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SUMMARY

Metabolic reprogramming is a hallmark of clear cell
renal cell carcinoma (ccRCC) progression. Here, we
used genome-scale metabolic modeling to elucidate
metabolic reprogramming in 481 ccRCC samples
and discovered strongly coordinated regulation of
glycosaminoglycan (GAG) biosynthesis at the tran-
script and protein levels. Extracellular GAGs are
implicated in metastasis, so we speculated that
such regulation might translate into a non-invasive
biomarker for metastatic ccRCC (mccRCC). We
measured 18 GAG properties in 34mccRCC samples
versus 16 healthy plasma and/or urine samples. The
GAG profiles were distinctively altered in mccRCC.
We derived three GAG scores that distinguished
mccRCC patients with 93.1%–100% accuracy. We
validated the score accuracies in an independent
cohort (up to 18 mccRCC versus nine healthy) and
verified that the scores normalized in eight patients
with no evidence of disease. In conclusion, coordi-
nated regulation of GAG biosynthesis occurs in
ccRCC, and non-invasive GAG profiling is suitable
for mccRCC diagnosis.

INTRODUCTION

Clear cell renal cell carcinoma (ccRCC) is themost common form

of kidney cancer (Rini et al., 2009), and it is responsible for

100,000 deaths worldwide (Ferlay et al., 2010). Approximately

50% of patients with ccRCC are expected to develop metastatic

disease, which is usually incurable. In sharp contrast to early

diagnosed ccRCC, the median survival of patients with metas-
1822 Cell Reports 15, 1822–1836, May 24, 2016 ª 2016 The Author(s
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tasis is significantly worse (Gupta et al., 2008), even with

improved prognosis after the introduction of modern targeted

therapies (Wahlgren et al., 2013). This fact constitutes a major

and unmet clinical problem because, despite the need for both

early prediction and frequent monitoring of metastatic ccRCC,

no biomarkers are currently approved as part of the clinical man-

agement of the disease, resulting in late diagnosis or unknown

responses to treatment (Jonasch et al., 2012; Moch et al., 2014).

The search for molecular biomarkers has focused on ccRCC

genetics and angiogenesis, but none of these biomarkers has

entered routine clinical practice, nor are they easily accessible

or indicative of metastasis (Finley et al., 2011; Moch et al.,

2014). In contrast, other molecular processes prominent in

ccRCC might fill this gap. In this sense, accumulating evidence

has suggested that the proliferation and survival of cancer cells

rely upon a shift in their metabolism (Schulze and Harris, 2012;

Vander Heiden et al., 2009; Ward and Thompson, 2012). In

particular, ccRCC has recently been shown to feature strong

regulation and dependence on distinctive metabolic reprogram-

ming, which is pivotal to its progression (Creighton et al., 2013;

Gatto et al., 2014, 2015; Hakimi et al., 2016; Li et al., 2014). These

outstanding metabolic changes might be of clinical interest

because they have the potential to be used as ccRCC

biomarkers.

Under these premises, we followed up on our recent study,

which revealed a deviating regulation of metabolism in ccRCC

in contrast with seven common epithelial tumors (Gatto

et al., 2014). Moreover, we further computationally character-

ized metabolic regulation of ccRCC, leveraging a larger number

of samples using state-of-the-art genome-scale metabolic

modeling (Bordbar et al., 2014; Jerby and Ruppin, 2012; Mardi-

noglu et al., 2013; Mardinoglu and Nielsen, 2015). As a result,

we discovered previously unreported coordinated regulation

of glycosaminoglycan (GAG) biosynthesis, which is exacerbated

in metastasis. This discovery led us to speculate that this
)
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regulation might be detectable in metastatic ccRCC. Hence, we

designed an observational study to measure GAG profiles in the

accessible fluids of metastatic ccRCC patients and sought to

characterize the suitability of GAG profiles as diagnostic markers

for the disease.

RESULTS

Metabolic Modeling Reveals Differential Regulation of
GlycosaminoglycanBiosynthesis inClear Cell Renal Cell
Carcinoma versus Non-cancerous Kidneys
Our recent study suggested that metabolic reprogramming in

ccRCC is unique and likely occurs due to genetic alterations

in tumor progression (Gatto et al., 2014). The exceptional nature

of metabolic regulation in ccRCC could have important clinical

implications as a potential molecular biomarker. Thus, we

sought to characterize fully metabolic regulation in ccRCC

computationally. We retrieved a larger number of gene expres-

sion profiles from The Cancer Genome Atlas (TCGA) than in our

previous study (481 tumor samples versus 71 tumor-adjacent

normal samples, here simply referred to as ‘‘non-tumor,’’; Table

S1) and performed differential gene expression analysis (Law

et al., 2014). We integrated the gene expression changes asso-

ciated with ccRCC using genome-scale metabolic modeling to

pinpoint deregulation at the levels of metabolic pathways and

connected components in the metabolic network. In the first

case, we used piano (Väremo et al., 2013) to perform consensus

gene-set analysis of KEGG metabolic pathways and to deter-

mine the pathways that were significantly deregulated in ccRCC

and in which direction (i.e., up- or downregulated). In the second

case, we first calculated the metabolites that were mostly

affected by gene expression changes and then clustered these

metabolites in the human metabolic network using Kiwi (Väremo

et al., 2014) to emphasize whether specific pathway compo-

nents were regulated. At the pathway level, we observed wide-

spread downregulation of central carbon and amino acid meta-

bolism, steroid biosynthesis, heparan sulfate biosynthesis, and

other catabolic processes (Figure 1A). Biosynthesis of chon-

droitin sulfate was the only significantly upregulated pathway

when both considering only upregulated genes (mixed direc-

tionality) and considering all genes weighted by their statistical

significance (distinct directionality). Consistently, at the metab-

olite level, we observed downregulation of genes associated

with metabolites related to branched-chain amino acids (e.g.,

3-hydroxyisobutyrate) and steroids (e.g., 3-hydroxy-3-methyl-

glutaryl-coenzyme A, also known as HMG-CoA) (Figure S1).

Interestingly, whereas most metabolites interact through central

carbon metabolites, this analysis returned an unconnected

sub-network of metabolites that comprised precursors of chon-

droitin and heparan sulfate, with opposite directions of regula-

tion (Figure 1B). The repression of central carbon and amino

acid metabolism was in agreement with previous computational

analyses (Creighton et al., 2013; Gatto et al., 2014), which were

recently experimentally validated (Cuperlovic-Culf et al., 2016;

Nilsson et al., 2015). However, both analyses revealed distinct

and opposite regulation of chondroitin and heparan biosyn-

thesis, which closely interacts within the glycosaminoglycan

biosynthesis pathway. Given that this finding was not previously
reported, we sought to explore glycosaminoglycan biosynthesis

in further detail.

Glycosaminoglycan Biosynthesis Displays Coordinated
Regulation Specific to Clear Cell Renal Cell Carcinoma
at the Transcript and Protein Levels
Chondroitin (CS) and heparan (HS) sulfates are glycosamino-

glycans (GAGs) that share a common biosynthetic route in the

linkage to the core protein, but thereafter, they differ in polymer-

ization: CS, repeating disaccharides, is constituted by N-acetyl-

galactosamine and glucuronic acid residues, while HS, repeating

disaccharides, is constituted by N-acetylglucosamine and glu-

curonic acid residues (Kreuger and Kjellén, 2012; Mikami and Ki-

tagawa, 2013). In ccRCC, we observed coordinated regulation of

GAG biosynthesis, defined by substantial upregulation of most

genes specific to CS biosynthesis (11/13) and concurrent down-

regulation of genes specific to HS biosynthesis (8/13), indicating

a potential change in GAG disaccharide composition, sulfation,

and chain length in ccRCC (Figure 2A; Table S2). We confirmed

this coordinated regulation of GAG biosynthesis in two indepen-

dent datasets that compared gene expression in ccRCC versus

non-tumor samples (Peña-Llopis et al., 2012; Wang et al., 2009),

with strong and significant correlations between expression fold

changes in these studies and the TCGA samples (Pearson’s cor-

relation coefficient r = 0.87–0.89; Figure 2B).

To verify the extent to which this regulatory pattern is ccRCC

specific, we repeated an analogous analysis of six other epithe-

lial cancer types for which at least 20 tumor-adjacent normal

samples were found in TCGA (i.e., breast invasive carcinoma,

colon adenocarcinoma, head and neck squamous cell carci-

noma, lung adenocarcinoma, lung squamous cell carcinoma,

and uterine corpus endometrial carcinoma). None of these can-

cers displayed the same coordinated pattern as in ccRCC, which

was a clear outlier according to unsupervised hierarchical clus-

tering, although we found cancer-type-dependent regulation of

individual enzymes involved in GAG biosynthesis (Figure 2C; Ta-

ble S2). In addition, we never observed both the CS and the HS

biosynthesis pathways among the top ranked regulated path-

ways in any of these cancer types (Figure S2).

To evaluate whether the coordinated regulation of GAG biosyn-

thesis is also represented at the level of protein expression, we

used immunohistochemistry on a ccRCC tissue microarray to

detect thepresenceof three representativeproteins characteristic

of the pathway (CHPF2 in CS biosynthesis and HS6ST2 and

EXTL1 in HS biosynthesis) in ccRCC versus normal kidney sam-

ples (Figure 2D). In accordance with gene expression changes,

CHPF2displayed strongstaining in all of the tested tumor samples

(positive in 21 of 21 samples) and only weak and likely unspecific

staining in the kidney proximal tubule cells (0/2); HS6ST2 showed

weak or no staining in all of the tested tumor samples (positive in

zero of 32), while it was detected in both the podocytes in the

kidney glomeruli and the endothelial cells of larger vessels (2/2);

and EXTL1 was undetected in 96% of the tested tumor samples

(positive in one of 27), but it was stained strongly in the kidney-col-

lectingductcells (twoof two) (representativesamples inFigure2E).

Taken together, these results suggested that coordinated regula-

tion ofGAGbiosynthesis is a prominentmetabolic event occurring

exquisitely in the kidney during ccRCC transformation.
Cell Reports 15, 1822–1836, May 24, 2016 1823



B

D
is

tin
ct

−
di

re
ct

io
na

l (
dn

)

M
ix

ed
−

di
re

ct
io

na
l (

dn
)

N
on

−
di

re
ct

io
na

l

M
ix

ed
−

di
re

ct
io

na
l (

up
)

D
is

tin
ct

−
di

re
ct

io
na

l (
up

)

OXIDATIVE PHOSPHORYLATION
GLYCINE SERINE AND THREONINE METABOLISM
ARGININE AND PROLINE METABOLISM
PYRUVATE METABOLISM
FATTY ACID METABOLISM
BUTANOATE METABOLISM
CITRATE CYCLE TCA CYCLE
VALINE LEUCINE AND ISOLEUCINE DEGRADATION
PROPANOATE METABOLISM
GLYCOLYSIS GLUCONEOGENESIS
TRYPTOPHAN METABOLISM
TYROSINE METABOLISM
SELENOAMINO ACID METABOLISM
BETA ALANINE METABOLISM
NITROGEN METABOLISM
CYSTEINE AND METHIONINE METABOLISM
GLYOXYLATE AND DICARBOXYLATE METABOLISM
STEROID BIOSYNTHESIS
LYSINE DEGRADATION
TERPENOID BACKBONE BIOSYNTHESIS
LIMONENE AND PINENE DEGRADATION
ARACHIDONIC ACID METABOLISM
GLYCOSAMINOGLYCAN BIOSYNTHESIS HEPARAN SULFATE
NICOTINATE AND NICOTINAMIDE METABOLISM
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A

heparan sulfate, precursor 13[g]

heparan sulfate, precursor 15[g]

G00021[g]

chondroitin sulfate A
(GalNAc4S-GlcA), B

(IdoA2S-GalNAc4S), and E
(GalNAc4,6diS-GlcA), precursor

1[g]

chondroitin sulfate C
(GalNAc6S-GlcA) and D

(GlcNAc6S-GlcA2S), precursor
1[g]

(alpha-D-mannosyl)5-beta-D-mannosyl-diacetylchitobiosyl-L-asparagine
(protein) (B1)[g]

(alpha-D-mannosyl)4-beta-D-mannosyl-diacetylchitobiosyl-L-asparagine
(protein)[g]

chondroitin sulfate B
(IdoA2S-GalNAc4S), precursor

4[g]

chondroitin sulfate D
(GlcNAc6S-GlcA2S)
precursor 2[g]

heparan sulfate, precursor 12[g]

chondroitin sulfate A
(GalNAc4S-GlcA) proteoglycan[g]

Metabolite-neighbouring genes

Up-regulationDown-regulation

Figure 1. Integrated Metabolic Modeling

and Differential Gene Expression Analysis

in ccRCC versus Tumor-Adjacent Normal

Kidney Tissue

(A) Consensus gene-set analyses for KEGG meta-

bolic pathways in ccRCC versus tumor adjacent

normal samples. Each entry shows the median

gene-set p value for a pathway among six different

gene-set analysis methods. Every column repre-

sents a different regulatory direction: Dist(dn),

distinct directional down;Mix(dn),mixed directional

down; Nondir, non-directional; Mix(up), mixed

directional up; Dist(up), distinct directional up.

(B) An extract from an unbiased analysis of the

metabolic network aimed at detecting connected

metabolites, in which the neighboring genes were

prevalently up- (red) or downregulated (blue) (see

also Figure S1 for the complete network results).

1824 Cell Reports 15, 1822–1836, May 24, 2016
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Figure 2. Coordinated Regulation of Glycosaminoglycan Biosynthesis in ccRCC versus Tumor-Adjacent Normal Kidney Tissue at the

Transcript and Protein Levels

(A) Pathway view of glycosaminoglycan biosynthesis in ccRCC. Each box shows the enzyme(s) carrying out a given reaction in the pathway. The color represents

the log10 fold change in ccRCC versus non-tumor tissue for the enzyme-coding gene, while the symbol next to each box indicates the significance of the

corresponding gene regulation (in terms of false discovery rate). The pathway is drawn according to KEGGgene associations (note that genes related to dermatan

sulfate biosynthesis or sulfation at C3 in heparan sulfate are not shown, the latter event being rarely observed [Thacker et al., 2014]). Solid arrows indicate the

addition of a molecule, dashed lines indicate the conversion of a molecule, and dotted lines indicate the final disaccharide composition up to that point.

(B) Correlation of gene expression log2 fold changes in the glycosaminoglycan biosynthesis pathway between TCGA samples (y axis) and two independent

studies (GSE36986 and GSE14762 [Peña-Llopis et al., 2012; Wang et al., 2009]).

(C) Gene expression log2 fold changes in the glycosaminoglycan biosynthesis pathway in ccRCC, compared to other cancers versus matched non-tumor tissue.

HNSC, head and neck squamous cell carcinoma; BRCA, breast invasive carcinoma; COAD, colon adenocarcinoma; LUAD, lung adenocarcinoma; LUSC, lung

squamous cell carcinoma; UCEC, uterine corpus endometrial carcinoma. See also Figure S3 for gene expression analysis in other cancers at the pathway level.

(D) Fraction of the samples positive for immunohistochemical staining of CHPF2, HS6ST2, and EXTL1 in ccRCC (21–27 tissue samples) versus normal kidney (two

samples). The results are presented as the consensus of staining performed in duplicate.

(E) Immunohistochemical staining for CHPF2, HS6ST2, and EXTL1 in representative ccRCC and normal samples.
Altered Regulation of Glycosaminoglycan Biosynthesis
Is Exacerbated in Metastasis and Is Detectable in
Patients’ Urine and Plasma
CS and HS have been long implicated in the regulation of angio-

genesis, adhesion, invasion, and migration, which are key steps
in the metastatic cascade (Afratis et al., 2012; Jackson et al.,

1991). We extended our differential gene expression analysis to

verify whether the genes involved in GAG biosynthesis showed

further regulation in ccRCC patients with metastasis. We found

that 11 genes involved in GAG biosynthesis were differentially
Cell Reports 15, 1822–1836, May 24, 2016 1825



Table 1. Clinical Data for the Discovery and Validation Cohorts

mccRCC (n = 34) Healthy (n = 16) mccRCC (n = 18) Healthy (n = 9)

Cohort Characteristics

Class Discovery Discovery Validation Validation

Both plasma and urine samples 13 16 7 9

Only plasma samples 21 0 11 0

Baseline Characteristics

Age (range, years) 64.6 (59.2–70.5) 62.7 (57.6–65) 56.1 (50.7–64.6) 55.2 (42.2–64.3)

Female 23.1% 62.5% 14.3% 44.4%

Caucasian 100% 100% 100% 100%

BMI (kg/m2) 26.1 (23.7–26.7) 25.7 (22.8–29.1) 23.1 (22.3–28.8) 23.5 (21.7–25.8)

Current Oncological Therapy

None 64.7% 100% 61.1% 100%

Sunitinib 20.6% 0% 27.8% 0%

Other antineoplastic agents 14.7% 0% 11.1% 0%

Lifestyle Characteristics

Physical exercise (hr/week) 2 (2–3.5) 3 (2–6) 3 (3–4.75) 4 (3–7)

Bread consumption (servings/week) 10 (7–14) 10 (6.25–14.5) 14 (12–14) 7 (4–7)

Pizza consumption (servings/week) 1 (0.5–1) 0 (0–0) 1 (0.25–1) 0 (0–1)

Pasta consumption (servings/week) 7 (5–7) 1 (0.5–1) 7 (5–7) 2 (0–3)

Rice consumption (servings/week) 3 (2–3) 1 (1–2) 2 (1.5–3) 1 (1–1)

Alcohol consumers 23.1% 87.5% 71.4% 100%

Fiber consumers 23.1% 50% 57.1% 66.7%

Smoking Habits

Never smokers 61.5% 56.25% 71.4% 66.7%

Ex smokers 38.5% 37.5% 28.6% 33.3%

Smokers 0% 6.25% 0% 0%

All results are presented asmedians (25th, 75th percentile) or percentages. Missing values were omitted. Detailed clinical data are reported in Table S3.
regulated in metastasis, exacerbating the overexpression of CS-

associated genes and the suppression of HS-associated genes

(Figure S3). This finding suggested that coordinated regulation

ofGAGbiosynthesis isanevent exacerbatedbymetastasis.While

the assembly of GAG chains occurs intracellularly, the completed

proteoglycan is secreted in the extracellular matrix (Silbert and

Sugumaran, 2002). Hence, considered together, we speculated

that not only might eventual changes in GAGs due to ccRCC

progression be reflected in kidney-proximal fluids, but also

these changes should be easier to detect in metastatic ccRCC

(mccRCC) patients. This speculation leverages on variations in

GAG concentration and composition having been observed in

the proximal fluids of other diseases in which GAGs were impli-

cated (Anower-E-Khuda et al., 2013; Mannello et al., 2014,

2015; Schmidt et al., 2014; Schmidt et al., 2016; Volpi et al., 2015).

To verify whether changes in theGAGprofile occur inmccRCC

and could be measured in accessible body fluids, we recruited a

discovery cohort of 50 subjects, consisting of 34 patients with

mccRCC and 16 healthy individuals (Table 1; Table S3). Plasma

and urine samples were obtained from all of the subjects, except

for 21 mccRCC patients from whom only plasma samples were

available. CS and HS concentrations and their disaccharide

compositions were quantified in the samples using liquid chro-

matography with online electrospray ionization mass spectrom-

etry (ESI-MS). In total, 18 independent GAG properties were
1826 Cell Reports 15, 1822–1836, May 24, 2016
measured in every fluid sample (note that the GAG charge is

the sum of all of the sulfated disaccharide fractions). The collec-

tion of all of these data points defined a GAG profile. We

observed remarkable differences between the GAG profiles of

mccRCC patients and those of healthy individuals, both in the

plasma and urine samples (Figure 3A). Principal component

analysis (PCA) of GAG profiles that combined plasma and urine

measurements revealed that mccRCC patients were clearly

separate from healthy individuals (71% of the variance was ex-

plained by the first component; Figure 3B). Similar separations

were achieved using only plasma measurements (81% variance)

or urine measurements (63% variance). These results indicated

that mccRCC entails alterations in systemic GAG composition

that are markedly distinct from those of healthy individuals.

Design of mccRCC Biomarkers Based on Plasma and
Urine GAG Profiles
The changes in the plasma and urine GAG profiles, which were

largely attributable to the occurrence of mccRCC, opened the

opportunity to design accessible biomarkers based on the GAG

properties that best distinguished the disease from a healthy

state. We utilized Lasso penalized logistic regression (Tibshirani,

1996) with leave-one-out cross-validation to select robust GAG

properties that are most predictive of clinical outcomes (i.e.,

mccRCC versus healthy). A biomarker score was subsequently
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designed as a ratio, where the numerator is the sum of the prop-

erties associated with mccRCC, and the denominator is the sum

of theproperties associatedwith thehealthy state. Each termwas

normalized using the regression coefficients. We derived three

potential disease biomarker scores, based on either plasma or

urine or on combined measurements:

Plasma score=
½6s CS�+CStot

3

10

½4s CS�
½6s CS�+ ½Ns HS�

Urine score=
½Ns6s HS�+ 60,Charge HS

½4s CS�

Combined score=meanðPlasma score;Urine scoreÞ

where terms in brackets represent the fraction of the disaccha-

ride for the corresponding GAG (the abbreviations describe

different sulfation patterns for CS and HS as per Figure 1B),

CStot is the total concentration of CS (in mg/mL), and

Charge HS is the total fraction of sulfated disaccharides of HS.

We then calculated the three scores for each sample and

observed that the mccRCC samples had recurrently elevated

scores, compared to healthy samples (Figure 4A). We computed

significant non-null mean differences in all three scores between

the two groups using robust Bayesian estimation. The mean dif-

ference was equal to 2.15 for the combined score (95% high-

density interval [HDI] 1.72–2.60), 2.49 for the plasma score

(95% HDI 1.94–3.05), and 0.79 for the urine score (95% HDI

0.52–1.06). The performance of the three biomarkers was evalu-

ated using receiver operating characteristic (ROC) curves, and

the area under the curve (AUC) was found to be 1 (perfect clas-

sifier) in the case of the combined and plasma scores and 0.966

for the urine score (Figure 4B; Table 2). A straightforward clinical

implementation of these biomarkers would be to predict occur-

rence of the disease, for example, to monitor mccRCC patients

after surgery or to diagnose response to treatment using a simple

non-invasive test, in addition to or as a substitute for standard

radiological tests. Thus, from each ROC curve, we computed a

score cutoff that maximized the positive predictive value (PPV)

of the biomarker (Lopez-Raton et al., 2014) (Table 2). Taken

together, these findings demonstrated that alterations in plasma

and urine GAG composition occurring inmccRCC could be sum-

marized as scores. In turn, these scores accurately distinguished

patients with from healthy individuals, emphasizing their poten-

tial as disease biomarkers.
Validation of themccRCCBiomarkers in an Independent
Cohort and in Patients with No Evidence of Disease
To validate whether these scores had reproducible accuracy in

an independent cohort, we recruited 27 subjects, consisting of
Figure 3. The Glycosaminoglycan Plasma and Urine Profiles of mccRC

(A) The glycosaminoglycan profiles of mccRCC patients (gray boxplots) versus h

urine (bottom, 13 versus 16 samples). Each profile consists of 18 independent me

the total concentration and the disaccharide composition.

(B) Principal component analysis of sample GAG profiles, using measurements f

1828 Cell Reports 15, 1822–1836, May 24, 2016
18 patients with mccRCC and nine healthy individuals (Table 1;

Table S3). Plasma and urine samples were obtained from all of

the subjects, except for 11 mccRCC patients from whom only

plasma samples were available. We analyzed the three bio-

markers for each individual and computed the corresponding

scores. The scores were also remarkably higher in mccRCC

patients compared with healthy controls in this validation cohort

(Figure 4C). We computed an AUC value equal to 1 for all

three biomarkers (Figure 4D). Additionally, the specificity at the

previously determined cutoff score was 100% for all of the

biomarkers, consistent with their potential to predict positive di-

agnoses (Table 2). This evidence strongly suggested that the

three biomarkers could indicate the occurrence of mccRCC by

means of a non-invasive analytical test.

We sought to verify whether the scores would normalize in

subjects previously diagnosed with mccRCC but with no evi-

dence of disease, which would strongly suggest that the bio-

markers follow mccRCC and are suitable for monitoring its

progression. In addition, we could not exclude that previous

exposure to the disease might have prolonged effects on sys-

temic GAG composition. Therefore, we analyzed GAGs in the

plasma and urine of a prospective cohort of eight individuals

diagnosed with mccRCC but with no evidence of disease at

the time of sampling. The GAG profiles in the urine and the

plasma were remarkably distinct from those of patients with

mccRCC and shifted toward the profiles of healthy individuals

(Figure 5A). When we computed the biomarker scores using

the same formulas designed above, we observed a significant

decrease compared to the expected value in mccRCC (mean

difference in the combined score, 0.94, 95% HDI 0.72–1.17; in

the plasma score, 0.86, 95% HDI 0.69–1.03; in the urine score,

0.72, 95% HDI 0.40–1.07). The accuracy of the test based on

the previously identified cutoffs was high for both the plasma

and urine scores, with seven of eight cases less than the cutoff

and hence 87.5% of the subjects were correctly identified as

not having mccRCC (Figure 5B). The accuracy was lower for

the combined score, with six of eight subjects (75%) correctly

classified according to the cutoff. Although only a longitudinal

study could corroborate a positive correlation between the tu-

mor burden and these scores, these results argued that plasma

and urine GAG composition could be used as a robust and accu-

rate diagnostic biomarker for the occurrence of mccRCC.

Analysis of the Predictive Value of mccRCC Biomarkers,
Accounting for Confounding Factors
We sought to identify the extent to which the measured systemic

GAG alterations were purely attributable to ccRCC progression,

as suggested by the underlying transcriptional regulation, or

whether they were also dependent on other confounding factors.

Therefore, we gathered clinical and dietary information that

could confound the associations of the scores with clinical out-

comes for 33 individuals (17 mccRCC patients and 16 healthy
C Patients Are Markedly Distinct from Those of Healthy Individuals

ealthy individuals (orange boxplots) in plasma (top, 34 versus 16 samples) and

asurements of GAGs (nine related to CS and nine related to HS), which refer to

rom plasma, urine, or both.
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Table 2. Measures of Accuracy for GAG Scores in the Prediction of mccRCC for the Discovery and Validation Cohorts at the Optimal

Cutoff Score

AUC Optimal Cutoff Score Accuracy Specificity Sensitivity

Discovery Cohort

Combined marker 1 0.616 100% 100% 100%

Plasma marker 1 0.234 100% 100% 100%

Urine marker 0.966 1.133 93.1% 100% 84.6%

Validation Cohort

Combined marker 1 — 100% 100% 100%

Plasma marker 1 — 92.6% 100% 77.8%

Urine marker 1 — 93.7% 100% 85.7%

The optimal cutoff score was calculated in the discovery cohort and verified in the validation cohort.
patients; Table S3). As reported in Table 1, we observed an un-

even distribution of some baseline characteristics, for example,

gender, pasta consumption, and alcohol consumption. There-

fore, we tested whether the clinical outcomes could be purely

inferred by some of the confounding factors, rather than by the

biomarker scores. First, we determined the most biased factors

between the mccRCC versus healthy groups. To this end, we re-

gressed the clinical outcome based on the confounding factors

and the combined score using Lasso penalized logistic regres-

sion. This analysis selected four potentially relevant confounding

factors: age; weekly consumption of pasta and rice; and use of

alcohol. Then, we performed analysis of covariance using logis-

tic regression to test the strength of the association between

clinical outcome and the combined score, using the four con-

founding factors as covariates. Notably, none of the covariates

made a significant contribution to the regression of the clinical

outcome (p = 0.27 and 0.44; Figure S4). In addition, we calcu-

lated that the logistic regression model based solely on the com-

bined score was the most likely model (p = 99.2%), according to

the minimum Kullback-Leibler divergence criterion: the Akaike

information criterion for the regression based on the combined

score only was significantly lower than for the regression based

also on the four covariates (7.8 versus 17.5, respectively). A

similar conclusion was reached for the plasma score (6.0 versus

17.9) but not for the urine score (23.0 versus 17.5), for which

pasta consumption displayed a significant effect in the regres-

sion of the clinical outcome (p = 0.03). Taken together, these

results indicated that the combined and plasma scores alone

(but not the urine score) had strong associations with the clinical

outcome regardless of any here-considered confounding fac-

tors, prompting the use of GAGmeasurements as unbiased pre-

dictors of the occurrence of mccRCC.

Finally, we explored whether systemic therapy had an effect

on the biomarker scores, given that these scores were calcu-

lated by profiling body fluids. We limited our analysis to the pa-

tients for whom only plasma samples were collected (and hence,

we checked solely the effect on the plasma scores) because, for
(C) Plasma, urine, and combined scores in mccRCC patients (gray boxplots) vers

versus nine plasma samples and seven versus nine urine samples).

(D) ROC curves in the classification of samples of the validation cohort as either m

Figure S5 for score correlations with confounding factors.
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this group, we noted a comparable number of treated (n = 19)

and untreated (n = 33) patients. We did not observe any signifi-

cant correlation between the plasma score and the use of sys-

temic therapy, based on a linear regression of the score on the

treatment status of the sample (p = 0.518) and the type of treat-

ment (sunitinib versus other regimens, p = 0.508). Overall, these

analyses of covariance showed that GAG measurements, in the

form of the proposed scores, could robustly predict the occur-

rence of mccRCC despite baseline and treatment differences

across patients. This robustness was likely due to coordinated

regulation of GAG biosynthesis intrinsic to ccRCC progression,

mirrored at the level of kidney-adjacent fluids.

DISCUSSION

This study revealed that coordinated regulation of GAG biosyn-

thesis, which features concurrent upregulation of the branch

leading to CS formation and downregulation of the branch lead-

ing to HS formation, is a prominent event in ccRCC. Additionally,

many pathway-associated genes are further up- or downregu-

lated in metastasis. This discovery can be attributed to an

increased number of samples and recent advances in metabolic

network analysis: indeed, traditional gene-set enrichment anal-

ysis likely misses the distinctive regulation of the two branches

within the gene set because the opposite fold changes would

cancel each other out. However, even considering the large

sample size and the independent validation with tissue micro-

arrays, we cannot completely exclude that other systematic

confounding factors might partially explain the observed differ-

ential regulation, most importantly local inflammation in the kid-

ney, which can occur concomitantly with other renal diseases

unrelated to cancer. At the same time, altered expression of

CS and HS, particularly in glycan composition and sulfation,

has been indicated in the promotion of migration, metastasis,

and angiogenesis in a number of tumor models, including

skin (Smetsers et al., 2004), lung (Mizumoto et al., 2012),

brain (Wade et al., 2013), and breast (Fernández-Vega et al.,
us healthy individuals (orange boxplots) belonging to the validation cohort (18

ccRCC or healthy, based on the combined, plasma, and urine scores. See also
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2013); however, contrary to these studies that focused on indi-

vidual GAG types, our work reports an extensive, consistent,

and coordinated regulation of the whole biological process of

GAG biosynthesis in a cancer type. The relevance of such pre-

cise regulation of GAGs in ccRCC could be attributed to the roles

of GAGs in the remodeling of the extracellular matrix, which

strongly depends on their composition and abundance (Afratis

et al., 2012). For example, a chondroitin sulfate-rich matrix was

linked to the development of self-contained and defined lesions

in lower grade glioma (compared to the microscopic infiltrations

typical of glioblastomas) (Silver et al., 2013), which is a tumor

growth model closely resembling ccRCC (Rini et al., 2009). How-

ever, it remains to be explored how this regulatory program is

mechanistically linked to metastasis, rather than representing a

coordinated metabolic event attributable to the remodeling of

the kidney caused by the disease.

Because GAGs localize and act in the extracellular matrix, we

assumed that changes in their regulation would reflect changes

in their profiles in body fluids proximal to the kidney, e.g., blood

and urine, as observed in other pathologies (Anower-E-Khuda

et al., 2013; Mannello et al., 2014, 2015; Schmidt et al., 2014,

2016; Volpi et al., 2015). In particular, this behavior should be

exacerbated in metastasis. Currently, there is no diagnostic

biomarker that has entered routine practice for metastatic

ccRCC (Jonasch et al., 2012; Moch et al., 2014). At the same

time, metastatic disease is invariably incurable, although rare

complete responses have been reported in association with

oncological targeted therapies with or without metastasectomy

(Albiges et al., 2012). Therefore, it would undoubtedly represent

an important clinical advancement if changes in the GAG profile

could constitute an indicator of the occurrence of the disease.

The availability of such a test would be valuable for a number

of medical decisions: to monitor ccRCC before and after surgery

or systemic treatment; to exclude relapse of the disease also

over longer periods of time, after which a patient is typically

declared cured; to assess the occurrence of ccRCC in a popula-

tion at risk, such as genetically predisposed individuals; to

ascertain whether metastasis is due to ccRCC or other neo-

plasms; and to follow treatment response in mccRCC. Our vali-

dation findings provided proof of concept that the here-designed

biomarker scores might effectively aid in undertaking some of

these clinical decisions because they are calculated based on

non-invasive measurements that are predictive of the clinical

outcome and are independent of the here-considered confound-

ing factors; most importantly, they are accurate and robust pre-

dictors of the disease.

The plasma and urine GAG profiles loosely resembled the ex-

pected patterns from the underlying transcriptional regulation,

i.e., increased concentration and sulfation of CS relative to HS

in ccRCC. Notably, a recent characterization of the GAG profile

in early-stage ccRCC tissues was strongly correlated with the

here-uncovered regulatory program (Ucakturk et al., 2016). In

addition, a previous study examined CS/HS concentrations in

early-stage ccRCC tissue samples (Batista et al., 2012), and

re-elaboration of these data to emphasize the CS/HS ratio delin-

eated a consistent trend (Figure S5). Overall, these data and our

study were suggestive of an active and early role for ccRCC in de

novo GAG production, likely stemming from gene expression
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regulation. At the same time, the GAG profiles revealed some

novel biological insights attributable to the occurrence of this

cancer type. The GAG composition in the plasma of healthy indi-

viduals is typically not affected by any tissue. Here, we observed

systemic alteration of GAG composition concomitant with meta-

static ccRCC. The enrichment of chondroitin-4-sulfate and

chondroitin-6-sulfate and 6-O-sulfated HS in mccRCC samples

was strikingly reminiscent of the GAG composition of lympho-

cytes (Shao et al., 2013). It is therefore tempting to speculate

that infiltration of the immune system in mccRCC could underlie

the observed transcriptional regulation in the tumor. In the urine,

the GAG composition in healthy individuals has not been as well

characterized. The alterations reported here in the GAG profiles

ofmccRCC samplesmight reflect progressive damage to cells in

the kidney glomeruli (McCarthy and Wassenhove-McCarthy,

2012; Miner et al., 2011). Collectively, this evidence seemed to

emphasize the importance of alterations in GAGs in the progres-

sion of ccRCC. Intriguingly, the uniqueness of these GAG alter-

ations could be exploited to deliver drugs specifically to ccRCC,

as recently shown by a study in which cancer was targeted using

a GAG-binding malaria protein (Salanti et al., 2015).

Thus far, among the major difficulties that have impaired

biomarker discovery and its translation into clinical practice

have been the detection of targets in accessible samples and

the reproducibility of results (Sawyers, 2008). Here, we provided

evidence for a plasmatic and/or urinary biomarker of metastatic

ccRCC that was supported by an intensely and consistently

regulated biological process in ccRCC samples. We envision

that future longitudinal studies that monitor the trend between

the tumor load and scores might establish these biomarkers

for a diverse range of diagnostic tools in the clinical management

of ccRCC.

EXPERIMENTAL PROCEDURES

Gene Expression Analysis

RNA sequencing (RNA-seq) gene expression profiles for 481 ccRCC primary

tumor and 71 tumor-adjacent normal-like samples were retrieved at The

Cancer Genome Atlas (TCGA) (Table S1). Differential expression analysis for

ccRCC versus non-tumor was performed using voom (Law et al., 2014).

2,090 genes with no annotation (3%) or no more than ten counts in less than

10% of the samples (7%) were discarded. The effect of metastasis was

accounted by adding the metastatic status of each sample as a covariate in

the linear model used in voom. Two independent microarray-generated data-

sets where retrieved in GEO (GEO: GSE36895 [Peña-Llopis et al., 2012] and

GEO: GSE14762 [Wang et al., 2009]), and the differential expression analysis

for ccRCC versus non-tumor was performed using limma (Smyth, 2004). The

significance for changes in gene expression using either RNA-seq or microar-

ray data was tested using empirical Bayes estimation on a linear model for a

given comparison (in the case of RNA-seq the count variance was moderated

as proposed in voom [Law et al., 2014]). Consensus gene-set enrichment anal-

ysis (GSA) using piano (Väremo et al., 2013) was performed using as gene sets

either KEGG metabolic pathways or metabolites (i.e., a gene set is the list of

reaction-encoding genes that involve a given metabolite [Patil and Nielsen,

2005]), where the gene-set p value is defined as the median p value among

the following GSA methods: Fisher’s test, Stouffer’s test, reporter test, tail-

strength test, mean, and median. The significance of a gene set for each

GSA method was tested using a permutation test by shuffling gene labels

10,000 times. The gene sets ranked among the top 30 by most GSA methods

are shown in a heatmap that is hierarchically clustered. The differential gene

expression analysis andmultiple gene-set analysis (limited to KEGGmetabolic

pathways) was then repeated for six other cancer types (breast invasive



carcinoma, colon adenocarcinoma, head and neck squamous cell carcinoma,

lung adenocarcinoma, lung squamous cell carcinoma, and uterine corpus

endometrial carcinoma) compared to matched tumor-adjacent normal sam-

ples (which were also retrieved at TCGA; Table S1). All analyzed cancer types

were subsequently hierarchically clustered upon log2 fold change in the

expression of genes belonging to the KEGG glycosaminoglycan biosynthesis

pathways (excluding genes belonging to dermatan sulfate biosynthesis and

sulfotransferases on the C3 of heparan sulfate) compared to matched non-tu-

mor samples. Gene-set relatedness between gene sets was computed in

terms of the underlying network using Kiwi (Väremo et al., 2014), where

gene sets were considered related if the mutual shortest path length is lesser

than 2 in the network (to increase interpretability, gene sets with more than ten

genes were neglected). In the case of metabolites, the gene-set network was

extracted from the genome-scale metabolic model HMR2 (Agren et al., 2014).

The methods outlined above were implemented using the respective R-pack-

ages, except Kiwi that is a Python module.

Immunohistochemical Staining

A tissue microarray containing 32 ccRCC samples and two normal kidney

samples in duplicates was prepared and used for immunohistochemistry. An

experienced urological pathologist selected all cases. The ethical approval

was granted by the ethical committee at Lund University (LU289-07). Tissue

sections of 4 mm were deparaffinized and rehydrated according to standard

protocols. Antigen retrieval was performed using pressure cooking of the

samples for 20 min in 10 mmol/l citrate buffer (pH 6.0). Immunohistochemical

staining was performed using a Dako Techmate 500 unit, according to the

manufacturer’s instructions (Dako). Antibodies and dilutions used were

HPA020992 (CHPF2 1:35), HPA034625 (HS6ST2 1:125), and HPA037749

(EXTL1 1:35), all from Atlas Antibodies AB. Only tumor samples where both

duplicates could be scored were included in the analysis (21 for CHP2, 32

for HS6ST2, and 27 for EXTL1).

Sample Collection

In the discovery cohort, plasma and urine samples were obtained from 34

patients with metastatic clear cell renal carcinoma in two sites, IOV-IRCCS,

Padova, Italy and Sahlgrenska University Hospital, Göteborg, Sweden. For

21 patients, only plasma samples were obtained. A control group was formed

using 16 healthy individuals without any renal or liver malignancy, nor inflam-

matory pathologies. In the validation cohort, plasma and urine samples were

obtained from 18 patients with metastatic clear cell renal carcinoma in two

sites, IOV-IRCCS, Padova, Italy and Sahlgrenska University Hospital, Göte-

borg, Sweden. For 11 patients, only plasma samples were obtained. A control

group was formed using nine healthy individuals without any renal or liver ma-

lignancy, nor inflammatory pathologies. Samples from IOV-IRCCS, Padova,

Italy were collected from a consecutive series of patients scheduled for

mccRCC follow-up, prospectively. Samples from Sahlgrenska University Hos-

pital, Göteborg, Swedenwere retrieved from the bio-bank in the Department of

Urology and Oncology, retrospectively. All subjects provided written informed

consent. The present observational studywas notified to the Ethics Committee

at IOV-IRCCS, Padova, Italy in January 2013. The approval to collect and

analyze blood samples at the Sahlgrenska University Hospital, Göteborg,

Sweden was obtained from the Regional Ethics Board of Västra Götaland,

Sweden. Whole-blood samples were collected in EDTA-coated tubes. The

tubes were centrifuged (2,500 3 g for 15 min at 4�C), and the plasma was ex-

tracted and collected in a separate tube. Urine were collected in polypropilene

tubes. The samples were stored at �80�C until they were shipped for analysis

in dry ice. Clinical and dietary information is available in Table S3.

Glycosaminoglycan Analysis

Sample preparation including extraction and purification steps were per-

formed as previously described by Coppa et al. (2011) and Volpi and Maccari

(2005a, 2005b), while sample GAGs separation and quantification were per-

formed as described in Volpi et al. (2014) and Volpi and Linhardt (2010).

Briefly, to extract the GAGs, 500 ml of sample was lyophilized, reconstituted

with 1 ml of a 20-mM TRIS-Cl buffer (pH 7.4), and treated with protease (pro-

teinase K from Tritirachium album [Enzyme Commisson 3.4.21.64], >500 U ml

from Sigma-Aldrich) at 60�C for 12 hr. After boiling for 10 min, centrifugation
and filtration was done on 0.45-mm filters, and the filtrate was lyophilized. The

powder was dissolved in 1 ml of distilled water by prolonged mixing. After

centrifugation at 5,000 3 g for 15 min, 0.2 ml of 20% trichloro-acetic acid

was added to the supernatant and stored for 2 hr at 4�C. The mixture was

centrifuged at 5,000 3 g for 15 min, and the supernatant was recovered

and lyophilized for further purification on anion-exchange resin (QAE Sepha-

dex A-25). After reconstitution with 500 ml 10 mM NaCl and centrifugation at

10,000 3 g for 5 min, the supernatant was applied to a column (0.5 3 2 cm)

packed with about 0.4 ml of resin previously equilibrated with 10 mM NaCl.

After washing the resin with 2 ml of 10 mM NaCl, 1 ml of 2.5 M NaCl was

added. Fifty milliliters of ethanol was added to the eluate (1 ml) and stored

at �20�C for 24 hr. After centrifugation at 5,000 3 g for 15 min, the pellet

was reconstituted in 160 ml of water and divided in two aliquots of 80 ml,

and both were lyophilized. One aliquot of the extracted GAGs was treated

with chondroitinase ABC, and the second one was submitted to heparinases

treatment. Unsaturated disaccharides generated by the treatment of ex-

tracted GAGs with enzymes were fluorotagged with 2-aminoacridone (Coppa

et al., 2011; Volpi and Maccari, 2005a, 2005b) and separated by capillary

electrophoresis equipped with laser induced fluorescence according to the

previous reported method (Volpi et al., 2014).

Eighteen independent GAG properties were measured in each sample

(either plasmatic or urinary): CS concentration, HS concentration, and frac-

tions of disaccharide composition for both CS and HS. The charge is the

sum over all sulfated disaccharide fractions. Principal component analysis

was performed on available GAG properties for three cases: only plasmatic,

only urinary, or both plasmatic and urinary (combined). Principal component

analysis was implemented using R-package ade4 (Dray and Dufour, 2007)

(centering was performed by the mean). All measurements are available in

Table S3.

Biomarker Design

To design the biomarkers in the only plasmatic or in the only urinary case, we

used Lasso penalized logistic regression (Tibshirani, 1996) with leave-one-out

cross-validation to select those GAG properties that are most predictive of the

clinical outcome (i.e., mccRCC versus healthy) at the optimal Lasso penalty

value. This was calculated using the glmnet R-package (Friedman et al.,

2010) as the penalty value for which the cross-validation error was within 1

SE of the minimum. The biomarkers were built as the ratio between the sum

of the GAG properties robustly predictive of mccRCC over the sum of the

GAG properties robustly predictive of healthy state. Each property value

was normalized using the respective regression coefficient (rounded to the

nearest rational number). The biomarker for the combined case was taken

as themean of the so-designed plasmatic and urinary biomarkers. The highest

density interval (HDI) for the mean difference in biomarker scores between

mccRCC versus healthy was calculated using Bayesian estimation under the

following assumptions: scores are sampled from a t-distribution of unknown

and to be estimated normality (i.e., degrees of freedom); high uncertainty on

the prior distributions; the marginal distribution is well approximated by a

Markov chain Monte Carlo sampling with no thinning and chain length equal

to 100,000. The estimation was performed using BEST (Kruschke, 2013)

(the above assumptions are reflected by the default parameters). Bayesian

estimation was preferred over the widely used t test since it provides a robust

and reliable estimation ofmean difference even under uncertainty of the under-

lying score distribution for the two groups (that is the case when the number of

samples is limited) (Nuzzo, 2014).

Accuracy Metrics

For each biomarker (plasma, urine, or combined), we evaluated its perfor-

mance in the binary classification of a sample as either mccRCC or healthy

at varying threshold scores by deriving the receiver operating characteristic

(ROC) curves. We measured the accuracy of each biomarker as the area un-

der the curve (AUC) of its ROC curve (AUC is 1 for a perfect classifier and 0.5

for a random classifier). We selected as a potential cutoff value for a given

biomarker the score for which the positive predictive value was maximum;

i.e., a sample whose biomarker score is above this cutoff value has the

maximum probability of being mccRCC. The ROC curves were calculated

using the pROC R-package (Robin et al., 2011), while the optimal cutoff
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was calculated using the OptimalCutpoints R-package (Lopez-Raton et al.,

2014).

Analysis of Covariance

The analysis of covariance was performed using logistic regression on the

clinical outcome (mccRCC versus control) on selected covariates among

those reported in the clinical and dietary information in Table S3. These co-

variates were selected using Lasso penalized logistic regression with leave-

one-out cross-validation as the most predictive of the clinical outcome at the

optimal Lasso penalty value (chosen as described in Biomarker design).

These covariates are age, weekly consumption of pasta and rice, and use

of alcohol. Next, we performed logistic regression on the clinical outcome

based on the combined score and the four selected covariates. The signifi-

cance of each coefficient was tested using the Wald z-statistics for the hy-

pothesis that the corresponding parameter is zero. The same procedure

was followed to check the effect of systemic therapy as covariate, but using

only plasma samples to regress the clinical outcome (since only for such

sub-cohort there were enough patients that did not undergo any systemic

therapy). In this case, either only one covariate was used to indicate the

presence or absence of undergoing therapy or a second covariate to ac-

count for the specific effect of sunitinib was added. Logistic regression

was implemented adopting the Firth bias-reduction method using the brglm

R-package. The performance of the two alternative models for logistic

regression (either combined score + age + weekly consumption of pasta +

weekly consumption of rice + use of alcohol; or combined score) was eval-

uated according to the minimum Kullback-Leibler divergence criterion by

calculating the Akaike’s information criterion (AIC) for the models and

deriving the model probability in terms of AIC weights (Wagenmakers and

Farrell, 2004).
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