (Figure 1.1) in order to clarify the
intended system structure.

Our implementation can be categorised as a process VM. This type of VM translates
the OS and the user-level instruction set, which compose the virtual platform, to
the corresponding parts of the host platform [9]. In Figure 1.1, we illustrate the
different perspective that an application realises, compared to the actual virtual
architecture. Regardless, the interpretation of our platform as a VM is based on
the fact that applications executed within their corresponding layer do not realise
whether they are executed on a native AUTOSAR OS or through the ported OS
that our application comprises.

Application Process

Guest Application Process

VM Virtualization Software
Virtual Machine
Process

Host <

Hardware

Y Y
Virtualization

‘ Application View
architecture

Figure 1.1: The right figure shows what an application sees in regards to a VM, it
does not care what is underneath it. On the left we can see the actual incorporation
of a VM, it is integrated together with the host OS and the hardware.

While the initial idea was to speed up the ECU software development process by
replacing the target hardware with the AUTOSAR functionality in the shape of a
Linux application, we will also investigate the potential benefits from shifting to-
wards Linux-based multi-core ECU solutions, as the future path for the AUTOSAR
consortium and the attempts to achieve maximum performance while maintaining

3
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the required reliability.

Application Layer

Runtime Environment

ECU

Services Communcation -
Abstraction

Ported
AUTOSAR
oS

Microcontroller

Figure 1.2: Simple layout figure of the AUTOSAR stack, with the OS renamed
to "Ported AUTOSAR OS" since the AUTOSAR OS is being run on top of a Linux
distribution instead of immediately on the hardware.

However, as we will illustrate in Chapter 2, the Basic Software Module (BSWM)
as described in the AUTOSAR specifications is very complex and far too volumi-
nous for the scope and duration of a Master’s thesis work and thus our efforts are
dedicated to solely port the AUTOSAR OS functionality to the test platform under
development.

In order to evaluate the gains of invoking Linux and multi-core systems within our
implementation, a test application provided by ARCCORE will act as a compari-
son framework between the Linux application and a current ECU hardware system.
This evaluation shall be in regards to performance, correctness and timing. Perfor-
mance is related to execution metrics, correctness to task scheduling and timing to
Real-Time (RT) application constraints.

1.3 Motivation

Our thesis work is influenced by all the prior attempts to combine embedded OSs
with mainstream platforms such as Linux or Android OS [10]. More specifically, we
base much of our work on sincere efforts within ARCCORE to join the two worlds, in
the context of Adaptive AUTOSAR [11]. Adaptive AUTOSAR is considered as the
next step for the consortium and we will explain it in more detail in the next chapter.
More specifically, Adaptive AUTOSAR as a concept is relevant to our project since
it will be using a POSIX-thread (Portable Operating System Interface) capable OS

4
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according to the initial vision [11], with Linux distributions being the front-runner.
Since this is a very promising path for the automotive software industry, it is obvious
that there exist multiple attempts to port and translate the AUTOSAR Operating
System (OS) functionality to a Linux-based platform, e.g. qTronic’s Silver product
[12] or Mentor’s virtual platform for AUTOSAR [13]. However, developing an in-
house solution provides ARCCORE with the flexibility to use the outcome of this
project as the guideline and the foundation of future attempts to fully transfer the
AUTOSAR BSWM functionality to Linux systems.

Table 1.1: Summary of the CoreMark benchmark results for processors related to
our project. The first two rows include the metrics for the host machines used during
the testing of our applications, noting that they are not far off from the high-end
NVIDIA ECUs

Processing Unit Frequency | # Cores | Coremark | Coremark/Core
Intel Core i7-3720QM 2.6GHz 8 85209 10651
Intel Core i5-4300M 2.6GHz 4 46085 11521
NVIDIA Tegra K1 2.3GHz 4 31221 7805
NVIDIA Tegra X1 1.9GHz 4 30638 7659
Intel Atom E3827 1.74GHz 2 10820 5410
Renesas RX71M 240MHz 1 1045 1045
STM STM32F756NGH6 | 200MHz 1 1002 1002
Renesas RX64M 120MHz 1 525 525

Driven once more by the technological advancements in electronics, invoking other
parties into the automotive field as the market expands into a wider field, requiring
more high end capabilities. Thus making the bridges smaller between an automotive
purpose ECU and a general purpose computer. The cooperation between NVIDIA
and Volvo in the Drive Me project [14] is a perfect example of Microcontroller Units
(MCU) requiring more performance.

Table 1.1 shows performance results of various processors, including some main-
stream automotive ECUs. These results were generated using the benchmark suite
CoreMark [15], which provide a reference metric in order to quantitatively compare
different types of processing units with each other. The two host machines used in
this project are also included in this table, along with the Renesas and STM boards,
which are very common when it comes to AUTOSAR ECUs. The RX64M is similar
to the ECU used to produce our reference results (which can be seen in Appendix A).
There is also an entry for an Intel Atom processor. It belongs in the same processor
family as the one used in MinnowBoard MAX (Atom E38XX), which is the embed-
ded alternative we chose to investigate in this project. Exploring the scores of the
benchmark (where higher is better), we notice that the high-end NVIDIA Tegras,
which were released in 2014 [16], are close to the performance levels of state-of-the-
art Personal Computers (PC), consequently today’s versions should be even faster.
Thus, the performance gains from testing our application on our PCs can be consid-
ered relevant to what can be expected from platforms like the future NVIDIA ECUs.

5
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1.4 Project Goal

The goal of the project is to develop a platform where AUTOSAR and Linux can
coexist. The results would be a Linux C-based platform, which will be capable of
running an AUTOSAR application on top of a Linux OS environment, along with
an evaluation report comparing the evaluation platform with the performance of a
present-day ECU board. This goal comprises a checklist of attributes for our imple-
mentation, as described below:

e The Linux platform should be based on the AUTOSAR OS properties, conse-
quently following the OSEK specification [17].

o It should also follow the same scheduling sequence and prioritisation for the
executed tasks, providing the execution framework with the required correct-
ness.

o While following the requirements of AUTOSAR OS, it should simultaneously
exploit all the available built-in Linux capabilities, such as POSIX threads [18],
in order to speed-up the various OS operations.

o The platform must be based on a generic foundation; including all the neces-
sary modules according to the AUTOSAR basic software description, However,
without the need of additional adaptations for every new MCU that is going
to be used as the new target hardware.

o As mentioned in Section 1.2, the prototype should respond well to real-time
restrictions, fulfilling timing constraints of real-time applications.

« Additionally, the developed platform should operate at an acceptable (or
higher) level when it comes to OS operations completion times relative to
the performance of the target hardware.

o Moreover, we considered that it would be fascinating to use the Yocto Project
[19] and transfer our platform from a standard Linux environment to a native
embedded Linux OS distribution, tailored for the selected evaluation board we
decided to work with, the MinnowBoard MAX [20].

o Finally, it only seems natural to contemplate on the experimental performance
results from executing the same test applications on the native embedded
Linux installation residing on the test board.

1.5 Scope Limitations

In this section we present and then elaborate on the limitations enforced by the
scope of our thesis.

Since a variety of AUTOSAR applications are already available from the company,
we will not develop any new test application from scratch in order to test the system.

As already discussed, we will port the AUTOSAR OS functionality and thus work

6
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with a specific application implemented within ARCCORE, that tests all the fun-
damental OS operations, called OsSimple. As stated in Section 1.2, the AUTOSAR
BSWM is too complex to port as a whole and also redundant in relation to the scope
of our thesis project. Hence, we will not interface any other part of the AUTOSAR
Basic Software to our platform but the OS module. To that end, we focus on the
OSEK specifications, since studying the massive AUTOSAR documentation in de-
tail does not serve the purposes of our thesis.

As discussed in Section 1.3, we will not test the platform on a state-of-the-art MCU
intended for the purpose of housing adaptive AUTOSAR. Since these MCUs are
approaching the performance of high-end laptops we deem it sufficient enough to
test on our laptops.

Lastly, we will not be looking into implementing the RT concept on the Linux
distribution intended for our host machines or for the MinnowBoard MAX, since the
PREEMPT RT mainline Linux kernel package is available to patch the standard
Linux kernels and is also included in recent Yocto Project releases [19].
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Theory

This chapter goes in-depth in different areas relevant to this Master’s thesis. Its
purpose is to set the theoretical foundation for the work that was done during the
project and thoroughly explore related fundamentals in order to give a more com-
plete picture of the subjects touched upon in this report.

We set off giving a general description about operating systems, illustrating some
related categories to our project, such as embedded OSs. Next we discuss process-
and threads scheduling followed by the AUTOSAR OS functionality, in the concept
of presenting the OSEK standard specifications. Extending our description of the
AUTOSAR standards, we elaborate on the Adaptive AUTOSAR concept and its
fundamentals, wrapping up the chapter with a thorough presentation of the Yocto
Project and its comprising elements.

2.1 Operating Systems

An operating system is a collection of software components which are designed to
manage a computer’s hardware. Probably the most well-known OSs historically
have been Microsoft Windows, UNIX-based (Uniplexed Information and Comput-
ing Service) distributions (e.g. Linux Ubuntu) and Macintosh OS X. These three
alternatives have been the basis of the majority of personal computers and handheld
devices ever used, therefore users interact with at least one of them on a daily basis.

Figure 2.1 shows an architecture of the general idea behind an OS. With OSEK
being no exception, it inherits this concept as its basis, as we will discuss later on
in this chapter. The illustrated architecture contains an application layer compris-
ing service programs, which control alarms and tasks, shared libraries and a kernel.
The kernel is the part of the OS that handles the resource allocation (e.g. hardware
access) for a computer system. As will be discussed in the upcoming section, the
kernel is responsible for restricting different user and system applications from ac-
cessing restricted memory areas [21].
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system calls applications
.

. . . ;
; libraries E
kernel

interrupts hardware

Figure 2.1: Generic OS software architecture layout, the kernel handles and sched-
ules system calls from applications as well as interrupts from the hardware

2.1.1 Processes and Threads

Processes can be described with multiple definitions, all of which converge to the
same general idea: a process is a program ready to be run on a Central Processing
Unit (CPU) and consists of multiple elements, two of which are absolutely vital;
the source code and a set of data that is required for the execution. Besides these
two characteristics, a process includes some extra components that facilitate the
scheduling and execution of this process, such as:

o A process identifier; the identity number of each process

o A state; as we will see later in Section 2.1.4, depending on the scheduling
policy there might be from two to even more than five possible process states

o A priority; relative priority to the rest of the processes

o Memory pointers; both towards the source code and to the required set of data

These components, among others, comprise the data set that a process holds at
its process control block [22]. The process control block is created and managed by
the OS. It provides the ability to preemptively interrupt processes while executing
and later resume them with no evident sign of the suspension. This concept is also
known as context or process switch [23].

In a more coarse description, the program code, the necessary data structures, the
process stack and the process control block compose the process image, the entity
that contains all the necessary elements for the process to be runnable on the CPU

22].

The most important aspect of using processes, is to provide the OS with adequate
control over concurrent allocation of hardware resource among programs executing
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on the CPU. In order to keep track of all the logistics, the OS creates a process table
where it stashes all the vital information for each of the executing (or suspended)
processes (e.g. process 1D, priority etc.) [22]. However, this need for transparency
and concurrency takes its toll on the performance of the system; the creation of
a new process translates into creating a new memory space for it and copying the
program code to that segment and allocating a temporary data stack. Moreover, a
switch between processes on the CPU is quite time-consuming. Besides resetting the
CPU registers, program and stack pointers, the OS usually requires cache entries
as well as the translation lookaside buffer to be invalidated [23]. To make matters
worse, modern CPUs can support the execution of more processes than they can fit
in the main memory, hence this might lead to transferring a process image from the
hard disk drive to the main memory.

In an attempt to ameliorate this situation, OSs started supporting multithreading.
This comprises the concept of threads and the ability of the OS to schedule and exe-
cute, on the CPU, multiple concurrent execution paths enclosed by a single process.
There can be many different alternatives on how various processes are scheduled
along with their multiple instruction traces (i.e. threads).

In order to distinguish a process from its included threads, one can point out the
two fundamental characteristics of a traditional process which are [22]:

o Resource allocation unit and process image owner: a process holds the virtual
address space that includes the process image and occasionally acts as the
owner of hardware resources such as Input/Output (I/O) devices and the
main memory.

o Execution and scheduling element: A specified execution flow is followed, pos-
sibly through multiple programs. The executed process might intersperse with
other processes as well. For that reason, processes keep a scheduling priority
and an execution state within the scheduled entity.

In this context, the process can be treated as the container entity, the framework
which provides all the necessary tools and data for the threads to execute. Threads
on the other hand, are interchanged between different scheduling states, receive
CPU time according to their relative priority and can follow different execution
paths within the same process source code.

It is worth taking into consideration that in case that the CPU is single core, it would
naturally not support parallel execution, but it may still support multithreading.
This is achieved by using a sophisticated scheduling algorithm, that allocates re-
sources to the most acute activity, masquerading the execution so that it appears to
be in parallel since all threads are continuously progressing although not atomically.

11
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Figure 2.2: In this figure we provide a visualisation of the differences between
the concepts of processes and threads. As it can be seen, a process (white elliptic
shapes) can include one or more threads, while there can exist one or more processes
executing over a single CPU core.

2.1.2 POSIX

As presented in Section 2.1.1, the concept of threading existed in advance of the
POSIX standardisation. For more than a decade, there have existed multiple thread
interfaces, not always compatible with each other and hence with limited portability
between operating systems. In 1995, the Institute of Electrical and Electronics Engi-
neers (IEEE) released a C-based thread standardisation, the IEEE 1003.1c standard
also known as POSIX, in an attempt to tackle this issue and increase the portability
of multi-threaded programs [18].

2.1.2.1 Thread Management with POSIX Standard

After multiple revisions, the POSIX standard currently includes more than 100
POSIX threads (or Pthreads) function calls, that can be divided into the following
categories [24]:
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o Thread manipulation: operations forced on threads (e.g. creation, termination
etc.) or operations that set specific attributes to threads,

o Mutexes: functions that apply mutual exclusion (Section 2.1.3) on the thread
execution by creating / destroying and locking / unlocking mutexes,

o Other synchronization structures: functions that manipulate locks and barriers
and

o Condition variables: calls that handle inter-thread communication between
threads that are controlled by the same mutex. Comprises creation, waiting
and signaling upon pre-specified values of a condition variable.

All POSIX-based threads have specific properties which are stored in the form of
attributes within standardised data structures:

o typedef unsigned long int pthread_t: the individual thread identifier

o typedef struct pthread__attr _t: the attributes object that includes all the vital
information for the creation of a thread (e.g. the stack size, stack address and
the scheduling priority of the thread to be created).

Many of the provided function calls are falling outside the scope of our thesis project,
since they provide very sophisticated operations. Nevertheless, we present some of
the key parts of the Pthreads API that were utilised in our thesis project (also shown
in Table 2.1).

The beginning of the life of a new thread is signaled with pthread create. The
formal syntax for this call is [25]:

int pthread create (pthread_t *thread, const pthread attr_t *attr,
void * (* start_routine) (void *), void *arg);

The new thread starts executing the defined start_routine. It can be terminated
by either calling pthread_exit, returning from the start_routine or getting can-
celed by calling pthread_cancel. The argument attr points to the specific set of
attributes comprising the structure described previously. This attributes object is
initialized using the pthread attr_init function. Upon successful creation, the
pthread_create function stores the identifier of the newly-created thread in the
pointed by *thread memory space. It should be noted that after the thread is
created we are allowed to call pthread_attr_destroy and discard the thread at-
tributes object.

In the case that the pthread_exit function is called, the calling thread is ini-
tialising all the cleanup handlers along with any destructor functions that handle
thread-specific data [25]. According to its standard syntax:

void pthread_exit(void *retval);

if the terminating thread is joinable, an other thread included in the same process
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can utilise the retval and call:
pthread_join(pthread_t thread, void **retval).

As shown in Figure 2.3, a thread that calls pthread_join waits for the thread
specified in thread to terminate via calling pthread_exit. In case the thread has
already terminated, pthread_join returns immediately.

There are different ways described within POSIX to "kill" a thread. The two basic
alternatives are pthread_exit and pthread_cancel. While the functions that we
described for the former comprise pthread cancel as well, the main distinction
between the two calls lies in the fact that the individual steps that lead up to the
actual thread termination happen asynchronously in the pthread_cancel call [25].
In spite the fact that this might seem like a minor difference, as we will showcase in
Chapter 3, the use of one or the other can substantially affect the performance of
an application that invokes multiple task activation and termination operations.

I_Pa rent
pthread_create() > pthread_join() —
I_Thread N
LTE?S: d Do work > pthread_exit()

Figure 2.3: The parent thread creates a child thread with the help of
pthread_create then calls pthread_join, thereby waiting until the child thread
has done its work and called for a thread cancellation via pthread_exit

2.1.2.2 Pthreads and Synchronisation

Besides thread management, POSIX provides a plethora of synchronisation-related
standard functions and structures in order to empower the parallel execution with
mutual exclusion (Section 2.1.3).

2.1.3 Process Interaction

As illustrated in Figure 2.2, on a current multi-core CPU, more than one process can
execute in parallel. Under multiple scenarios, there might exist the need of inter-
process communication, two or more processes may require to exchange produced
results or share memory locations’ content. However, as with any other newly in-
troduced concept, there have been some notable issues in achieving safe and correct
interaction between separate processes [26]:

o What would be a convenient way to establish effective communication between
processes?

14
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Table 2.1: Coarse description of the Pthread function calls that are related to
thread management, based on the Linuz Manual Pages [25]. The full list of POSIX
functions can be found in Appendix ...

Function Call Description

pthread_create Creates a new thread within the calling process; the new
thread starts executing from a defined starting routine

pthread_exit Terminates the calling thread and returns a value in case
another thread wants to join with the thread under termi-
nation

pthread_cancel Sends a request to cancel the specified thread; when and

whether the specified thread will react to this request can-
not be pre-determined

pthread_join Waits for the specified (joinable) thread to terminate; if
the thread has already terminated, the pthread_join call
returns immediately

pthread_yield The calling thread yields the processor in order to allow
another ready thread run
pthread _attr_init Initializes the thread attributes object specified as a pa-

rameter with default attribute values

pthread_attr_destroy | The thread attributes object is destroyed, when no longer
required. The thread created using these attributes is not
affected by the destruction of the object

e How could we ensure that each process will respect other processes that at-
tempt to access the same resource (the concept of critical regions)?

o How could we enforce the desired sequence of execution, by synchronising the
processes that need to interact with each other?

Even though our project is focused on the thread-level, these concerns affect this type
of scheduling as well, since the threads are the scheduled entities of the processes,
as described thoroughly in Section 2.1.1. These three questions posed above, are
the root causes for some traditional issues related to process communication, such
as the concept of race conditions.

2.1.3.1 Race Conditions and Critical Regions

In case two or more processes perform closely related functions, there might be the
need to share data segments on which all of them are able to both perform read and
write operations. In a case like that, all the prerequisites exist for race conditions
to occur. The outcome of this situations is non-deterministic and lies solely on the
execution scenario that takes place every time that the race conditions are repeated:
depending on which of the processes runs first the produced result will vary [26].

Evidently, the requirement for a viable solution that would allow processes (and
consequently threads) to access atomically shared resources (e.g. memory regions)
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Table 2.2: Coarse description of the Pthread function calls that are related to
thread synchronisation, based on [25]

Function Call

Description

pthread_mutex_init

Initialises the mutex using the specified attributes

pthread_mutex_destroy

Destroys the mutex object

pthread_mutex_lock

The specified mutex object shall lock upon calling; if
the mutex is already locked, the thread calling this call
will block

pthread_mutex_unlock

Releases the specified mutex object

pthread_cond_init

Initialises the condition variable with pre-specified at-
tributes

pthread_cond_destroy

Destroys the given condition variable

pthread_cond_wait

Blocks on the specified condition variable

pthread_cond_signal

In case any threads are blocked on the specified con-
dition variable, unblocks at least one of the blocked
threads

pthread_barrier_init

Initialises a barrier object based on the pre-specified
attributes

pthread_barrier_destroy

Destroys a barrier attributes object

pthread_barrier_wait

Synchronises participating threads at the specified bar-
rier; the calling thread shall block until the required
number of threads have called the wait function spec-
ifying this barrier

is crucial to allow uncomplicated inter-process communication.

This requirement led to the introduction of two key concepts in the existing com-
munication schemes between processes (and between threads), mutual exclusion and
critical regions. Mutual exclusion describes the ability to exclude all but one process
from accessing and manipulating shared data segments, which were characterised
as critical sections. However, in order to achieve faultless process communication
based on the critical regions paradigm, the following fundamental conditions have

to stand [26]:

1. No more than one process can be simultaneously present within the same

critical section.

2. There can be no presumptions drawn for the technical specifications of the
CPUs included in the system.

3. A process (or thread in our case) that is not running inside a critical section
is unable to block others.

4. There can be no process starvation under the critical regions scheme (the situ-
ation when a process waits indefinitely to access a region by getting bypassed
constantly by other processes).

Essentially, the mutual exclusion concept is visualised in Figure 2.4. With the help
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of the priorities concept, we can understand the sequence of events:

o Task B is the only ready-to-execute task and thus gets the CPU and starts
running,

o After a short period of time, since no higher prioritised task is ready to execute,
Task B enters a critical region and continues its execution process,

o Task A becomes ready while Task B is still in the critical region and hence it
cannot be preempted, according to Condition 3 and

o finally, Task B exits the critical region and Task A is unblocked and allowed
to enter it.

In the upcoming sections, we will elaborate more on the fundamental concept of
mutual exclusion and all the concepts that were introduced throughout the years,
from the more primitive solutions to the most advanced ones.

A attemptsto A enters
execute, gets blocked critical region

High

priority Task A

D =running
[] =blocked
. = critical region

B starts running

Low
priority Task

B enters done
critical region

time

Figure 2.4: The lower priority task B enters its critical region since no other higher
priority task is ready to execute, the higher priority task A becomes ready but is
blocked from execution because task B is in a critical region. Task B eventually
exits its critical region, letting A into its critical region

2.1.3.2 Busy Waiting in Mutual Exclusion

In this section we will mention and describe briefly all the alternative mutual exclu-
sion methods that invoke busy waiting, the situation when the processes that require
to access a critical region and fail to do so, do not get suspended but keep executing
a condition until they get clearance to enter the region.

The first example of this category is the method that suggests the disabling of in-
terrupts. The idea behind this straightforward method is that once the process gets
access to the critical region, it switches off all the interrupts and only re-enables
them the moment before it leaves the critical region. This is a raw way to deny the
CPU from the ability to re-schedule and possibly interrupt the current process from
finishing executing the specific critical section. Nevertheless, despite being effective
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it is an ill-advised strategy to allow user processes to control the functionality of
system interrupts. Firstly, this strategy can only be implemented within a single-
core system: suspending interrupts only affect the specific core that the process is
executed on, while the rest of the cores can still access the same critical section.
Moreover, the kernel itself might attempt to disable the interrupts for a few instruc-
tions, in order to facilitate some of its operations and thus having a user process
messing with the kernel’s work might lead to precarious situations [26]. According
to the aforementioned, this approach can be considered outdated and dangerous for
the flawless function of the OS.

There are many more attempts that partially fulfil the four fundamental conditions
of mutual exclusion, with some being more successful and sound. However, all of
them include the concept of busy waiting and thus could not be considered strong
candidates as the go-to solution. One of the most popular approaches is the use of
lock variables. Essentially, a shared variable would be initialised as 0 and whenever
a process attempted to enter a critical section it had to go through this lock variable:
if it was 0, it would update it to 1 and enter the region. In case the lock was already
1, the process waits until the variable is turned back to 0. The basic idea is solid,
however we would need atomic access to the lock variable as well, preventing the
variable to be changed simultaneously by two or more processes. Nonetheless, this
approach along with the strict alternation, the Test-and-Set Lock and a few more
suggestions constitute the preludes of the semaphores and monitors solutions [26].

2.1.3.3 Sleep and Wakeup Approaches

Some of the methods that include busy waiting are correct, nevertheless they may
introduce unexpected phenomena, such as priority inversion: let us consider the
case when we have two processes, H with a higher priority than L which at a point
in time is in the critical region. Now, H becomes ready and since it cannot enter the
critical section it starts busy waiting. Consequently, low priority process L does not
leave the critical region as it can never be scheduled while H is already executing.
The result of this is that H indefinitely waits, and starves waiting for access to the
critical region which is held by a lower-priority process and this is where the name
of the term originates from [26].

Let us now present the most notable methods that are based on blocking instead
of busy waiting when not allowed to access a critical section, with the headline ap-
proach being the semaphores paradigm.

The introduction of the concept itself came in 1965 from E.W. Dijkstra, a Dutch
computer scientist who proposed the use of a counter that would keep track of the
number of wake-ups. This variable was named semaphore and it would indicate
whether there were no wake-ups pending (equal to 0) or one or more wake-ups to
be expected, if the value of the semaphore was greater than zero. Dijkstra also
equipped his structure with two explicit operations that are equivalent to the sleep
and wake-up, namely the down and up functions.
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The down operation examines whether the semaphore value is greater than zero, in
which case it decrements it and continues executing. In the case that the semaphore
value is equal to zero, the calling process is suspended (put to sleep), with the down
operation still pending. On the other hand, the up operation, upon call, increments
the value of the semaphore and in case that there is one or more blocked processes,
the system selects one (the method is system-dependent) which proceeds with per-
forming the previously blocked down operation and continue executing [26].

The major difference from all the previous approaches described in Section 2.1.3.2 is
that both the down and up operations and consequently all their comprising steps,
are executed atomically, meaning that no other process can interleave until all the
individual actions are performed. This is the fundamental upgrade to synchronisa-
tion mechanisms that solved the race conditions situations previously explained.

A subcategory of semaphores is the binary semaphores, also known as mutezes.
This structure only requires 1 bit of representation, since its state can only be either
locked or unlocked (0 or 1). Equivalent to the down and up operations, in the case
of a mutex we have the lock and wunlock functions that perform almost identical
steps to the operations included in semaphore; the only difference is that the control
performed by the lock function is now limited to see whether the mutex is locked,
compared to the case when the semaphore’s value is greater than 1 and hence could
possibly allow more than one process to enter the critical region (Figure 2.5). An
advantage of mutexes over semaphores is that thanks to their simplicity they can
be implemented on the user-level, however this is redundant since all current OSs
provide mutex support (see Section 2.1.2 for more information on the synchronisa-
tion schemes provided in UNIX systems).

-g I blocked unblocked,
Locks Plocke lock grante Accessing Unlocks
(] —_ 2 —> RN S
_E @ Mutex M Shared Resource Mutex M
|
|
|
-c I
© .
Locks Accessing Unlocks
v —> —> T
= < Mutex M Shared Resource Mutex M
'_ L

Figure 2.5: Illustration on how the mutexes enforce mutual exclusion between two
threads that share one critical region. In relation to the busy-waiting-based mech-
anisms, now Thread B blocks while waiting for Thread A to unlock the semaphore,
instead of occupying the CPU.

Despite the huge success that semaphores (and consequently mutexes) brought to
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the table, there were still issues that could occur under specific situations that would
jeopardise the correct synchronisation between threads, for example deadlocks. As
shown in Figure 2.6, there can be a situation under which the usage of mutexes can
fail:

Task A locks the mutex for Resource 1

e Tusk B locks in turn the mutex for Resource 2

o Tuask A attempts to lock the mutex for Resource 2 but fails, since it is already
locked by Task B

o Task B now tries to lock the mutex for Resource 1 but also unsuccessfully as
it is locked by Task A

Neither of the tasks are able to continue their execution, caused by both tasks re-
questing a resource that is occupied by the other. This is a representative example
on how a system can reach the situation that is known as deadlock [27].

It is evident from the previous ex-
ample that the use of semaphores
must be proven to function cor-
rectly before implemented, otherwise
it could bring the system to un-
charted waters. These situations
can cause issues to modern OSs and
became the motivation behind the
need for higher-level synchronisation
schemes. This is where structures
like monitors and barriers find good
use.

Monitors is a mean of synchronisation Figure 2.6: The numbers beside the
one level above semaphores, a set of tasksindicate the order in which they exe-
procedures, data structures and counter cute, resulting in a deadlock because both
variables comprise a monitor [27]. Pro- tasks occupy the resource the other is re-
cesses can call the procedures included questing

in a monitor at any moment in time,

however they have no control over the data structures of the monitor. Allowing
only one process to execute any of the procedures in a monitor, it is now the com-
piler’s work to ensure mutual exclusion [26]. The programmer is not required to be
aware of the way the compiler achieves it, however we should know how a procedure
included in a monitor can communicate and inform of its status to the rest of the
procedures.

This is achieved by including condition variables in a monitor; their purpose is to
conceptualise the block and unblock paradigm used in the semaphores method by
providing a pair of calls, wait and signal correspondingly. The wait call provides the
necessary blocking point for the calling processes that are not yet allowed to execute
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one of the monitor’s procedures, while the signal call is there to wake up the blocked
process once the monitor procedure executed has been freed. A coarse description
of what could be considered as a monitor in pseudo-code is illustrated below, the
reason why we describe the monitor using pseudo-code is that it is language-related
and the corresponding compiler is responsible for ensuring the mutual exclusion.

monitor example
integer i,
condition c;

procedure dol;
end;
procedure do2;

end;
end monitor;
Monitors might be of higher level than semaphores and take care of the mutual
exclusion, however there was still a need for something more applicable to dis-
tributed systems that would also provide the ability to exchange messages be-
tween the CPUs. This was addressed by message passing mechanisms, such as
the pthread_cond_wait and pthread_cond_signal as referred in Table 2.2.

The general scheme includes a pair of operations: send(destination, &message);
and receive(source, &message); where the send provides the destination with a
message, while receive expects a message from source (or anyone) and until it re-
ceives it blocks until any message or a specific one arrives. The advantage of this
approach is that the primitive operations can be modelled as system calls and not
be language-dependent. Despite that, there are also disadvantages related to this
method, e.g. that network issues can cause a message to get lost, or the problem
of identification and how the receiver can verify that the message is sent by the in-
tended source. From another angle, the performance is also degrading when utilising
message passing, especially through different CPUs or entire systems [26]. It is worth
pointing out that the issue of performance forced us to explore more beneficial al-
ternatives in handling events in our porting (more details are provided in Chapter 3).

The last and highest levelled approach that we are discussing here is the process of
barriers. It is intended for synchronising more than two threads at a time. Barriers
are in their essence roadblocks where the execution stops until all threads reach that
certain point in the execution flow. The barrier set at any point needs to define the
number of threads required to reach it before allowing the execution to proceed.
When all threads have arrived, they start executing again at the same time. As a
concept, it can be visualised with two phases, where the first phase is the arrival
phase and the second the departure phase. In the arrival phase the threads are
blocked until a certain amount reaches the tollgate. Once all threads have arrived,
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the departure phase begins; releasing the threads and allow them to continue their
execution [27].

All these mechanisms and the different alternatives presented showcase the impor-
tance of realising mutual exclusion in parallel computing for one main reason, fast
and fair scheduling among interacting processes.

2.1.4 Scheduling

Any computer with more than one process running requires scheduling, since the
included threads are competing for the CPU. The decision to be made comes at the
points when more than one thread are ready to execute. This is where the scheduler
intervenes and devises the decision on which thread will receive CPU time, based
on specific criteria and a scheduling policy algorithm.

2.1.4.1 Process Behaviour and Scheduling Points

In order to understand the needs of each process we first have to categorise the
processes according to the nature of the work they carry out. In that sense, there
can be two main groups of processes [26]:

o Compute-bound: the process type which involves long and usual CPU bursts
while they do not involve much I/O interaction and

o 1/0O-bound: vice versa, this type of processes requires short periods of time on
the CPU but demands frequent I/O interaction.

This organisation among processes forces a different approach from the side of the
scheduler, depending on their type. It is worth noting that as CPUs get faster and
with higher throughput, the trend for general-purpose computing processes is to
become I/O-bound, since the hard disk drives have not achieved equivalent speed
improvements to the CPUs.

Another important aspect of scheduling is the selection of suitable re-scheduling
points, namely the moments when the scheduler is required to reach a decision on
which thread should execute next. There are various possible points within an exe-
cution flow when the scheduler might require to decide on that, with a few key ones
being;:

e A new process is created — who should get the CPU, the parent or the child
process?

e A process exits

o A process blocks while performing 1/0

These points of re-scheduling can differ between scheduler implementations, mainly

due to whether the scheduler is categorised as preemptive or non-preemptive. The
essential difference between these two types is whether the scheduler is allowed to
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interrupt a running process and allow another process to get the CPU instead, as
it can happen with preemptive scheduling. On the other hand, non-preemptive
schedulers cannot stop a process while running; in order to get the CPU back, the
process itself has to yield it voluntarily in case of blocking for I/O or upon exit. As
illustrated in Figures 2.7 and 2.8, the difference between the two approaches can
be crucial. As it will be illustrated later on, depending on the type of system that
the scheduler is destined for, there exist different requirements on the side of the
scheduler.

(Start Time, Period, Execution Time, Deadline)

| Prio1 | T, (20, 60, 15, 60)]

[ Prio2 | T, (15, 60, 10, 40) |

| Prio3 T, (0,60, 25, 50) |
Priority

A Task 2 missed

deadline

Figure 2.7: Non-Preemptive Scheduling resulting into a missed deadline for a Task
2, Reproduced from [28]

2.1.4.2 Scheduling Goals

Evidently, systems with different purposes have different goals in terms of their
scheduling policies. A coarse classification of systems will support the process of
understanding the differences between the scheduling algorithms adopted by the
different system categories [26]:

e Batch Systems: Usually implemented as private servers of major corporations
which most of the time perform non-interactive calculations and hence non-
preemptive or preemptive algorithms with long CPU time slots are acceptable
approaches for these types of systems. The scheduling goals of such systems
are:

— Maximum throughput (completed tasks per hour),
— Minimum time between request and termination for each task and
— High CPU utilisation ratings.

o Interactive Systems: The traditional personal computers, along with public
servers whose users require interaction quite frequently. Here preemption is
essential, a bug or an unexpected behaviour could deny the CPU from the rest
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(Start Time, Period, Execution Time, Deadline)

| Prio1 | T, (20, 60, 15, 60) |
| Prio2 | T, (15, 60, 10,40) |
| Prio3 T, (0, 60, 25, 50) |

Priority
A

Figure 2.8: Preemptive Scheduling, which allows higher priority tasks to execute
whenever they are ready, Reproduced from [28]

of the processes that require to execute, leading up to a serious user experience
degradation. For interactive systems, a standard set of scheduling goals is:

— Low response times while simultaneously

— Meet user’s expectations.

o Real-Time Systems: As we will elaborate quite extensively in Section 2.2.3,
RT systems almost always embed preemption in their scheduler, nevertheless
there can be cases when preemption is not required since all the applications
are developed knowing that they are RT-intended and hence occupy the CPU
for small periods of time and subsequently yield the CPU. In the case of RT-
systems as we will illustrate in more details later on, the scheduling goals are
the following:

— Essentially achieving their main goal, meeting the hard deadlines, or in
case of soft-RT systems
— avoid user experience decay.

Along these lines, we will give a broad image of which are the most well-known
scheduling policies, coupled with some representing examples of traditional algo-
rithms.

2.1.4.3 Popular Scheduling Policies

According to the scheduling targets for each of the systems categories, an illustration
of the most significant scheduling algorithms will follow, in order to provide more
practical examples of the strategies that various system types employ in order to
achieve their scheduling goals.

Examining policies that comply to the requirements of batch systems, we encounter
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(Amival Time, Quantum, Burst Time)

[ Prio1 [ P, (223)]
| Prio2 P, (025
| Prio3 | P, (322)]

Priority
A

Figure 2.9: FCFS neglects priorities of the tasks and executes them in sequence
of their arrival times

some of the basic non-preemptive scheduling algorithms, such as the First-Come
First-Served (FCFS), seen in Figure 2.9, and the Shortest Job First (SJF), seen in
Figure 2.10, algorithms. The former is probably the most straightforward approach
when it comes to scheduling processes, since it picks the process that was at the
ready state first, ignoring any other factors. The nature of FCFS allows it to be
quite easy to implement but also poor in terms of performance, since an 1/O-bound
process would occupy the CPU while waiting for an I/O operation to complete in-
stead of yielding and allowing others to execute.

When it comes to SJF, it infuses another aspect of fairness by calculating the amount
of time that a process requires the CPU and schedule the ones that need the CPU for
the smallest time period. However, it could cause starvation for long compute-bound
processes which will get constantly bypassed by shorter processes. A preemptive ver-
sion of the SJF algorithm is the Shortest Remaining Time First, which essentially
calculates the time that every ready process has left to execute and picks the one
with the least required [22].

Moving on to interactive systems, we also switch between requirements going into
policies with enhanced fairness and more responsive-oriented. The first algorithm
that comes in mind is shown in Figure 2.11, the Round-Robin (RR) algorithm. The
concept behind this very wide-spread algorithm is that each process acquires a CPU
time quantum in order to execute its code. After this quantum is spent and the
process still has not finished executing, it acquires another quantum and gets in line
behind the processes that have not executed their first quantum yet. The design of
the algorithm is very simple, all the CPU needs to keep track of is the set of pro-
cesses that are in ready state at each moment. Nonetheless, a really crucial aspect
in order to achieve decent performance out of Round-Robin is the selection of the
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Figure 2.10: SJF looks at the burst time of the task and schedules them so that
the shortest tasks are executed with higher priority

size for the quantum: a really small quantum would result in high context-switching
overhead, while going with a longer quantum would eliminate the preemption aspect
of the policy, leading to context-switching again, after the running process finishes
executing and blocks [26].

All the aforementioned policies lack one vital part of practical scheduling, the con-
cept of priorities. As illustrated in Figure 2.8, priorities allow the scheduler to rank
the processes in order of importance; even in single-user systems there can be dif-
ferences in the time-criticality of the processes and their significance in order to
maintain high levels of user experience.

The idea of priorities can be combined with other existing scheduling policies and
abstractions; it can also exist in the shape of a single priorities queue or multiple
queues, one queue for each level of priorities whose items are scheduled with a FCF'S,
or any other approach [22]. Many algorithms keep the priorities in mind without
making them the focal point of the implementation, e.g. the Lottery Scheduling
approach. This scheme comprises a simple lottery tickets paradigm: each ready
process receives lottery tickets for a system resource (e.g. the CPU) and at any
re-scheduling point a lottery ticket is selected randomly. The owner of this ticket is
allowed to use the resource, usually for a predefined quantum. In order to infuse the
concept of priorities, the scheduler can provide the most important processes with
more tickets and thus enhance their chances to acquire the system resource sooner.
In the long run, if a process holds 20 out of 100 total tickets it will be able to run
for 20% of the total CPU time [26].

Taking everything that was mentioned in this section into consideration, one can
reach the conclusion that scheduling policies can be very diversifying based on the
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Figure 2.11: This algorithm, RR, makes sure that all tasks only execute a certain
amount of time (the quantum) each time, going round the task ready-list

system needs and the processes profiling. Even implementations with the same basis
can diverge at an extensive degree due to different decisions made on the details of
the implemented policy.

2.2 Embedded Systems

Thanks to their immense success, embedded systems are incorporated in almost
every single aspect of our every day lives. From the smart TVs in our living room,
the espresso machine and the modern oven in the kitchen, to the braking systems
of the cars we are driving and the traffic lights that control the vehicle flow in our
streets. We will provide a solid definition later on in this chapter, along with some
historic background on the origins of these types of systems and then wrap up this
section with delving deeper into a major subcategory of embedded systems, the
real-time systems and the OSs functioning on top of them.

2.2.1 Definition

The concept of an embedded system can be explained as a subsystem of a device
or machine, which is more sophisticated than the system itself. Many supportive
examples of this definition can be provided, especially from the world of automo-
tive industry. For instance, the system that controls the windshield wipers on a
vehicle is an embedded system and is obviously way more sophisticated than the
mechanical parts —the wipers and the motors that perform the movement. Another
example would be the air-conditioning system on a vehicle; the included embedded
system is controlling multiple actuators and sensors and needless to say that it is
more complex and advanced than the other comprising parts.
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Additional definitions from numerous bibliography sources describe embedded sys-
tems as electronic systems that are specifically designed to execute a discrete func-
tion as a part of a larger system (not necessarily an electronic system) [21, 28]. In
general, embedded systems deviate from the general-purpose computer in two fun-
damental ways:

o A general-purpose computer does not serve a predefined and rather specific
functionality as an embedded system does. Thus the general-purpose machines
require versatility when it comes to achieved performance in various use cases
(e.g. graphical operations, high-resolution arithmetic computations and in-
tensive memory accessing), in contrast to embedded devices that are designed
and built to serve a narrow functionality scope.

» Conventionally, embedded systems were built simultaneously with the target
software, a process that is known as hardware-software co-design [28]. How-
ever, recently there has been a shift in this habit, since concurrent embedded
hardware platforms are more and more designed and implemented using the
general-purpose computer paradigm: the hardware is independently developed
within a predefined and standardised framework, in order for third-party em-
bedded software developers to be able to create embedded applications or em-
bedded OSs without having to collaborate closely with the hardware provider.

2.2.2 Historical Motivation

The beginning of the embedded systems era dates back to the early 1970s and coin-
cides with the launch of the first ever microprocessor from Intel, the 4004 [29]. This
particular microprocessor was used as the chipset that would control a series of new
calculators that Busicom, a Japanese company, was designing. Instead of creating a
bundle of different customised circuits for each of the models, Intel suggested the use
of the 4004 chipset and that a set of instructions would give the different calculators
the ability to perform various operations.

The imminent success of the microprocessor as a concept is known and well - doc-
umented. However, the silent and constant takeover of the computer world by the
embedded systems that has been going on for almost three decades is worth men-
tioning. Early applications suitable for embedded devices include aircraft control
systems, unmanned space shuttles and the birth of ECUs as elaborated in Chapter 1.

Since then, electronic devices with embedded systems have conquered different as-
pects of our lives, from medical and military operations to almost any everyday
activity within every household in the modern world: from a dishwasher to cutting-
edge technology products, such as smart TVs or gaming consoles.

The reasons behind the massive success of embedded systems and the shift towards
them orbit around the basic characteristic that we presented already, the fact that

28



2. Theory

embedded systems are designed to perform a specific operation with usually limited
CPU performance, memory and power needs. On the other hand, general-purpose
computer systems have to provide adequate performance on all levels (CPU, Graph-
ics Processing Unit (GPU), memory speed and capacity to name a few) and in a way
predict the demand and the workload that the end-user will exercise on the system.
This process results in extra overhead in effort, energy consumption and eventually
design and production costs, whereas when it comes to an embedded system it is
easier to measure and determine the required specifications, in prior, for the target
hardware platform.

The resulting assumption is that the embedded systems reformed the way electronic
devices are used in everyday situations and due to their low complexity and pro-
duction cost it will continue to revolutionise aspects of our lives. A solid argument
that backs this expectation is the fact that about 98% of microprocessors have been
going into embedded systems, whereas less than 2% of microprocessors are used in
computers [30] and this does not seem like it would change anywhere in the near
future.

2.2.3 Real-Time Systems

One of the most significant embedded systems subcategories is real-time embedded
systems, Figure 2.12 shows a visual classification of this. The major difference from
traditional embedded systems is the concept of deadlines, runtime limits that de-
termine whether the application run on the real-time-capable system is executed
correctly or not.

Real-Time Systems

The defining point of an RT sys-

tem is time criticality.  This refers sof e
to a situation when meeting a dead- '
line for a scheduled task defines Real-Time

) Embedded Systems
whether the system functions prop-

erly or not. Depending on the na-
ture on the system, the consequences Embedded Systems
of said situation may vary from pro-
ducing erroneous results to causing

bodily harm [31, 32]. Systems that Figure 2.12: A representation of how
can be categorised within the for- gpe can classify different types systems,
mer situation are called soft RT sys- there are embedded systems, RT systems
tems, while the latter hard RT sys- 41q the interweaving version: RT embed-
tems. ded systems, Reproduced from [28]

An RT system is defined as soft by sim-

ply including a deadline. If that deadline is missed, the service quality could be
reduced but it would not be considered fatal to the system’s operation. An example
of a soft RT requirement would be keystrokes on a keyboard or playing an audio file.
Humans would not notice display delays or hear the delay in a song if it is below a
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couple of tens of milliseconds. Missing a soft deadline can result in degradation of
the provided service, if affected at all [32].

Hard RT systems on the other hand, are defined by what happens if a deadline is
missed. If a deadline miss occurs the results are regarded as catastrophic for the
system, since the requirements are defined as hard [32]. Most systems regarding
personal safety are categorised as hard RT systems, e.g. the inputs of a pilot to an
aircraft, a system controlling fuel injection for a vehicle or the joystick that leads a
surgical laser.

2.2.4 Real-Time Scheduling

Task priority assignment can be grouped into two main classes: fixed priority and
variable priority. Fixed priority is very much what it sounds like, task priorities
never change during the system execution and are set at system build time. As will
be presented later in this chapter, the AUTOSAR OS which is based on the OSEK
specifications is a fixed priority OS. Whereas variable priority allows the priorities to
change dynamically during system execution to improve the system’s responsiveness
or performance [31]. The two most adopted policies for fixed and variable priority
will be presented below to give some examples to what priority scheduling can look
like. These are the Rate Monotonic, which can be seen in Figure 2.13, and the
Earliest Deadline First for fixed priority and variable priority respectively.

(Period, Execution Time)

| [T, (24,8)

| | T, (36,12)

L% @9

Priority
A

Figure 2.13: Scheduling based on task period with the lowest period has the
highest priority, Reproduced from [28]

The Rate Monotonic policy bases the priority scheduling on tasks’ periods. The
shorter the period, the higher the priority; disregarding the computational time
of the task [31]. Naturally, Rate Monotonic scheduling makes sense; a task with
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shorter period has less time for computation and therefore needs to have higher pri-
ority, whereas the task with a longer period have more time available and therefore
can afford to wait longer. This is also the case, however this report will not dig into
the mathematical proof. For the reader that wants to venture further into details of
this matter can take a look at [31].

Earliest Deadline First is a policy for variable priority. It chooses task priority based
on current deadlines; dynamically checking each task’s absolute deadline and giving
the highest priority to the task with the least amount time left [31].

2.2.5 Embedded Operating Systems

The desktop OSs mentioned in Section 2.1 are not adequate for embedded purposes,
as such systems are in most cases designed to do specific lesser tasks, usually oper-
ating under real-time constraints. However, they are very refined, thus embedded
OSs practically inherit the architecture of a general desktop OS, but are adjusted
to fit a specific application. They therefore require less processing power, smaller
memories, reduced power consumption and most likely also real-time support [21].

As will be described in the next section, Section 2.3, UNIX-based systems come with
specific advantages over other alternatives. In [33] the authors present the reason-
ing behind Linux’s dominance in the field of embedded OSs, formulated into a list
of strong points that are favourable to picking Linux over traditional embedded OSs:

» Reliability and source code quality o Peer Support
o Availability of the source code « Licensing status
o Tools availability e Low Cost

As most of the points are self-explanatory but also since it falls outside the scope of
our project to explore other embedded OS alternatives, we will not elaborate more
on that matter.

2.3 UNIX OS

UNIX (Uniplexed Information and Computing Service) is a class of OSs which pro-
vides a broad hardware compatibility. A small history flashback along with an
outline of the UNIX features and structural foundation will be provided. To wrap
up the section, we will present the concept of POSIX threads and the related back-
ground theory.

2.3.1 History of UNIX

Although the first edition of UNIX was released in 1971, its development roots date
back to 1957, in Bell Labs and UNIX’s forebear BESYS OS. In 1964, a collaboration
between General Electric, MIT and Bell Labs produced a new OS that included some
of the core characteristics of its heir, UNIX, only to be dropped as a project 5 years
later [34]. This paved the way for Ken Thompson, Dennis Ritchie, Douglas Ritchie
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and Douglas Mcllroy to work on UNIX, which appeared as mentioned before in 1971.
UNIX continued to evolve in the upcoming years, leading up to the development of
the C programming language from Dennis Ritchie and the rewriting of the UNIX
OS [35].

2.3.2 Fundamental UNIX Features

Considering that the main focus of our project are embedded automotive systems,
we examine the advantageous features of UNIX from that angle. Since embedded
platforms became more popular, UNIX systems grew into the go-to embedded OS
solution. The most distinctive attributes of the UNIX OS family are the following
[34]:

o Multi-user » Job Control
o Multitasking » Tools and Utilities
« Portability e Security

Even though each of these characteristics are immensely important for the UNIX
popularity, in the perspective that we examine UNIX-based systems we are going
to focus specifically on multitasking, portability and on job control.

The main idea behind multitasking, is that the OS takes advantage of the time that
a running task waits for a resource or performs an I/O operation, to exchange it
with a ready-to-execute task. This context switch between tasks masquerades the
sequential into parallel execution [26]. This property, constitutes UNIX as a very
resource efficient OS when it comes to task scheduling [34].

Portability is another point of advantage for UNIX-based OSs, which has much to do
with the fact that UNIX’s code is written in C programming language and is hence
hardware independent compared to OSs that are coded in Assembly languages [34].
As illustrated in Figure 2.14, the applications are only communicating with the
hardware through the kernel and thus mask any required modifications applied on
the kernel in order to port the UNIX system onto the new hardware platform.

Lastly, when it comes to job control, UNIX provides us with the privilege to totally
control the execution patterns of the tasks at hand. In that sense, UNIX provides
the user with the ability to decide which applications should be executed in the
background and which in the foreground, depending on their I/O dependability or
their priority.

2.3.3 UNIX Structure

As illustrated in Figure 2.14, the fundamental idea behind UNIX-based OSs is that
all the system layers are structured as concentric circles; no system layer can be
bypassed and allow communication between non-adjacent layers. This goes back
to what was mentioned in the previous section and how this concentric structure
conceals the hardware-specific requirements. Without going into great detail, we
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will now introduce the different UNIX components starting with the fundamental
part of any computer system, hardware.

The hardware devices that comprise a computer system diversify. The OS-related
components however are essentially included in one of the following categories:

e CPU: The core component of a computer machine, responsible for all the
/0, logical and arithmetic operations; it coordinates the rest of the hardware
devices, such as memory hierarchy modules.

o Memory: The memory hierarchy devices vary from on-chip registers and cache
to remote storage servers, it is their role to perform the basic memory opera-
tions, storing and making data chunks available to the CPU upon request.

o I/0: The devices that allow user interaction with the rest of the system.

Placed right above the hardware layer,
we examine the kernel. Besides cam-
ouflaging the hardware-specific adapta-
tions, the kernel is responsible to per-
form the fundamental OS operations,
such as task scheduling, and process,
resource and file management.  Pro- Hardware
cess management determines the as-
signment of the system devices, re-
source management defines how the
system resources should be distributed
across the pool of tasks e.g. CPU
time and memory space, while file
management is responsible for different
file-related functions, such as allotting Figure 2.14: Concentric structure of
files to the different permission groups UNIX system layers, the hardware is in
(34]. the centre and is followed by the kernel,
the shell and lastly the applications when
The other adjacent layer to the kernel is moving outward in the layers
the shell. It provides the user and the
kernel with the ability to communicate with each other in an efficient, secure and
user-friendly way through a set of shell commands. There have been several alterna-
tives of UNIX shells that share the same core functionality but illustrate distinctive
characteristics as well [36].

The two main parts of any shell type are the interpreter and the concept of scripts.
Scripts are defined by the ability to execute a set of shell commands, each of them
performing a specific task [34]. The interpreter on the other hand, collaborates with
the UNIX kernel in order to translate the shell commands into machine code and
execute them.

Lastly, there is the Applications layer. This part of the UNIX OS comprises built-in
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functionality and tools that provide additional capability to the OS. The tools that
an OS administers are classified according to the function that they perform, e.g.
file operations and content searching tools [34].

Figure 2.15: The figure shows some of the operations the kernel does, apart
from handling more low level operations such as memory management and pro-
cess scheduling, it also handles the system calls from applications, the shell and
other various utilities

2.4 AUTOSAR Specifications

In this part of the Theory chapter we present the core concept of this project, the
AUTOSAR standard. Since the motivation and the goals of the consortium have
been presented in Chapter 1, we will focus on its technical specifications along with
the standard software architecture destined for AUTOSAR operating ECUs.

2.4.1 Software Architecture

Based on the layered layout of the AUTOSAR Basic Software Module [37], it is
divided into the following levels:

o« AUTOSAR Applications Layer

o AUTOSAR Runtime Environment (RTE)
» Basic Software Module

« Microcontroller Unit (MCU)
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Application Layer

Runtime Environment

Microcontroller

Figure 2.16: A coarse representation of an AUTOSAR ECU system which illus-
trates the layered architecture. The Application layer is at the top housing software
components and, sensors and actuators. The Runtime Environment is below, han-
dling the signal communication between the applications and the basic software
modules. These modules comprise the Basic Software layer, which is the last soft-
ware layer in the stack as the layer underneath is the ECU hardware

Each of these subsystems that are presented in the following segment, consist of a
number of discrete components. An extensive description of their functionality falls
outside the scope of this project and hence we will not go into more detail, with the
exception of the operating system which will be explained in Section 2.5. But note
that in order to build a proper working ECU image several generic modules need to
be used.

1. AUTOSAR Applications Layer: The level where the created software compo-
nents for a specific functionality are placed. Existing in the same layer, are
the sensor/actuator software components, according to AUTOSAR standards
[38]. It should be noted that test applications exists in this layer.

2. AUTOSAR RTE: The Runtime Environment is basically the middle-ware, an
interface between the Applications Layer and the Basic Software that provides
communication services to the applications existing in the top layer. More-
over, the RTE allows each AUTOSAR software component to interact with
other components, both in the same or in different ECUs [38]. This is done by
switching the software architecture style from layered to component-oriented
and hence allow the applications to be completely independent of the under-
lying ECU [39].

3. Basic Software: This layer is divided further into sub-layers, including a ser-
vices Layer, an ECU Abstraction Layer, a Complex Device Drivers (CDD) layer
and a Microcontroller Abstraction Layer (MCAL). Between these layers, there
exist standardised interface modules to facilitate the communication between
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Figure 2.17: A more detailed illustration of the AUTOSAR software architecture
and its major components, showing some of the modules mentioned in Figure 2.16

them. Fach of the layers is subsequently partitioned into smaller functional
entities, such as Memory Services and 1/O drivers [38]. Without going into
excessive detail, every entity of this type consists of smaller software modules
that perform distinct operations, predefined from the AUTOSAR specifica-
tions.

4. MCU: This subsystem is self-explanatory. It is the hardware of the ECU and
communicates with the AUTOSAR Basic Software layers through the MCAL
and the CDD.

2.4.2 Adaptive AUTOSAR

Adaptive AUTOSAR systems will act as a hybrid that could deploy both the clas-
sic AUTOSAR applications and the new adaptive alternative but at the same time
communicate with non-AUTOSAR systems included in a vehicle; e.g. a GENIVI
infotainment system that runs on Linux [40] or an external non-AUTOSAR sys-
tem, such as a server or a home terminal. In Figure 2.18 we can see how this is
visualised, allowing the car to communicate both with other vehicles as well as an
external system depicted by the house like structure, even though the applications
are not connected via the same platform.

The motivation behind the new adaptive platform was touched upon in the intro-
duction section, vehicle applications becoming more computational heavy, with the
main contributor being advances in autonomous driving. However, the generic au-
tomotive MCUs of today are not focused on high-performance and are therefore not
capable of handling such tasks. A trend towards having a larger, central and more
computational heavy core can be seen, making high-performance hardware an inter-
esting option. This compels AUTOSAR to adopt the idea of utilising either VMs
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Figure 2.18: The figure shows how Adaptive AUTOSAR would integrate non-
AUTOSAR systems with classic AUTOSAR systems, communicating with applica-
tions from other vehicles or external non-AUTOSAR systems

or more powerful hardware. Figure 2.19 depicts the gap between the classic AU-
TOSAR stack and a more general purpose infotainment system, e.g. a gps system or
autonomous driving, which requires more performance. The adaptive AUTOSAR
platform is the solution which will bridge the gap, allowing the incorporation of
more computational heavy MCUs in vehicles.

Runtime Environment

(Virtual) Machine / Hardware Infotainment

Figure 2.19: Adaptive AUTOSAR will fill the hole in between infotainment sys-
tems and classic AUTOSAR for applications that require less computational power
compared to an infotainment system but also has fewer safety requirements

2.5 OSEK Specifications

This section is based on the relevant parts, to this project, of the official OSEK OS
specification [41]. OSEK is a specification which is specifically designed for auto-
motive applications. The AUTOSAR OS has OSEK as a base and therefore work
very similar in most areas. We limit ourselves to study the OSEK specification as

37



2. Theory

it facilitates the learning process compared to reading up on the vast AUTOSAR
specifications.

The OSEK specification is designed for single core processors and with the intent to
be used for ECUs. Naturally, it does not support running tasks in parallel, however
it does support multithreading. It also supports event driven control units, since
the majority of automotive ECUs require RT dependencies.

OSEK supports portability and re-usability of application software, translating into
providing the ability to transfer an application from one ECU to another without
any major changes, following the core idea of AUTOSAR.

2.5.1 Architecture

There are two types of entities competing for the hardware resources, interrupt ser-
vices and tasks. The resources are managed by OS services which are called by a
unique interface and are subsequently called by either the application or internally
within the OS. The resources are divided between three processing levels; starting
with the lowest priority level the task level, then the logical level and lastly the
highest priority level the interrupt level. The task level is responsible for the task
scheduling, which can be either non, fully or mixed-preemptive. The logical level
handles scheduling between interrupts and tasks, and the interrupt level manages
the interrupts.

2.5.2 Task Management

In order to understand the task scheduling two different task types must be in-
troduced. Namely, basic tasks and extended tasks. The key difference between
extended tasks and basic tasks is that extended tasks can be put into a waiting
state. Whereas the basic tasks can only be terminated or interrupted by a higher
priority task/interrupt in order to release the resource. Figure 2.20 shows the task
state model for OSEK, it can be seen that tasks that are suspended are first acti-
vated, set as ready and then set to running. In the running state tasks can either
terminate, get preempted by a higher priority service or be set into a waiting state,
which applies to extended tasks only. From the waiting state the extended tasks can
only be released by either an alarm or an event. Task termination is only achieved
via self-termination, meaning that a parent task cannot call for a child task (or any
other task) to be terminated.

2.5.3 Events and alarms

In the previous paragraph it was mentioned that there are two types of tasks. The
extended task type has an extra mechanism called events. Events are a means of

38



2. Theory

X
W\
< A
o
[oR
g g
o - suspended
o
/ x<
%, \/ g;\*‘%
Yo 2

Figure 2.20: Task state model of how OSEK manages tasks. A task that is
suspended gets activated into the ready state, from where it starts running. While
running it can get preempted, terminated or be put into a waiting state (this is only
for extended tasks), from which it is released with the help of events. Reproduced

from [41]

synchronisation and are the only way an extended task can get from the running
state to the waiting state, referring to Figure 2.20. Events are defined by the ap-
plication and can for example be signalling of an expiring timer or availability of
a resource. All tasks can set any event that is not contained in a suspended task.
However, only the owner of an event can clear it (checking if the occurring event is
the event the task is waiting for), which is needed if said task wants to wait for the
setting of a new event.

Alarms act as the setting of an event at expiration but they can do it recursively,
which a single event cannot. They are statically assigned at the time of system
generation and are tied together with a specific counter and a task-callback routine.
Both single and cyclic alarms exist, where a single alarm is only executed once while
a cyclic is executed at a certain time interval.

The counter mentioned in the previous paragraph inclines that OSEK uses a two
part concept for alarms: an implementation specific counter and an alarm call-back.
When a counter expires it signals the alarm(s) tied to it, which in turn executes
an alarm-callback. If the counter was managing a cyclic alarm it would reset and
thereby invoking the alarm again after a certain interval, while a counter directing
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a single alarm would continue and most likely invoke other single alarms.

2.5.3.1 Resource management

The resource management is an important topic for a single core CPU specification
because of its nature; a new core cannot be allocated to a task if it is occupied.
Therefore, issues like deadlock or priority inversion might occur more easily. OSEK
inhibits this by ensuring single use of resources, which also prevents that accessing
a resource never result in a waiting state. The same concept is extended to the
interrupt level to ensure that no two tasks or interrupts occupy the same resource.

In order to ensure single use of resources, OSEK statically assigns a resource with
its own ceiling priority. This priority should be set to the same level as the task
with the highest priority accessing the resource but to a lower level than the lowest
priority of all tasks not accessing the resource, that have higher priority levels than
the highest accessing the resource. This is more easily understood via visualisation
as depicted in Figure 2.21.

D Resource A

Figure 2.21: Tasks 1, 2 and 3 are requesting access from resource A and tasks 4
through 6 are tasks that does not request access from resource A. In order to ensure
single use of resource A for this simple example, its ceiling priority must be set to
the same priority of Task 3 (since it has the highest priority of all accessing tasks)
but lower than the lowest priority of all non-accessing tasks with higher priority
than Task 3. In this case resource A’s priority level would be set to 4.
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2.6  Yocto Project

This section will be explaining what the Yocto Project is and in some parts how it is
relevant to our project. Starting with the background to why it exist and the major
outlines following with the build system and its components. This is explained more
in detail on their homepage [42] and in their reference manual [19].

2.6.1 Background

The Yocto Project is a work-group within the Linux foundation, which is an open
collaboration between different corporate parties that aim to advance and promote
Linux development [43]. The work-group seek to develop tools and processes that
allows creation of customised Linux distributions for embedded systems.

2.6.2 Poky

The build system they provide is called Poky and allows almost endless customisa-
tion. It lets you choose which platform you are building your distribution for, what
packages to include in said distribution and even down to how the kernel should
operate. In order to enable this it uses something called Bitbake and Metadata.

2.6.2.1 Bitbake

Bitbake can be most easily explained as the task executor and scheduler during the
build time of the Linux distribution. It uses the Metadata with a concept called
Layers; a layer can be seen as a design mechanism, allowing the user to easily change
the software stack. In Figure 2.23 we can see the file system tree of the Poky build
system, where each folder beginning with "meta' is one layer.

One of the more important features of using layers is the Board Support Package
(BSP), which enables hardware features. They include specific drivers for a par-
ticular hardware device, e.g. containing a Linux kernel configuration and graphic
drivers for the intended hardware target. This allows simple exchange of hardware
platforms by downloading a BSP for supported hardware and telling Bitbake to use
that layer for the build image. The image now works on the hardware specified in
the BSP.

The layers can also be used for developing software, appending a developer specific
layer during production. Once it is completed the layer can be removed from the
Bitbake configurations and it will no longer be part of the build image. An example
layer stack can be seen in Figure 2.22, where each layer has a different priority, start-
ing with the highest priority at the bottom of the stack. The lower priority layers
can be removed without problems whereas the higher priority layers are mandatory.
The lowest layer is the core metadata, including low level configurations such as
kernel and hardware drivers. Moving upward we see the BSP layer which defines
what type of hardware architecture the image is for, a User Interface (UI) specific
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Developer layer

Ul layer

Hardware BSP

Core Metadata / Yocto specific layer

Figure 2.22: Visual representation of how the bitbake layer structure may look.
Starting from the bottom with the fundamental layers that are included in all yocto
supported builds, moving a step up into the BSP layer which defines the target
hardware. Above that may be a Ul layer and a developer layer, Reproduced from

[42]

layer and last the developer layer mentioned earlier.

2.6.2.2 Metadata

As touched upon in the previous section the Metadata is organised in layers, where
each layer include information that tells Bitbake what gets built and how. The
Metadata comprise three main types: Configuration, Classes and Recipes.

The configuration (.conf files) define global variables for the build system, e.g. the
standard file system paths as in where the build system is supposed to be placed.
It also defines general compiler flags, telling Bitbake how many threads of the pro-
cessor to utilise or which machine architecture to build for.

The heavy lifters of the build system are the classes (.bbclass). The Yocto Project
provide classes that define how to build an autotools based piece of software, how
you build a Linux kernel and how to generate a root file system image; autotools is
a build system for Linux programs.

Recipes (.bb) tell Bitbake what packages, an individual piece of software that needs
to be built, to include in the file system image e.g. the gnu tar command (command
for extracting and compressing files) or the gtk library (toolkit for creating graphi-
cal Uls). These recipes differ from other build systems as they are not defining the
packages to be built but rather how to build them and where to fetch the source.

42



2. Theory

The standard recipe build steps follow the sequence of fetching, unpacking, patch-
ing, configuring, compiling, installing and lastly packaging the installed software
into binary formats. Most commonly these commands are inherited versions from
the autotools .bbclass, to correctly build the software using the desired build sys-
tem. Bitbake allows these commands to be overwritten so they can be customised
for each recipe if needed.

@beadpool: S tree -d -L 2

[TTTTTTTTTTE T2TTTI
[TTTTETTT

Figure 2.23: Screen capture of the poky file system, displayed with help from
the tree package in Linux, it shows only the directories of the highest levels. The
bitbake layers can be seen by the folders starting with "meta', where this screen
capture shows a newly downloaded poky directory with no specific layers added as
it only includes the yocto layers: meta, meta-yocto and meta-yocto-bsp. The meta-
selftest layer is used for testing and the meta-skeleton layer is a template which one
can use to build an own layer. The "bitbake" directory contain all configurations for
bitbake and the "build" directory is the output path of the build, e.g. it will contain
the image
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Methods

This chapter is a detailed story of how the project team has been working, explain-
ing and describing the work structure overview. It starts with a description of the
Rational Unified Process (RUP), which is the working methodology of the project,
including its structure and practices, ending that part by explaining the concept of
working with iterations. The section following will present the tools used to achieve
the results after which we will go through our implementation architecture. The
last segment discusses what we did throughout the project, structured in accor-
dance with the iterations.

3.1 Rational Unified Process

The RUP is designed to be a software engineering process to provide structure and
discipline for a project organisation. The goal is to safeguard a high-quality produc-
tion so that the software meets end-users’ needs effectively and on time.

In order to achieve good productivity the RUP utilises the creation and mainte-
nance of models instead of focusing on production of documentation. It employs
the Unified modelling Language (UML) which allows a project team to communicate
requirements, architectures and designs more easily [44].

Arguably the best part of the RUP is that it is configurable. It lets us modify the
process to fit our project and our software development, as the team only consists
of two people which, compared to other projects, is a quite small team.

3.1.1 Effective Practices

The RUP deploys commercially proven approaches to software development for de-
velopment teams [45]. These approaches are divided into six practices which are
called “best practices”; mostly because they are commonly used in industry by suc-
cessful organisations and not so much in regards to their perceptible value. The
practices are listed below:

o Iterative development o Model software visually
o Manage requirements o Verify software quality
« Component-based architectures o Control changes to software
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An iterative development approach ensures an increasing understanding of the prob-
lem by consecutively assessing the project from a new perspective and each time
enhance it further. The risk level of the project is greatly reduced since the process
encourages the use of a development method that addresses the highest risk items
every cycle [45].

The RUP supports component-based software development, which spurs early base-
lining of a sturdy executable architecture. Consequently, a more well comprehended
life-cycle is achieved because each component has one primary function which exe-
cutes without interfering with other operations [45]. This in turn yields a very good
basis to use UML [46], as the primary modelling blocks are part of the architecture
itself [44].

For better understanding and comprehension of the problem, the RUP utilises vi-
sual modelling. By representing software in a visual way you capture the structure
and behaviour of the architecture and components much quicker and more easily.
Hence, it allows you to hide the details and "display" the architecture as graphi-
cal building blocks. It also helps to maintain consistency between a design and its
implementation, as it forces you to see how your building blocks fit together [44, 45].

Verifying the software quality is a key practice, as it helps in dealing with common
issues such as performance and reliability. These are central in concurrent appli-
cations quality and should be meticulously revised to match the requirements [44].
The RUP integrates the quality verification into the process so that it is present
every step of the way and not regarded as an afterthought.

Since software applications rarely follow the planning in every detail, it is extremely
important to be prepared for changes when they occur. This is especially true in
a process that utilises an iterative approach as the application is subject to change
because the functionality takes shape throughout the process.

This project will not venture very deep in terms of managing requirements as this is
more relevant to high-level projects and from a business point of view. This practice
is therefore not included.

3.1.2 Process Overview

The RUP can most simply be described in two dimensions [45]. Referring to Figure
3.1, the horizontal axis displays the time where the project enters different phases
with iterations in each phase, while the vertical axis presents the process work-flows,
where the workload in each phase is depicted by the colourised slopes.
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Business
Modeling

Requirements

Analysis & Design _A

Implementation

Test

Figure 3.1: An example of what a project’s process could look like. The horizontal
axis displays time, shaping different phases and iterations. Work-flows of the process
are distributed along the vertical axis, where the workload of each phase is indicated
by the slopes.

3.1.3 Static Structure of the Process

A project process is something that describes who does what, how and when. The
RUP describes these as workers, activities, artifacts and work-flows respectively.

A worker should be distinguished from an individual of the team and could instead
be seen as a "hat" which can be worn by a person. An individual may wear different
'hats" throughout the project. The worker is a role which is defined by how an
individual taking that position should carry out the required work [45].

A worker is tied to a set of activities. Instead of having a specific person doing a
specific task, the task is linked to the worker. This means that whoever is in the
position of a certain worker will do the set of activities tied to that worker and not
tasks assigned to them personally.

How to carry out the work is defined by the worker. But in order to carry out
the work some prerequisites may be required; tools is such an example. These are
described as artifacts in the RUP. An artifact is defined as a piece of information that
is modified, produced or used in a process [45]. So an artifact is both something used
by a worker in an activity and it can also be the output of said activity. Examples
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of artifacts may be use-case models, model elements, source code and executables.
A use-case model is something that describes the behaviour of a system, or part of
a system, by defining the interactions between an actor and the system. The actor
can be either a human, a subsystem, an external system or even time.

3.1.4 Iterations

In the concept of the RUP, each project phase can be additionally parsed into it-
erations. An iteration is a complete development loop, resulting in a new product
release (either internal or external) of an executable version of the product. Usually
a subset of the final product requirements are implemented during each cycle, which
eventually evolves into the final system.

Comparing the iterative approach towards the traditional waterfall process [47], the
former has the following advantages presented below [44], [45]:

o Mitigate potential risks earlier on

o Change is manageable

o Higher level of reuse

e The project team is invoked in a learning process throughout the project
o Higher overall quality

3.2 Development Tools and Code Versioning

The following section is a short discussion and description of the tools used in the
project. It will first discuss how the group has used UML and with the help of what
tools, it will then introduce the online TeX platform we have worked with. After
that the employed IDE will be presented, finishing with the code versioning system
used within ARCCORE.

3.2.1 Modelling and Visualisation Tools

Software can be complex to visualise and therefore very hard to work with. It can
be even harder to attempt to present some of its functionality to someone that has
not been involved in the development procedure. In order to facilitate this process
the project group has used, in accordance with the RUP, the UML. It should be
noted that it has not been followed religiously, but rather as an idea where the actual
modelling has been done with “pseudocode”.

There is a vast amount of software solutions available which can handle this type of
modelling process, the graph editor yFEd is such an application. We chose to use it
since it is a freeware and easily understood according to our supervisors’ suggestion.
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3.2.2 Integrated Development Environments

Working with software programming languages today can be very much facilitated
by using an IDE. Arguably one of the most powerful and resourceful Integrated
Development Environments (IDE) on the market is Eclipse [48]. It was our choice
to go with that, for the aforementioned reasons but also since the company’s own
tool suite Arctic Studio is an extension to Eclipse. More specifically, we have been
using the C/C++ version of Eclipse and not the company’s own tools suite, since it
was not readily available for Linux at the start of the project.

Project Arctic Core
r N —
. Initiate build
Settings
l Available modules, etc Makefile
Modules ~ ====---- > Makefile - Module

dependencies

Conﬁguratlon ________ > i SR Board .
files configuration

D Executable

Figure 3.2: ARCCORE’s makefile system is handled in the background when
working inside Arctic Studio. Creating a project automatically sets the settings
that allows you to build the project. What happens is that the project settings are
directed to Arctic Core which in turn responds with information useful to the created
project, e.g. which available modules exist for the target board. The user specifies
what modules they want to use and modify their variables to fir their purpose, the
makesystem then handles the module dependencies and the board configuration,
Reproduced from [7]

3.2.2.1 Makefile System and Arctic Core

This section will briefly discuss and describe the build system, which is based on
the standard Linux make package [49], used in the company’s products. The system
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comes with the company’s product Arctic Core (essentially a set of configurations for
hardware used regularly, by ARCCORE), letting the user create their own project
in the company’s tool-suite Arctic Studio. Together with the user’s inputs and the
configurations, provided by Arctic Core, the makesystem builds the project into an
executable. These executables can be downloaded onto an embedded board creat-
ing an ECU or a part of an ECU system. The process can be most easily explained
visually in Figure 3.2.

The left side shows what happens on the user side of things (Project) and the right
side shows how Arctic Core operates. The user inputs settings regarding what mod-
ules they want, what hardware architecture it is for and for what hardware board it
is intended. The makefile system reads the settings and returns information needed
to complete the configuration (e.g. what modules are available). The user selects
what modules they want in the build, where the makefile system automatically
checks what dependencies these modules have and incorporates them. Finishing the
configuration on the project side together with the board configuration —defaults
are used unless otherwise specified— from Arctic Core lets the makefile system build
the project into executable files. This ties back to Section 1.1, explaining how the
implementation is realised in a series of configuration steps.

3.2.3 Code Versioning and Data Analysis

The company uses the version management system Git. More specifically, an At-
lassian BitBucket server which is tailored for professional teams using Git, since
it employs extra administrative features. Hence, this system is also used by the
project group, working on separate branches in order to be able to experiment on
different approaches without interfering with the company’s ongoing projects. Git
can be managed via terminal commands but is very much facilitated by using avail-
able software applications such as GitEye. GitEye is one of many Git clients that
provide a Graphical User Interface (GUI) for simpler code management. GitEye can
handle all the standard operations for repositories and was selected among other Git
clients since it collaborates well with our main IDE, Eclipse CDT, as well as being
a freeware.

We used MATLAB in order to produce a good visualisation of our results. Not only
is it easier to look at, compared to a plethora of tables, it also provides a simpler
view as you can understand what you are looking at more easily.

3.2.4 Documentation

Besides bitBucket, the other online platform we used was ShareLatex. ShareLatex
is a collaborative editorial platform which allows users to write simultaneously on
the same project, much like how Google Docs is used for standard documents but
for TeX documents. Google Docs was also used as a draft writing tool as sharelatex
can sometimes be slow since the compilation is done online.
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3.3 Implementation Architecture

As touched upon in Chapter 1, the starting point of our thesis was a related com-
pany project. They have been working with AUTOSAR to Linux porting, in an
attempt to establish communication through the Ethernet module from the host
OS. This effort was the foundation on which we projected our own future work and
a guideline for our application’s source code.

This section will present the different levels within our implementation beginning
with the system level which is based on the OS port done by a previous company
project. This is followed by the application level which includes the applications we
have tested the system with.

Figure 3.3: Following the initial idea described in Chapter 1 we illustrate the final
shape of the developed system, divided in layers. Everything from the PORTED
OS layer and above is on the software side, with all the three hardware alternatives
housing a UNIX-based OS to execute the application on.

3.3.1 System Level

Our implementation is divided into different layers as depicted in Figure 3.3. The
system level, based on a standard Linux distribution kernel, is the core of our plat-
form. Essentially, all the OS functionality is implemented in this layer according
to the OSEK specifications, much of which has been taken from the already de-
veloped AUTOSAR OS. Nevertheless, we have introduced key features regarding
multi-threading support, allowing the OS to utilise multiple core CPUs and mul-
tiple threads execution on each of them. Figure 3.4 visualises in deeper detail the
structure of one part of the system layer.

The system level is defined by its nature, being run in the background, handling pro-

cesses such as task activation and termination, events and resource management.
The system level for this project however, is a bit different from other standards
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Three?gt'rl's:tl;Type TerminateTask
process id : unsigned short int OsSimple Get Current Taskld
thread id : pthread_t

mutex_lock : pthread_mutex_t threadld.pthread_status = terminated
mutex_task : pthread_mutex_t bTask3: —

pthread_status : unsigned char TerminateTask() /lJump to TaskWrapper setjmp
autostart : unsigned char longjmp(ThreadTasks[CurrentTaskld])

EventState : unsigned long int
entry : function call (void)

FOR all tasks DO:

InitOS()
Init_threads() GetTask from generated .cfg WHILE LOOP (Continous)
Initialise ThreadTaskType

IF (jump from terminate):
LOCK mutex Taskld.mutex_task

Init_threads

ELSE IF (Taskld.pthread_status == started):
FOR all tasks DO: UNLOCK mutex Taskld.mutex_task
ThreadTask[Taskld].entry()

IF i.autostart == True:
start_thread(i) END LOOP

start_thread

IF threadld.pthread_status == terminated: FOR Taskld == threadld DO:
threadld.pthread_status = started

Taskld.pthread_status = started;
ELSE IF threadld.pthread_status == empty INIT all mutexes:

threadld.pthread_status = starting
pthread_create(threadld) -> StartTask TaskWrapper(Taskld);

Figure 3.4: Illustration of the execution path and its flow through different func-
tions when a task activation or termination is called. Inside the red frame, we
provide the description of the structure that is used throughout our implementation
and describes the concept of a thread executing a specific task, including all the
necessary fields to hold the relevant information.

since it is not as low-level as anticipated: instead of relying on its own scheduler, it
is running on top of a Linux OS, utilising the UNIX kernel and its scheduler, leaving
less control over task priorities. This ties back to the project goal (Section 1.4) to
investigate how an AUTOSAR defined OS would operate on top of Linux.

The transformation of the AUTOSAR OS functionality to a Linux-based, C-written
application was never expected to be a straightforward task; the main issue, as an-
ticipated, was the adaptation of the different OSEK-specified operations to function
within the multi-core environment of a standard Linux distribution. As it will be-
come more evident in the upcoming sections, this required experimentation with
different synchronisation schemes and paradigms in order to achieve a fail-safe par-
allel execution scenario. We achieved that by utilising the POSIX standard (Section
2.1.2) to create schedulable entities in the shape of Pthreads.
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OsSimple
05_ALARM(eTaskt, 100 msee) LS bTask3
SetEvent(eTask2) WaitEvent(eTask2)
WaitEvent(eTask1) ClearEvent(eTask2) Terminate
ClearEvent(eTask1) ActivateTask(bTask3)

Figure 3.5: The execution scenario of the test application OsSimple

3.3.2 Application Level

The application level resides on top of the system level. As hinted by the name, it
houses applications: OsSimple and OsBenchmark are two examples which we have
been working on during this thesis. OsSimple has been the main test application
we used to test correctness, performance and compliance to real-time timing con-
straints of the ported OS. The example is very much what it sounds like: a simple
application that contains most of the fundamental OS functionality. This includes
operations like terminating and activating a task, setting and clearing events and
setting alarms and their corresponding counters. According to the execution sce-
nario of OsSimple, which can also be seen in Figure 3.5:

1. An alarm sets an event (Event1) for extended task eTask1

2. eTaskl sets an event (Event2) for extended task eTask2 and waits for a new
event, Eventl

3. eTask?2 activates basic task bTask3 and waits for a new Event2
4. bTask3 does nothing and self-terminates
5. Loop through step (1)

OsBenchmark would essentially function as a stopwatch to time the performance of
the different operations carried out in the same fashion as in OsSimple. Before ter-
minating, a function would calculate the mean times over the iterations and return
the results to the execution environment.

However, we did not manage to get the OsBenchmark to perform correctly, since it
is targeted to run on single-core hardware and thus assume sequential execution. Es-
sentially, the thread calling e.g. for a task activation was not suspending afterwards,
continuously calling for activation by "firing" multiple requests. This behaviour is
making timing intervals between calls irrelevant (Figure 3.6).

The second part of Figure 3.6 shows the required behaviour and also the resulted
one after we applied a synchronisation scheme to force the calling thread to wait
for the called task to return, before sending another activation request. Apart from
this fix, the OsBenchmark continued producing dubious results and we decided to
proceed with testing utilising our initial test application, OsSimple.
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Figure 3.6: The left figure represents the benchmarking application, without any
synchronisation applied. Skewing the results since the application would continue
making function calls without letting the child thread finish. The right figure shows
the wanted behaviour, the parent thread waiting while the child thread is executing.

Updating it with checkpoints between the desired operations, we managed to con-
struct a solid test platform for our performance testing and postponed working on
fixing the OsBenchmark for later in the course of the project.

The opportunity to do so appeared during April, when the company organised a
2-day event, which was focused on team building by allowing employees to work
with others than their usual project partners on small fixes and issues that had been
postponed as they were characterised non-urgent.

As we were not affected by said issues, which were mostly revolving around the
company’s AUTOSAR development tool, Arctic Studio, we decided to take part in
the event by putting our efforts on something that would benefit both our project
and future use of the company’s testing suite. We therefore chose to rework the test
framework of OsBenchmark so that it would function for parallel execution as well.
The main idea behind the test was kept unsullied, but in order to synchronise each
test iteration we chose to use barriers (as introduced in Section 2.1.2), allowing each
task to finish before continuing with the next iteration.
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3.4 Development Process

This section will delve deeper into the practical work that was carried out during the
thesis, the modelling process of the application under development, the shape of our
solution and the course of actions that was followed in order to solve problems and
exploit optimal performance from our platform. Our development path was based
on the RUP and thus divided into iterations (Section 3.1). Before proceeding with
describing each iteration and the work that was carried out during, we will highlight
the key points of our testing approach and method.

3.4.1 Test Strategy

In order to come up with a solid testing strategy our supervisors provided us with
a set of reference results (Appendix A). According to our supervisors’ request, we
focused our efforts to the set of operations shown below, since they are considered
the most critical when it comes to predicting and placing a ceiling on their comple-
tion times ( Timing aspect):

o Task Activation
e Tagk Termination
e Set Event

e Clear Event

o Task Start-up

As one can notice by simply comparing the reference results to the list above, the
Task Start-up metric is not included in the reference. This is due to a difference in
the timing methods between our own and the reference approach: we count the Set
Fvent time as strictly the interval between calling and returning from the function
that handles the event setting, while the reference method Set Event time includes
the Task Start-up time. This newly introduced metric holds the amount of time it
takes for a task to be activated after its parent task has blocked waiting for an event
to be signaled.

As mentioned already in Chapter 1, our intention was to investigate the developed
application in terms of correctness, performance and timing. These three axes acted
as the foundation of our testing strategy throughout the course of this project and
provided with valuable inspiration on how to approach and interpret the generated
arithmetic results. As it is presented more clearly in the upcoming chapters, we
reflect on all three of these criteria and elaborate on the effect they have on the
requirement specification for each of the upcoming iterations.

3.4.2 Implementation Iteration 1

The first iteration started quite early in the project, immediately after the planning
phase, while simultaneously we were researching on the most important theoretical
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aspects of the project. The majority of the time spent was related to code reviewing
in order to understand the previous work done by ARCCORE employees.

3.4.2.1 Requirements

The initial iteration was focused on building a runnable application on which we
would base the upcoming versions of our implementation. Consequently, the basic
requirements were set towards that goal, as the outcome of the first iteration. Our
attempts were based on the prior work done within ARCCORE AB, but diverge the
point of interest from Ethernet communication establishment to following correctly
the OsSimple execution scenario.

3.4.2.2 Development Steps

Following the proposed structure according to the prior work carried out in ARC-
CORE, the basic version of our application was handling the task termination in an
unorthodox way: instead of properly terminating a running thread, upon call, the
TerminateTask function was performing a non-local jump, utilising the C standard
library setjmp.h [50], to the TaskWrapper function. This header allows deviations
from the standard execution flow by enabling functions to "jump" and continue ex-
ecuting from a predefined point in another function [25]. To visualise the behaviour
of this pair of calls, we provide a straightforward example of code along with its
resulted output:

#include <setjmp.h>
main() {

jmp_buf env;

int i;

i = setjmp(env);
printf("i = %d\n", i);

if (i !'= 0) exit(0);

longjmp(env, 2);
printf ("Does this line get printed?\n");

>k 3k 3k >k 3k 3k >k >k 3k 5k >k 5k 5k >k 5k 5k >k 3k 3k >k 3k 3k >k 3k ok >k >k 5k 5k >k 5k 5k >k 5k 5k %k k ok >k ko k ok

Output:
i=0
i=2
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As it can be seen in the output section, there is no print after the long jump is
performed. This is due to the fact that after the long jump back to assigning the
value of i, its new value is printed and then, since ¢ != 0, the program exits.

The purpose of that jump was to put the tasks to sleep when TerminateTask is
called, without destroying the corresponding Pthread. If a task activation was called
for one of the sleeping tasks, this task would be reassigned to its Pthread and thus
a new thread did not have to be created. However, there were multiple activation
attempts before a successful one, since the duration of the sleep was much longer
compared to the amount of time that an activation request would need to be exe-
cuted.

When it comes to the task activation sequence of events, the flow diverges between
two different paths, depending on whether this is the first attempt to activate (and
thus create) a task or just a re-activation. If it is the first case, the execution flow
goes through the Start_Thread where the threads are initially created and assigned
to the intended tasks by calling the corresponding application function. In case the
Pthread was already created, the activation takes place in the TaskWrapper, where
the status flag of the task is changed to STARTED and its corresponding function
is invoked.

3.4.2.3 Testing Phase

Wrapping up the first development phase, the application was in a running state
and fulfilled the basic requirement of correctness. Our goal was to confirm that
the scheduling sequence described in the OsSimple application would be executed
accordingly in our implementation. By using a quite detailed logging system, we
were able to verify that the implicit operations of task activation and task termina-
tion were carried out properly. The same method was followed to verify the proper
function of the chain of alarms and events. Issues such as the multiple activation
attempts that we mentioned previously were postponed to be examined during the
next iteration, since the fundamental requirement for this phase was to reach a point
where our application would perform all the basic operations correctly.

It is worth pointing out that through the first test and evaluation stage we got the
opportunity to familiarise with the debugging process of the company’s Makefile
system and the source tree structure. We also reached a better understanding on
how AUTOSAR OS should operate and we were able to transfer the theoretical
knowledge of OSEK to the actual implementation of the OS porting.

3.4.3 Implementation Iteration 2

Iteration 2 was the step of the project during which we started considering the aspect
of performance in our implementation process. After this iteration’s testing phase
we constructed the requirements for the upcoming iterations in regards to achieving
better performance without jeopardising the correctness.
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3.4.3.1 Requirements

The outcome of the first evaluation stage left us searching for a more viable solution
to the tactic employed for task activation and termination in the OS porting. We
did not have concrete performance results from the previous iteration, however it
was obvious by the structure of the code and the amount of time that the threads
were sleeping each time, that we were far off the target reference results. Our in-
tention was to achieve improved performance, while simultaneously devising a task
termination mechanism that would allow the OS to remain in an idle state, in case
no tasks were running.

3.4.3.2 Development Steps

Shifting our efforts to improve the performance, we realised that the extensive log-
ging system that provided us with invaluable feedback during the previous iteration
was causing too much overhead. Moreover, a minor quality-of-life change was done
by disabling the Daemonise function, which upon call would execute the OsSimple
application in the background. Disabling the this function facilitated the develop-
ment process, since it became easier to keep track of the application being run in
the foreground, printing information messages in the process and not directly to the
system log.

Studying the code structure more extensively, helped us realise that ordering the
threads to sleep (especially for one millisecond) instead of actually terminating them
was not just ineffective time-wise, but was also deviating from the OSEK specifica-
tion, considering that our initial implementation is not supporting an idle state as
the AUTOSAR OS should do.

Instead of using the non-local jump in TerminateTask to TaskWrapper, we utilised
a pair of standard POSIX functions, pthread_exit and pthread_join. These func-
tions as explained thoroughly in Section 2.1.2; allow a POSIX thread to properly
terminate, while the parent thread waits for the termination of its child Pthread,
providing with the necessary synchronisation to achieve scheduling correctness. This
rework however, resulted in too much work overhead. Significant restructure of the
code had to be done before we would be able to have the new version of our appli-
cation working correctly. This was due to the fact that the whole functionality was
implemented based on the sleeping tasks paradigm.

After meeting with our technical supervisors regarding the idea of terminating the
threads instead of putting them to sleep, we were advised to go forward with the
testing phase of this iteration, since we had a runnable application that was be-
having as expected, however they predicted that this approach would not achieve
similar performance to the reference results (Appendix A) and hence we would have
to come up with something even more efficient.

Following their advice, we briefly explored alternative ways to fulfil the iteration’s
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requirements but also achieve performance gains. The solution we came up with
was to switch to a more suitable POSIX standard function, the pthread_cancel.
The difference between pthread_exit/pthread join and pthread_cancel is es-
sentially that the latter does not wait until the target Pthread is terminated, rather
it returns immediately upon call (Section 2.1.2). This evidently provides an ad-
vantage to our implementation, as the use of pthread_cancel ensures both the
termination of the calling Pthread and the correct chain of events when it comes
to task scheduling. It also achieves better performance compared to the blocking
paradigm of pthread_exit, since it performs these operations asynchronously.

After both versions of the application were executing correctly, we proceeded to the
testing and evaluation phase in order to produce constructive results and elaborate
on the findings.

3.4.3.3 Testing Phase

We began this testing phase with benchmarking the first alternative:
the pthread_exit/pthread_join implementation. To that end, we focused on the
task activation and termination operations, since the functions related to events
were not affected by this shift in the implementation. The results, as foretold by
our supervisors, were not close enough to our target timings. Subsequently, we
turned our efforts to generate performance results for the second alternative, the
pthread_cancel version of our application. As anticipated, we received substantial
improvements compared to the first alternative.

Besides the very constructive results obtained by evaluating the second iteration
version of our application, we also performed the performance testing for the im-
plementation of the first iteration. This only verified our initial assumption: the
sleeping approach was performance-shredding.

3.4.4 Implementation Iteration 3

The mechanism through which we handled termination during Iteration 2 has shown
signs of significant improvement but not at the desired level to be able to compare
them with the set of reference results that was our main goal. Hence, during this
iteration we had to revise our approach to that end and verify the results not only
in terms of correctness and performance but also include RT deadlines, relative to
real-world automotive application deadlines. This required also to equip the Linux
kernels of our systems with RT capabilities, which was achieved using the ChronOS
RT Linux patch [51].

3.4.4.1 Requirements

The pthread_cancel undoubtedly gave us better results. However, we were still
quite far from achieving similar timings to the reference results (Appendix A). That
convinced us that we should try going back to using the TaskWrapper but not in the
previous fashion: now we would neither actually terminate the tasks and kill their
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corresponding Pthreads nor putting them to sleep. Once again, reaching a faster
solution for task termination was the main focus but keeping the correctness intact
while exploring different solutions proved to be the main challenge.

3.4.4.2 Development Steps

The problem with the TaskWrapper was the sleep involvement. By just removing
the sleep command we would not solve the issue of performance, since we would leave
the application execution with no synchronisation point and thus leaving a function
running indefinitely without locking it or suspending it (in the OS world this is called
busy waiting). Inspired by the fact that the events are also handled by mutexes, it
only seemed natural to try and synchronise the tasks using mutexes in a similar way.

Essentially, each time the TaskWrapper is called via the TerminateTask function,
it puts that thread into a suspension state by locking it with a mutex. To unlock
it we use the pthread_mutex_unlock function call in task activation to ensure that
the task is restarted on the same Pthread after it has been "terminated".

Apart from this major update in the application’s structure, we also concluded that
a big contributor to bad performance was the logging functionality, that proved to
be vital for the purposes of debugging during the first iteration, however since it
had already served its purpose we decided to remove it in an attempt to ameliorate
the performance results.

3.4.4.3 Testing Phase

During this test phase, we carried out the usual performance testing, witnessing
finally a breakthrough: the results for Task Activation, Task Termination and Clear
FEvent were significantly better than the reference results (Table 4.3a). Nevertheless,
the results for Task Start-up and Set Event were still worse than anticipated. After
careful consideration we came to the conclusion that this was caused by the poor
performance that the pthread_cond was showcasing.

Another important aspect of this testing phase was the performance evaluation un-
der load: our supervisors suggested to experiment with average (around 50%) and
full (100%) load applied on the host systems’ CPUs. This way we managed to extract
valuable data for the performance metrics we examine our developed system for and
the difference in behaviour from one host system to the other. It is worth mentioning
that in order to increase the CPU load and manage to control it percentage-wise,
we used two Linux programs, stress and cpulimit. Stress is enforcing load onto the
CPU while cpulimit can be used to keep the CPU load up to the required percentage.

As mentioned in the introduction of this iteration, we also experimented with RT
patched kernels as the test environment for our application. We performed exactly
the same set of test scenarios as we did with the standard SMP kernel and all the
load alternatives. The generated results are included in Appendix C and discussed
in Chapter 5.
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3.4.5 Implementation iteration 4

After completing Iteration 3, the only metrics that were still not close to or better
than the reference results were the SetEvent and Task StartUp. In order to achieve
this, we focused on the method that events were handled in our current implementa-
tion version and came up with a more efficient way. Based on the selected approach,
we carried out the same testing scenarios for the updated implementation version,
along with tests on the selected embedded alternative, the MinnowBoard MAX [52].

3.4.5.1 Requirements

The requirements for our final iteration were very specific: replace the synchroni-
sation mechanism that controlled the events up until Iteration 3 with something
more efficient in terms of performance, in order to achieve the desired results. After
finishing with the modifications on our application, we planned to run it over an
embedded Linux distribution hosted in our test board, the MinnowBoard MAX in
order to get a taste on how our VM would perform running over a slower host ma-
chine. In terms of testing, we would follow the same approach we did in Iteration
3 with the addition of running the same test scenarios on the test board, with a
variation in the kernels utilised.

3.4.5.2 Development Steps

The major issue that still persisted in the end of Iteration 3 was the high SetEvent
and StartUp times, which should sum up to a relative number to the reference results.
The reason behind this was that the synchronisation scheme which was managing
the events included a message passing approach, namely the pthread cond wait
and pthread_cond_signal pair of function calls (Section 2.1.2).

As explained in Section 2.1.3.3, these types of methods provide the system with
high level communication channels between processes, with the ability to exchange
messages with each other, however in the expense of performance. The fact that
the additional functionality was redundant for the purposes of synchronising the
events operations steered our efforts to implement an equivalent scheme while using
a simpler mechanism. It only seemed natural to employ again the usage of mutexes,
as we did with managing the tasks operations in Iteration 3. It was also sensible,
since the only part of the pair of function calls used before that was vital for our
implementation was the blocking/unblocking paradigm, attainable also through a
pair of mutex calls.

After finalising the updates of the synchronisation scheme that controlled the events,
we turned our attention to transferring our emulation platform to the embedded al-
ternative we were advised to use for the purposes of testing, an Intel Atom-based
MinnowBoard MAX. For that purpose, we used the Yocto Project [19] to create
customisable embedded Linux images, tailored for our Intel platform. We built two
different images in order to observe any potential deviations on the results, since
they included distinct versions of Linux kernels:
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o A Sato image, which is mainly purposed for mobile platforms and is equipped
with a full Graphical User Interface (GUI) — compared to the RT distribution
that is command-line-based.

o An RT version, which essentially is a minimal Linux distribution armed with
extra RT capabilities, a preemptive scheduling policy and a higher resolution
system clock.

It is worth mentioning that we run our application on top of the Linux distributions
and did not append it as a layer within the images created. It would be quite
time-consuming to create our own customised distribution, since we would have to
perform multiple extra tasks in order to achieve that, without any insurance that
we would get any performance gains from this approach.

3.4.5.3 Testing Phase

For the testing phase of Iteration 4 we followed the exact same path as we did in
the previous iteration, testing our application in regards to all three aspects, cor-
rectness, performance and timing both on the standard SMP Linux kernel but also
on the RT-patched kernel, as well as including the concept of load in our tests. The
only thing that was added to this iteration was naturally the tests for our embedded
alternative, the results of which can be found in Appendix D.

After finalising this phase, we presented the generated results to our technical su-
pervisors, who concurred that the progress achieved during the course of this project
was quite impressive and gave us the green light to proceed with documenting our
work and elaborating on our results.
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Results

This chapter contain results from the testing phases, carried out throughout the
course of this project. The first section will explain how the tables and graphs are
going to be presented. The results will start off by showing the average values for
each metric in each iteration, followed by a more detailed view with the test points
from Iterations 3 and 4 in the shape of graphs. The chapter wraps up with the
correctness and timing evaluation results.

Before all the results are displayed, a small version of Table 1.1 is shown in Table
4.1 below to reiterate the technical specifications of each host machine used during
testing. Observe that despite the difference in the amount of cores between the two
CPUs, the Core i5 yields higher benchmark score per core compared to the Core i7.

Table 4.1: The first two rows of Table 1.1 showing the host machines used during
the testing of our applications

Processing Unit Frequency | # Cores | Coremark | Coremark/Core
Intel Core i7-3720QM 2.6GHz 8 85209 10651
Intel Core i5-4300M 2.6GHz 4 46085 11521

4.1 Performance Results

The performance results will be displayed both in the shape of tables and graphs,
in order to be easily interpreted. The generated results from Iterations 1 and 2 are
presented only with tables (Tables 4.2a and 4.2b) since a visual representation is
not considered vital for this stage of the project; the reader can grasp the difference
in magnitude by simply contemplating on the numerical results. They will be dis-
played along with the corresponding tables from Iteration 3 and 4 (Tables 4.3a and
4.3b). The averages shown in these tables are generated from tests carried out on
the generic SMP kernel.

The performance results from the latter iterations will also be presented with graphs,
one graph for each metric and host machine. The metrics that are highlighted and
shown in this chapter are the SetEvent and Startup metrics. Each graph shows
one metric with two sets of data points, one set for each kernel type (SMP and
RT-patched). The remaining graphs from the testing are available in Appendix C.
The results for the host machine peos (i5) will be displayed first, then the results
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from host machine ethan (i7) will follow. This order stays the same through both
iterations.

The captions underneath each graph contain vital information, mainly the points
of interest for the illustrated metric and how its performance correlates to the pre-
vious averages. It should be noted that some graphs that included high "spikes"
have been scaled up, so that the more interesting parts are highlighted. This might
lead to some data points not being shown in the graphs, however the general idea is
preserved and the numerical results in the tables are kept intact despite this skewing.

Table 4.2: The average execution times for Iteration 1 (a) and 2 (b). Itera-
tion 2 shows quite a large increase in performance due to the remove of sleep in
TaskWrapper

(a) Iteration 1

(b) Iteration 2

Metric [ns] Core i5 | Core i7 Metric [ns] Core i5 | Core i7
Task Activation 541780 | 534029 | | Task Activation 20218 10852
Task Termination 20382 39873 Task Termination 14618 7936
Set Event 42522 19591 Set Event 13784 8244
Clear Event 19874 21342 | | Clear Event 5318 10827
Task Start-up 59328 63780 | | Task Start-up 22102 27203

Table 4.3: The geometric mean for each metric on the two different host ma-
chines for the implementation in Iteration 3 (a) and 4 (b). Iteration 4 gave better
performance for both host machines, but is much more noticeable for the i7

(a) Iteration 3

(b) Iteration 4

Metric [ns] Core i5 | Core i7 Metric [ns] Core i5 | Core i7
Task Activation 238 1332 | | Task Activation 198 232
Task Termination 148 374 Task Termination 154 136
Set Event 2645 4971 Set. Event 1086 133
Clear Event 193 1189 | | Clear Event 174 519
Task Start-up 3309 24981 | | Task Start-up 1365 213

With the magnitudes of the average execution metrics in mind, let us delve deeper
into the graphs below which focus on the SetFvent and Startup metrics.

When comparing the iterations we can see how the SetEvent metric for the peos
machine (in Figures 4.1 and 4.2) becomes noticeably faster, but drops in correct-
ness. However, looking at Figures 4.3 and 4.4 for the ethan machine we see that
it keeps a high correctness with the generic SMP kernel as well as getting more
concentrated points together with the faster execution. It dropped the execution
times from ~5,000 ns to ~500 ns.
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Figure 4.1: iteration 3: Some correctness loss as the points do not reach to 100 test
points, the generic kernel displays better concentration of the test points, averaging
about 2,500 ns
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Figure 4.2: Iteration 4: The generic kernel keeps the points concentrated around
200 ns which is a major increase in performance. However, the correctness is down

to 85%
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Figure 4.3: Iteration 3: Following the trend of high correctness but with a higher
average than the i5 counterpart at around 5,000 ns
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Figure 4.4: Iteration 4: Still very good correctness, much better than the i5
counterpart. Execution is also remarkably quicker, down by almost 4,000 ns
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The Startup metric shows a similar story. The peos machine gains in performance
for both kernels as it can be seen in Figures 4.5 and 4.6. However, similar to
the SetFvent metric, it looses some correctness. The performance gains are not as
outstanding as with the ethan machine, but are still worth mentioning.
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Figure 4.5: Iteration 3: The RT kernel executes around 20 us, whereas the generic
executes around 3,000 ns

In a similar manner as with the other metric, the ethan machine gains performance
while keeping high correctness and concentration of points, as it can be seen in
Figures 4.7 and 4.8. The execution times drop from ~25,000 ns to below 200 ns.
This is all in regards to the generic SMP kernel, the RT kernel illustrates different
results; much like the SMP kernel for the peos machine, the RT kernel achieves
performance gains but declines roughly 10% in terms of correctness.
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Figure 4.6: Iteration 4: Start-up has suffered in correctness, now around 95%.
Nevertheless, great performance increase compared to Iteration 3, now down to
~ 200 ns
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Figure 4.7: Iteration 3: Concentrated points with high correctness. Average exe-
cution time around 25,000 ns which is significantly worse than its i5 counterpart
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Figure 4.8: Iteration 4: Major performance gain, down to 200 ns from 25,000 ns.
The RT kernel drops in correctness while the generic SMP preserves its high levels
of correctness
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4.2 Correctness and Timing Results

The correctness of iterations 1 and 2 are regarded in terms of correct execution,
related to the expected execution scenario explained in Section 3.3.2.

The correctness results for Iterations 3 and 4 are on the other hand based on the
amount of valid points we got during testing. A data point is seen as valid if it is
below a certain threshold, making sure it would finish before its intended deadline.
The threshold is application-specific, therefore we based it on the average use case
of an ECU destined for an automotive purpose. The threshold for SetFvent and
Start-up was set to 5 ms while for all other metrics it was set to 1 ms. All testing
scenarios include 100 test nodes, in order to use the same amount of points as the
reference results, a number that provides a clear notion of the achieved correctness
in terms of percentage (Tables 4.4 to 4.7).

Table 4.4: Iteration 3: High correctness for all metrics in general, with the SMP

kernel being better than the RT

Table 4.5: Iteration 3: High correctness, similar to the i5. However, the RT kernel

Peos (i5) Low Load | Average Load | Full Load

Metrics [%] SMP | RT | SMP RT SMP | RT
Task Activation 100 | 100 100 100 100 | 100
Task Termination 100 | 100 100 100 100 | 100
Set Event 98 | 95 99 97 98 | 86
Clear Event 100 | 100 100 100 100 | 100
Task Start-up 99 | 100 99 95 99 | 87

shows better correctness than the SMP kernel
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Ethan (i7) Low Load | Average Load | Full Load

Metrics [%)] SMP | RT | SMP RT SMP | RT
Task Activation 100 | 100 100 99 100 | 100
Task Termination 100 | 100 100 100 100 | 100
Set Event 99 | 100 91 91 77T 93
Clear Event 100 | 100 100 100 100 | 100
Task Start-up 100 | 100 97 96 86| 97
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Table 4.6: Iteration 4: Worse correctness compared to [teration 3, most noticeable
under high load, as the correctness degrades quite rapidly. The RT kernel showcases
better correctness for higher load compared to the SMP

Peos (i5) Low Load | Average Load | Full Load

Metrics [%)] SMP | RT | SMP | RT SMP | RT
Task Activation 100 | 100 99 100 99 | 99
Task Termination 100 | 100 100 100 100 | 100
Set Event 84 | 86 28 73 34| 39
Clear Event 100 | 100 100 100 100 | 100
Task Start-up 95| 96 22 57 30| 25

Table 4.7: Iteration 4: Correctness takes a large hit compared to Iteration 3 when
considering the RT kernel. The SMP kernel is still performing quite well for three
of the metrics, Task Activation, Task Termination and Clear Fvent.

Ethan (i7) Low Load | Average Load | Full Load

Metrics [%] SMP | RT | SMP RT SMP | RT
Task Activation 100 | 95 100 87 100 | 89
Task Termination 100 | 77 100 66 100 | 47
Set Event 100 | 88 25 19 371 32
Clear Event 100 | 94 100 82 100 | 90
Task Start-up 100 | &9 25 18 67| 41
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Discussion

The discussion chapter will start off by discussing all results followed by an explana-
tion and reasoning behind our decisions made on how to display our results, why we
omitted some parts and why it does not affect our conclusions. We will also discuss
why we chose to test the way we did, in regards to CPU load and the duration of
our testing sessions.

5.1 Results Discussion

The scheme selected for the testing scenarios had to do with the fact that the refer-
ence results also include the same number of testing points (100 points), while when
it comes to time intervals each testing loop was decided to execute for 20 s after ex-
perimenting with different values on that matter. Above 20 s, we were not yielding
higher accuracy from each iteration: running a 10 s loop compared to the 20 s gave
a deviation of 50% on the results, while the 20 s to 100 s loop only diverged at most
10%. Hence, the decision made was based on the trade-off of spending unnecessarily
extensive amounts of time for each test scenario, when there would be no realistic
gains in terms of accuracy. Moreover, considering that this deviation might even be
caused by the Pthreads non-deterministic execution every time, we considered the
20 s an adequate duration for each test loop.

Between each test loop there is a sleeping interval of 1 second, in order to allow the
host machines to bring down the load of the CPU before restarting the application
and not to accumulate load from one iteration to the next. Taking into account all
the time quantum, one test session takes roughly 35 minutes to complete, which was
manageable in comparison to have to deal with triple that time in case we went for
the 100 s duration loop.

It became clearer after the first iteration and the shift from the sleep strategy, that
the dominant metrics would be the SetFvent and task StartUp. This can be ex-
plained through the definition of the StartUp metric (Section 3.4.1), since it includes
the time it takes to clear an event set for a specific task along with the activation
time required, while the SetFvent included a complicated synchronisation and com-
munication scheme that managed the events, up until Iteration 4 (Section 3.4.5).
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During Iterations 1 and 2 the concept of correctness was limited to verifying that
the intended execution scenario was followed, specifically in our case that the basic
task bTask3 was terminated and re-activated properly (Sections 3.4.2 and 3.4.3).
However, there was a shift in our approach in Iteration 3, since it was our intention
to invoke the aspect of RT constraints (the timing concept we talk about throughout
our work).

For that purpose, we had to determine a test-independent time constant that would
represent the deadline for our metrics, in order to decide whether or not each of the
testing points performs within an acceptable time frame and thus can be considered
correct. This is visualised in Tables 4.4 - 4.7, where we included percentages of
correct operation for each of the functions performed during each test session. It
is quite clear from the illustrated results that the our assumption for the SetEvent
and StartUp metrics is verified, since they showcase the lowest correctness levels
throughout Iterations 3 and 4, degrading vastly as the CPU load increases. More-
over, from the same tables results, it can be noticed that in general Iteration 3 is
more reliable than Iteration 4.

Since we did not have the background to make a decision on our own, we turned to
our technical supervisors for consultation and they advised us to use a 5 ms dead-
line for the SetFvent/StartUp metrics and 1 ms for the faster operations, such as
ClearEvent or TerminateTask. These numbers are considered fast deadlines in the
world of automotive software, with 10 and 100 ms being also relevant. However,
we decided to go with the fastest requirement, since our host machines are better
equipped than the traditional ECU hardware and also we intended to reach the high-
est performance for our application, in order to examine the strictest constraints,
considering the possibility that with ECU hardware going faster, the "traditional"
real-time deadlines will diminish.

The performance testing, which was the focal point throughout our project de-
velopment, was carried out in a similar way independently of which iteration was
addressing. With the exception of course of the expansion of the testing scenarios
pool (different kernel versions, load variance) the core concept of the performance
testing remained unchanged, in order to enable us to compare the generated results
metric for metric.

In the course of Iterations 1 and 2 (Tables 4.2a and 4.2b), we calculated the mean
times for each of the metrics using a simple arithmetic mean (average) operation on
the test points. Besides the ease which comes with it, there was no need to take
extra care of the average, since the deviation between the numerical results was low.

The mean values for Iterations 3 and 4 metrics are displayed in Tables 5.1 and 5.2.
At first, after calculating the means for all the metrics as the arithmetic means of
the testing points, we were discouraged that due to high peaks in some samples, our
average values were so heavily affected. We realised that the geometric mean here
would be the suitable way to calculate the average values for our metrics, since the
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Table 5.1: The geometric mean and the arithmetic mean for each metric on the
two different host machines for Iteration 3

Core i5 Core i7
Metrics [ns] AM |[GM| AM | GM
Task Activation 155 | 148 408 374
Task Termination 240 | 238 1436 | 1332
Set Event 488394 | 2645 | 224182 | 4971
Clear Event 194 | 193 1294 | 1189
Task Start-up 190972 | 3309 | 28676 | 24981

arithmetic mean is very heavily influenced by the atypically large values that occur.
On the other hand, the advantage of the geometric mean is that it is not affected
by such incidents and provides more accurate average results.

Table 5.2: The geometric mean and the arithmetic mean for each metric on the
two different host machines for Iteration 4

Core i5 Core i7
Metrics [ns] AM |GM | AM | GM
Task Activation 162 | 154 | 138 | 136
Task Termination 208 | 198 | 233 | 232
Set Event 3302516 | 1086 | 134 | 133
Clear Event 176 | 174 | 521 | 519
Task Start-up 1045226 | 1365 | 213 | 213

Diving deeper into the performance results and how they can be interpreted, the
massive drop documented from Iteration 1 to Iteration 2 especially in the Task
Activation times is related to the change in our approach, replacing the sleep invo-
cation with a standard initialisation/termination paradigm that made good use of
the POSIX standard. It has also benefited all the metrics across the tables, since the
sleeping was not only affecting the activation but all the operations performed by
a task. We chose to use the pthread_cancel - pthread_join pair of calls (instead
of the pthread_exit - pthread_join) with good reasoning: as it can be seen in
Table 5.3 the result for a thread termination using the pthread_cancel call is much
improved. The deviation recorded for the task activation, where the pthread exit
alternative is faster for 1.5 us can be credited to the nature of POSIX calls and the
non-deterministic behaviour between separate runs.

A similar vast decrease in all the performance metrics is recorded from Iteration 2 to
Iteration 3, where we have another major shift to the way we handled task-related
operations. This is where these colossal gains in performance stop to be generated,
except the SetEvent and StartUp metrics from Iteration 3 to 4 and specifically for
the ethan (i7) host machine. However, achieving to surpass the threshold of the
reference results by a large margin in Iteration 4 (and in some cases in Iteration 3 as
well) left us satisfied and with the opportunity to consider the development process
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Table 5.3: Pthread test results utilising pthread_join together with
pthread_cancel or pthread_exit, showing the geometric mean of roughly 350
test-points measured in nanos.

Thread Thread
Activation | Termination
pthread_cancel | 17371 [ns] 12832 [ns]
pthread_exit 15858 [ns] 18167 [ns]

complete. As mentioned before, we treat the results generated through both these
iterations as final, since despite the major improvement in results we have deterio-
rated correctness levels in Iteration 4.

Besides the standard SMP Linux kernels we showcase the results of execution over
an RT-patched kernel, the ChronOS RT Linux kernel [51]. This is an academic
adaptation of the previously officially-supported CONFIG_PREEMPT RT patch,
implemented by a research group within Virginia Tech. Besides providing preemp-
tion, it also supports lower-latency, "sharper" interrupts. Despite these properties,
the usage of the RT patch did not always yield better results and usually with
deteriorated correctness levels, mainly due to the fact that our test application’s
(OsSimple) generated priorities were equal for all the tasks and hence the ability
to preemptively execute them did not provide us with performance gains. Another
reason is that we did not force higher priorities for our application threads (Figure
5.1) and thus the Linux scheduler treated our application equally to any other sys-
tem process. This had a major impact on the loaded execution results, as illustrated
with the help of the corresponding graphs residing in Appendix C.

A distinct mention has to be made concerning the results generated under load. The
reason we only consider the low-load results relevant to real-life situations is that
this would be the usual execution scenario for an automotive application; even in a
system that would be responsible for more than one tasks, there is practically no sce-
nario under which all the available CPU cores would be fully loaded. All the results
generated from loaded execution are included in Appendix C. Someone can note a
few inconsistencies, most of which are caused by the Linux scheduler’s inability to
spread Pthreads load evenly. Even under a low-load test scenario, our application is
assigned solely to one core, which is constantly fully loaded, sporadically spreading
some low-load threads to run on other cores as well (Figure 5.1). After these types
of observations, we researched for related experiences from other developers, only to
verify that the Linux scheduler has been treated like a "black-box" from the Linux
community and with good reason: as described in [53], there are many instances
when the Linux scheduler fails to perform as expected: there is a situation where
the scheduler treats an eight-core processor as two-groups of four cores, which in
times can lead to one group being overloaded with the other not contributing at all.

Similar occurrences of scientific interest continue to take place during testing under
load: during Iterations 3 and 4, we observe that the average-load results were worse
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than the corresponding full-load timings. This can be due to either the Linux sched-
uler inefficacy to handle load effectively, or because of the scheme that we employed
in order to force a specific percentage of load onto the CPU cores (Section 3.4.4.3),
which is achieved through two Linux programs — additional overhead enforced on
each core.

Another aspect of the testing phase that has been omitted from the Results section
is the MinnowBoard MAX performance outcome. As discussed in Chapter 1, the
Intel Atom CPU of the MinnowBoard is a middle-ware solution between the high-
end host machines and the traditional, single core ECU hardware. The purpose
of testing our application on an embedded alternative was mainly to verify that
it performs well on a system other than the two personal-computer environments
that we utilised to develop it. We also intended to explore the process of creating a
customised Linux distribution, tailored for the intended hardware, and implant our
application as an extra system layer on it.

However due to the complexity of this objective, combined with the lack of previous
experience and adequate time, we ended up running the application on top of a
variety of generic embedded Linux images with different kernel versions (a mobile
and a terminal-based RT image). This translated into more complexity and at least
slightly below the performance levels compared to what we would expect if we im-
plemented our own bitbake layer. The results produced with the two generic kernel
images can be seen in Appendix D.

106, 151 2
0.26 0.10
00:01:55

2822 peos 160. . 0:28.83 ./binaries/gnulinux/0sSimple.elf -f -1 100
2821 peos 6 S . . 0:00.14 ./binaries/gnulinux/0sSimple.elf -f -1 100
2253 peos ] S . . 0:00.81 gnome-terminal

2298 peos . . 0:00.70 htop

Figure 5.1: Application is occupying one core 100%, inside the red square it can
be seen how Linux gives all processes equal "niceness" (Linux Priority)
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Conclusion

This chapter intends to provide the reader with our views on issues we have encoun-
tered and assess whether we achieved to fulfil our project goals in the shape of the
final outcome of our project. The chapter will end with our thoughts about future
work, what directions we feel this project could be expanded towards.

Our initial goal of joining the concepts of AUTOSAR and Linux was achieved by
implementing the OSEK specifications in a Linux environment. The major obstacle
in order to achieve correctness, in terms of the execution scenario, was the uni-core
nature of the OSEK, which was contradicting to the exploitation of our multi-core
CPUs. In order to surpass that, the POSIX library provided the necessary tools to
get the correct synchronisation scheme for our application.

Ensuring the correct behaviour, allowed us to focus on performance. We managed
to generate significantly improved results, especially during our final iteration in
comparison to the set of reference results. Even without utilising the concept of pri-
orities, the contribution of parallel execution with Pthreads to the progress achieved
compared to our initial implementation version was monumental.

Despite this fact, it can be noticed that we were not able to achieve the same magni-
tude of performance gains, always in comparison to the upgrade on the hardware we
used for our purposes; going from a 210 MHz single-core embedded system to a 2.6
GHz multi-core computer does not translate into equivalent performance rewards.
The concluding point behind this is that our test systems, besides our application,
are loaded by multiple sources (i.e. complex network interfaces, fancy GUIs, OS
operations, software updates) that, no matter how hard we tried to exclude while
testing, are considered vital for a standard Linux distribution and hence the OS
treats them accordingly. The low-end ECU hardware performs solely a dedicated
function, executing a predefined sequence of tasks with simpler network interfacing
and higher priority over other non-critical processes.

Another detrimental factor towards achieving greater performance levels, is the exis-
tence of multiple layers of software components that interact with each other in order
to achieve the necessary virtualisation between the hardware and the Pthread level
(3.3). Evidently, this fragmentation into layers causes extra overhead and latencies
that are non-existent in the concept of the classic AUTOSAR software architecture.
In other words, the high-end platform cannot exploit all the computing power, since
it is burdened with additional and more complex software layers to execute.
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6. Conclusion

Seeing how the solution of Iteration 4 improved the performance, allows further
exploration of the possibilities to shift towards a more centralised structure of the
system network in vehicles, instead of the one-ECU-per-function paradigm. Utilis-
ing hardware with multi-core capabilities, shows how the execution times work their
way down toward the microsecond range (adding several operations together), re-
sulting in a tremendous increase in performance as today’s standard signal intervals
are most commonly 5 ms, 10 ms or 100 ms.

Our platform categorises as a soft RT system and thus missing the set deadlines
does not result into any serious harm. However, since this is the first step of a
developing project, we addressed missed deadlines more attentively as this allows
this project to develop into a hard RT system (which is very common when it comes
to automotive features), once the company decides to use our porting as a real-life
ECU software module.

The Yocto Project shows to be a great prospect for embedded Linux developers. Our
embedded alternative was able to perform relatively close to the reference processor
even though we only used generic embedded Linux images with no extra customisa-
tion, due to the lack of time. Presumably, working groups focused on the Adaptive
AUTOSAR development will have the opportunity to customise the basic distribu-
tions provided by Poky to create tailored embedded Linux images to the needs of
the target hardware. Extra attention should be paid to scheduling-related issues
since, according to our test results, the Linux scheduler is the biggest contributor
to unpredictable situations.

All these questions marks around the generic Linux scheduler and its ability to
handle Pthreads consistently, along with the RT behaviour of our application and
how this could be affected by external factors, the interpretation of our generated
results and the concept of the Yocto Project, which is a great prospect for embedded
Linux developers, constitute an enticing foundation for future researchers, both in
academia and in the industry. Undoubtedly, these are very exciting times for the
field of automotive, since the shift on the hardware side will eventually be followed
by a transition to a multi-threaded era for ECU software applications.
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Reference Performance Results

Untitled

Arctic Core v0.0.0.DEV; Built:2015-06-16 09:20:57; Compiler: v850-elf-gcc.exe (GCC)
4.9.1 Opt_Flags:-02

Tasks : 4, Counters: @, Alarms : ©, Resources : 1
CPU: RH850F1H

Cores: 1

RH850G3M Max Freq: 12@Mhz, ICache: Yes (8KB)
Actual Core Freq: 120000000 [Hz]

Test Iterations : 100 (>1 = Assume HOT cache)

Timer Start/stop: 11 (NOT decreased from times below)

ISR1 : 1216/950/2166 [ns] (Entry/Exit/Total)
ISR2 : 1650/1950/3600 [ns] (Entry/Exit/Total)
ActivateTask : 4533 [ns]

TerminateTask : 3266 [ns]

SetEvent : 4066 [ns]

ClearEvent : 650 [ns]

GetResource : 900 [ns] (RES_SCHEDULER)
ReleaseResource : 1666 [ns] (RES_SCHEDULER)

GetResource : 900 [ns] (standard)

ReleaseResource : 1633 [ns] (standard)

DisableAllInterrupts: 283 [ns]
EnableAllInterrupts : 233 [ns]
SuspendAllInterrupts: 283 [ns]
ResumeAllInterrupts : 250 [ns]
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CoreMark Benchmark Results

Intel Core i7

2K performance run parameters for coremark.

CoreMark Size : 666

Total ticks : 28166

Total time (secs): 28.166000

Iterations/Sec : 85209.117376

Iterations : 2400000

Compiler version : GCC4.8.4

Compiler flags : -02 -DMULTITHREAD=8 -DUSE_PTHREAD -DPERFORMANCE_RUN=1

-1rt -lpthread-2.19

Parallel PThreads : 8

Correct operation validated. See readme.txt for run and reporting rules.
CoreMark 1.0 : 85209.117376 / GCC4.8.4 -02 -DMULTITHREAD=8 -DUSE_PTHREAD
-DPERFORMANCE _RUN=1 -1rt -lpthread-2.19 / Heap / 8:PThreads

Intel Core i5

2K performance run parameters for coremark.

CoreMark Size : 666

Total ticks : 17359

Total time (secs): 17.359000

Iterations/Sec : 46085.604009

Iterations : 800000

Compiler version : GCC4.8.4

Compiler flags : -02 -DMULTITHREAD=4 -DUSE_PTHREAD -DPERFORMANCE RUN=1

-1lrt -lpthread-2.19

Parallel PThreads : 4

Correct operation validated. See readme.txt for run and reporting rules.
CoreMark 1.0 : 46085.604009 / GCC4.8.4 -02 -DMULTITHREAD=4 -DUSE_PTHREAD
-DPERFORMANCE_RUN=1 -1rt -lpthread-2.19 / Heap / 4:PThreads

ITT
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C

Performance Results under Load

The remaining graphs from the test results. The CPU was loaded both with roughly
50% load and 100% load.

Iteration 3 will be displayed first, then iteration 4. They are ordered so that each
metric can be compared between the two host machines.
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i7 - Low Load Activation
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C. Performance Results under Load
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D

MinnowBoard M AX Performance
Results

The test results from the embedded alternative, MinnowBoard MAX, for the two
kernels that we used to test our application on: the mobile Sato and an RT patched
Linux minimal image.
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Pthread Test Source Code

<pthread.h>
<stdio.h>
<stdlib.h>
<time.h>
<stdint.h>

void *newborn(void *ptr);

typedef unsigned int TimerTick;
struct timespec t;
TimerTick CurrentTicks;

unsigned

int start, middle, stop;

long MeanActiv = 0;
long MeanTermin = O;

TimerTick Timer_ GetTicks(void) {

clock_gettime (CLOCK_REALTIME, &t);

CurrentTicks = t.tv_nsec;
return CurrentTicks;

void *newborn(void *ptr) {

int *state = 0;

middle = Timer GetTicks();

//pthread_cancel (state);

pthread_exit(state);

int main

(int argc, char *argv[]) {

int i, err;
pthread_t threadil;

for (i = 0; i < 200; i++) {

start = Timer GetTicks();

err = pthread create(&threadl, NULL, newborn,

NULL) ;
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pthread_join(threadl, NULL);
stop = Timer GetTicks(Q);

MeanActiv += (middle - start);

MeanTermin += (stop - middle);

printf("Mean Activation Time: %1d [ns]\n", MeanActiv/200);
printf("Mean Termination Time: %1d [ns]\n", MeanTermin/200);
return O;
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