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Microscopic origins of the terahertz carrier
relaxation and cooling dynamics in graphene
Momchil T. Mihnev1,2,*, Faris Kadi3,*, Charles J. Divin1,2, Torben Winzer3, Seunghyun Lee1,4, Che-Hung Liu1,

Zhaohui Zhong1, Claire Berger5,6, Walt A. de Heer5,7, Ermin Malic3,8, Andreas Knorr3 & Theodore B. Norris1,2

The ultrafast dynamics of hot carriers in graphene are key to both understanding of funda-

mental carrier–carrier interactions and carrier–phonon relaxation processes in two-dimen-

sional materials, and understanding of the physics underlying novel high-speed electronic and

optoelectronic devices. Many recent experiments on hot carriers using terahertz spectro-

scopy and related techniques have interpreted the variety of observed signals within

phenomenological frameworks, and sometimes invoke extrinsic effects such as disorder.

Here, we present an integrated experimental and theoretical programme, using ultrafast time-

resolved terahertz spectroscopy combined with microscopic modelling, to systematically

investigate the hot-carrier dynamics in a wide array of graphene samples having varying

amounts of disorder and with either high or low doping levels. The theory reproduces the

observed dynamics quantitatively without the need to invoke any fitting parameters,

phenomenological models or extrinsic effects such as disorder. We demonstrate that the

dynamics are dominated by the combined effect of efficient carrier–carrier scattering, which

maintains a thermalized carrier distribution, and carrier–optical–phonon scattering, which

removes energy from the carrier liquid.
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I
n graphene, a linearly polarized ultrafast optical pulse
excitation gives rise to an initially anisotropic distribution of
carriers at high energies1,2. Efficient carrier–carrier and

carrier–phonon interactions quickly relax the hot carriers to an
isotropic thermal distribution, which is then followed by carrier
cooling as energy is transferred from the carrier population to the
lattice3–7. A schematic illustration of these processes is given in
Fig. 1 (see Supplementary Note 1). A variety of dynamical pheno-
mena, such as the appearance of significant carrier multiplication
and transient optical gain, have been theoretically predicted6,8–10

and experimentally demonstrated6,11,12. The dynamics observed
by a time-domain terahertz (THz) probe pulse, however, exhibit a
number of features that have been interpreted in the framework
of phenomenological models, but as yet have not been
understood quantitatively or qualitatively in terms of funda-
mental microscopic many-particle processes. For example, the
observed photoinduced THz conductivity may be either positive
or negative. The positive photoinduced THz conductivity has
been viewed in the context of simple Drude models as stemming
from enhanced free-carrier intraband absorption upon photo-
excitation13,14, while the negative photoinduced THz conductivity
has been attributed variously to stimulated THz emission15,
enhanced carrier scattering with optical phonons, surface optical
phonons or charge impurities16–18 and carrier heating19–21.

It is generally understood that the initial cooling of hot
thermalized carriers proceeds via the emission of high-energy
optical phonons (:oopE200 meV). Once the carrier temperature
is sufficiently below the optical phonon energy, the cooling
should proceed via the emission of low-energy acoustic phonons
(:oacE4 meV). For graphene samples with low doping density,
the cooling of hot carriers near the Dirac point is expected to be
very slow due to the vanishing density of states, the energetic
mismatch with the energy of optical phonons, and the weak
scattering with acoustic phonons4,22,23. The slowest observed
cooling times, however, have been on the order of hundreds of
picoseconds14, much shorter than the few nanoseconds expected
from carrier–acoustic–phonon scattering in ideal graphene22,23,
leading to proposals that the cooling is dominated by disorder-
assisted electron–phonon (supercollision) scattering24. The
central role of disorder in these models implies that the
underlying enhancement of carrier–acoustic–phonon scattering
should strongly depend on the quality and the degree of disorder
of the particular graphene sample. Hence, both a methodical
experimental investigation and a microscopic theoretical treat-
ment are markedly needed to provide a rigorous foundation for
understanding the THz dynamics of hot carriers in graphene.

In the following, we present the results of a systematic
experimental study of the THz carrier dynamics in a wide variety
of graphene samples, using ultrafast time-resolved THz spectro-
scopy25, in which we vary the graphene fabrication method, the
number of graphene layers and their stacking orientation,
the degree of disorder, the Fermi level, the carrier temperature,
the substrate temperature and the type of underlying substrate
to determine the dominant mechanisms responsible for the
hot-carrier relaxation and cooling dynamics for different
graphene material parameters and under different experimental
conditions. The experimental programme is complemented by
the development of a theoretical model26,27 based on the density-
matrix formalism that provides microscopic access to the time-
and momentum-resolved dynamics of the carrier occupation, the
phonon population for different optical and acoustic phonon
modes, and the microscopic polarization determining the optical
excitation of a disorder-free graphene system. An essential
component of the theory is that it incorporates explicitly the
time-dependent response of the system to the THz probe pulse;
the macroscopic intraband current density induced by the THz

probe, and hence the resulting dynamic THz response, is
calculated by microscopically accounting for the full time- and
momentum-dependent carrier–carrier and carrier–phonon
interactions. We find that this first-principles microscopic
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Figure 1 | Hot-carrier relaxation and cooling dynamics in graphene with

various doping densities. (a,b) Hot-carrier relaxation and cooling dynamics

in n-type (a) and p-type (b) highly doped graphene (step I). Initially, the

optical pump pulse injects hot non-equilibrium carriers at high energies

(step II). The hot electrons and holes thermalize within the conduction and

valence bands, respectively, due to very efficient intraband carrier–carrier

scattering processes (step III). As the hot carriers relax to lower energies,

interband Auger recombination processes become allowed that quickly

merge the separate electron and hole quasi-Fermi levels and lead to a single

uniform hot-carrier Fermi-Dirac distribution within B100–200 fs after

photoexcitation3,6,7 (step IV). The hot carriers cool further via optical

phonon emission facilitated by very efficient carrier–carrier rethermalization

in highly doped graphene. (c) Hot-carrier relaxation and cooling dynamics

in undoped (very lightly doped) graphene (step I). Initially, the optical pump

pulse injects hot non-equilibrium carriers at high energies (step II). In

contrast to a and b interband impact ionization processes are possible and

lead for a moderate excitation regime to significant carrier multiplication in

the conduction band. Similar to a and b as the hot carriers relax to lower

energies, interband Auger recombination processes become allowed (step

III) that lead to a single uniform hot-carrier Fermi-Dirac distribution within

B100–200 fs after photoexcitation3,6,7 (step IV). The hot carriers cool

further via optical phonon emission, which becomes increasingly inefficient

at low carrier temperatures due to the small phase space near the Dirac

point as the high-energy tail of the hot-carrier distribution diminishes

asymptotically. At low carrier temperatures, acoustic phonon emission

and/or other slow cooling processes can also have a contribution to

hot-carrier cooling in some graphene samples22–25.
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approach explains completely all results without the need for any
fitting parameters, phenomenological models or extrinsic effects
such as disorder, which strongly suggests that the role of
supercollisions in the hot-carrier dynamics has been largely
overstated in the literature24,28,29. Moreover, the theory allows us
to go beyond idealized Drude models for the dynamic THz
response, and determine the limitations of such simplified
models13–21. This work establishes that the hot-carrier dyna-
mics are governed by the coupling of extraordinarily efficient
carrier–carrier and carrier–optical–phonon interactions. This is
in sharp contrast to electrical transport, which in some graphene
samples is dominated by interactions with defects, charge
impurities, breaks and ripples (that is, extrinsic effects) since
carriers move at the Fermi energy30–33.

Results
Graphene samples. The specific graphene samples in this study
include multilayer epitaxial graphene (MEG), which is grown on
the C-face of single-crystal 4H-SiC(000�1) substrates by thermal
decomposition of Si atoms34,35, single-crystal chemical-vapor-
deposited (CVD) graphene (sCVDG), which is grown on oxygen-
rich copper foil into large individual single crystals exceeding
hundreds of micrometres in size36, and polycrystalline CVD
graphene (pCVDG), which is grown on regular copper foil into
large continuous layers with domain sizes on the order of
hundreds of nanometres37. The as-grown CVD graphene samples
are transferred to various substrates for the THz measurements.
Because the different graphene samples are synthesized using
completely different techniques, their doping density and degree
of disorder are also very different (see Methods section), which
allows us to observe the possible impact of the Fermi level and the
degree of disorder on the dynamic THz response.

Ultrafast time-resolved THz spectroscopy experiment. To study
the dynamic THz response of graphene, we utilize ultrafast time-
resolved THz spectroscopy25,38,39, which has established itself as a
powerful all-optical experimental technique for directly probing
the relaxation and cooling dynamics of photoexcited carriers
(see Methods section). A 60-fs ultrafast optical pump pulse at
800 nm wavelength injects hot carriers into the graphene sample.
The dynamic THz response is monitored by a single-cycle THz
probe pulse at a variable time delay after the optical pump. The
transmitted THz probe is detected using time-domain electro-
optic sampling and frequency-domain THz spectra are obtained
via Fourier transformation of the time-domain THz electric field.
The THz carrier dynamics are acquired by monitoring the THz
transmission only at the peak of the THz probe pulse, while
varying the pump–probe delay. The differential THz transmission
signal, Dt/t, is the change in the THz probe transmission through
the graphene sample due to photoexcitation by the optical pump,
normalized to the THz transmission without photoexcitation.

We begin by summarizing the main features of the data. First,
we consider MEG, sCVDG and pCVDG samples having high
doping density ( eFj jB100–400 meV). Figure 2a,b shows repre-
sentative differential THz transmission signals as a function of
pump–probe delay, for variable pump fluence and for variable
substrate temperature, respectively, for a MEG sample with three
layers. The secondary peak in the Dt/t signal at B7 ps is due to a
round-trip reflection of the optical pump inside the substrate that
photoexcites additional carriers. Similar results are obtained
for the other two types of graphene samples (see Supple-
mentary Figs 1–5, Supplementary Table 1 and Supplementary
Notes 2–4). Based on extensive measurements on many graphene
samples under various experimental conditions, we find that the
THz carrier dynamics in all highly doped graphene samples are

strikingly similar. The Dt/t signal is positive under all experi-
mental conditions, which corresponds to a pump-induced
increase of the THz transmission or a decrease of the THz
absorption.

Phenomenological fits to the data in Fig. 2a,b (dashed black
lines) reveal that the differential THz transmission follows closely
a mono-exponential relaxation under all experimental conditions.
A summary of the extracted carrier relaxation times as a function
of pump fluence and substrate temperature for the highly doped
graphene samples is presented in Fig. 3a,b. We note that the
relaxation times of all highly doped graphene samples are weakly
dependent on the pump fluence and completely independent of
the substrate temperature. In addition, they are very similar in
value and in the range of B1–3 ps with sample-to-sample
variation within B20–30% despite the wide range of disorder
present in the array of samples studied. On average, MEG
samples exhibit slightly longer relaxation times than sCVDG and
pCVDG samples, which can be attributed to a degree of disorder
arising from charge impurities, substrate roughness, wrinkling
and breaking of the transferred CVDG samples that can provide
additional parallel channels for carrier cooling. We note, however,
that the relaxation times of some CVDG samples can approach or
exceed these of MEG samples, indicating that disorder-assisted
electron–phonon (supercollision) cooling24,28,29 is not the
dominant cooling mechanism in our high-quality graphene
samples, but generally provides at most only a modest correction.

Figure 2c,d shows the THz carrier dynamics calculated within
the microscopic theory for disorder-free highly doped graphene
( eFj j ¼ 300 meV) under similar experimental conditions
(see Methods section) and Fig. 3c,d shows the calculated carrier
relaxation times to directly compare with the experiments. We
observe that the theory is in excellent agreement with experiment,
and reproduces the weak pump fluence dependence and the
complete substrate temperature independence. In sharp contrast,
the supercollision model24,28,29 totally fails to capture the
substrate temperature independence. The measured THz carrier
dynamics can be completely reproduced neglecting carrier–
acoustic–phonon scattering in the microscopic theory. Hence, the
hot-carrier dynamics are directly the result of an interplay
between efficient carrier–carrier and carrier–optical–phonon
scattering; optical phonon emission removes energy from the
high-energy tail of the hot-carrier distribution, which is
maintained by efficient carrier–carrier rethermalization. The
physical reason the differential THz transmission of highly
doped graphene is independent of the substrate temperature is
that the equilibrium THz transmission itself is insensitive to it,
when the substrate temperature is far below the Fermi
temperature. The slight increase of the relaxation times with
increasing pump fluence is due to the re-absorption of hot optical
phonons generated during the initial carrier thermalization.

The THz carrier dynamics in graphene samples having
very low doping density are very different. We consider
specifically MEG samples in which only the first few layers
closest to the underlying SiC substrate have high doping density
( eFj jB100–400 meV) and the large number of top layers have
very low doping density ( eFj jB10 meV). In these MEG samples,
the many top lightly doped layers completely dominate the
measured THz carrier dynamics. Figure 4a,b shows representative
differential THz transmission signals for variable pump fluence
and for variable substrate temperature, respectively, for a MEG
sample with 63 layers. The secondary dip in the Dt/t signal at
B7 ps is again due to a round-trip substrate reflection of the
optical pump. In sharp contrast to the high doping case, the Dt/t
signal is negative under all experimental conditions, which
corresponds to a pump-induced decrease of the THz transmission
or an increase of the THz absorption.
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Phenomenological fits to the data in Fig. 4a,b (dashed black
lines) reveal that the differential THz transmission evolves from a
faster mono-exponential relaxation at room temperature to a
slower bi-exponential relaxation at cryogenic temperatures. A
summary of the extracted carrier relaxation times as a function of
pump fluence at room temperature for two MEG samples with 35
and 63 layers is presented in Fig. 5a. We note that the relaxation
times at room temperature do not depend on the number of
layers, which supports the interpretation that the measured THz
carrier dynamics are dominated by the many top lightly doped
layers. This conclusion is further supported by the fact that the
maximum Dt/t signal scales roughly linearly with the number of
layers (see Supplementary Figs 3–5 and Supplementary Notes
3–4). In addition, the relaxation times of lightly doped graphene
samples are in the range of B4–7 ps, which is longer than the
relaxation times of highly doped graphene samples (see Fig. 3a);
this is due to a reduced efficiency of carrier–carrier scattering,
which scales with carrier density. For cryogenic temperatures, we
extract both short and long carrier relaxation times from the
bi-exponential fits, which we associate with two distinct cooling
mechanisms. As explained below, the fast carrier relaxation
component on a timescale of tens of picoseconds is fully
accounted for by the combined effect of carrier–carrier and
carrier–optical–phonon scattering in the absence of disorder.
Figure 5b shows the short relaxation times as a function of
substrate temperature for variable pump fluence for the MEG
sample with 63 layers. We note that the short relaxation times of

all lightly doped graphene samples are weakly dependent on the
pump fluence, but strongly dependent on the substrate
temperature.

Figure 4c,d shows the THz carrier dynamics calculated
within the microscopic theory for disorder-free undoped
graphene ( eFj j ¼ 0 meV) under similar experimental conditions
(see Methods section) and Fig. 5c,d shows the calculated carrier
relaxation times. The theory captures again all trends observed in
the experiments. As in the high-doping case, the hot-carrier
relaxation occurs via the interplay between efficient carrier–
carrier and carrier–optical–phonon scattering. In contrast to the
high-doping case, however, the relaxation times increase
significantly with decreasing substrate temperature. This beha-
viour for undoped graphene is due to the substrate temperature
dependence of the equilibrium THz transmission and not the
dynamic non-equilibrium part of the differential THz transmis-
sion; that is, the initial Fermi surface, where the THz probe pulse
acts on the carriers, strongly depends on the substrate
temperature, when it is comparable to the Fermi temperature.
Similar to the high-doping case, the theory shows a slight increase
of the relaxation times with increasing pump fluence that can be
traced back to hot phonon effects.

At low substrate temperatures, the THz carrier dynamics in the
MEG samples with many lightly doped layers relax on a timescale
exceeding hundreds of picoseconds, corresponding to the slow
carrier relaxation component in the bi-exponential decay. As the
high-energy tail of the hot-carrier distribution diminishes

−5 0 5 10 15 20

0

0.01

0.02

0.03

−5 0 5 10 15 20

0

0.01

0.02

0.03

0.04

Pump−probe delay (ps)

10 K
30 K
50 K

100 K
150 K
200 K
250 K
290 K

0 1 2 3 4 5
0

0.1

0.2

0.3

Pump−probe delay (ps)

0 1 2 3 4 5
0

0.1

0.2

0.3

Pump−probe delay (ps)

50 K
100 K
200 K
300 K

Δt
 / 

t

Pump−probe delay (ps)

90 μJ cm−2

80 μJ cm−2

70 μJ cm−2

60 μJ cm−2

50 μJ cm−2

40 μJ cm−2

30 μJ cm−2

20 μJ cm−2

10 μJ cm−2

5 μJ cm−2

2 μJ cm−2

1 μJ cm−2

Δt
 / 

t

80 μJ cm−2

50 μJ cm−2

25 μJ cm−2

12.5 μJ cm−2

Δt
 / 

t (
a.

u.
)

Δt
 / 

t (
a.

u.
)

a b

c d

Figure 2 | THz carrier dynamics in graphene with high doping density. (a,b) Experimental differential THz transmission, Dt/t, as a function of pump–

probe delay recorded at a substrate temperature of 300 K for a few different pump fluences (a) and at a pump fluence of 60.0mJ cm� 2 for a few different

substrate temperatures (b) for a highly doped MEG sample with three layers. The THz carrier dynamics follow a fast mono-exponential relaxation at all

substrate temperatures and all pump fluences (dashed black lines). (c,d) Theoretical differential THz transmission, Dt/t, as a function of pump–probe delay

calculated within the microscopic theory at a substrate temperature of 300 K for a few different pump fluences (c) and at a pump fluence of 12.5 mJ cm� 2

for a few different substrate temperatures (d) for disorder-free highly doped graphene ( eFj j ¼ 300 meV). Experiment and theory are in excellent agreement

under all conditions.
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asymptotically, a different cooling mechanism becomes dominant
below B200 K. We have analysed the physical origin of this
mechanism in a separate publication25. In particular, the THz
carrier dynamics become dependent on the number of layers in
the MEG sample, indicating that interlayer thermal coupling
effects are important.

Microscopic theory. We now turn to a discussion of the
theoretical approach used to calculate the dynamic THz
response described above (see Methods section, Supplementary
Fig. 6 and Supplementary Note 5). The theory is an extension
of the methods developed previously by some of the
authors1,2,5,9,11,12,26,27, and is extended in this work to rigorously
include the effect of the time-dependent THz probe electric field.
By selectively switching on and off the different scattering
processes in the model, we find that the acoustic phonon modes
have negligible contribution to the observed THz carrier
dynamics on the timescale of tens of picoseconds; the observed
dynamics are fully accounted for by the combined effect of
carrier–optical–phonon scattering (which transfers energy from
the carrier liquid to the lattice) and carrier–carrier scattering
(which continuously rethermalizes the carrier population as high-
energy carriers lose their energy to the lattice). As seen in the
comparisons between experiment and theory above, this
first-principles microscopic approach explains completely
all experimental results without the need for any fitting

parameters, phenomenological models or extrinsic effects such
as disorder.

The standard Drude model, which is often employed as a
phenomenological basis for the interpretation of graphene
transport and optical data, can be obtained by assuming a
constant time- and momentum-independent scattering rate in the
microscopic theory (see Methods section and Supplementary
Note 6). It is thus interesting to consider to what extent the Drude
model can account for the observed dynamics. Figure 6a shows
the pump-induced temporal evolution of the carrier temperature
T(t) and the Fermi level eF(t) obtained by solving the full
graphene Bloch equations within this approximation for low
(12.5 mJ cm� 2 (red line)) and high (80 mJ cm� 2 (blue line))
photoexcitation, for disorder-free highly doped graphene
( eFj j ¼ 300 meV). For very high carrier temperature, as one has
at early time delay and high fluence, the calculated Dt/t signal is
negative, in contradiction to the experimental observation that
the Dt/t signal is positive at all time delays for highly doped
graphene samples. Only after the carrier temperature drops below
B2,200 K does the Dt/t signal become positive. If one makes the
further approximation (as is often done in Drude models) that
the only effect of the optical pump is to heat the carriers, that is,
the Fermi level is assumed to remain constant, than the calculated
Dt/t signal is negative at all time delays (dashed black line in
Fig. 6a). The full microscopic theory including the transient
carrier temperature T(t), the transient Fermi level eF(t) and the
explicitly time- and momentum-dependent scattering rates
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Figure 3 | THz carrier relaxation times in graphene with high doping density. (a,b) Carrier relaxation times extracted from fits to experimental

differential THz transmission, Dt/t, as a function of pump fluence at a substrate temperature of 300 K (a) and as a function of substrate temperature at a

pump fluence of 60.0mJ cm� 2 (b) for highly doped MEG, sCVDG and pCVDG samples. (c,d) Carrier relaxation times extracted from fits to theoretical

differential THz transmission, Dt/t, as a function of pump fluence for a few different substrate temperatures (c) and as a function of substrate temperature

for a few different pump fluences (d) for disorder-free highly doped graphene ( eFj j ¼ 300 meV). The theory accurately reproduces the magnitude of the

relaxation times and the trends with pump fluence and substrate temperature observed in the experiments.
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Gin=out
lk tð Þ, on the other hand, completely reproduces all the

features of the experimental data under all conditions. Drude
models are not sufficient to consistently explain all the data,
particularly the behaviour at higher pump fluence, for which the
short time dynamics would exhibit a negative Dt/t signal, unless
ad hoc phenomenological parameters such as a carrier heating
efficiency19,20 or a non-monotonic carrier-temperature-
dependent Drude weight21 are added to the model. We
conclude that a Drude model approximation to the full
microscopic theory can provide only a semi-qualitative
framework for interpreting experimental data in highly doped
and undoped graphene samples at low photoexcitation; however,
the full microscopic theory is required to explain the data
consistently for all photoexcitation levels.

The microscopic theory also allows us to address an
important question in hot-carrier physics, namely, the energy
dependence of the carrier scattering rate (inverse time), defined
here as the exponential decay of the carrier occupation
(see Methods section). For weak THz probe excitations (as is
the case here), the Boltzmann equation reveals a direct relation
between the microscopic scattering rates and the exponential
decay of the carrier occupation. By fitting the numerically
calculated hot-carrier dynamics, we obtain the energy relaxation
time of the photoexcited carriers, named the carrier scattering
time. Figure 6b shows the calculated carrier scattering time t eð Þ
as a function of the excess carrier energy e for disorder-free
undoped graphene ( eFj j ¼ 0 meV) at a substrate temperature of
300 K. We observe that the carrier scattering time is precisely

inverse to the carrier energy, t eð Þ¼b= ej j (with bE0.9 eV ps),
over a very broad energy range ( ej jB0.2–1.5 eV) in agreement
with previous experimental studies on MEG40 and graphite41,42.
This behaviour is a direct consequence of the linear density of
states and is therefore independent of the substrate temperature.
For highly doped graphene, a deviation from the strictly
inverse relation can be expected for eEeF. However, our
microscopically determined energy dependence of the carrier
scattering time is in sharp contrast with the linear relation on
the carrier energy, t eð Þ¼a ej j (refs 30,31), that has been inferred
from electrical transport measurements in some graphene
samples. This is attributed to the fact that in electrical
transport measurements carriers have energies close to the
Fermi energy, and carrier scattering in these graphene samples is
dominated by extrinsic mechanisms such as defects, charge
impurities, breaks and ripples32,33 likely introduced during
the multistep synthesis, transfer and fabrication processes.
Transferred graphene (for example, on SiO2) has local spatial
charge inhomogeneities under overall charge-neutral conditions
due to disorder, charge impurities or surface corrugation43–45,
which obscure the low-energy graphene band structure and
prevent one from studying the true graphene physics near the
Dirac point. Such effects can be minimized by placing the
graphene on ultra-smooth substrates such as hexagonal BN
(h-BN)46 or by suspending it47. The lightly doped layers in MEG
are naturally protected, which makes them an ideal graphene
system for studying the carrier dynamics within a few meV of
the Dirac point.
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Figure 4 | THz carrier dynamics in graphene with low doping density. (a,b) Experimental differential THz transmission, Dt/t, as a function of pump–probe

delay recorded at a substrate temperature of 300 K for a few different pump fluences (a) and at a pump fluence of 23.4mJ cm� 2 for a few different

substrate temperatures (b) for a lightly doped MEG sample with 63 layers. The THz carrier dynamics evolve from a faster mono-exponential relaxation at

room temperature to a slower bi-exponential relaxation at cryogenic temperatures (dashed black lines). (c,d) Theoretical differential THz transmission,

Dt/t, as a function of pump–probe delay calculated within the microscopic theory at a substrate temperature of 300 K for a few different pump fluences

(c) and at a pump fluence of 1.5mJ cm� 2 for a few different substrate temperatures (d) for disorder-free undoped graphene ( eFj j ¼0 meV). Experiment and

theory are in excellent agreement under all conditions.
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Finally, we consider the correlation between the differential
THz transmission and the carrier temperature dynamics. In the
microscopic theory, the dynamic THz response depends on
the transient carrier temperature, the transient Fermi level
and the time- and momentum-dependent scattering rates
(see Methods section). The inset of Fig. 6b shows a direct
comparison between the differential THz transmission and the
differential carrier temperature (where the substrate temperature
is subtracted) calculated within the microscopic theory for
disorder-free undoped graphene ( eFj j ¼ 0 meV) at a substrate
temperature of 300 K and a pump fluence of 1.5 mJ cm� 2. We see
that the differential THz transmission does not exactly follow the
carrier temperature dynamics and, in particular, the relaxation
times extracted from the decay of the Dt/t signals are not exactly
equal to the electronic cooling times. In sharp contrast, a simple
Drude model, in which only the carrier temperature is assumed to
be time-dependent, would predict incorrectly that the two
quantities are proportional13,14,24. Hence, our microscopic
approach clearly reveals that the transient carrier temperature,
the Fermi level shifts and the time- and momentum-dependent
scattering rates are all essential to capture the dynamic THz
response correctly.

Discussion
In summary, we have studied the hot-carrier relaxation and
cooling dynamics in highly doped and undoped (very lightly
doped) graphene samples synthesized using a wide array of
methods, using ultrafast time-resolved THz spectroscopy

combined with microscopic modelling. The THz carrier
dynamics depend critically on the Fermi level, and are
quantitatively explained using a microscopic density-matrix
theory of carrier–carrier and carrier–phonon interactions, with-
out the need to invoke any free fitting parameters, phenomen-
ological models or extrinsic effects such as disorder; the theory
accounts explicitly for the time-dependent response of the hot
carriers to the THz probe field. The hot-carrier dynamics are
governed by the interplay of efficient carrier–carrier and carrier–
optical–phonon scattering, while carrier–acoustic–phonon scat-
tering is found not to be important on picosecond timescales.

Methods
Graphene samples synthesis, fabrication and characterization. To date a
number of techniques have been demonstrated for the synthesis of high-quality
graphene including exfoliation, epitaxial and CVD growth methods. We report
here comprehensive experiments on graphene synthesized using three different
methods. The first type is MEG, which is grown on the C-face of single-crystal 4H-
SiC(000�1) substrates by thermal decomposition of Si atoms34,35. The MEG grows
conformally across atomic terraces on the SiC substrate resulting into large
continuous layers with domain sizes exceeding hundreds of micrometres in size. By
carefully tuning the chemical recipe, MEG samples having from a few up to a
hundred layers can be reliably grown, and the fluctuations in the homogeneity of
the MEG samples are estimated not to exceed one layer. The individual layers in
MEG are electronically decoupled due to their unique rotational stacking, and each
layer exhibits a single graphene layer Dirac cone near the Dirac point, so that MEG
behaves in essence as multilayer graphene48,49. The second type is sCVDG, which
is grown on oxygen-rich copper foil into large individual single crystals exceeding
hundreds of micrometres in size36. The third type is pCVDG, which is grown on
regular copper foil into large continuous layers with domain sizes on the order of
hundreds of nanometres37.
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Figure 5 | THz carrier relaxation times in graphene with low doping density. (a,b) Carrier relaxation times extracted from fits to experimental differential

THz transmission, Dt/t, as a function of pump fluence at a substrate temperature of 300 K (a) and as a function of substrate temperature for a few different

pump fluences (b) for lightly doped MEG samples. (c,d) Carrier relaxation times extracted from fits to theoretical differential THz transmission, Dt/t, as a

function of pump fluence at a substrate temperature of 300 K (c) and as a function of substrate temperature for a few different pump fluences (d) for

disorder-free undoped graphene ( eFj j ¼0 meV). The theory accurately reproduces the magnitude of the relaxation times and the trends with pump fluence

and substrate temperature observed in the experiments.
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By carefully tuning the chemical recipe, both mono- and bi-layer pCVDG samples
can be reliably grown.

The as-grown CVD graphene samples are transferred from the copper foils to
various substrates including C-cut single-crystal sapphire (Alfa Aesar) and
amorphous polyethylene (TOPAS cyclic olefin copolymer, TOPAS Advanced

Polymers) for the ultrafast time-resolved THz spectroscopy measurements. The
exact same transfer process is used for both sCVDG and pCVDG samples. One
side of the copper samples is spin coated with 950PMMA A2 (MicroChem)
photoresist as a protection layer and the other side is exposed to oxygen plasma to
etch away the undesired graphene. The samples are left in ammonium persulfate
solution (0.025 g ml� 1) for 12 h to dissolve the copper foil underneath. Then, the
graphene films with PMMA coating are transferred onto the prepared clean
substrates and are left to dry for 12 h. The final step is to use acetone for removing
the PMMA coating on top and isopropyl alcohol for rinsing the samples.

Because the different graphene samples are synthesized using completely
different techniques, their doping density and degree of disorder are also very
different, which allows us to study the dynamic THz response for different Fermi
levels and different degrees of disorder. The MEG samples have a gradient doping
density profile, where the first few layers closest to the underlying SiC substrate are
highly n-doped ( eFj jB100–400 meV) due to electron transfer from the interface,
and the Fermi level in subsequent layers decreases exponentially away from the
substrate to around eFj jB10 meV (refs 34,35,50,51). The CVDG samples are highly
p-doped ( eFj jB200–400 meV) due to water vapour adsorption from the
environment52. Thus, we can directly compare the dynamic THz response of
graphene with Fermi level far above, far below and very close to the Dirac point.

The graphene degree of disorder is in general not straightforward to quantify,
but it can be estimated from various characterization techniques including high-
resolution angle-resolved photoemission spectroscopy (ARPES), high-resolution
scanning tunnelling microscopy, Raman spectroscopy and electrical transport
measurements. Raman spectroscopy measurements of all three types of our
graphene samples show negligible D peaks suggesting extremely low
disorder36,37,53,54. The width of the Dirac cone in the graphene band structure
directly measured by ARPES can provide a more sensitive measure for the long-
range coherence of graphene55. Epitaxial graphene exhibits a very sharp, narrow
and well-defined Dirac cone indicating very smooth and homogenous graphene
films with extremely high quality. On the other hand, exfoliated and especially
CVD graphene transferred to an arbitrary substrate exhibits a rather smeared and
broad Dirac cone indicating wrinkled and non-homogenous graphene films. From
the width of the Dirac cone, we can extract a correlation length, which for epitaxial
graphene exceeds B50 nm, limited only by the instrument resolution, but is
expected to be much longer55. The correlation length for exfoliated and CVD
graphene is B1–3 nm (ref. 55). A similar disparity in the long-range coherence is
inferred also from electrical transport and magneto-optical spectroscopy
measurements of the graphene carrier mobility. The carrier mobility of epitaxial
graphene has been reported to exceed B250,000 cm2 V� 1 s� 1 close to the
theoretical value for disorder-free graphene34,35. On the other hand, the carrier
mobilities of exfoliated and CVD graphene transferred to an arbitrary substrate
range from a few thousands to tens of thousands dominated by interactions with
defects, charge impurities, breaks and ripples. The highest values of up to
B200,000 cm2 V� 1 s� 1 are achieved by minimizing these extrinsic scattering
mechanisms including placing the graphene on ultra-smooth substrates such as
h-BN46 or suspending it47. Thus, we can also directly investigate the impact of
disorder on the dynamic THz response of graphene.

Ultrafast time-resolved THz spectroscopy on graphene. To study the dynamic
THz response of graphene, we utilize ultrafast time-resolved THz spectro-
scopy25,38,39. Our laser system consists of a Ti:Sapphire oscillator (Mira 900-F,
Coherent) followed by a Ti:Sapphire regenerative amplifier (RegA 9050, Coherent)
and produces ultrafast optical pulses with a centre wavelength of 800 nm, a pulse
width of B60 fs and a repetition rate of 250 kHz. A portion of the laser beam is
quasi-collimated at the sample position with an intensity spot size diameter of
B1,600 mm, and optically injects hot carriers in the graphene sample. A second
portion of the laser beam illuminates a low-temperature-grown GaAs
photoconductive emitter (Tera-SED 3/4, Gigaoptics)56,57 generating a broadband
single-cycle THz pulse which is collimated and focused on the graphene sample
with an intensity spot size diameter of B500mm to probe the dynamic THz
response. The transmitted portion of the THz probe is detected by using time-
domain electro-optic sampling in a 1-mm-thick ZnTe crystal58–60 and a pair of
balanced Si photodiodes. The electrical signal is modulated by a mechanical
chopper, placed in either the optical pump or the THz probe arm, and recorded by
using a conventional lock-in amplifier data acquisition technique. The graphene
sample is mounted inside a liquid helium continuous flow cryostat (ST-100, Janis)
to vary the substrate temperature from 10 to 300 K. The time delays between the
optical pump, the THz probe and the sampling pulse are controlled by two
motorized stages. All THz optics is surrounded by an enclosure purged with
purified nitrogen gas to minimize water vapour absorption. The detection
bandwidth of the system is in the range of B0.2–2.5 THz and the temporal
resolution of the measurements is limited by the duration of the THz probe pulse
to the sub-picosecond timescale. The experimental error is due primarily to long-
term drift of the optomechanical components and the ultrafast Ti:Sapphire laser
system, and is estimated not to exceed B5%.

Microscopic theory calculation of the dynamic THz response of graphene. The
dynamic THz response due to an optical excitation can be microscopically
addressed by evaluating the graphene Bloch equations, which describe the coupled
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Figure 6 | Microscopic theory calculation of the carrier dynamics and the

carrier scattering time in graphene. (a) Differential THz transmission,

Dt/t, expected from a Drude model with a constant scattering rate for an

initial carrier temperature of 300 K and a Fermi level of 300 meV as a

function of the transient carrier temperature T(t) and the transient Fermi

level eF(t). The solid black line separates regions of positive and negative

Dt/t signal. The dashed black line shows the possible differential THz

transmission under the assumption that the Fermi level remains constant.

The solid red (blue) line shows the path through the T(t)-eF(t)-map for a

pump fluence of 12.5 mJ cm� 2 (80mJ cm� 2) obtained from the solution of

the full graphene Bloch equations for the pump-induced dynamics. The first

point reflects the system 0.2 ps after the optical pump pulse, when the

carrier distribution can be represented by a single uniform hot-carrier

Fermi-Dirac distribution. The time delay between two points is 0.5 ps,

respectively. The figure illustrates the fact that the full microscopic theory is

required to explain the experimental data consistently for all photo-

excitation levels. (b) Carrier scattering time t eð Þ as a function of excess

carrier energy e calculated within the microscopic theory for disorder-free

undoped graphene ( eFj j ¼0 meV) at a substrate temperature of 300 K. The

calculated values are precisely inverse to the carrier energy, t eð Þ¼b= ej j
(with bE0.9 eVps). Inset: comparison between the normalized differential

THz transmission and the normalized differential carrier temperature

dynamics calculated within the microscopic theory for disorder-free

undoped graphene ( eFj j ¼0 meV) at a substrate temperature of 300 K and

a pump fluence of 1.5mJ cm� 2. The two time-dependent quantities relax on

similar, but not exactly equal timescales.
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dynamics of the carrier occupation rlk at the wave vector k in conduction (l¼ c)
and valence band (l¼ v), the microscopic polarization pk, and the phonon
population nj

q at the momentum q for different optical and acoustic phonon
modes j (ref. 5):

d
dt

rlk ¼ �
e0

‘
E � rkrlk þ 2I Ovc�

k pk
� �

þGin
lk 1� rlk
� �

�Gout
lk r

l
k ; ð1Þ

d
dt

pk ¼ iDok � gk½ �pk � iOvc
k rc

k � rv
k

� �
: ð2Þ

An optical excitation of the system is considered via the Rabi-frequency Ok
vc

accounting for interband transitions, where Dok¼ vFk is the transition frequency
and vF is the Fermi velocity. Compared to previous work5, we include a drift term
E � rkrlk expressing the light-induced intraband transitions, which are crucial for
the THz dynamics driven by the probe pulse. The carrier–carrier and carrier–
phonon interactions are taken into account by a Boltzmann-like equation with
time- and momentum-dependent scattering rates Gin=out

lk for the carrier occupation
and by the diagonal dephasing gk¼ 1

2

P
l G

in
lk þGout

lk for the microscopic
polarization. The explicit form of the many-particle contributions and the equation
for the phonon dynamics can be found elsewhere5,26,27, for example, in ref. 5 in
equations 22–24.

The differential THz transmission is given by:

Dt=t t;oð Þ / a tð Þ oð Þ� a p;tð Þ oð Þ; ð3Þ

with the absorption coefficient a(p,t)(o) including both the pump and the
probe pulse and a(t)(o) including only the probe pulse. The absorption
a oð Þ¼I j oð Þ= E0o2A oð Þð Þ½ � is determined by the macroscopic current
density26,27,61:

j oð Þ ¼ 4e0‘
m0L2

X
k

Mvc
k I pk oð Þ½ � þ 2e0‘

im0L2

X
k;l

Mll
k rlk oð Þ; ð4Þ

where Mll0
k is the optical matrix element, m0 is the free electron mass and L2 is the

structure area of the system that cancels out after performing the summation over
k. The current contains an interband contribution that is driven by the microscopic
polarization pk(o) and an intraband contribution that is determined by the carrier
occupation rlk oð Þ. While the interband term has the dominant contribution for
probe pulses at optical frequencies, we consider in this work the intraband term,
which has the dominant contribution for probe pulses at THz frequencies.
Assuming a weak THz probe pulse, rlk oð Þ can be treated perturbatively:

rlk tð Þ ¼ rl;0k tð Þþ drlk tð Þ; ð5Þ

where rl;0k tð Þ is the pump-induced carrier occupation, while drlk tð Þ describes the
weak carrier occupation excited by the THz probe pulse.

To obtain the dynamic THz response from the differential THz transmission
spectra, we exploit the fact that ultrafast carrier–carrier scattering in graphene
forms a uniform hot-carrier Fermi-Dirac distribution within the first tens of
femtoseconds after the excitation3,6,7 and the subsequent dynamics is fully
characterized by the temporal evolution of the transient carrier temperature T(t)
and the transient Fermi level eF(t). Thus, by iteratively evaluating T(t) and eF(t) on
the basis of the numerically calculated carrier dynamics at each time step, we
obtain the pump-induced carrier occupation rl;0k tð Þ. For the dynamics of the
probe-induced carrier occupation, we derive from equation (1) and with the ansatz
in equation (5) a separate equation of motion yielding:

d
dt

drlk tð Þ ¼ � e0

‘
E � rkr

l;0
k tð Þ�G0

lk tð Þdrlk tð Þ; ð6Þ

where G0
lk tð Þ¼Gin;0

lk tð ÞþGout;0
lk tð Þ is the diagonal contribution stemming from the

Boltzmann-like scattering terms (equation (1)) which are independent of the probe
pulse as denoted by the index 0. Non-linear contributions in the probe pulse and
non-diagonal terms have been neglected here. Finally, we numerically evaluate the
Fourier transform of drlk tð Þ from equation (6) and, thereby, we account for the
fully microscopically determined carrier dynamics in terms of rl;0k tð Þ and G0

lk tð Þ.
Thus, our microscopic approach provides access to the Coulomb- and phonon-
assisted dynamics induced by the THz probe pulse and is used to obtain the results
shown in Figs 2–5.

Microscopic theory calculation of the carrier scattering time in graphene.
Here, we derive an analytic relation between the microscopic scattering rates
and the exponential decay of the carrier occupation. The collision part of the
Boltzmann equation, which is given by:

d
dt

rlk ¼ Gin
lk 1� rlk
� �

�Gout
lk r

l
k ; ð7Þ

can be rewritten as:

d
dt

rlk ¼ �
rlk � tlkGin

lk

tlk
; ð8Þ

where we define:

tlk : ¼ 1
Gin
lk þGout

lk

: ð9Þ

The term tlkGin
lk can be written as:

tlkGin
lk ¼

Gin
lk

Gin
lk þGout

lk

¼ 1

1þ Gout
lk

Gin
lk

: ð10Þ

By accounting only for weak excitations, the scattering rates can be approximated
with the equilibrium scattering rates Gin=out;0

lk fulfilling the principle of detailed
balance (D.B.):

Gout
lk

Gin
lk

� Gout;0
lk

Gin;0
lk

¼D:B: e ek � eFð Þ=kB T : ð11Þ

Thus, equation (10) represents the initial Fermi distribution rl;0k � tlkGin
lk and the

Boltzmann equation yields the relaxation-time model:

d
dt

rlk ¼ �
rlk �rl;0k

tlk
: ð12Þ

Within the approximation in equation (11), equation (12) clearly reveals a direct
relation between the microscopic scattering rates and the exponential decay of the
carrier occupation. However, by fitting the numerical data stemming from the full
scattering equation (equation (7)), our method for the determination of the carrier
scattering time (see Fig. 6b) goes beyond the relaxation-time approximation.

Drude model as an approximation of the microscopic theory. To obtain a
simple Drude model from our microscopic approach (equations (1)–(6)), we
approximate the scattering rate as a constant: G0

lk tð Þ¼G, that is, we neglect the time
and the momentum dependence. By assuming a d-shaped perturbation for the THz
probe pulse, the Fourier transform of equation (6) yields:

drlk oð Þ ¼ ioex
e0A0

‘
� 1

io�G
rkr

l;0
k : ð13Þ

The intraband current density is given by:

j oð Þ ¼ 2e0‘
im0L2

X
k;l

Mll
k drlk oð Þ: ð14Þ

By assuming a uniform hot-carrier Fermi-Dirac distribution for the carrier occu-
pation, the gradient yields:

rkrlk ¼ �slek
vF‘

4kBT
sech2 sl kvF‘ � eFð Þ=2kBT½ �; ð15Þ

where sl is 1 (� 1) for l¼ c (l¼ v) and eF is the Fermi level. For a constant
scattering rate G and with the optical intraband matrix element Mll

k � islMek

(sc¼ 1 and sv¼ � 1), the intraband current can be evaluated analytically using
equations (13) and (14):

j oð Þ ¼ e2
0 MA0 kB

m0pc2 i G
G2 þo2 � o

G2 þo2

h i
�

T ln 1þ eeF=kBT
� �

þ ln 1þ e� eF=kBT
� �� �

;
ð16Þ

which corresponds to the Drude model. For a constant scattering rate G and an
arbitrary THz frequency, the resulting Drude-like differential THz transmission
(see Fig. 6a) is given by:

Dt=t tð Þpj T0; eF;0
� �

� j T tð Þ; eF tð Þð Þ; ð17Þ

where T0 and eF,0 denote the initial carrier temperature and Fermi level before the
arrival of the optical pump pulse at time t¼ 0.

We note that in principle a k-dependent Gk could also be considered in
equations (13) and (14) to obtain a more advanced Drude model. However, this
would require also an approximate analytical model for Gk. We again emphasize
that we go beyond the approximation by using the numerically calculated
microscopic scattering rates for the evaluation of the current.
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