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Abstract. Computations in toroidal geometry are systematically performed for the plasma response
to 3D magnetic perturbations, produced by ferritic inserts (FIs) and test blanket modules (TBMs), for
four ITER plasma scenarios: the 15MA baseline, the 12.5MA hybrid, the 9MA steady state, and the
7.5MA half-field Helium plasma. Due to broad toroidal spectrum of the FI andTBM fields, the plasma
response for all the n=1-6 field components are computed and compared.The plasma response is found
to be weak for the high-n (n > 4) components. The response is globally not sensitive to the toroidal
plasma flow speed, as long as the latter is not reduced by an order of magnitude. This is essentially due
to the strong screening effect occuring at a finite flow as predicted for ITER plasmas. The ITER error
field correction coils (EFCC) are used to compensate then = 1 field errors produced by FIs and TBMs
for the baseline scenario, for the purpose of avoiding the mode locking. It is found that the middle row
of EFCC, with a suitable toroidal phase for the coil current, can provide the best correction of these
field errors, according to various optimization criteria. On the other hand, even without correction, it
is predicted that thesen = 1 field errors do not cause substantial flow damping for the 15MA baseline
scenario.

1 Introduction

It is well known that periodic toroidal field ripples can havenegative effects on the plasma
performance, in particular in H-mode plasmas [1, 2]. Fast ion loss due to the ripple fields is
one of the significant concerns in ITER and future fusion reactors. It is by this reason, ferritic
inserts (FIs) have been designed for ITER, in order to reduce the ripple fields in ITER, which
has predominantly then = 18 (n is the toroidal mode number) component due to symmetry
of the toroidal field coils. While cancelling the ripple fields, these FIs produce small, but not
negligible field errors, of other toroidal mode numbers.
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Test blanket modules (TBMs), which are not periodically distributed along the toroidal angle
of the torus, are also designed for ITER. These TBMs contain massive ferromagnetic materials
(several tons), which again generate 3D error fields (EFs) inITER. Unlike the present devices,
where the EFs can be minimized by careful alignment of the machine and the coils system, the
EFs in ITER, as well as their correction, are a substantial concern, partly due to the presence
of TBMs. In particular, a broadband toroidal spectrum of the EFs is expected in ITER, due to
the non-periodic distribution of TBMs.

Recent TBM experiments, carried out in DIII-D [3, 4] using mockup coils, have shown that,
whilst with little effect on the L-mode plasmas and with moderate impact (up to 20%) on the
particle and energy confinement in H-mode plasmas, the TBM coils do have significant effect
on the plasma stability, in particular on the plasma flow damping and the subsequent mode
locking in DIII-D. It is therefore of critical importance toinvestigate the TBM induced mode
locking in ITER. It should also be mentioned that the vacuum magnetic field, produced by the
mock up coils in DIII-D, is about 3 times larger than that predicted by the ITER TBM.

Understanding the structure of the vacuum fields, produced by FIs and TBMs, is certainly an
important first step. However, as has been recently realized, taking into account the plasma
response to the 3D external fields may be crucial. This is useful not only just for understand-
ing the modification (plasma shielding and/or amplification) of the field structure due to the
plasma response, but also, and perhaps even more importantly, for providing better guidance
of correcting these field errors, for understanding the potential mode locking induced by the
low-n components of these fields, and for further investigation ofenergetic particle losses in
the presence of the total 3D field perturbations including the plasma response [5].

Various physics models have recently been developed and applied to model the plasma re-
sponse to external 3D fields. In particular, ideal single fluid plasma response model has been
used to guide the error field correction in ITER (not including EFs resulting from the FIs and
TBMs, though) [6], ideal/resistive single fluid models have been successfully applied to simu-
late the resonant magnetic perturbation (RMP) experiments in DIII-D [7, 8, 9, 10, 11], MAST
[12], and ASDEX Upgrade [13]. A magnetohydrodynamic-kinetic hybrid model has been
shown to quantitatively reproduce the response of plasmas with pressure approaching or even
exceeding the the no-wall limit for the external ideal kink instability [14]. Two-fluid model
has been assumed to compute the plasma response in DIII-D [15]. Successful comparisons
have been made between various models and experiments [9].

In this work, we use the MARS-F/K/Q codes suite [16, 17, 18] to model the plasma response
due to ripples, FIs, TBMs, and for limited cases also with the inclusion of the fields from edge
localized mode (ELM) control coils. The plasma response to the ELM coils has previously
been more systematically modelled for ITER [12, 27]. We shall consider four ITER scenarios
- the 15MA baseline, the 12.5MA hybrid, the 9MA steady state,and finally the 7.5MA half-
field Helium plasma. Three issues are addressed: (i) the linear plasma response to various
decompositions of the vacuum fields, of different toroidal mode numbersn = 1− 6, for all
four scenarios; (ii) optimal correction of then = 1 field errors due to FIs and TBMs, using
the ITER error field correction coils (EFCC), for the 15MA baseline scenario, for the purpose
of avoiding mode locking; (iii) simulation of the plasma flowdamping due to then = 1 FIs
and TBMs fields for the 15MA plasma, using both the quasi-linear MARS-Q code, and the
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JINTRAC code [19] coupled to the MARS-F code.

Section 2 briefly describes the MARS-F/K/Q models, followed by discussions on the input
data for the modelling - primarily the equilibrium specifications for four ITER scenarios -
in Section 3. Section 4 reports the systematic study of the linear plasma response, for the
four ITER scenarios from Section 3. Section 5 reports the modelling results on then = 1
error field correction (EFC). Section 6 reports MARS-Q and JINTRAC results on the plasma
toroidal momentum confinement in the presence of then = 1 FIs and TBMs fields. Section 7
summarizes the work.

2 The MARS-F/K/Q model for computing plasma response

We compute thelinear plasma response in the framework of the single fluid, resistive MHD
approximation. The plasma model, with agiventoroidal rotationV0 = RΩφ̂, is thus described
by the following set of equations

i(ΩEF+nΩ)ξ = v+(ξ ·∇Ω)Rφ̂, (1)

iρ(ΩEF+nΩ)v = −∇p+ j ×B+J×b−ρ
[

2ΩẐ ×v+(v ·∇Ω)Rφ̂
]

−ρκ‖|k‖vth,i| [v+(ξ ·∇)V0]‖ , (2)

i(ΩEF+nΩ)b = ∇× (v×B)+(b ·∇Ω)Rφ̂−∇× (ηj), (3)

i(ΩEF+nΩ)p = −v ·∇P−ΓP∇ ·v, (4)

j = ∇×b, (5)

whereR is the plasma major radius,φ̂ the unit vector along the geometric toroidal angleφ of
the torus,Ẑ the unit vector in the vertical direction in the poloidal plane.ΩEF is the excitation
frequency of the external (to the plasma) 3D field perturbations. In this work, these 3D fields,
which are generally referred to here as the error field (EF), are caused by ripple fields, FI,
TBM, as well as edge localized mode (ELM) control coils. We assume that these 3D fields
are generally dc fields, withΩEF = 0. n is the toroidal harmonic number. For a linear response
of axi-symmetric equilibria, we need to consider a singlen only. The plasma resistivity is
denoted byη. The variablesξ,v,b, j , p represent the plasma displacement, perturbed velocity,
magnetic field, current, and pressure, respectively. The equilibrium plasma density, field,
current, and pressure are denoted byρ,B,J,P, respectively.

The last term in Eq. (2) describes the effect of parallel sound wave damping [20], whereκ is
a numerical coefficient determining the damping “strength”. k‖ = (n−m/q)/R is the parallel
wave number, withmbeing the poloidal harmonic number andq being the safety factor.vth,i =
√

2Ti/Mi is the thermal ion velocity, withTi,Mi being the thermal ion temperature and mass,
respectively. The parallel component of the perturbed velocity is taken along the equilibrium
field line. In this work, we assumeκ‖ = 1.5, corresponding to a strong sound wave damping,
which has been shown to be adequate for modelling the low betaplasma response to external
3D fields [12, 13].

The external 3D field is normally generated by the source current, or an equivalent surface
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currentjESC, located in the vacuum region outside the plasma

∇×b = jESC, ∇ · jESC= 0. (6)

In this study, the source current is specified as a surface current, following a rigorous procedure
as described in Ref. [21] .

Note that for plasma response modelling, we also make use of the divergence-free condition
for the total field perturbationb in the plasma region, by replacing one of the equations in
the Ohm’s law (3) by∇ · b = 0. This is to ensure that the field divergence-free condition
is numerically enforced. The plasma-vacuum interface conditions are the continuity of the
normal component of the fieldb, and the (total) perturbed pressure balance condition. The
former is satisfied automatically by solving for the totalb field across all regions.

All the perturbed quantities are decomposed into Fourier harmonics along the toroidal and
poloidal angles of the torus. For linear perturbations, we solve Eqs. (1)-(5) for each toroidal
harmonicn separately. For each givenn, all the poloidal harmonics, however, couple together,
and need to be included into the solution at the same time. Along the radial direction, Eqs.
(1)-(5) are solved using the finite element method.

Details of the drift kinetic extension of the above model aredescribed in Ref. [17, 22]. This
is essentially a MHD-kinetic hybrid model, based on the so called non-perturbative approach.
The code implementation (MARS-K) benchmarking results werereported in [23] and vali-
dated against experiments [24, 14]. The quasi-linear extension, implemented to model the
external 3D field induced toroidal flow damping of the plasma,was reported in [18]. Various
momentum sink terms associated with 3D field perturbations,including the electromagnetic
resonant (j ×b) torque, the neoclassical toroidal viscous (NTV) torque, as well as the torque
due to the Reynolds stress (REY), have been implemented into MARS-Q, benchmarked [25]
and validated [26].

The MARS-F/K/Q models have been extensively used to study theplasma response in DIII-D
[7, 8, 9, 28, 10, 14, 11], NSTX [24], MAST [12, 26], ASDEX Upgrade [13], as well as ITER
[27].

3 Specification of ITER equilibria and 3D vacuum fields

The main input data for the MARS-F/K/Q modelling are (i) the plasma equilibria, and (ii)
the external perturbed vacuum 3D magnetic fields. In this study, four plasma scenarios are
defined for ITER, as listed in Tab. 1. For the baseline and the hybrid scenario, two phases are
considered - the plasma current ramp-up phase and the current flat-top phase.

These four ITER plasma scenarios, which will be considered for the plasma response compu-
tations, are the 15MA inductive scenario at Q=10 and at the full field (5.3T), at one time slice
during current ramp-up (RU, withIp=12MA) and one time slice during current flat-top (FT);
the 12.5MA hybrid scenario at full field, at one time slice during current ramp-up (Ip=10MA)

4



Table 1: Plasma scenarios considered in the study.
Scenario B0 [T] Ip [MA] Ref.# FT or RU

Baseline 5.3 15 10470 Flat-Top
10060 Ramp-Up

Hybrid 5.3 12.5 13090 Flat-Top
13050 Ramp-Up

Steady-State 5.3 9 10100 Flat-Top
Half-Field Helium 2.65 7.5 10920 Flat-Top

and one time slice during current flat-top; the 9MA steady state scenario at full field, at one
time slice during the steady state phase. the half-field (2.65T) and half-current (7.5MA) sce-
nario with the helium plasma, at one time slice during current flat-top. These equilibria were
produced by the JINTRAC transport code [19].

Figures 1 and 2 show two examples of the equilibrium profiles,for the 15MA baseline scenario
and the 9MA steady state scenario, respectively. Both equilibria shown here are in the current
FT phase. For the baseline plasma, the safety factorq95 is 3.23. The normalized plasma
pressure isβN = 2.04. Transport modelling produces two toroidal rotation profiles, depending
on the assumption on the Prandtl numberPr (the ratio of the momentum diffusivity to the
thermal diffusivity). For the 9MA plasma, theq95 value is 5.84. The normalized plasma
pressure isβN = 2.87.

In order to compute the plasma response, the external 3D fields, caused by the toroidal ripples,
FIs or TBMs, have to be properly specified and included into theMARS-F model. These
vacuum fields, including also additional, not small contributions from irregular neutral beam
ports in ITER, are computed by a combined finite element - Biot-Savart law integrator method
[29]. Based on these vacuum fields, a rigorous procedure, which is valid in a generic toroidal
geometry, has been devised [21] to compute the plasma response fields. This procedure relies
on computing the equivalent surface current (ESC), which is acurrent that produces exactly
the same vacuum field inside a virtual surface (VS), shown by the solid line in Fig. 3, as that
of the external 3D field. Thus the eventual plasma response computation is converted to the
response of the plasma to the ESC.

The above ESC procedure is strictly valid only if the external field sources (e.g. a current
source) are not perturbed by the plasma response. In our study, the external field sources (FI
and TBM) are ferromagnetic, and therefore will eventually react to the pure plasma response
field produced by the perturbed plasma current. This effect is neglected in this work, since,
as will be shown later, the pure plasma response field is generally small compared to the
applied vacuum external field for these ITER plasmas. It is possible to design a more involved
procedure that takes into account this secondary effect, similar to the so called backward
coupling scheme as envisaged in Refs. [30, 31], where stability problems (instead of the
response problem) were considered, and where the influence of the plasma response on the
external structures (the conducting walls) is rigorously taken into account.

5



0 0.2 0.4 0.6 0.8 1
0.5

1

1.5

2

2.5

3

3.5

4

4.5

ψ
p

(a)

sa
fe

ty
 fa

ct
or

0 0.2 0.4 0.6 0.8 1
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

ψ
p

(b)

pr
es

su
re

0 0.2 0.4 0.6 0.8 1
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

ψ
p

(c)

de
ns

ity

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

12

ψ
p

(d)

Ω
φ [k

ra
d/

s]

Pr=0.50
Pr=0.75

Figure 1: Equilibrium radial profiles of (a) the safety factor q, (b) pressure normalized by
B2

0/µ0, (c) plasma density normalized to unity at the magnetic axis, and (d) toroidal rotation
frequency, for the modelled 15MA baseline plasma at the current flat-top phase.
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Figure 2: Equilibrium radial profiles of (a) the safety factor q, (b) pressure normalized by
B2

0/µ0, (c) plasma density normalized to unity at the magnetic axis, and (d) toroidal rotation
frequency normalized by the on-axis toroidal Alfvén frequency, for the modelled 9MA steady
state plasma.
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of the vacuum magnetic field is specified, plotted together with the plasma boundary shape
(dashed line) and a test surface (dash-dotted line). Considered here is the 15MA baseline
scenario at flat-top, with then = 1 vacuum field.
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Figure 4: Comparison of the peak amplitude of the vacuum field|B| inside the virtual surface,
for toroidal harmonicsn = 1−20, of the ripple field (dash-dotted), the ripple plus the FI field
(solid), and of the total field (ripple+ FI + TBM, dashed line). The 9MA steady state plasma
is considered here.

In this work, mainly three contributions of the external fields (ripples, FIs, TBMs) are pro-
vided as the input data. The toroidal Fourier harmonics of these fields are then computed
and analysed for each individualn-component. In particular, analysis of these input vacuum
fields show that the ferritic inserts do compensate, though only partially, then = 18 ripple
field, as observed in Fig. 4. The peak amplitude of the field inside the VS is compared in the
figure. Note that, while compensating the ripple field atn = 18, FIs also introduce othern-
components of the vacuum field, though at low level. The largest vacuum fields, with a broad
toroidal spectrum, are generated by the TBMs.

4 Plasma response to 3D fields by FIs and TBMs

In this Section, we report and analyse the MARS-F plasma response computations for all
the four ITER scenarios as described in the previous Section. Before showing the computed
plasma response, we discuss two particular issues relevantto the plasma response computa-
tions.
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4.1 Plasma response at highn and computing magnetic field outside vir-
tual surface

The first issue is related to the plasma response for high-n vacuum field components, since
both the ripple field and the TBM field contain rather high-n components as shown in Fig. 4.

Using MARS-F, we computed the plasma response to then = 18 ripple field, for the 9MA
plasma. A comparison of the total field (including the plasmaresponse) with that of the
vacuum field, shows almost no difference between these two fields. In order to ensure the
numerical convergence, we have included 280 poloidal Fourier harmonics (fromm=−140 to
140) in computing the plasma response of then = 18 field.

We identify two major reasons that the plasma response is weak for high-n harmonics. First,
the largest modification, that the plasma response brings tothe vacuum field, is for the resonant
Fourier harmonics of the radial field. These harmonics are essentially shielded by the plasma
response (either ideal response leading to complete shielding, or the resistive plasma response
with flow leading to partial shielding). However, for largen field components, the dominant
poloidal harmonics, which are normally at low-m, are non-resonant and are thus not shielded
by the plasma response. For the example shown in Fig. 5, all the harmonics with themnumber
below 23 are non-resonant. The first resonant harmonic for this n = 18 radial field ism/n =
24/18, since theqmin value is 1.3248 for this 9MA plasma equilibrium. Since all the m> 23
Fourier harmonics have at least 3 orders of magnitude lower field, their contribution to the total
field, even taking into account the plasma response induced modification, is small. Second,
the plasma is normally deeply stable with respect to the high-n kink mode. Therefore, the
plasma response induced kink amplification, which is often observed in low-n RMP response
modelling [12, 28, 10, 13], does not occur for high-n fields.

In fact, as will be shown later on, the plasma response is already relatively weak for then
numbers above 4, for all the plasma scenarios considered in this work. Therefore, in most of
the work, we shall perform the plasma response computationsfor n = 1 to 6.

Another important issue is how to obtain the total plasma response field which is valid in
the whole computational domain. The ESC procedure, as devised in Ref. [21], only ensures
that the plasma response is valid inside the VS. What we have realized, however, is that it is
possible to rigorously obtain the plasma response in the whole domain even beyond the VS.
The key idea here is to first compute and store the perturbed (3D) plasma currents, as the
result of the plasma response to the external fields. Next, the magnetic field, produced by the
perturbed plasma current, is computed based on a procedure equivalent to the Biot-Savart law.
Finally, the plasma current perturbation induced field, andthe original vacuum field, which
can both be evaluated in the whole space, are combined to obtain the total response field.
Examples of the this new procedure are shown below.
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Figure 5: The logarithmic plot of then= 18 vacuum radial field amplitude versus the poloidal
harmonic numberm, for the combined field from ripples, FIs and TBMs of the 9MA case.

4.2 Plasma response for four ITER scenarios

The plasma response has been computed for all four ITER scenarios, with six plasma equi-
libria in total as listed in Tab. 1. For each equilibrium, theresponse is computed for each
individual n = 1−6 field component. For each equilibrium and eachn, we separately com-
pute the plasma response to the ripple+FI and ripple+FI+TBM fields. In addition, the plasma
response to the ELM control coil currents is also computed for the 15MA baseline scenario
and the 9MA steady state scenario, again for each individualn= 1−6. For the RMP fields, the
corresponding (optimal) coil configurations are taken fromRef. [32]. Some of these response
field data have been used for further investigation of the fast ion losses in ITER [5].

As an example, figure 6 plots the plasma response field (only the BR component alongR at
Z = −0.03m is shown) for alln = 1−6 components, for the 9MA steady state equilibrium at
FT. The ripple, FI and TBM contributions are all included. Addition of the TBM contribution
normally results in several times larger field than the FI field. It’s also interesting to note that
the plasma response is not very strong (compared to the corresponding vacuum field) when
all fields are included. It turns out that the plasma responseleads to larger modification of the
vacuum field, when the TBM contribution is absent. This shows that the poloidal spectrum of
the applied vacuum field can significantly affect the plasma response. It is also evident that
the pure plasma response (i.e. the fields produced by the perturbed plasma response currents,
shown in red) is already small, compared to the applied vacuum field (shown in blue), for the
n = 4-component.
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Figure 6: The computedBR field (in Tesla), both real (solid) and imaginary (dashed) parts,
along the major radius at the vertical positionZ = −0.03m, for the 9MA steady state scenario
at the flat-top phase and including the field contributions from the ripple, the FI and TBM.
Each of the sub-plots (a-f), corresponding ton = 1− 6, respectively, shows (i) the vacuum
field (blue), (ii) the response field produced by the perturbed plasma current (red), (iii) the
directly computed total field valid within the virtual surface (black, in the major radius range
between 4m and 8.4m in this plot), and (iv) the total field valid everywhere, by combing
fields (i) and (ii).

12



3 4 5 6 7 8 9
−1

−0.5

0

0.5

1

1.5

2

2.5

3
x 10

(a)

−3

R [m]

δB
R

3 4 5 6 7 8 9
−1

−0.5

0

0.5

1

1.5

2
x 10

(b)

−3

R [m]

δB
R
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along the major radius at the vertical positionZ = −0.03m, for the 9MA steady state scenario
at the flat-top phase and including (a) then = 1, and (b)n = 2, field contributions from the
ripple, the FIs, TBMs, as well as (the low-n side-bands of) the ELM control coils. Compared
are (i) the vacuum field (black), (ii) the total response fieldassuming the fluid model (blue),
and (iii) the total response field assuming the drift kineticmodel (red).

For the 9MA equilibrium, which has high beta, we have also tested whether the drift kinetic
effects from thermal particles can significantly modify thelow-n plasma response. The kinetic
effects include the resonances between the mode and the drift motions of bulk plasma particles
species, including the toroidal precession of thermal ionsand electrons, the bounce (transit)
motion of trapped (passing) thermal ions. The comparison, shown in Fig. 7, indicates that
the drift kinetic modification is moderate for this ITER equilibrium, for then = 1 andn = 2
plasma response.

Figure 8 compares then = 1 plasma response for all 6 equilibria considered in this work. The
plasma response appears particularly strong for the 7.5MA half-field Helium plasma scenario.
This is associated with a strong core kink amplification effect by the plasma [12, 28].

4.3 Sensitivity of plasma response to flow variation

Due to the well known uncertainty in the transport prediction of the toroidal flow speed for
ITER (one example is shown in Fig. 1(d)), it is important to verify whether the MARS-F
computed plasma response is sensitive to the equilibrium flow. We choose the 15MA FT
plasma for this study. We consider then = 1 ripple plus FI fields only, since the plasma
response yields relatively larger modification to the vacuum field, in the absence of the TBM
field.

Figure 9 shows the MARS-F computed total response field while artificially scanning the
whole flow profile, obtained by the JINTRAC modelling assumingthe Prandtl number of
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Figure 8: The computedn = 1 BR field (in Tesla), contributed by the ripple, the FI and TBM
fields, both real (solid) and imaginary (dashed) parts, plotted along the major radius at the
vertical positionZ = −0.03m. Each of the sub-plots (a-f), corresponding to (a) the 15MA
baseline scenario at flat-top, (b) the 12.5MA hybrid scenario at flat-top, (c) the 9MA steady
state scenario at flat-top, (d) the 15MA baseline scenario atramp-up, (e) the 12.5MA hybrid
scenario at ramp-up, and (f) the 7.5MA half-field Helium scenario at flat-top, respectively,
shows (i) the vacuum field (blue), (ii) the response field produced by the perturbed plasma
current (red), (iii) the directly computed total field validwithin the virtual surface (black,
in the major radius range between 4m and 8.4m in this plot), and (iv) the total field valid
everywhere, by combing fields (i) and (ii).
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Figure 9: The computed (a) real (solid) and imaginary (dashed) parts of the totaln = 1 re-
sponse fieldδBR, plotted along the major radiusR across the mid-planeZ = 0, and (b) mag-
netic islands width at rational surfaces, while varying a scaling factorF for the toroidal rotation
amplitude. The whole radial profile of the toroidal rotationfrequency, as shown in Fig. 1(d)
for the Prandtl number of 0.75, is scaled by the factorF . The islands produced by the vacuum
field is also plotted in (b). Considered is the 15MA scenario atflat-top, with the inclusion of
both the ripple and the FI fields.

0.75, by a factorF , which varies between 0.1 and 2. The total response field doesnot sig-
nificantly change whenF varies within a factor of 2 along both ends. This also indicates the
difference between the two rotation profiles shown in Fig. 1(d) should not strongly affect
the computed plasma response. Indeed the MARS-F computations confirm that the plasma
response is almost identical using these two flow profiles from Fig. 1(d).

However, the plasma response does significantly change, if the flow speed is reduced by one
order of magnitude, as shown in Fig. 9. Similar observationshave been made by previous
studies [12, 10].

4.4 Evaluation of the Chirikov parameter

Associated with the resonant 3D field perturbations are the magnetic islands and the Chirikov
parameter. These islands are formed as a result of the forcedreconnection. The MARS-F
resistive plasma response model enables us to compare the island width (and consequently the
Chirikov parameter) with that of the vacuum approximation.

The MARS-F computed radial field perturbation is decomposed in Fourier harmonics, in a
PEST-like straight field line coordinate system

Q =

(

b ·∇ψp

Beq·∇φ

)

mn

, (7)

whereQ denotes the(m,n)-th Fourier harmonic of the perturbed radial magnetic fieldb. ψp
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is the equilibrium poloidal flux function, which also labelsthe radial coordinater, with r ≡
√

(ψ0−ψp)/(ψ0−0). Note that here we have assumed that the equilibrium poloidal flux
is ψ0 on the magnetic axis, and vanishes at the plasma edge.Beq denotes the equilibrium
magnetic field, andφ is the geometric toroidal angle.

As shown in Appendix, the width of the magnetic island, located at the rational surfaceq =
m/n, can be evaluated, in general toroidal geometry, as

w =
∆r
a

= 4

√

∣

∣

∣

∣

Q
2ψ0nS

∣

∣

∣

∣

, (8)

whereS≡ (r/q)dq/dr is the magnetic shear, evaluated at the same rational surface.

Assuming two neighbouring islands, of widthw1 andw2, are located at the minor radii ofr1

andr2, respectively, the Chirikov parameter is conventionally defined as

σ =
(w2 +w1)/2
|r2− r1|

. (9)

In the following, we shall plot the Chirikov parameter for theITER 15MA scenario, based on
the computed plasma response. A similar investigation has been carried out for the 9MA case
but not shown here. Before showing the results, we point out that the Chirikov parameter only
provides an estimate of the field line stochasticity, induced by the islands overlapping. A more
accurate knowledge is obtained by direct field line tracing (Poincare plot) using the computed
plasma response field.

We have compared the computed Chirikov parameter under the vacuum field (ripple plus FI
fields) assumption, between the current ramp-up phase and the flat-top phase, for the 15MA
baseline scenario and for each of then= 1−6 toroidal components. As expected, the Chirikov
parameter is generally larger, for alln’s, during the RU phase. Each singlen component does
not yield significant islands overlapping even near the plasma edge - the Chirikov parameter
is always below 1.

As one example, figure 10 compares the Chirikov parameter without (blue) and with (red)
the plasma response, for eachn-component of the 15MA FT case with the applied ripple plus
the FI fields. Except for then = 6 case, the plasma response generally reduces the magnetic
island width compared to the vacuum island, and hence the Chirikov parameter as well. The
reduction is significant towards the plasma core, but generally moderate near the plasma edge,
due to both higher plasma resistivity (lower thermal electron temperature) and slower plasma
flow in the edge region. The amplification of the magnetic islands by the plasma response,
shown here for then= 6-component, is also plausible, as has already been noted inpreviously
studies [33, 34].

Combining alln-components yields Chirikov parameter locally exceeding 1,as shown in Fig.
11. This is largely because more islands, of different helicities, now co-exist at very close
distances. The Chirikov parameter, as a function of the plasma minor radius, thus shows a
rather irregular behaviour when combining together all islands with differentn-numbers. This
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Figure 10: Comparison of the Chirikov parameters, corresponding to each individualn= 1−6
ripple+FI vacuum (blue) and total response (red) field, for the 15MA scenario at the flat-top
phase.

complicates the judgement on the field line stochastizationnear the plasma edge region. A
better definition rather than simply the Chirikov parameter,such as that defined in Ref. [32],
can be more useful. Eventually the best way of judging the field line stochasticity, is probably
still the Poincare field line tracing plot. Nevertheless, Fig. 11 still quantitatively shows clear
reduction of the Chirikov parameter by the plasma response.

We also find that, for a givenn (n= 3 andn= 4 for ITER), the largest field perturbation comes
from the ELM control coils (the RMP fields). On the other hand, the symmetry of the ELM
coil distribution along the toroidal angle in ITER normallygenerates narrow band toroidal
spectrum of the 3D field perturbation, compared to the ratherbroad spectrum (forn up to 20)
generated by the ripples, FIs, and particularly the ITER TBMs.

5 Error field correction using EFCC

5.1 EFCC specification

In this work, we consider using the ITER error field correction coils (EFCC) to correct the 3D
fields produced by the FIs and TBMs. The correction takes into account the plasma response
as computed by MARS-F, following various EFC optimization criteria.

The EFCC design, shown in Fig. 12, is taken from Ref. [35]. Each row consists of 6 coils,
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Figure 11: Comparison of the Chirikov parameters, corresponding to all n = 1− 6 vacuum
(blue) and total response (red) ripple+FI fields combined together, for the 15MA scenario at
the flat-top phase, (a) in the whole plasma region, and (b) near the plasma edge.

covering 60 degrees along the toroidal angle for the top and bottom rows, and 36 degrees for
the mid-plane row. The upper limit of the coil current is 10kA, with 32 turns designed for the
top and bottom rows, and 20 turns for the mid-plane row of EFCC.

Here we shall consider the correction of then= 1 field component, by three rows of the EFCC.
This is motivated by the fact that normally then = 1 field component leads to the most severe
consequences for the mode locking. We shall consider the EFCfor the 15MA scenario at the
flat-top phase. Two studies, with and without the TBM contribution to the EF, shall be carried
out. Here by the EF we specifically refer to the combined fieldsfrom the ripple, the FIs, and/or
the TBMs.

5.2 Criteria for EFC optimization

We shall consider various optimization criteria, following a similar study that has been carried
out for the MAST plasmas [21]. In particular, according to Criteria A, we choose the EFCC
currents such that them/n= 2/1 resonant component of the total field (EF+ EFCC) vanishes
at theq = 2 surface. This choice is motivated by the fact that the mode locking observed in
experiments is often associated with the 2/1 tearing mode. Two possibilities are considered:
either the full cancellation of the vacuum EF only, by the vacuum EFCC (further referred to
as Criterion AV), or that of the full field including the linearresistive plasma response to both
EF and EFCC (further referred to as AP).

With Criterion B, we minimize the net resonant electromagnetic torque (thej × b torque)
acting on the whole plasma column, due to the plasma responseto both the EF and the EFCC
field. This is again motivated by the mode locking physics.

The third family of criteria, Criteria C, is designed to minimize various aspects of the 3D
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corrugation of the plasma surface, as a result of the plasma response to 3D EF. This includes
the overall peak displacement of the plasma surface (further referred to as Criterion CA), the
averaged value of the surface displacement (AE), the low field side mid-plane (CI) as well as
the maximal displacement near the equilibrium X-point (CX).This family of criteria, initially
designed for correcting the EF in MAST plasmas [21], may alsobe of practical usefulness
in ITER (e.g. to minimize the peak amplitude of the plasma displacement thus avoiding the
plasma locally touching the first wall).

The actuators for the EFC optimization are obviously the three rows of EFCC currents. As-
suming that then = 1 currents flowing in the upper, lower and middle rows are specified
asIU exp(iΦU), IL exp(iΦL), andIM exp(iΦM), respectively, we end up with a generally six-
dimensional optimization problem in the real space(IU , IL, IM,ΦU ,ΦL,ΦM). In order to sim-
plify the problem, we shall fix certain parameters, and carryout most of the optimization in
two-dimensional sub-spaces. Such approach not only simplifies the optimization procedure,
but also allows easy illustration of the robustness of the obtained optima. Even though a
systematic investigation has been performed, we shall report below only sample results illus-
trating the key results.

5.3 EFC optimization results

As the first study, we choose three typical cases of specifying the EFCC current amplitude: (i)
IU = IL = IM, (ii) 2IU = 2IL = IM, (iii) IU = IL = 2IM. For each case, we assume the same
toroidal phase for the upper and lower rows of coils, i.e.ΦU = ΦL = Φ, and independently
vary the two phase parameters(Φ,ΦM). The assumption ofΦU = ΦL = Φ is not unique but
representative. In fact we have also made the optimization assumingΦU =−ΦL = Φ, but find
that the optimal results are not sensitive to this.

We adopt the following optimization procedure. First, we run the MARS-F code to compute
the plasma response fields (or the vacuum field for the vacuum field based Criterion AV) for
each individual row of coils, assuming a unit current amplitude and zero toroidal phase. Next,
we perform superposition of the computed fields, by linearlyscaling each of the fields by the
coil currents in the corresponding rows. The superpositionis always valid for linear plasma
response. The EFC optimization has been carried out withoutor with the TBM field.

One example, based on the vacuum field correction Criterion AV, is shown in Fig. 13. Here
only the ripple and FI contributions are included. We fix the coil current amplitude atIU =
IL = IM = I = 10kAt, and varying the coil’s phasing in the 2D domain of(ΦU = ΦL = Φ,ΦM).
the optimal point,Φ = 90o andΦM = 100o, is shown by the “+” symbol in the figure. Note
that, even though the optimal (corresponding to minimalb1

2/1 amplitude) point is relatively

robust, there is also a global maximal point atΦ = 90o andΦM = 280o that corresponds to the
worst correction of then = 1 vacuum island.

Taking into account the plasma response, however, significantly shifts the optimal point as
shown by Fig. 14. The optimal coil phasing now becomes (ΦU = ΦL = 340o,ΦM = 330o).
Note also the significantly reduced field amplitude, compared to the vacuum field shown in
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Figure 13: The amplitude of them/n = 2/1 vacuum radial field at theq = 2 rational surface
with varying toroidal coil phasing for EFCC. The vacuum field isthe combination of the
ripple+FI fields, and the EFCC field assumingIU = IL = IM = I = 10kAt.

Fig. 13.

The next example also includes the TBM field contribution. Theresults, following optimiza-
tion criterion B, is reported in Tables 2, for various choicesof combination for the coil current
amplitudes. At each combination, the optimal EFCC current phasing is presented. Overall, it
is interesting to note that, with the inclusion the TBM contribution, the optimal phasing for
the middle row EFCC remains relatively fixed at aroundΦM = 300o, according to all but the
vacuum criteria.

As an example, one optimum point from Tab. 2, with 2IU = 2IL = IM = I = 18kAt, Φ = 120o

andΦM = 300o, is shown by the “+” symbol in Fig. 15. The negative value of the torque
indicates the netj ×b acts to brake the plasma flow.

Next, we fix the EFCC current phasing and optimize the current amplitude. We choose two
cases of specifying the EFCC current phase: (i)ΦU = ΦL = ΦM = Φ, and (ii) ΦU = ΦL =
0, IM = Φ. For each case, we assume the same current amplitude for the upper and lower rows
of coils, i.e. IU = IL = I , and independently vary the two amplitudes(I , IM). We adopt the
similar procedure to that described for the coil phasing optimization.

Even though the optimum varies depending on the applied 3D field configuration (without
or with TBM), and on the chosen criterion for optimization, anoverall conclusion is that the
dominant correction comes from the middle row EFCC for the ripple, FI and/or TBM fields.
This is also evident from one example shown in Fig. 16, by the fact that the optimum point
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Figure 14: The amplitude of them/n = 2/1 total response radial field at theq = 2 rational
surface with varying toroidal coil phasing for EFCC. The field is the combination of the plasma
response to the ripple+FI fields, and to the EFCC field assumingIU = IL = IM = I = 10kAt.

Table 2: Optimal EFCC current phasing (in degrees) for correcting ripple+FI+TBM fields
following the plasma response based Criterion B. HereΦU = ΦL = Φ. T is the minimal net
j ×b torque for each choice of the EFCC current amplitude.

IU = IL = IM = I 2IU = 2IL = IM = I IU = IL = 2IM = I
I(kAt) Φ ΦM T(Nm) Φ ΦM T(Nm) Φ ΦM T(Nm)

2 140 300 -2.6760 140 300 -2.7866 140 300 -2.9474
4 140 300 -1.9864 140 300 -2.1783 140 300 -2.4615
6 140 300 -1.4115 140 300 -1.6550 140 300 -2.0225
8 140 300 -0.9512 140 300 -1.2169 140 300 -1.6304

10 130 300 -0.6029 130 300 -0.8626 140 300 -1.2851
12 130 300 -0.3674 130 300 -0.5925 140 300 -0.9866
14 130 300 -0.2453 130 300 -0.4069 140 300 -0.7351
16 110 310 -0.2206 120 300 -0.3049 140 300 -0.5303
18 90 310 -0.2425 120 300 -0.2822 130 300 -0.3707
20 70 320 -0.2625 80 310 -0.3139 130 300 -0.2563
22 60 320 -0.2939 60 310 -0.3474 130 300 -0.1881
24 50 320 -0.3388 40 310 -0.4016 120 310 -0.1532
26 40 320 -0.3930 30 310 -0.4764 110 320 -0.1410
28 30 320 -0.4597 340 300 -0.5573 110 320 -0.1465
30 30 320 -0.5275 340 300 -0.6539 100 330 -0.1394
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Figure 15: The computed netj ×b torque acting on the whole plasma column, with varying
toroidal coil phasing for EFCC. The torque occurs due to the plasma response to the combina-
tion of the ripple+FI+TBM fields, and the EFCC field assuming 2IU = 2IL = IM = I = 18kAt.

is much more sensitive to the middle row coil current, than the top and bottom rows EFCC
currents.

6 Flow damping due to FI and TBM fields

Here, we again choose the 15MA baseline scenario at the flat-top phase. We run the MARS-Q
[18] code to model the time evolution of the toroidal flow, assuming the presence of (i) the
ripple+ FI fields, (ii) the ripple+ FI + TBM fields, and (iii) the ripple+ FI + TBM + RMP
fields. As in the case of the EFC study (and following the same motivation), we consider only
the n = 1 external 3D fields. The MARS-Q model has been shown to well re-produce the
RMP induced flow damping in MAST [26] for variousn numbers. The code has also recently
been applied to model the flow damping due to the pure RMP fields (with n= 3 andn= 4) for
one of the ITER 15MA plasmas [27]. The flow damping modelling in this study always starts
with an initial rotation profile obtained from the JINTRAC modelling, with the assumption of
the Prandtl number of 0.5 (cf. Fig. 1(d)).

One peculiar aspect of the initial value modelling for this 15MA plasma, is that this equilib-
rium, with qmin=0.95, is unstable to then = 1 internal kink mode. Since MARS-Q does not
have the sawtooth crash physics incorporated into the code,we shall model two possible sit-
uations. The first is the flow damping in the presence of an unstable internal kink (i.e. before
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Figure 16: The computed X-point displacement of the plasma surface, with varying EFCC
current amplitudes. The displacement occurs as the plasma responds to the combination of
the ripple+FI+TBM fields, and to the EFCC field assumingΦU = ΦL = ΦM = Φ = 300o.

the sawtooth crash). Such a simulation will eventually leadto un-realistically large amplitude
of the internal kink mode, which fully brakes the toroidal flow. The physically meaningful
time period of the simulation corresponds to the stage wherethe amplitude of the internal
kink mode still remains reasonably small.

The second situation is to model the flow damping after the sawtooth crash, whereqmin be-
comes slightly above 1 and the internal kink mode is stable. Indeed by slightly decreasing the
total equilibrium plasma current, we can elevate theqmin to be slightly above 1, thus ensuring
a stable internal kink mode. Table 3 lists the linear growth rate and frequency (both normal-
ized by the on-axis toroidal Alfv́en frequency) of the MARS-F computedn = 1 internal kink
mode while scanning theqmin value near unity. The toroidal plasma flow is included into the
computation. The mode becomes marginally unstable atqmin = 1.03, and becomes stable at
qmin = 1.04. The real frequency of the mode matches that of the core plasma rotation speed.
In other words, the mode rotates together with the plasma.

We emphasize that changes to the original equilibrium is minimal in the scan listed in Table
3. The largest change is in theq-profile, which is still minor, yet the stability of the internal
kink changes, which affects the flow damping modelling by MARS-Q.

We have performed the MARS-Q modelling for several choices oftheq-profile shown in Tab.
3. Figures 17 and 18 show and compare three cases, for the perturbed resonant field amplitude
and the net toroidal torques, respectively. All then = 1 3D external fields are included.
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Table 3: Linear growth rateγ and frequencyω of then = 1 internal kink mode for the 15MA
baseline plasma.

Case# qmin γτA ωτA

1 0.9488 3.67191E-3 9.51908E-3
2 1.0057 4.45495E-3 9.35699E-3
3 1.0100 3.99806E-3 9.31278E-3
4 1.0200 2.68833E-3 9.19379E-3
5 1.0300 1.03062E-3 9.01798E-3
6 1.04 < 0 -

Higherqmin generally leads to slower growth of the plasma response field, until full saturation
is reached when the internal kink mode becomes marginally unstable or stable. For the three
cases shown in Figs. 17 and 18, the original equilibrium, with qmin = 0.95, is most unstable to
then= 1 internal kink, also agreeing with the computed linear growth rates of the mode shown
in Tab. 3. For such cases, the non-linear runs terminate after the resonant field perturbations
at rational surfaces reach too large amplitude (over 1 Gausslevel) and the net toroidal torques
become unrealistically large at a very short time scale (couple of milliseconds). Within this
time interval, MARS-Q results show that the toroidal flow is not strongly affected. The lin-
early unstable internal kink mode eventually leads to numerical crash of the simulation, in the
absence of additional non-linear physics associated with the sawteeth in MARS-Q.

For the fully saturated solution (where the internal kink islinearly stable), the final flow is
again found to be nearly the same as the initial flow (i.e. in the absence of 3D fields). We also
find that the saturated amplitude for the resonant radial field harmonics remains well below
the 1 Gauss level. This is due to the strong screening of the magnetic islands by the plasma
flow in the plasma core region. The saturated toroidal torques are well below 1Nm level even
with the inclusion of the TBM field.

The periodic oscillations shown in Figs. 17 and 18 are related to the mode rotation. In fact
the estimated oscillation frequency from Fig. 17 recovers well the computed mode frequency
shown in Tab. 3. The oscillation frequency for the torques (Fig. 18) is roughly twice of the
mode rotation frequency, as expected.

Inclusion of then = 1 RMP contribution from the ELM control coils almost does not affect
the simulation results, for both the core flow damping and thenet toroidal torques. This is
because the ELM coils are configured to produce predominantly then = 3 field perturbation
in this case. Then = 1 side-band field is very small. The inclusion of the TBM contribution
does significantly increase the torques, by a factor of about10, though the resulting damping
is still generally too weak to substantially affect the plasma flow.

The MARS-Q modelling does not assume the equilibrium evolution. Moreover, we only
model thechangeof the toroidal momentum due to the applied 3D fields (in our case the
ripple+FI+TBM+RMP fields), by assuming that the a steady state momentum balance (es-
sentially between the momentum source terms and the momentum diffusion term) has already
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Figure 17: Time evolution of all the resonant harmonics of the radial field perturbations,
computed by MARS-Q for three sets of 15MA baseline equilibriawith qmin = 0.95 (thin
lines),qmin = 1.02 (medium-thick lines)qmin = 1.03 (thick lines), as a result of quasi-linear
plasma response to then = 1 ripple+FI+TBM+RMP fields.
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sets of 15MA baseline equilibria withqmin = 0.95 (thin lines),qmin = 1.02 (medium-thick
lines) qmin = 1.03 (thick lines), as a result of quasi-linear plasma response to then = 1
ripple+FI+TBM+RMP fields.
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been achieved before the application of the 3D fields. This allows us to avoid direct modelling
of the momentum source term in the momentum evolution equation [18]. On the other hand,
the JINTRAC code [19] does allow the direct modelling of both the plasma equilibrium evo-
lution and the (time-varying) momentum source terms such asthe NBI torque. But JINTRAC
does not compute the toroidal torques due to the 3D fields. Therefore, we wish to couple the
MARS-F and the JINTRAC codes in the following sense. We first runMARS-F to compute
the linear plasma response induced toroidal torques, usingthe equilibrium and the flow speed
as predicted by JINTRACbeforethe application of the 3D fields. The magnetic surface aver-
aged torque densities due to the 3D fields are then enter into the JINTRAC transport simulation
as the additional momentum sink terms. And iteration between two codes can be envisaged if
necessary.

Figure 19 reports the final JINTRAC simulation results, without and with these additional
torques. The predicted steady state flow profile, shown in Fig. 19(c), is almost not affected by
the 3D fields induced torques, confirming the MARS-Q findings from the previous Section.
There is only a slight change to the flow profile near the pedestal top. The results are probably
not surprising if we compare the 3D fields induced torque withthat produced by the NBI, as
shown by 19(b). The NBI torque is much larger than the MARS-F computed torque due to 3D
fields.

Due to the very weak effect of the 3D fields on the plasma equilibrium and the toroidal mo-
mentum evolution, there is no need to carry out an iterative procedure between MARS-F and
JINTRAC, for this specific case considered in the work. Such iteration may indeed be neces-
sary for other cases, where the 3D fields induced torque leadsto significant modification of
the plasma momentum confinement.

7 Summary

We have carried out computations in toroidal geometry for the ITER plasma response to 3D
magnetic fields, for four scenarios: the 15MA baseline, the 12.5MA hybrid, the 9MA steady
state, and finally the 7.5MA half-field Helium plasma. For thebaseline and the hybrid sce-
narios, we also separately considered an equilibrium at thecurrent ramp-up phase and an
equilibrium during the flat-top phase.

The 3D external fields are generated by the toroidal field ripples, the ferritic inserts, the test
blanket modules, the ITER error field correction coils, and in some cases also by the ELM
control coils. Due to the broad toroidal spectrum of the FI and the TBM fields, we have
computed the plasma response to variousn-components of the applied fields. Since we find
that the plasma response is very weak for high-n field components, this allows us to limit the
plasma response computations mainly for lowern components, namelyn = 1−6. We have
established a rigorous procedure of computing the total response field which is valid in the
whole space.

A sensitivity study of the plasma response computations against the toroidal flow variation
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Figure 19: The JINTRAC modelled steady state radial profiles for (a) the thermal ion temper-
ature, (b) the torque densities, and (c) the toroidal flow speed, for the 15MA baseline scenario
during the current flat-top phase. Three torque densities are compared in (b): the NBI torque
(red), the sum (blue) of all three torques due to plasma response to 3D fields from ripple and
FI, and the sum (pink) of all three torques due to plasma response to 3D fields from ripple,
FI and TBM. Three simulated steady state flow profiles are compared in (c): without the 3D
fields induced torque (red), with the torque induced by ripple and FI fields (blue), with the
torque induced by ripple, FI and TBM (pink).
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shows that the plasma response is not sensitive to the toroidal flow, as long as the latter does
not change by order of magnitude. Based on the computed plasmaresponse, we have also
evaluated the magnetic islands width and the associated Chirikov parameter. The resistive
plasma response in most cases reduces the island width compared with that of the vacuum
island, and consequently, reduces the Chirikov parameter aswell. Despite the fact that each
individual n-component results in Chirikov parameter below 1, combination of all n’s can
result in Chirikov parameter locally exceeding 1. The Chirikov criterion, though may still
be useful as an indicator for the plasma edge field line stochastization, may be quantitatively
less useful when islands with differentn’s overlap. A better and more direct way to judge the
stochasticity is still the Poincare map. For a givenn (n = 3 andn = 4 for ITER), the largest
field perturbation, with the amplitude of the order of 100 Gauss, comes from the ELM control
coils (the RMP fields). On the other hand, the symmetry of the ELM coils in ITER normally
generates narrow band toroidal spectrum of the 3D field perturbation, compared to the rather
broad spectrum (forn up to 20) generated by the ripple, FI, and particularly the ITER TBM,
though the correspondingn= 3 andn= 4 components of these 3D broadband fields are about
ten times smaller than the ELM fields. The amplitude of the TBM field is typically several
times larger than that of the FI field. Therefore, most of the broadband 3D fields in ITER are
produced by the TBM components. On the other hand, the toroidal and poloidal spectra of the
fields are different between these two components.

Based on the plasma response computations, we also performeda study on optimal error
field correction using the ITER EFCC, where the error field is theassumed to be then = 1
component of the ripple field, the FI and the TBM field. The studyis made based on the 15MA
baseline case during the current flat-top phase. The EFC optimizations have been carried out
using various optimization criteria designed for an early study on the EFC in MAST [21]. The
optimizing parameters are both the amplitude and the toroidal phase of the EFCC currents
flowing in the top, middle, and the bottom rows. The key findingis that the middle row of
EFCC plays the dominant role in correcting the EF due to ripple+FI+TBM. At a fixed coil
current amplitude, it turns out that about 300o is the optimal phase for the middle row of EFCC
current, in order to correct all the 3D fields including that of the (dominant) TBM contribution.
This is robustly predicted by all but the vacuum field based optimization criteria considered in
this work, as well as by various choices of the coil current amplitude.

Both the MARS-Q modelling and the JINTRAC modelling, to which the 3D fields induced
torques are provided by the MARS-F computation, show negligible flow damping by then =
1 component of all the 3D fields considered in this work, for the 15MA baseline plasma.
In addition, MARS-Q modelling also shows that, in the absenceof the n = 1 internal kink
instability, the non-linear time evolution fully saturates after about 100ms. The dominant
torque is provided by the resonant electromagnetic torque.The JINTRAC modelling shows
that the total torque due to all then = 1 3D fields, even in the presence of TBM field, is still at
least one order of magnitude smaller than the NBI torque, for the 15MA baseline scenario.

Although not included in this work, we mention that similar MARS-Q and JINTRAC runs
have also been performed for the 9MA steady state plasma, with very similar findings for the
flow damping. Then = 1 fields from FIs and TBMs do not provide appreciable change to the
toroidal flow.
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Appendix: Magnetic island width and Chirikov parameter

Evaluation of island width in MARS-F coordinates

In MARS-F PEST-like coordinates(s,χ,φ), definingχmn≡ mχ+nqandδsas the variation of
s of the 3D field line along the helical angleχmn, we have

∂δs
∂χmn

=
B ·∇s

B ·∇χmn
, (10)

whereB = Beq+ b is the total 3D magnetic field, and we shall only consider one resonant
harmonic for the perturbed fieldb. In MARS-F formulation, we have

B ·∇s = b ·∇s= J−1Qeiχmn, Q≡ b1mn
MARS−F (11)

B ·∇χmn ≃ Beq·∇χmn = Beq· (m∇χ+n∇φ) (12)

= mψ̂′J−1 +nF/R2 = ψ̂′J−1(m+nq) ≃ ψ̂′J−1nq′δs, (13)

whereψ̂′ ≡ dψ̂/ds, and we have used the fact that in the PEST-like straight fieldline coordi-
nate system,

q =
F/R2

ψ̂′/J
≃ qs+q′δs. (14)

Thus we have

∂δs
∂χmn

=
Q

nψ̂′q′δs
eiχmn, (15)

or

∂(δs)2

∂χmn
=

2Q
nψ̂′q′

eiχmn, (16)

yielding

(δs)2 =
2Q

inψ̂′q′
eiχmn

∣

∣

χ2

χ1
, (δs)2

max =
4|Q|
|nψ̂′q′| , |δs|max = 2

√

∣

∣

∣

∣

Q
nψ̂′q′

∣

∣

∣

∣

. (17)

Finally we define the island width, in terms of the normalisedminor radiuss, to be

w = 2|δs|max = 4

√

∣

∣

∣

∣

Q
nψ̂′q′

∣

∣

∣

∣

= 4

√

∣

∣

∣

∣

sQ
nψ̂′qS

∣

∣

∣

∣

= 4

√

∣

∣

∣

∣

1
2ψ̂0

Q
nqS

∣

∣

∣

∣

, (18)

whereS≡ sdq/ds/q as calculated at the rational surface, and we have used the fact that
ψ̂′ = 2ψ̂0s.
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An equivalent approach for evaluation of island width

Following Ref. [36], the island width, in toroidal geometry and in terms of the normalized
poloidal fluxψ, is calculated as

wψ = δψ = 4

√

bmn

nq′
, q′ =

dq
dψ

, ψ =
ψp−ψaxis

Ψ0
, (19)

bmn =
δBmnA
2πΨ0

, δBmnA = 2
I

cos(mθ−nφ)δB ·dS, (20)

whereΨ0 ≡ ψsep−ψaxis = 2πψ̂0. Note the factor of 2π here due to special definition of the
poloidal flux in MARS-F.

In terms of MARS-F variables,dS≡ Jsn̂dχdφ = J∇sdχdφ, we obtain

δBmnA =
I

e−(imχ+inφ)JδB ·∇sdχdφ = (2π)2Q, (21)

where as before,Q≡ b1mn
MARS−F. Note that the factor of 2 in the definition ofδBmnA disappears

due to different Fourier representations for the perturbedfield. We thus obtain

bmn =
Q
ψ̂0

. (22)

Sinceψ = s2, we have

q′ =
dq
dψ

=
dq
ds

1
2s

. (23)

Substituting all the above factors into (19), we obtain the island width in terms ofψ

wψ = δψ = 4

√

2s2

ψ̂0

Q
nqS

, S≡ sdq/ds
q

. (24)

Sinceψ = s2, we haveδψ = 2sδs. Therefore, the island width, in terms ofs, is

w = 4

√

∣

∣

∣

∣

1
2ψ̂0

Q
nqS

∣

∣

∣

∣

, (25)

which is exactly the same as that calculated in Eq. (18).

In case the island is generated by the combination of both(m,n) and(−m,−n) resonant har-
monics, the factorQ should be re-defined as

Q = Re[b1mn
MARS−F +b1,−m,−n

MARS−F] = 2Re[b1mn
MARS−F]. (26)
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Chirikov parameter

The Chirikov parameter, between two adjacent islands located at rational surfacess1 ands2,
is defined as

σ =
w1 +w2

2|s2−s1|
. (27)

This parameter can also be approximately defined for a singleisland, assuming a singlen
field perturbation. In this case, the distance∆s between two adjacent rational surfaces is
approximately calculated via

q(sm+1)−q(sm) = q′∆s. (28)

Sincenq(sm+1)−nq(sm) = (m+1)−m= 1, we have∆s= 1/(nq′). Thus

σ =
w
∆s

= 4

√

∣

∣

∣

∣

1
2ψ̂0

nqSQ
s2

∣

∣

∣

∣

. (29)

An asymptotic scaling of Chirikov parameter at largen

Consider a large-aspect-ratio model for the perturbed vacuum fieldb = ∇ψ̃, satisfying

∇ ·b = ∇2ψ̃ =
1
r

∂
∂r

(

r
∂ψ̃
∂r

)

+
1
r2

∂2ψ̃
∂θ2 +

∂2ψ̃
∂z2 = 0. (30)

Assumingψ̃ = ψ(r)eimθ+ikz, with k = n/R0, we obtain the modified Bessel’s equation

x2∂2ψ
∂x2 +x

∂ψ
∂x

− (x2 +m2)ψ = 0, (31)

wherex≡ nr/R0. The physically interesting solution is the modified Bessel functionIm(x)

Im(x) =
∞

∑
j=0

1
j!Γ( j +m+1)

(x
2

)2 j+m
. (32)

At small argument 0< x <<
√

m+1, we have

Im(x) ≃ 1
Γ(m+1)

(x
2

)m
. (33)

At large argument, we have

Im(x) ≃ ex
√

2πx
. (34)
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We shall consider the large argument asymptote, assumingn is large. Assuming that the
vacuum magnetic field amplitude scales as 1/n at the plasma boundary, i.e.Q(r = a) = 1/n,
where

Q(r) = C0
enr/R0

√

nr/R0
. (35)

The boundary condition givesC0 =
√

a/R0e−na/R0/
√

n, thus

Q(r) =
1
n

1√
s
e−nε0(1−s), (36)

whereε0 ≡ a/R0,s≡ r/a. Inserting the above equation into (29), we obtain the large-n scaling
for the Chirikov parameter

σ ∼ s−5/4e−nε0(1−s)/2, (37)

showing that the Chirikov parameter decays exponentially atlargen, basically due to the fact
that the vacuum field amplitude decays exponentially withn.
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