
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	

MASTER THESIS IN COMPUTER SCIENCE AND ENGINEERING

Algorithms for Verifying Backwards
Compatibility In Distributed Real-Time

Systems

HUSAM ABDULWAHHAB MAKSIMS SMIRNOVS

Department of Computer Science and Engineering
Computer Science – Algorithms, Languages and Logic Master Program

&
Computer Systems and Networks Master Program

CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG

Gothenburg, Sweden 2016

The Authors grant Chalmers University of Technology and University of Gothenburg
the non-exclusive right to publish the Work electronically and in a non-commercial
purpose to make it accessible on the Internet.

The Authors warrant that they are the authors of the Work, and warrant that the
Work does not contain text, pictures or other material that violates copyright law.

The Authors shall, when transferring the rights of the Work to a third party (for ex-
ample a publisher or a company), acknowledge the third party about this agreement.
If the Authors have signed a copyright agreement with a third party regarding the
Work, the Authors warrants hereby that they have obtained any necessary permis-
sion from this third party to let Chalmers University of Technology and University
of Gothenburg store the Work electronically and make it accessible on the Internet.

Algorithms for Verifying Backwards Compatibility In Distributed Real-Time Systems

Husam Abdulwahhab
Maksims Smirnovs

© Husam Abdulwahhab, 2016.

© Maksims Smirnovs, 2016.

Supervisor: Miroslaw Staron
Examiner: Eric Knauss

Master’s Thesis 2016:NN
Department of Computer Science and Engineering
Chalmers University of Technology
University of Gothenburg
SE-412 96 Gothenburg
Telephone +46 31 772 1000

i

Acknowledgements

We would like to express our sincerest gratitude to our academic supervisor Dr.
Miroslaw Staron, who provided us with support, guidance and good feedback through-
out this project. We would also like to thank our technical supervisors Håkan Os-
waldsson and Thomas Sundell who helped shaping our thesis with extremely useful
ideas and technical advices, and our manager at Ericsson Niklas Zetréus, who in-
troduced us to the company’s personal and made sure we have access to Ericsson’s
facilities. Lastly, we sincerely thank Ericsson for providing us the opportunity to
carry out this study at the premises of the company.

Husam Abdulwahhab & Maksims Smirnovs, Gothenburg, June, 2016

ii

ABSTRACT

BACKGROUND: Backwards Compatibility is a key solution for companies that
are attempting to reduce the cost and effort of introducing software updates to
their customers. It is also an important property in order to gain the customer’s
trust in accepting the updates without fearing side effects of some functionality not
working properly. Therefore, it is important that the newly released software update
is backwards compatible with an older version of the software of the same product.

METHOD: In this paper, the main goal is to derive algorithms for verifying back-
wards compatibility and implement them. The results are obtained by following a
research methodology that is based on the design research. Literature review was
conducted in order to identify existing methods for verifying backwards compati-
bility. Algorithms for verifying backwards compatibility were designed, prototyped
and tested on a distributed real-time system in order to evaluate their behaviour.
The implemented prototypes of the algorithms can verify backwards compatibility
in distributed real-time systems that pertain to telecommunications industry.

RESULTS:Description of all the identified algorithms and strategies from academia
and the industry, along with their classification into taxonomy are presented. Three
algorithms that are designed by the authors which verify backwards compatibility
in distributed real-time systems. The first algorithm is based on communication
signals of a component during the execution of one of its tasks, the second algo-
rithm focuses on the details of what the system is doing while executing the tasks,
the third algorithm combines characteristics of the previous two algorithms. Pro-
totypes of all the algorithm are developed and tested on various test scenarios of a
software update. The combined results of the algorithms identified 8% backwards
compatibility problems which are within the acceptable range when a software up-
date is performed on the SGSN-MME product. All three algorithms provide details
on what might be causing the incompatibility of the software update.

CONCLUSION: Backwards compatibility is a hard problem to achieve especially
in large and complex systems such as the one this study was based on. The al-
gorithms that were identified in this study show a lot of promise in developing
automated methods for verifying backwards compatibility. This is proven with the
prototypes of the three algorithms that were developed over the study period. The
work that was carried over this study shows that there is a number of open gaps
to be studied in the future in order to achieve full scale autonomous algorithms for
verifying backwards compatibility for various components of a system.

Keywords: backwards compatibility, distributed real-time systems, automated
check, execution based backwards compatibility, performance based backwards com-
patibility.

iii

Contents

1 Introduction 1

2 Background 3
2.1 Backwards Compatibility . 3
2.2 Sources of Backwards Incompatibility 5

2.2.1 Verifying Backwards Compatibility 6
2.2.2 Forward Compatibility . 7

2.3 Scope . 7
2.3.1 Real-Time Systems . 7
2.3.2 Distributed Systems . 8
2.3.3 Ericsson’s SGSN-MME Product 8
2.3.4 Ericsson’s View of Backwards Compatibility in the SGSN-MME 10

2.4 Related Work . 11
2.5 Limitations . 12

3 Methodology 13
3.1 Research Questions . 13
3.2 Objectives . 14
3.3 Selecting Research Methodology . 15
3.4 Research Approach . 16
3.5 Literature Review Process . 18

3.5.1 Data Sources and Search Strategy 19
3.5.2 Study Selection process . 20

4 Algorithms Design 21
4.1 Signal Based Algorithms . 21

4.1.1 Signals, Packets & Protocols 21
4.1.2 Capturing Execution Signals 22
4.1.3 Identified Traffic Analysis Tools 22
4.1.4 Execution Signals . 24
4.1.5 Identified Patterns . 25
4.1.6 Verifying Backwards Compatibility 27
4.1.7 Prototyping the Algorithm . 28
4.1.8 Testing of the Prototype . 29

4.2 Events Based Algorithms . 30

iv

Contents

4.2.1 Counters and Events . 30
4.2.2 Capturing Counters . 31
4.2.3 Capturing Events . 32
4.2.4 Verifying Backwards Compatibility 32
4.2.5 Prototyping the Algorithm . 35
4.2.6 Testing of the Prototype . 36

4.3 Unified Algorithm . 37
4.3.1 Merging the Algorithms . 38
4.3.2 Verifying Backwards Compatibility 39

4.4 Performance Based Algorithms . 40

5 Results 42
5.1 Study Results . 42

5.1.1 Literature Review Results . 42
5.1.2 Empirical Results . 44

5.2 Results of Implementation Phase . 47
5.2.1 Results of Applying Signal Based Algorithm 47
5.2.2 Results of Applying Events Based Algorithm 49
5.2.3 Results of Applying the Unified Algorithm 52
5.2.4 Impact of the Results . 53

6 Threats to Validity 54

7 Ethical Considerations 55

8 Conclusion 56

v

1
Introduction

Software has become an important part of people’s lives [MBN12]. Today,
people use software in activities and applications such as healthcare, trans-
portation, navigation, and many other purposes. This has created a compet-

itive industry with new companies emerging and competing with each other in the
various fields of software development [MBN12]. In order to gain an advantage over
the competitors, the companies are expected to create products that have optimal
performance and scalability [BG99, MBN12]. This is done through constant updat-
ing of the system which introduces new features and enhancements. These updates
may result in degradation of the performance of the system, thereby increasing the
need of tests to maintain the quality of the software [KP96]. The updates also
introduce new functionalities into the system which may fail to work on previous
version of the system, thus, making the older versions of the product obsolete very
quickly [KP96]. The failure of the older products is an inconvenience to the cus-
tomers who purchased these products, because as soon as they download the new
firmware their systems might not function properly. Hence, it is important to check
that new updates do not result in such problems. This type of quality checks is
known as verification of backwards compatibility [GBM15].

The formal definition of backwards compatibility is introduced in the next section;
however, in order to get an understanding of what shall be discussed, the follow-
ing definition is used, “Backwards compatibility indicates that new software can run
compatibly with the software of older versions of a system without any problems”
[GBM15]. To exemplify this definition in practice, consider a group of nodes in a
system that communicate with each other using a certain communication protocol.
If node (A) in the system is updated to use a new non-backward-compatible com-
munication protocol, while the rest of the nodes continue to use the old protocol,
then node (A) will not be able to communicate with the other nodes as before.
Backwards compatibility is very important for software developing companies that
want to deploy updates to products fast and frequently [GMB15].

The implementation of backwards compatibility is not a trivial task because it be-
comes more complex and harder to verify in proportion to the increase of the size of
software [GMB15]. Old methods of testing each feature of the new software on older
hardware, to establish whether the features work or not, do not scale well with the
increasing size of these products and their software. Thus, performing backwards

1

1. Introduction

compatibility on large scale products can be slow and can take a long time due to
the enormous size of the software that supports them. This is especially important
for the telecommunication infrastructure products, as these products have the char-
acteristics of being large scale, distributed and real-time. This type of distributed
real-time systems is particularly problematic due to the complex nature of its design,
as it is made up of many layers of hardware combined with an enormous amount
of software that are constantly being updated with new features and functionali-
ties. Therefore, it is important to design and develop automated algorithms that
verify backwards compatibility of new updates that are introduced into this type of
systems.

In this study, we aim to design and develop algorithms for verifying backwards
compatibility in distributed real-time systems. Since this type of systems within the
telecommunications industry tend to have major parts with several testing phases,
it is important to identify backwards compatibility algorithms for the various parts
of the system. This is done through a study phase and an implementation phase
which are explained in the research approach. The solution of this type of problems
can be quite beneficial both at an industrial and academic level. This is because the
new knowledge gained from this thesis could be applied in various types of software
applications within the industry, as well as solving problems within the fields in
computer science and engineering.

The contributions of this study include the introduction of two new definitions of
backwards compatibility which are Execution Based Backwards Compatibility, and
Performance Based Backwards Compatibility. Additionally, the classification of the
identified algorithms and strategies into four categories which are, Execution Check,
Performance Check, Syntax Check and System Check. Lastly and most importantly,
the design and development of two algorithms for verifying backwards compatibility
which are Signal Based Verification Algorithm and Events Based Verification Algo-
rithm that pertain to the execution based backwards compatibility verification, and
a method by which the two algorithms are merged together into a Unified Algorithm.

The rest of the paper is structured as follows. Section 2 of this paper presents
the background of the thesis with all the relative information pertaining to back-
wards compatibility. Section 3 discusses the research questions, objectives and the
approach of how the thesis is carried out. Section 4 discusses in details the de-
sign of the algorithms that were developed during the period of the thesis. Section
5 presents and discusses the results of the thesis and Section 6 addresses ethical
considerations of the study. Lastly, Section 7 concludes the study.

2

2
Background

This section provides information about the most important elements that
constitute the background of the thesis, such as definitions of backwards
compatibility, potential sources of backwards incompatibility, the scope of

the thesis, limitations and other general definitions that will be used throughout the
paper.

2.1 Backwards Compatibility

While the term “Backwards Compatibility” may seem straightforward in terms of
meaning, the subject of backwards compatibility is broad and can have varying
definitions [PR12]. This is because backwards compatibility applies to different
levels of software, as well as hardware. The first and most common definition of
backwards compatibility is in terms of avoiding system failures in the presence of new
updates [PR12]. Based on [PR12], the general definition for backwards compatibility
is “when new updates are introduced into the system, they must not cause the system
or any of its components to crash while executing their usual tasks”. While this is
a good definition, it is a general one, especially given that any new updates are
thoroughly tested before they are introduced into the system in order to ensure
software quality. However, while new updates may not cause a system to crash,
they may end up causing one of the components of the system to behave differently.
In this study, two additional definitions for backwards compatibility are presented,
that is execution based backwards compatibility and performance based backwards
compatibility. The main difference between the two definitions is that the former
definition refers to the behavior of the system, while the latter refers to the system
in terms of performance, e.g. load on the CPU or RAM.

• Execution based backwards compatibility - a new feature implementation is
backwards compatible with an older version of the product if the new feature
implementation preserves the observable behavior of the older version of the
product. Whilst this definition is indeed similar to the aforementioned one,
it does provide a more detailed description, namely, that the behavior of the
system should remain the same with the introduction of new features. What
this means is that in terms of execution, the system must exhibit the same
behavior when it comes to, for instance, sending signals on a networking level.

3

2. Background

That is, the signals sent by an older version of the system must still be present
within the updated version of the system.

• Performance based backwards compatibility - implies that the implementation
of a new feature is backwards compatible with an older version of the product
if the new feature does not decrease the performance by more than 2%. This
bound (2%) is defined by Ericsson and is the de facto definition used within the
company, where the study is carried out. For example, this indicates that the
updated system does not utilize CPU more than it is allowed to, for instance,
connecting two thousand roaming users to a server should not create a load
on the CPU more than 2%.

Whilst the definitions we described above are the main ones we shall refer to, there
are other backwards compatibility definitions worth mentioning.

• Binary backwards compatibility - is that the application or component working
with the old version of the binary file keep working correctly with the new
version of the library with an implemented feature without recompilation of
the application [PR12]. An example of this is a program that reads (1 to n)
integer values. If this program is used to read float values instead, it will crash
because of the mismatch in the datatypes within the binary file of the program,
therefore, backwards compatibility at a binary level shall not hold.

• Source level backwards compatibility - means that applications and other de-
pendent components have to be rebuilt and recompiled in order to function
properly on different components [PR12]. However, there is no need to change
the source code itself, only the binary recompilation. An example of this would
be moving software to a new type of hardware such as a computer with a dif-
ferent CPU architecture. In this case it is not necessary to change the source
code of the program; however it is necessary to recompile the program in order
for it to work on the new hardware.

• Microcode level backwards compatibility - is backwards compatibility of soft-
ware at low level programs. It is the result of changes that occur on the
hardware of a system. For example, when a new functionality is added to
an existing CPU design, this functionality might not be compatible with the
legacy version of the software [AEF05]. Thus, verification of backwards com-
patibility must occur at a microcode level, which is an extremely advanced
approach that requires the knowledge of computer architecture in general.

It is worth noting that while a new feature that is introduced into the system must
not affect the original behavior of the system, it can expand on it. However, some
updates may require a change in the original behavior of the system as part of the
update, for instance, omitting sending network signals to a nearby router about the
system’s current state. In which case the definition of execution backwards compat-
ibility may not stand firmly. Similarly, if a performed update on the system causes
performance degradation by more than 1%, then the definition for performance
backwards compatibility may not hold either. Having described several backwards
compatibility approaches, each with their own unique method for verifying back-

4

2. Background

wards compatibility at a certain level, we would like to emphasize once again that
the definitions we shall mainly use throughout this paper in terms of backwards
compatibility will be execution based backwards compatibility and performance based
backwards compatibility.

2.2 Sources of Backwards Incompatibility

Backwards incompatibility refers to a system’s inability to accept new updates and
features [GBM15]. This means that updates that are introduced into the system
may cause problems to the system as a whole or to one of its components. In order
to get a better understanding of what is backwards compatibility, it is important to
discuss the different sources of problems which can lead to a system being backwards
incompatible. However, we do emphasize that this section only addresses the sources
of backwards incompatibility, not the solutions to resolve the issue. Some of the
identified solutions to resolving the issues of backwards incompatibility are discussed
in section (2.3 Related Work) and in more details in the results of the study phase
in section (5.1 Study Results). Backwards incompatibility may occur during one of
the following phases of software development:

• System Updates

System updates are common and are released periodically in most of the prod-
ucts. They include bug fixes, enabling or disabling certain parameters, or
attempts at increasing performance of certain components. However, in situa-
tions such as upon a release of an update, the system that is subjected to the
change results in being backwards incompatible. For instance, it can be back-
wards incompatible in terms of binary backwards compatibility or execution
based backwards compatibility. This can yield the result of one of the system’s
components crashing or performing differently from the intended behavior.

• Feature Deliveries

Sometimes it is the case that new features are introduced into certain com-
ponents of the system, which would allow the system to achieve new tasks
that it could not fulfil beforehand, for instance, enabling power saving mode
via a click on the icon. These features undergo functional tests, however, as
we mentioned before, it is not always the case that the newly implemented
functionality is tested for backwards compatibility. For instance, in terms of
execution based backwards compatibility, the feature does not affect the be-
havior of the system; however, it might affect the performance in a negative
way. Thus, it is very likely that these features would result in some unexpected
compatibility issues.

• Software Corrections

The majority of software products that are released will result in a number
of trouble reports, which document the issues encountered during the imple-

5

2. Background

mentation phase and possible solution of the issue. Companies try to fix these
problems as soon as possible and release what is known as a “hotfix”, which
contains a correction of the reported problem. However, it might be the case
that the released corrections are not fully tested and in some cases, these cor-
rections can result in more unexpected problems, which yield a compatibility
issue with the legacy software.

Now that we know where backwards incompatibility may occur, it is necessary to
establish some of the causes of backwards incompatibility during the three afore-
mentioned phases [PR12]. The following key points are some of the most common
reasons behind backwards incompatibility:

• Removing certain functionalities from one of the system’s components, thereby
preventing the system from being able to use this function.

• Changing the structure or name of one of the functions within the system.

• Changing the number of parameters in one of the system’s functions.

• Changing the order of the parameters in one of the system’s functions.

• Changing the type of parameters that the function is expecting.

• Changing the type of value that the function is supposed to return.

• Overriding some of the existing functions in the system.

• Removing an entire module or software component from the system because
it is deemed unnecessary.

Having described the potential sources of backwards incompatibility, it is fitting to
mention possible solutions that can verify backwards compatibility.

2.2.1 Verifying Backwards Compatibility

The first approach that could verify backwards compatibility consists of executing
various levels of testing the feature against the system, such as unit and component
testing, functional testing, and full scale system and network testing. Hence, most of
these tests will provide a sense of certainty that the feature will work in the system
successfully and with minimum risks on the system itself. While this is a good first
line of defense against incompatibility issues, it might not be enough in terms of
other definitions of backwards compatibility, such as performance based backwards
compatibility or binary backwards compatibility. Thus, there should be new type of
tests on the feature or an update against the system, which are specifically made for
the purpose of verifying most of the backwards compatibility types defined in the
previous section.

One important aspect of the backwards compatibility verification algorithms is that
the tests should be automated and should be able to point out where the incom-
patibility problems are, thus making it easier for the developers to detect these

6

2. Background

compatibility issues and correct them. This is where the role of the authors comes
into play, as the aim of this study is to establish suitable algorithms that can be
automated and used for verifying backwards compatibility of new updated builds
against the old ones in distributed real-time systems.

2.2.2 Forward Compatibility

Although this is a complementary subject to this thesis, it is worth explaining the
concept of forward compatibility or “upward compatibility” as a distinction from
backwards compatibility [JIH02]. Forward compatibility is “a design pattern of a
system which allows the ability of accepting input that is intended for future ver-
sions”. This means that a system with forward compatibility design is built with
expectation of future changes within that system, allowing it the capability of un-
derstanding data that is generated by future versions or new devices, which allows
it to read and execute the data and reply to these devices [JIH02].

2.3 Scope

Based on the discussion in previous section about backwards compatibility, as well
as the study that has been done regarding it so far, the subject of backwards com-
patibility is very broad. It is of paramount importance to focus the scope of our
thesis on backwards compatibility in specific parts or areas. The scope of our the-
sis is strictly aimed at systems that contain characteristics of distributed real-time
computing. From the literature review that we have performed, we can draw a con-
clusion that there has been little (if any) study done in terms of verifying backwards
compatibility in distributed real-time systems.

2.3.1 Real-Time Systems

A real-time system is one where the correctness of the system depends on two factors.
The first factor is the logical result of the computation and the second factor is the
time, at which the results are generated [ST88]. What this essentially implies is that
if the output is not delivered on time, something bad might happen. However, the
timing constraints can be even further divided into soft timing constraints and hard
timing constraints.

A soft timing constraint implies that an un-timed completion of a task is undesirable,
but not critical for a system [LI00]. Whilst a hard timing constraint denotes that if a
hard deadline is missed, the outcome could be fatal [LI00]. As an example, consider
a mobile subscriber connected to a mobile network. A soft timing constraint in
this particular case would be the user connecting to the network, e.g. connection
establishment should not take more than 100 milliseconds. The time to connect
the user does not need to be a hard timing constraint. However, should that user

7

2. Background

in any case try to contact emergency services, then a hard constraint would be to
prioritize the user’s call because, most likely, the information in the call will be of
vital importance. Hence, a task in the user’s mobile phone that is responsible for
converting the data from analog to digital, and afterwards encapsulating this data
into a physical link frame and sending the link frame to the nearest cell tower should
be performed within, e.g. 20 milliseconds. This is considered as one of hard timing
constraints. This is due to that if the data is not sent on time, as we mentioned
before, a fatal outcome might occur. Hence, in real-time systems, timing constraints
are vital and processing of the data is done in real-time.

When new updates are introduced into a real-time system, they may result in a
degradation of the performance of some of the tasks of that system. These degra-
dations may results in a delay to some of the tasks with hard timing constraints.
Therefore it is important to verify that new updates that are introduced into the
system may not affect the system’s performance in a negative way based on the
definition above for performance based backwards compatibility.

2.3.2 Distributed Systems

A distributed system is a collection of independent, autonomous machines that are
connected through a network and distribution middleware [TS14]. In a distributed
system, the machines coordinate their activities and share the resources of the sys-
tem through methods of synchronization, so that to a computer user, a distributed
system appears as a single coherent system [TS14]. The nodes of a distributed sys-
tem communicate with each other through signals of message passing using certain
communication protocols. The order of communication between the nodes is very
important as it defines the execution of one of the tasks of the system. When new
updates are introduced into a distributed system, they may result in changes in the
execution of one of the tasks of the system. This may cause the order of commu-
nication to be disturbed which results in the system crashing because the wrong
message arrived to a particular node. Therefore, it is necessary to verify that the
execution of the system’s components is not changed unless it was done on purpose,
based on the definition of the execution based backwards compatibility.

2.3.3 Ericsson’s SGSN-MME Product

The reason behind our focus on distributed real-time systems is because it is a com-
mon type of systems that are being developed and used within the field of telecom-
munication. This decision was also motivated by the fact that we were able to find
an ideal environment where the study can be performed. The study, investigation,
implementation and testing parts of the thesis are done at Ericsson [WWW1]. Er-
icsson is one of the leading enterprises within the field of telecommunication and
networking, with many products that are being used for communication on a global
scale. Most of Ericsson’s products have full scale implementation of parallel dis-

8

2. Background

tributed fault tolerant and real-time systems, thus, their products are particularly
useful for the scope of our thesis.

The particular product that the thesis is based on is the Serving GPRS Support
Node - Mobility Management Entity (SGSN-MME) [WWW2]. It is a fault toler-
ant distributed real-time system that is responsible for the delivery of data packets
from and to the mobile stations within its geographical service area. The system’s
tasks include packet routing and transfer, mobility management (attach/detach and
location management), logical link management, and authentication and charging
functions. The product is made up of several components; these components are
developed by different departments within the company. The software side of the
product is made up of several layers following the general standards of software ar-
chitecture, which include application layer, business layer, middleware and operating
system level layers, depicted in Figure (1).

Figure 1. SGSN-MME Overview

The product also has a number of tests from its planning and development phase
until its deployment. These phases are very large and complex and there are whole
frameworks and teams that work on managing them. However, the test phases
still follow the general standards of testing, which include unit testing, component
testing, functional tests as well as system testing. The product is part of this thesis’s
study because it is an ideal environment for testing the prototypes of the algorithms.

9

2. Background

2.3.4 Ericsson’s View of Backwards Compatibility in the
SGSN-MME

Ericsson releases a new hardware base of the SGSN-MME for its customers every
few years, whilst the new software updates are released every month. The updates
contain a number of firmware and software changes as well as new features, func-
tionalities and enhancements to the system’s performance. This results in a large
number of software that must be constantly tested, in order to ensure that the soft-
ware can run without any problems. However, in spite of the various tests, these
features may end up causing unexpected problems to specific parts of the system or
the system as a whole, so customers are usually reluctant to accept those updates. It
is important for Ericsson to ensure their customers that the newly installed updates
and features will not affect the original behavior and performance of the system in
a negative way. Therefore, the intention is to provide both the company and the
customers with a method that can be used to test the integrity of these updates,
thereby verifying their safety on the system. This is achieved by verifying that
the previous behavior of the system remains unaffected by the new features that
were introduced to the product. Therefore, Ericsson is looking for the following
requirements in terms of backwards compatibility:

• Narrowing the problem of backwards compatibility using proper definitions
that can be related to the company’s system.

• Overview of the existing strategies for verifying backwards compatibility in
both academia and the industry.

• Proper classification of the strategies to identify where in the system they can
be implemented.

• Recommendations on the most suitable algorithms for verifying backwards
compatibility in their system.

• Prototypes of several algorithms as proof of concept, to provide an insight on
their behavior in the system.

� The prototypes must be automated.

� The prototypes must indicate which elements of the software are incom-
patible.

• Indicating which phase of the software development process can an algorithm
be used.

Ericssons’s view on the backwards compatibility algorithms is that they are means
to gain the customer’s trust in accepting those updates, knowing that they will not
affect the behavior and performance of the system in any way.

10

2. Background

2.4 Related Work

There have been made several attempts at studies in the context of verifying back-
wards compatibility in terms of software modules, libraries and IP communication;
however, to the best of author’s knowledge, none of the studies that are aimed to-
wards verifying backwards compatibility in distributed real-time systems have been
published. In this section, we shall provide a couple of examples of studies that have
been done in order to establish solutions for achieving backwards compatibility.

The work by [VO08] addresses the problem of ensuring IP communication in terms of
communicating nodes on the network. In particular, when there is an edge network
[VO08], and that an edge network is connected to two other edge networks via a
Six/One router[VO08], which belong to different providers, the issue arises in terms
of communication when there exist two nodes in different edge networks and they
wish to communicate. The reason that a communication cannot be established
is that the edge addresses have their IP addresses locally, that is, not visible to
outside network. One of the solutions, which is discussed by [VO08], is to make
the edge address transit, which would make the address globally routable. And
in this particular case, the communication would take place upon such a change.
However, if the edge address is globally routable, then it cannot be reached by
legacy networks, where the edge address was previously established as local. Hence,
the issue of backwards compatibility is that if some component of the system is
upgraded, the legacy version software cannot communicate with it.

The solution that is proposed by the author is to create a protocol in Six/One router
that performs a mapping between each edge address onto one unique transit address
per edge, and each transit address is mapped to a single unique edge address [VO08].
Additionally to this, in the functioning protocol of Six/One router, hosts in edge
networks can be reached both via their edge addresses and transit addresses. By
fulfilling these two criteria, nodes that support legacy network can communicate via
edge addresses and nodes that support transit addresses can communicate globally,
thus, in this sense, backwards compatibility is achieved. However, in relation to
the conducted study, such an algorithm is not feasible as the SGSN-MME system is
more complex and it is not used in the context of edge networks.

Another related study by [WH11] was aimed towards developing a completely ab-
stract trace-based semantics for class libraries in object-oriented languages, for in-
stance, class libraries in Java programming language. In the context of the study
performed by [WH11], a language of their choosing was indeed Java, and the authors
verified backwards compatibility on Java-like sealed packages.

The approach taken by the authors to verify backwards compatibility in terms of
preserving the old behavior of the legacy implementation in all possible contexts
was to use standard operational semantics. This is done so that if there is change
of control between the client context and the library context (the code that belongs
to the library and to the client context), it must be explicit in terms of interaction
labels. These interaction labels record the input/output operations between the

11

2. Background

library and context code, for instance, parameters that were passed in to a method
call [WH11]. Thus, by obtaining these labels, the authors traced them, in the sense
that they abstracted how the data is represented in the heap (heap/stack in terms
of computer memory), introduced support for hiding classes and lastly, abstracted
package denotations were provided. These trace semantics allowed to monitor the
behavior of the library program. Hence, once the initial behavior is obtained, all
that is left to do is to perform the desired modifications to the library, and perform
the proof of concept. According to [WH11], the proof for checking trace-based
semantics for class libraries was based on specialized simulation relations between
the program configurations of program contexts for both the old and the new library
implementation. Indeed, this approach is valid, however, as with the approach by
[VO08], it cannot be used for verifying backwards compatibility in distributed real-
time systems nor this algorithm can be altered to reuse it in some way so that it
can be applied in the context of this study.

It is worth mentioning that the work by [VO08] addresses the aspect that the study
pertains to routers, which communicate in real-time, whilst the study by [WH11]
highlights the software aspect only. However, as it was mentioned before, the back-
wards compatibility algorithms from the two papers cannot be applied to the current
study, as the setting of the study is to verify backwards compatibility in distributed
real-time systems.

2.5 Limitations

Having analyzed the scope of the thesis and what needs to be done in order to fulfill
its objectives, the following are some of the major limitations of the thesis:

• The focus of the study pertains only to the communication products of Eric-
sson; this thesis does not include other products from this company or other
companies.

• The study results in algorithms for verifying backwards compatibility in dis-
tributed real-time systems specifically.

• The study pertains, in particular, to the SGSN-MME product of Ericsson,
however the algorithms are meant to be generic enough to be applied in dis-
tributed real-time systems in general.

• The study results in implementation of the algorithms in the form of prototypes
for testing purposes.

• Certain details of the thesis will be ambiguous as to not disclose sensitive
information of the company due to confidentiality.

• Due to the fact that the study is limited to the time period of the thesis, not
all of the algorithms will be tested on the system through prototyping.

12

3
Methodology

This section discusses in details the process through which the thesis is carried
out. It includes the objectives of the thesis, the research questions as well
as explaining the research approach, and how the literature review process

was carried out, along with the expected challenges.

3.1 Research Questions

Having presented information about backwards compatibility in the previous sec-
tions, it is evident that there is room for performing study regarding this matter.
The research questions are formulated in the following manner so that they capture
the essence of this study. The research questions are listed below:

RQ 1. What kind of algorithms and strategies can be used for verifying back-
wards compatibility in general?

RQ 2. Which of the identified algorithms can be used for verifying backwards
compatibility in distributed real-time systems?

RQ 3. Which algorithms can be combined together to create a unified algo-
rithm for verifying backwards compatibility?

The authors have provided several definitions for different types of backwards com-
patibility (described in section 2.1), therefore the first research questions is aimed at
identifying all existing algorithms and strategies that can verify backwards compat-
ibility in general, regardless to which definition the algorithm belongs. The purpose
of the RQ 1 is to identify and assess whether one of the already existing algorithms
can be altered and applied to the current study. However, RQ 2 focuses more on
algorithms that address the aspects of the distributed real-time systems directly.
The purpose of RQ 3 is to identify which of the algorithms that were developed
by the authors can be combined together into a single algorithm for verifying back-
wards compatibility. Hence, these questions constitute the formal goal of the thesis
which is identifying algorithms for verifying backwards compatibility in distributed
real-time systems.

13

3. Methodology

3.2 Objectives

The main purpose of this thesis is to identify algorithms and strategies for verifying
backwards compatibility for distributed real-time systems. This is done by fulfilling
the following objectives:

• Identify the existing algorithms and strategies within academia for verifying
backwards compatibility in general.

• Study the existing ideas that are proposed by the company.

• Classify the algorithms and strategies based on their types to identify where
in the system they can be used.

• Formulate a hypothesis for an algorithm for verifying the component’s back-
wards compatibility for a certain component in the system.

• Implement and verify a prototype of the algorithms that are formulated.

• Document the algorithms and their performance in the system.

• Recommend the most suitable algorithm(s) to use for verifying backwards
compatibility for the system.

• If possible, formulate a unified algorithm that can work on the various parts
of the distributed real time system.

The objectives, the rationale behind them as well as means of accomplishment are
explained in greater detail in the subsequent Table 1.

14

3. Methodology

Table 1. Research Objectives and Expected Outcomes.

The details of how these objectives will be achieved are explained in the research
approach section.

3.3 Selecting Research Methodology

The most suitable choice for a research methodology for this thesis is design research
[CJB04, VK04], where the goal is to create a service, feature or a full product. An-
other candidate for research methodology to be used in this study is action research
[ALM99], which might be a suitable alternative. However, most theses that use
this type of research methodology have a tendency of being done over a very long
period of time, therefore, this research methodology had to be excluded. Even so,
the general process for the design research described by [CJB04] cannot be com-
pletely applied to the study; therefore, the study follows a process that is similar
and based on the design research. The research process that this study follows is
depicted in Figure (2). The reason for choosing this research methodology is due to
the fact that the thesis includes the design and creation of algorithms for verifying
backwards compatibility within distributed real-time systems.

15

3. Methodology

3.4 Research Approach

The study is divided into a number of phases which are illustrated in Figure (2). The
first phase, which we have labelled as the planning phase, involves preparation for
the entire study. This includes creating an acceptable thesis proposal that describes
the problem and the scientific approach in dealing with it, as well as the research
questions and goals of the study. This phase also includes creating a planning report
that includes objectives of the study, along with their milestones and a projected
time plan based on those milestones. During this phase, we have studied existing
research within the field of backwards compatibility, in order to understand the
current progress and establish the gap to be studied. This phase also includes
studying and understanding the system that the study is based on at Ericsson,
which is the SGSN-MME [WWW2].

Figure 2. The Research Process

The SGSN-MME system is run through a number of phases of testing from its
planning and development phase until it reaches the customer. These test phases
are very large and complex and there are whole frameworks and teams that work on
them. Thus, it is of great importance to have technical interviews with experts of
those parts and test phases of the system, in order to gain the necessary technical
understanding and narrow the scope of the study to specific manageable components.
In order to ensure that we gain as much information as possible from the technical
interviews with the experts, the planning phase also includes preparation for the
interviews and setting up the questions early on.

The second phase, which we have labelled as the study phase, includes collecting and
studying the existing algorithms and strategies for verifying backwards compatibility
in both academia and the industry. This phase is divided into two parts; the first
is collection of the algorithms and strategies. This includes performing a literature
review where a number of papers are studied in order to collect the algorithms and
strategies for verifying backwards compatibility. This part also involves gathering
empirical algorithms and strategies for verifying backwards compatibility from the

16

3. Methodology

industry, particularly ideas that are suggested by Ericsson, as well as other ideas that
are recommended by other companies and people who have experience in this field.
The second part of this phase involves studying the collected data and classifying
them so that it would be easier to choose an algorithm based on the type that it
belongs to. By the end of this phase there should be a form of a classification or
taxonomy map, which contains all the algorithms and strategies that were collected,
studied and classified.

The third phase, which we have labelled as implementation phase, includes the cre-
ation of prototypes of the selected algorithms for verifying backwards compatibility.
Ideally, the algorithms should be generic enough to be applied to the various com-
ponents of the system and can be used at the various test phases of the system. The
algorithms will cover verifying execution based backwards compatibility of the com-
ponent, as well as its performance based backwards compatibility. Since the authors
intend to develop multiple algorithms, this phase was made into a cycle which will
be followed while developing the algorithms; the cycle can be seen in Figure (3).

The first step of this cycle will involve identifying which components of the system
are best for starting backwards compatibility verification. The idea is to select
a component that is representative of a large portion of the system so that the
algorithm can be broad enough to be applied on the other components with minimum
changes. The second step of the cycle involves the formulation of a hypothesis
for an algorithm that can be used for verifying backwards compatibility for that
component.

Figure 3. The Implementation Cycle

The third step of the cycle includes the implementation of a testable prototype for
the algorithm and the creation of proofs of concept in order to test the prototype.

17

3. Methodology

The fourth step of the cycle involves thorough testing of the prototype through the
proof of concepts within the system and documenting the results of the algorithm
along with the performance of the prototype.

It is worth noting that this cycle is a general one and there might be slight alterations
in it, depending on the algorithm that is being developed. It is also worth noting
that due to time constraints, it is not expected that this cycle will be run on all of
the components and test phases of the system. However, it is assumed that some of
the components of the system will share similar characteristics that will allow some
of the hypothesis that are formulated to be reused.

The implementation phase also includes merging the formulated algorithms together
into one unified algorithm that could be used for measuring the level of backwards
compatibility for the various types of definitions that were mentioned in the back-
ground section of this thesis. This particular algorithm will be done in order to
answer the last research question, whether or not it is possible to create such a uni-
fied algorithm for distributed real-time systems. In the case where we are successful
in creating such an algorithm, the same cycle of development will be followed in
creating and implementing a prototype for the algorithm and then test it on the
system in order to verify its behavior and document its performance.

The fourth phase that is labelled as deliverables of this thesis, includes the results
of the study phase, which are the algorithms and strategies that were collected from
both the industry as well as academia, with description of each one and classification
of all algorithms and strategies into a useful taxonomy map. The deliverables also
include the results of the implementation phase that contain the description of the
algorithm with a prototype that illustrates how it works, proofs of concept that
verify the validity, as well as documentation of the results of the algorithm and the
performance of the prototype on the system.

The final phase involves the presentation of the findings of the thesis to both the
university and the company and addressing all feedback and comments that are given
to the authors at which point the thesis will be ready for publication.

3.5 Literature Review Process

This section provides the description of the literature review process performed while
trying to identify what kind of already existing algorithms and strategies are used
to verify backwards compatibility in the general sense. That is, backwards compat-
ibility is not only limited to execution based backwards compatibility or performance
based backwards compatibility, but to other types of backwards compatibility defini-
tions.

18

3. Methodology

3.5.1 Data Sources and Search Strategy

In order to gather as much information as possible, the primary sources of data
collection were the four digital libraries: ACM Digital Library, IEEE Xplore, Inspec
Digital library and Springer Link. These digital libraries are well known and are
considered among the most reliable sources of information in terms of computer
science articles, journals or books.

The conducted search query had to reflect the aim of this thesis, namely, to gather
knowledge about empirical algorithms and strategies that exist in the industry for
verifying backwards compatibility. Therefore, the search query consisted of the
following set of words, that was conducted with the aim of Boolean expressions
“AND” and “OR”. The initial string query used was the following: “backwards
compatibility and software”. After performing the search on the aforementioned
libraries, the amount of articles obtained was limited. However, it is also the case
that within the industry verifying backwards compatibility is sometimes referred to
as backward compatibility, omitting the syllable ‘s’ at the end. Hence, the second
query used was “backward compatibility and software”. Once again, the results
in terms of articles obtained did not wary. The digital libraries produced almost
identical results to the first search query (in terms of quantity and content), however,
only IEEE Xplore digital library had slight variations in terms of quantity of the
articles. The overall quantity of obtained papers is depicted in Figure (4).

Figure 4. Articles from Digital Databases

As we can see, the amount of articles gathered was 679, however, after the study
selection procedure, only a small amount of articles was included in this study. Next
we proceed with explanation of the study selection process.

19

3. Methodology

3.5.2 Study Selection process

Defining the criteria according to which either to include an article for further in-
spection or not is a vital matter. The criteria were as follows:

• The study should be about verifying backwards compatibility within the con-
text that is software related.

• The study must be a conference publication, a journal or a magazine.

• The study must be written in English.

As exemplified in Figure (4), the initial amount of articles gathered was 679, however,
after inspecting titles and abstracts of these papers, only 9 papers were selected for
full paper analysis.

20

4
Algorithms Design

In this section the algorithms that have been developed throughout the thesis are
described in detail. For each algorithm the description of the intended behavior

of the algorithm is provided, its implementation, and how it was tested.

4.1 Signal Based Algorithms

The first algorithm that is studied within the first implementation cycle of the
thesis is an abstract level algorithm, which focuses on the execution sequence of the
software of a component within the system. In particular, the algorithm focuses on
the sequence of communication signals between the nodes of the component. The
reason behind choosing this type of algorithm is the following:

• It is an ideal algorithm for following the execution of a program at a higher
level, without diving into the details of what the system is doing.

• The algorithm is ideal for achieving the goal of creating a generic solution that
could be applied to all kind of programs that utilize network communication.

• The system that is being studied is so complex that even a single component
of a system is large enough to be a fully automated functioning system. Thus,
this type of algorithm would be ideal for an abstract view of the system’s
behavior.

• This type of algorithm is ideal for distributed real-time systems, where the
intent is to follow the external communication between computer nodes.

Before explaining how the algorithm works, it is important to disambiguate some of
the details that encompass the algorithm.

4.1.1 Signals, Packets & Protocols

In computer communication, a group of nodes can communicate with each other
via signals. Whenever a machine, such as a server, stationary computer, notebook,
touchpad or a mobile phone, performs communication on a network level, it is

21

4. Algorithms Design

sending and receiving signals in real-time. The signals are communicated in the
form of network packets, which are units of data that are sent from a source node to
a destination node over a network. Each packet is numbered uniquely and includes
information such as the source address, destination address, the protocol used, the
size of the packet, and error detection checksums.

The sent/received signals must abide certain rules of communication. Communi-
cation protocols are rules that allow two or more nodes in a network to send and
receive data. These rules define the type of data that can be transmitted, the syn-
chronization of the communication and possible error recovery methods. There are
many types of communication protocols, some are public and can be used by all
entities and some are private. Some of the most popular communication protocols
include TCP/IP, UDP and FTP.

4.1.2 Capturing Execution Signals

The first part of the algorithm is to register all the packets that are transmitted and
received between the communicating nodes when the component is executing one of
its tasks. This is important because it provides an abstract layer of the sequence of
execution of the distributed nodes inside the component. Thus, the captured packets
represent the essence of the execution of one of the tasks of the component. In order
to capture the full trace of communication between the nodes, a traffic analysis tool
must be used in order to record all the packets that are sent and received in the
network, hence, it is important to identify a list of tools and decide on the most
suitable one for this purpose.

4.1.3 Identified Traffic Analysis Tools

In order to monitor the communication between nodes in a network, certain traffic
analysis tools are used. They are mainly used for data analysis, troubleshooting,
communication protocol development. The tools take care of registering all traces of
packets on a specific hardware interface that are transmitted and received between
the nodes in a network. Therefore, all the necessary network packet information will
be recorded.

A total number of eight network traffic analysis tools are identified. All the identified
tools are open source. Most of the tools are similar, however, there is difference in the
implementation of the tools themselves, as well as how the gathered network packets
are captured and presented. The identified tools, along with a brief explanation of
each tool, are presented below:

• DSniff
DSniff is a network sniffer application that allows the user to monitor the
traffic on the specified interface, as well as the possibility of disrupting traffic
from other clients that are not on the same computer [WWW3]. Initially, the

22

4. Algorithms Design

tool was developed to showcase how networks are insecure and how data traffic
can be manipulated. Otherwise, the tool provides great possibilities for a user
to either trace/tamper the ongoing network traffic [WWW3].

• EtherApe
EtherApe is a network traffic analysis tool. One of the main features that
it provides is that the tool can display complete ingoing/outgoing network
traffic on a particular interface [WWW4]. Moreover, it can summarize the
protocols and the node’s table, where node table contains IP addresses with
which the computer is communicating in real time [WWW4]. As of today, the
only available version of this product is for the UNIX operating system.

• Netsniff-ng
Netsniff-ng is another network utility tool that can perform analysis on the
captured network packets [WWW5]. However, out of all the tools mentioned
so far, in terms of its capabilities, this tool has the advantage. As an example,
this tool can generate wire-rate traffic (the rate is approximately 2 * 108 meters
per second), replay packets, and perform an autonomous system trace route
[WWW5].

• Packet analyzer
Packet analyzer as the name suggests, this is an application that can allow
the user to monitor network traffic in real-time and in offline mode [WWW6].
That is, this program, if configured correctly, can store the passing data, for
example, on a disk [WWW6]. Afterwards the data can be used for closer
inspection.

• PacketSquare
PacketSquare is a tool for testing network protocols. It uses the “.pcap” (cap-
tured network layer packets) files for testing, analyzing, and troubleshooting
the network. Moreover, the tool can analyze network traffic of more complex
network systems, like router switches or firewalls [WWW7]. Most interesting
capability of this tool is that with its help, it is possible to modify certain
fields within protocols of the captured packets, or duplicate/delete packets
[WWW7].

• Scapy
This program can perform packet manipulation, decode packets, generate net-
work traffic and even do traceroute operations. Since traceroute has not been
mentioned before, it is imperative that an explanation be given [WWW8].
What the traceroute does is that the tool is used to perform network diag-
nostics. In the sense that if a network expert wishes to see the path a packet
took when it was sent from node A to node B, this tool will display all the
intermediate routers that the packet was routed to.

• Tcpdump
Tcpdump is a packet analyzer that can be run on both UNIX and Windows
operating systems [WWW9]. Its main purpose is to display network traffic on
an interface via which the computer is communicating over the network. It

23

4. Algorithms Design

is open source, however, there are many limitations of this tool, e.g. the tool
does not provide many options besides displaying the captured network layer
packets [WWW9].

• Wireshark
Wireshark is a cross platform open source packet analyzer that runs on UNIX,
Windows and Mac OS and other known operating systems [WWW10]. It is the
most popular and most widely used tool for capturing and analyzing network
communication [WWW10]. It includes a high level graphical user interface
and offers a wide range of filtering which makes it very useful for identifying
patterns. It also comes with a terminal based version called tshark, however
it is limited compared to the full program.

4.1.4 Execution Signals

Having analyzed the capabilities of each network traffic analysis tool, it was decided
that wireshark is the most suitable packet analyzing tool for the purpose of this
algorithm. This is because wireshark offers great level of flexibility through the
filtering option within the program; this is depicted in Figure (5). Furthermore,
wireshark also includes a console based version tshark.

Figure 5. Example of a Wireshark Capture

Now that a suitable tool for capturing packets has been identified, we can explain
the second and most important part of the algorithm, which verifies execution based
backwards compatibility of a component. As mentioned before, the goal of the algo-
rithm is to identify the execution sequence of the component through the sequence

24

4. Algorithms Design

of communication between its nodes while it is running. By using wireshark it is
possible to capture all the packets that are being transmitted and received between
the nodes within the component while it is executing one of its tasks. The captured
packets are stored in a file of the type “.cap”.

An example of a five second capture while the machine is idling can be seen in
Figure (5). We can see that even in a five seconds capture, there are already over
80 communication packets that were captured by wireshark. However, the amount
of packets that are usually captured when a machine is performing a task is very
large. This is due to the fact that there are many packets that are not related to
the execution of the software, such as simple echoes that checks whether a node is
alive or not. Thus, it becomes necessary to study the packets of the captured file
and try to filter out the ones that are important for the execution of the program.

4.1.5 Identified Patterns

By closely observing the captured files with wireshark we were able to identify that
certain packets share the use of certain communication protocols, which are unique
to the execution of the program. These packets describe the sequence of execution of
the program with details about the communication that occurs between the nodes,
thus they represent the essence of the execution of that scenario. The packets and
their sequence of execution and communication differ from one test scenario of the
component to another. Therefore, a pattern is established which represents a unique
sequence of packets that pertain to a set of communication protocols. In order to
capture the packets that correspond to a pattern and exclude other packets that
are not relevant to the execution sequence of the program, certain search queries
are used. The search queries are abstract filters that are used for extracting packets
that pertain to a specific pattern, thereby minimizing the size of the captured file.
It is important to note that the identified patterns are not all the patterns that
are used in every scenario of the component, as there are a large number of them.
Nevertheless, they are enough to help formulate a testable prototype. The protocols
that resulted from the use of those patterns are:

• GTPV2
Nodes that communicate using this communication protocol were filtered out
using the search query “(gtpv2 && ipv6) || (gtpv2 && ip)) && !(icmp)”. The
query filters out the packets that use the gtpv2 communication protocol with
ip and ipv6, while excluding echo messages using which is done using !(icmp).
The query and its resulting packets of the execution of one of the component’s
tasks can be seen in Figure (6).

• GIOP
This sequence of packets is filtered out using the search query “giop”.

• S1AP
Packets communicated using this protocol are filtered out using the query
“s1ap”.

25

4. Algorithms Design

• SCCP
The packets that use this protocol were filtered out using the query “sccp”.

• BSSGP
Nodes that communicate packets using this protocol were filtered out using
the query “bssgp”.

The sequence of packets that pertain to one of the above patterns are unique to
a particular test scenario of the component. In order to confirm their uniqueness,
wireshark was used to capture packets for one hour, without running any test sce-
narios of the component. The resulting packets should therefore contain no packets
that pertain to any of the identified patterns, thus verifying that they are patterns
that are unique to the component.

Figure 6. Search Query and its Resulting Packets Wireshark

The search queries are entered into the green field in wireshark, which is used for
filtering the packets that correspond to a pattern. The search query consists of
the protocols gtpv2 in combination with IPv4 and IPv6 addresses. Additionally,
“!(icmp)”, which prevents echo messages, is applied on the resulting query in order
to obtain the desired sequence of execution of the test program, which is depicted in
the blue part of Figure (6). All packets that pertain to the aforementioned patterns
are filtered in a similar manner using their respective search queries.

26

4. Algorithms Design

4.1.6 Verifying Backwards Compatibility

The unique execution signals that are captured, exemplified in the preceding sec-
tion, will be used for verifying whether the component’s software is execution based
backwards compatible or not. The verification process begins by capturing a trace of
the execution of one of the component’s tasks before an update is introduced into it.
The captured file contains all the communication signals between the nodes of the
component during the execution of one of its tasks. Thus, the most suitable way to
capture this trace is to run one of the test cases of the component, which tests the
execution of one its tasks.

Afterwards, using the patterns that have been identified within the component, all
the unique packets of that test case are extracted and stored in their proper order,
thereby ensuring the correct sequence of execution. This is represented in an abstract
level, that is, the initial captured file with the captures signals, depicted on the left
hand side of Figure (7). The exact same procedure is repeated for the execution
of the same test case, however this time it is done in the build that contains the
updated version of the software of that component (right hand side of Figure 7).
Thereby the full execution of the test case will be recorded for both versions of the
software.

Figure 7. Comparing the Execution Signals between Software Builds

The next step is to match the execution sequence of the original version of the soft-
ware against that of the updated version. According to the definition of execution

27

4. Algorithms Design

based backwards compatibility, an update that is introduced into the system’s soft-
ware should not change the behavior of that software, however, it can expand on
it. That means that execution sequence that was recorded for the test case in the
original build of the software must exist in the exact same order, within the execu-
tion sequence of the updated software. Thus, the sequence that was recorded while
testing the original software must be a subset of the sequence that was recorded
after the update is introduced; the matching of signals can be seen in Figure (7)
(denoted by a green arrow).

The execution sequence of the updated software might contain more signals repre-
senting the updated parts of the software, this is depicted on the right hand side of
Figure (7); however those are of no interest, since the main point of focus is check-
ing if the software continues to perform its original task as it did. Thus, if all the
captured signals that represent the execution sequence of the original software exist
in the captured signals of the updated software, then we can say that the software’s
update is execution based backwards compatible.

4.1.7 Prototyping the Algorithm

In order to establish the validity of the algorithm, a prototype was created for testing
it. The first step of the prototype is capturing the execution signals of the test
scenarios of the component; this is done using the trace analysis tool wireshark. The
second step is the extraction of packets based on the patterns that were identified
for the component that is being tested. This is done using the terminal version of
wireshark, which is tshark. The patterns are inputted into tshark using its filtering
feature which result in a list of packets that share the same communication protocols.
Tshark then extracts the filtered packets and stores them in a text file in the exact
order they were found. This procedure is done for two test cases of the software,
one before the update and one after the update.

Next, using bash scripting, a program checks whether the execution signals of a given
test scenario of the original software exist in the updated version of the software.
The program returns a percentage which represents how much of the execution
signals from the original build exist in the updated ones. This percentage represents
the backwards compatibility level of the updated software [PSS10, Sta12]. Based on
recommendations from Ericsson, classification of the percentage is done in a manner
that helps to assess the level of backwards compatibility:

• 95% or More

This indicates that the updated version is backwards compatible and can be
introduced into the system.

• 70% - 95%

The updated version is semi compatible and must be further examined in order
to increase its compatibility.

28

4. Algorithms Design

• 0% - 70%

The updated version is not compatible and must undergo thorough examina-
tion in order to identify all the compatibility issues.

The script also returns all the signals that exist in the original build and do not
exist in the updated version; this can be used for identifying the problems that the
updated versions have.

4.1.8 Testing of the Prototype

The prototype of the algorithm has been thoroughly tested to ensure its validity.
The testing of the prototype has been on different versions of the software of the
EPS component. The component goes through two types of tests:

• Test cases

Test cases are the simplest of ways to test a component’s behavior. Each test
case simulates some task the component is able to execute. Test cases are
usually small and take relatively short time to execute.

• Test Suites

Test suites are collections of test cases that simulate the performance of groups
of tasks by the component. Most test suites are very large and take a long
time to be fully tested.

In order to test the prototype of the algorithm on the system and produce verifiable
results of backwards compatibility checks, two types of proofs are created [HS02].
The proofs help verifying the validity of the algorithm as well as understanding the
results of the prototype [HS02]. The proofs are tested on both test cases as well as
test suites of the component and they are as follows:

• Validating the Prototype - Simple Proof of Concept

This proof of concept involves testing a software build against itself. The logic
behind it is to prove that the prototype behaves as expected when testing
software against itself [HS02]. The proof is done as follows:

� If the prototype is ran on two identical runs of a test scenario of the
software in the same build (i.e. test case and a re-run of the same test
case), the prototype should result in 100% compatibility level.

� If the prototype is ran on a test scenario of the build against a re-run of
the test, however, the second test is interrupted half way through, the
algorithm should result in between 50% to 70% compatibility level.

• Comparing Builds

This proof of concept involves testing a software build against an updated

29

4. Algorithms Design

version of the software [HS02]. This proof is the actual verification of execution
based backwards compatibility between different versions of the software. The
proof is done as follows:

� If the prototype is ran on a test scenario of the original build against
itself it should result in 100% compatibility level.

� If the prototype is ran on a test scenario of the updated version of the
software against that same updated version, it should result in 100%
compatibility level.

� If the prototype is ran on a test scenario of the original build against a
test scenario of the updated build, it should return over 95% compatibility
level in order for the updated version to be backwards compatible.

� If the prototype is ran on a test scenario of the original build against a
test scenario of the updated build and returns between 70% to 95% com-
patibility level then it is semi compatible and should be further analyzed.

The results of the tests that were performed on the prototype of this algorithm can
be seen in Chapter 5 which contains the results of this thesis, section (5.2.1 Signal
Based Algorithms Results).

4.2 Events Based Algorithms

The second implementation cycle of this thesis also focuses on verifying execution
based backwards compatibility, however, the goal is to develop an algorithm that is
more focused on the details of what the component of a system is doing. The reason
behind choosing this type of algorithm is the following:

• Acquire key details of execution of a component’s task.

• It is an ideal algorithm for following the execution of a program at a low level.

The algorithm is useful for developers and testers that are interested in maintaining
backwards compatibility of software during an update. The algorithm uses a number
of measurements in order to evaluate the performance of the system. Thus, it is
important to understand what those measurement methods are and how they work.

4.2.1 Counters and Events

The SGSN-MME utilizes a variety of methods and techniques for monitoring and
maintaining the behaviour and performance of the system’s components while they
are executing their tasks. The algorithm utilizes two of these methods which are
responsible for monitoring and registering the performance and behaviour of the
component’s tasks. These two methods are:

30

4. Algorithms Design

• Counters

A counter is a non-negative integer value that is used for monitoring the per-
formance and changes in the component during the execution of a particular
task. Counters are incremented and may not be decremented. When the value
of a counter reaches the maximum limit of an integer, it is reset to zero, thus
a counter can be seen as the trip counter in a car. The value of the counter
can be read, and reading that value does not alter it.

The value of a counter is incremented every time a change that is related to the
counter occurs during the execution of a task. This means that the counter’s
value can be incremented multiple times during the execution of a task. For
example, a counter is used to measure the number of successful attaches of a
mobile unit into the system during a period of time. Another counter is used
to measure the number of failing attaches. Thus, there is a very large number
of counters that are used in the system, all of which are kept in a database
and are updated constantly whenever new changes occur in the system while
it executes its various tasks.

• Event Based Monitors

Event based monitors are used for logging information about the behaviour of
the system during the execution of a task, in particular the success or failure of
the events of the task. An event is an indication of an activity change within
the component which is triggered during the execution of a task, such as user
connecting and disconnecting from a service, running traffic, changing type
of a service, or when a failure occurs. Contrary to counters, events include a
number of parameters that provide details for each subscriber in the system.
The parameters include the type of device and service being used, the time at
which the event was registered, the duration of the event, whether the event
was successful or not, and much more.

The key performance indicators of the system (KPI) make use of the counters and
events, as well as other measurements in a number of complex equations in order
to compute the performance of each component in the system. However for the
purpose of creating a prototype for this algorithm, we will only use counters and
events as those are the only ones that we have access to and are constantly updated
during each execution of the component’s tasks.

4.2.2 Capturing Counters

All counters in the system are stored in a database and they are updated periodically
with increments that result from the execution of tasks in the system. Counters are
queried either by names or by getting the entire list of counters from the database.
However, we are only interested in counters that were updated during the execution
of specific tasks, or in particular during a specific test scenario of these tasks.

• Updated Counter Value

31

4. Algorithms Design

In order to get the updated counters that pertain to a specific execution of a
task a method is established by which we can extract the names of the updated
counters during the execution of one of these tasks. Then the counters are
queried, using their extracted names, from the system’s logs. This results in
a list of the updated counters during the execution of a task and their newly
updated values.

• Delta of an Updated Counter

Since the counters are always only incremented, getting the updated value of
the counter does not provide enough information, because the counter’s value
is a different number at any given time during the execution. It is therefore
more useful to extract the delta by which the counter has been updated during
the execution of a task. This is done by getting the value of the counter before
and after the execution and calculating the delta of the update.

For example, during the execution of some task in the component, the value
of some counter (A) has changed from 87 to 103, resulting in a delta of 16. It
is important to note that when executing a task and re-executing it, the delta
by which the counter has been updated is always the same, which makes it a
reliable way of testing backwards compatibility.

4.2.3 Capturing Events

The event based monitors capture all events that result during the execution of the
various tasks of the system. These monitors can be queried for the new events that
resulted during the execution of some task, which in turn return all registered events.
As mentioned before, however, each event contains a large list of parameters most
of which are not interesting to us for verifying backwards compatibility. Thus, only
the parameters that are of interest are extracted, which include the name parameter
which gives the name of the event and the status parameter that indicates whether
the event was a success or a fail.

The execution of some task in the system always results in the same group of events,
and should also result in the same status of succeeding or failing. Therefore, for the
purpose of the algorithm, the aforementioned parameters are the only two parame-
ters we need for verifying backwards compatibility.

4.2.4 Verifying Backwards Compatibility

The counters and the deltas by which they are updated, as well as the events and
their statuses will be used for verifying whether the component’s software update is
execution based backwards compatible or not. The algorithm, which is illustrated in
Figure (8), works as follows:

• The algorithm begins with capturing all the counters and their respective

32

4. Algorithms Design

deltas that result from the execution of one of the component’s tasks before
an update.

• The algorithm then captures all the events and their respective statuses which
result from the execution of the task before an update.

• The two above steps are repeated for the execution of the component’s same
task, however, after the software update is introduced into the component.

• At this stage, the counters and their deltas for the execution of the task of
both builds are obtained. Likewise, all the events and their respective statuses
from the execution of the task in both builds are obtained.

Figure 8. Comparing Counters and Events between Software builds

The next step of the algorithm is to match all the extracted information before the
update is introduced to the component against all the extracted information after
the update. The algorithm begins by matching the counters and deltas of the two
builds:

• Each counter and its delta that resulted from the execution of the task before
the update is matched against the counter and delta that resulted from the
execution of the same task in the updated build as depicted in Figure (9).

33

4. Algorithms Design

• In order for the updated software to be backwards compatible, all the counters
that were changed as a result of the execution of a task before an update,
must exist with the exact same deltas by which they were updated by, in the
captured counters of the task that was ran after the test case.

• If a counter or its delta does not match against the one in the updated version,
it is filtered out as a faulty counter in order to be further analysed by the
testers and developers. This is depicted in Figure (9), where the Delta of the
2nd counter in the original build is not equal to Delta’ of the 2nd counter in
the updated build.

Figure 9. Matching Counters, Deltas, Events and Statuses

Next the algorithm matches the events and their statuses from the two builds:

• Each event and its status that resulted from the execution of the task before
the update is matched against the event and status that resulted from the
execution of the same task in the updated build as depicted in Figure (9).

• As in the case with the counters, in order for the updated software to be
backwards compatible, all the events and their statuses must exist exactly the
same, in the captured events of the updated build.

• If an event or its status does not match against the one in the updated version,
it is filtered out as a fault counter in order to be further analysed by the testers
and developers. This is depicted in Figure (9), where the Status of the 2nd

34

4. Algorithms Design

event in the original build is not equal to Status’ of the 2nd event in the updated
build.

New updates will most likely contain new counters and events that are added as
part of the tasks of the updated software as can be seen in Figure (8) (i.e. Counter
AA, Event C). Those are not taken into consideration when checking for backwards
compatibility, as we are only interested in checking if the software continues to
perform its original task as it did.

4.2.5 Prototyping the Algorithm

The prototype of the algorithm is created in order to establish the validity of the
algorithm by testing its prototype on the system. The prototype is divided into the
following two parts:

• Collecting Counters and Events

The counters and the deltas were collected from the system using an Erlang
module. A test scenario that represent a task of system’s component is speci-
fied, the module then collects all the counters and their values before running
the test. After the test scenario is ran, the module collects all the counters
and their values again. The module then compares the counters that were
collected before and after the running of the test based on their values. A
counter whose value has incremented after the running of the test is stored
in a file, along with the delta by which the counter’s value has changed. The
same procedure is repeated for the same test scenario, however on an updated
build, thus there will be two files containing counters and their deltas, one
created before software update, and one after the update.

The events are collected from their event based monitors using an Erlang
module as well. In this case, after the execution of test scenario, the event
based monitors have all the new events that resulted from the test. The module
requests those events, and then filters out the unnecessary parameters, since
we are only interested in the name of the event and its status. The module
would then store all the events and their respective statuses into a file. The
procedure is repeated for the same test scenario on an updated build, thus, two
files are created, one that contains the events of the test before the software
update and one that contains the events for after the software update.

• Backwards Compatibility Check

The second step involves matching the counters and events of a test scenario
that were collected before a software update, against the counters and events
of an updated software as depicted in Figure (8). The check is performed
using a Bash script which reads the two counter files (counters before an
update, and counters after an update). The script matches the counters and
their respective deltas that were recorded before a software update against the
counters and deltas after a software update as depicted in Figure (9). If some

35

4. Algorithms Design

counter that was recorded before the software update, does not exist in the
set of counters after the software update, then the software update is reported
to be incompatible and the mismatching counter is printed out. If a counter
does exist in both files, however, the delta by which the counter was changed
does not match in both files, then the software build is reported incompatible
and the mismatching counters and their respective deltas from both files are
printed out.

The script then reads the events of both files (events before an update, and
events after the update). The script matches the events and their respective
statuses that were collected before the software update against the events that
were recorded after the software update Figure (9). If an event that was
collected before the software update does not exist in the set of events that
were collected after the software update, the software is reported incompatible
and the missing event is displayed to the terminal. If the status of event which
indicates whether the event was successful or not, does not match in both files,
then the software update is reported incompatible, and the mismatching events
along with its statuses is displayed in the terminal. The displayed counters
and events can be used later on by the developers and testers in order to trace
the source of the incompatibility and resolve the problem.

4.2.6 Testing of the Prototype

Following the same pattern of testing that the signal based algorithm underwent,
the prototype of the algorithm was subjected to two types of proofs [HS02]. The
proofs help verifying the validity of the algorithm as well as understanding the results
of the prototype [HS02]. It is important to note however, that the testing of this
prototype was done only on test cases and not test suites. This is because the goal
of the algorithm is to evaluate the execution of separate tasks of the component,
such that the results of the tests do not affect each other. The two proofs of the
algorithms are as follows:

• Validating the Prototype

Similarly to the previous algorithm’s proof of concept, this proof involves test-
ing a software build against itself in order to prove that the prototype behaves
as expected when testing software against itself [HS02]. The proof is done as
follows:

� If the prototype is ran on two identical runs of a test scenario of the
software in the same build (i.e. test case and a re-run of the same test
case), the prototype should report that the software is compatible.

� If the prototype is ran on a test scenario of the build against a re-run
of the test, however, the second test is interrupted half way through,
the prototype should result that the software is incompatible and display
between (50% to 70%) of the counters and events, which are are missing.

36

4. Algorithms Design

• Comparing Builds

Similarly to the previous algorithm’s testing procedure, this proof of concept
involves testing a software build against an updated version of the software
as depicted in Figure (8). This proof is the actual verification of backwards
compatibility between different versions of the software. The proof is done as
follows:

� If the prototype is ran on a test scenario of the original build against
itself it should result that the software is compatible.

� If the prototype is ran on a test scenario of the original build against
a test scenario of the updated build, and all events and counters of the
previous build are present in the new one, then prototype should report
that the software update is backwards compatible.

� If the prototype is ran on a test scenario of the original build against a test
scenario of the updated build, and a counter or its delta is mismatching,
then prototype should report that the software update is incompatible
and display the mismatching counters and their respective deltas.

� If the prototype is ran on a test scenario of the original build against a test
scenario of the updated build, and an event or its status is mismatching,
then prototype should report that the software update is incompatible
and display the mismatching events and their respective deltas.

The results of the tests that were performed on the prototype of this algorithm can
be seen in Chapter 5 which contains the results of this thesis, section (5.2.2 Events
Based Algorithms Results).

4.3 Unified Algorithm

The signal based verification algorithm provides an abstract method for verifying
execution based backwards compatibility. It does not require an understanding of
the details of what the component of the system is doing. And it provides a method
of checking the external communication signals between the nodes of the component
and other components during its execution. On the other hand the events based
verification algorithm provides an in-depth method of verifying execution based
backwards compatibility, which focuses on the details of what the component is
doing, without any focus on the external communication of the component’s nodes.

Due to the different focus of the two algorithms, it is expected that they may result
in some differences in the level of backwards compatibility of a software update and
the information about the problems that cause the backwards incompatibility. Thus
in order to get more accurate results in terms of backwards compatibility, and for
the purpose of answering the third research question RQ 3, a unified algorithm is
established that merges the characteristics of the two algorithms.

37

4. Algorithms Design

4.3.1 Merging the Algorithms

The unified algorithm incorporates the steps of both the signal based verification
algorithm and the events based verification algorithm. The algorithm begins with a
data collection phase which is as follow:

begins with collecting the necessary information for the signal based verification
algorithm, then collecting the information for the events

• Recording Execution Signals

The unified algorithm begins by collecting the information that are needed
for performing the signal based verification algorithm. The information are
represented in the trace of execution signals of the component during the
execution of one of its tasks. The execution signals represent the sequence of
communication between the nodes of that component during the execution of
the task. The procedure of capturing the trace of signals is done as explained
in sections (4.1.4, 4.1.5 and 4.1.6). This step is performed first because the
collection of the execution signals is done during the execution of the task and
not after it is done. By the end of this step, a full trace of the execution signals
are recorded into a file.

• Collecting Counter and Delta

The next step is to collect all the counters that were updated during the
execution of the component’s task, and the delta by which the counters have
been updated. This step is done after collecting the trace of execution signals,
because counters and their deltas can only be collected after the execution of
the task is finished. The capturing of the counters and their deltas is done
following the procedure that is explained in section (4.2.2).

• Collecting Event and Status

The events based verification algorithm also requires information about the
events that occurred during the execution of the component’s task along with
the status of each event of whether it was successful or a failure. Thus the next
step is collecting all events and their statuses that result from the execution
of a task. As in the case of counters and their respective deltas, the events are
collected at the end of the execution of the task. The capturing of the task’s
events and their respective statuses is explained in section (4.2.3).

The above process is first done for the execution of the task before an update is intro-
duced into the component and then once again after the update. At the end of this
part of the algorithm, all the necessary information for performing both algorithms
must be available and stored in files that will be accessed during the verification
part of the algorithm. The algorithm performs the verification checks as follows:

38

4. Algorithms Design

• Checking Signals

The next part of the algorithm is to perform the signal based backwards com-
patibility check on the captured trace of execution signals. The procedure of
checking the signals of the original build against an updated build is explained
in section (4.1.6). It is important to note that for the purpose of the unified
algorithm, the results of the signal based algorithm are only considered back-
wards compatible if the resulting compatibility percentage is above 95%. This
means that any results that are below this value are considered incompati-
ble and the mismatching signals are displayed for thorough examination by
the development team. The rationale behind this decision is that the unified
algorithm should capture as many of the incompatibility faults as possible.

• Checking Counters and Events

The algorithm then checks that all the counters that were captured before an
update exist after the update is introduced. Then the algorithm checks the
delta by which each counter has been changed during the execution of a task
before an update, against the deltas that result from the task after the update.

The algorithm then checks that all the events that resulted from the execution
of the task before the update against the events of the updated build. Then the
algorithm matches the statuses of each event from before the update against
the statuses of the events after the update. The algorithm reports that the
update is backwards compatible if all the counters, deltas, event and statuses
match, otherwise it displays the mismatching data. The procedure is explained
in details in section (4.2.5).

4.3.2 Verifying Backwards Compatibility

The unified algorithm combines the verification of both signal based and events
based algorithms. Thus based on the results of the previous checks, the algorithm
makes a decision on the backwards compatibility of the software update as follows:

• The algorithm reports that the software update is backwards compatible if
and only if the results of checking the signals is above or equal to 95% and the
result of checking counters and events is backwards compatible.

• The algorithm reports that the software update is not backwards compatible
if the results of checking the signals is below 95%. The algorithm displays the
missing or mismatching signals between the two software builds for further
analysis.

• The algorithm reports that the software update is not backwards compatible if
the results of checking the counters yield missing counters between the original
build and the updated one, or if the delta of any of the counters in the two
builds do not match. The algorithm displays all the missing counters and
mismatching deltas between the two software builds for further analysis.

39

4. Algorithms Design

• The algorithm reports that the software update is not backwards compatible
if the results of checking the events yield missing events between the original
build and the updated one, or if the status of any of the events in the two builds
do not match. The algorithm displays all the missing events and mismatching
statuses between the two software builds for further analysis.

4.4 Performance Based Algorithms

Due to the complexity of the system and time limitations of the study, we were
unable to develop a complete algorithm for verifying performance based backwards
compatibility. The following are the methods that were attempted unsuccessfully:

• Comparing CPU Usage

The idea behind this algorithm is to get accurate readings of the CPU usage
during the execution of the component’s tasks before a software update and
compare them to the CPU usage after the software update is introduced.
However, getting accurate readings of the CPU usage that are related to the
execution of the task alone proved very difficult. Most of the CPU readings
obtained fluctuated greatly, even after averaging them over a period of time. It
was also noted that the CPU usage was fluctuating even when the component is
not executing any tasks; thus, it was concluded that prototyping this algorithm
as a viable manner of testing is not possible.

• Comparing Process Usage

An alternative idea to the CPU usage was an attempt at monitoring the num-
ber of registered processes that are spawned during the execution of the com-
ponent’s task and comparing their amount and other characteristics before and
after the update. However, performed tests on the component have shown that
processes are spawned and terminated rather randomly, or in a way that is
hard to follow. It was also observed that processes were being spawned and
terminated even when the component was not executing any tasks. Thus, this
algorithm, much like the previous one, was deemed unreliable for prototyping.

• Comparing Memory Usage

Similarly to the CPU usage algorithm, this algorithm involves comparing how
much is the memory usage of the component during the execution of a task
before and after the update. The method could not be applied on the system’s
component because the readings were not stable at all. The memory usage
varied even when the component is not executing a task; thus, prototyping
this method was not possible.

• Comparing KPI

The main purpose of key performance indicators (KPI) is keeping track of
the degradation of the system’s performance in general. This is done through

40

4. Algorithms Design

a number of complex equations using specific measurement methods, such
as counters and events. The basis behind the algorithm is to compare the
values of the key performance indicators that were affected by the execution
of a component’s task before and after an update. Now, since KPI’s use
predefined mathematical formulas, this means that to measure the change in
terms of performance of a component, the same counters and events as in the
legacy version must exist in the updated version. However, if this algorithm
was to be prototyped, this would mean going beyond functional testing and
would require more time and effort to understand how the system works and
in what manner can the KPI’s be used for verifying backwards compatibility.

41

5
Results

In this section we present the results of the thesis, which includes the results of
the study phase as well as the results of the algorithms and their prototypes.

5.1 Study Results

To answer the first research question RQ1, a number of algorithms and strategies
from both academia and the industry have been identified. Most of the algorithms
that were found within the industry are the ones which are recommended by Erics-
son.

5.1.1 Literature Review Results

• Semantics Check using Boogie

This algorithm targets object oriented libraries, such as Java [WH12]. By
monitoring the stack/heap (in terms of computer memory), the authors were
able to distinguish which parts belong to the library and which parts belong to
the program context [WH12]. Due to the fact that for certain libraries, there
are only a finite number of types, therefore, the traces that the library leaves
on the stack/heap are limited as well [WH12]. What this allows, in turn, is by
monitoring the traces of the library in newer implementations, it is possible to
determine whether the updated library will be backwards compatible or not
by monitoring its behavior in the stack/heap and monitor the control flow,
whether it passes from the library to program context or viceversa [WH12].
This algorithm works only for object oriented programming languages and the
paper’s main focus is Java programming language when testing the framework,
whilst the algorithm itself belongs to execution based backwards compatibility.

• Checking for Deleted Binary Symbols

This algorithm’s focus lies on automatic checking of binary symbols in a newly
released library in comparison to the previous version of the library [PR12].
This is done by extracting public symbols from two versions of the library and

42

5. Results

comparing them [PR12]. There is a number of tools that can perform checks
at this level, such as “dpkg-gensymbols, cmpdylib”. This particular type of
algorithms correspond to binary backwards compatibility verification type.

• Targeted Unit Tests

This strategy focuses on creating unit tests that are targeting backwards com-
patibility directly [PR12]. What this means is that unit tests are made to be
run on newer version of the software, and these unit tests will identify changes
that can lead the newly implemented software to be non-backward-compatible.
According to [PR12], there do exist tools that can be used for automated test
creation; for the full list of tools please refer to paper by [PR12]. However,
in majority of cases, a minor drawback is that the unit tests have to written
manually, which will result in a very large amount of tests very quickly.

• Versioning

This strategy ensures binary backwards compatibility by stacking multiple ver-
sions of a library or component into the same binary file, thereby ensuring that
all the functionalities of the system, old or new, can use the functions they re-
quire [PR12]. While this algorithm may ensure binary backwards compatibility,
there is a drawback, since the library can contain multiple functionalities of a
module pertaining to a specific application, the size of the library is increased,
and this is accompanied by an increase in the complexity of the library mod-
ule. The main advantage of Static linking to ensure backwards compatibility
is that it requires no external dependence on the system library. This results
in minimal or almost none backwards compatibility issues, however, there is a
certain drawback [PR12]. On the one hand, as the library is increased in size,
so is the application. On the other hand, when performing an update on the
library, recompilation of the application is required as well.

• Compatibility Layers

This is a strategy where binary backwards compatibility is ensured by recovering
binary interface of a library from a preceding version, to function with the
newly implemented library. In the paper, the ReBA approach proposes a
completely automated solution for creating compatibility layers [PR12]. It is
based on the analysis of log files, containing all the changes in the code whilst
developing the new version of the library. Although, there is a drawback to
this algorithm, namely, reduction in performance and increase in memory use.

• ABI-Compliance Checker

This is an automated algorithm that is capable of identifying all types of
changes in libraries that prevent the new implementations being binary back-
wards compatible to the older version of the library. The tool is known as
abi-compliance-checker [PR12]. The main working principle behind is to take
header and binary .so files of a library, and compare the type definitions and
function signatures recovered from intermediate representation in the structure

43

5. Results

of the abstract source code syntax tree[PR12]. This tool is open-source; any
modifications in it require knowledge of C/C++. Therefore, this algorithm
addresses binary backwards compatibility.

• MicroFormal

This algorithm is aimed at verification of microcode level backwards compati-
bility in a formal and fully automated manner. This tool uses a term denoted
as Intermediate Representation Language (IRL) which is generic enough to
be used on low-level languages [AEF05]. IRL uses templates, where the tem-
plate is made of IRL code that is equivalent to a microinstruction in terms
of operations to execute. This algorithm is extremely low-level, as it uses ac-
tual processor instructions [AEF05]. It is hard to specify which programming
language is used, as the authors do not explicitly state it.

5.1.2 Empirical Results

The algorithms and strategies that were recommended by Ericsson, as well as some
other algorithms and tools that were found within other companies and from people
with experience in the field of backwards compatibility can be seen below:

• Regulating Mechanism

This idea is meant to be applied in the system for features that have already
been proven to be functionally backwards compatible in terms of execution
based backwards compatibility, i.e. it works without failing itself or the other
sub-systems. If the added feature results in a decrease of the performance
of the system, there should be a mechanism for disabling that feature. The
idea here is to have two versions of the software, one with the feature and one
without, and the system should be able to automatically switch between the
versions in order to maintain the performance and expected behavior [Hut12].
Thus the idea requires information about the behavior of the feature and its
effect on the system’s performance.

• Compare Logs Between Legacy and Updated Version

The idea behind this algorithm is to compare the logs of the two versions of a
certain functionality in order to check if it is execution based backwards com-
patible or not. This requires finding certain patterns in the system’s run-time
information which could lead to verification of the execution based backwards
compatibility of a feature. However this is based on the assumption that the
logs follow a generic pattern that is reliable for this form of testing.

• Compare Variables-Counters-Stack/Heap

This algorithm can be used for monitoring the behavior of the nodes, sub-
system, and network in general. It involves keeping track of all the variables
usage of the system and then comparing them for the various runs. The idea

44

5. Results

behind this algorithm is by using Stack/Heap (in terms of memory) to check
how much of the stack and heap has been used per function in order to verify
if the function is performance based backwards compatible or not. Counters are
used to keep track of the many of the indicators of the system whether it’s
functional, non-functional or performance based.

• Comparing KPI

Key Performance Indicators (KPI) are variables that are used to measure the
performance of the system through the use of some pre-defined mathemati-
cal models and formulas [SNM15]. This is a much more detailed algorithm
in comparison to the previous one (Compare Variables-Counters-Stack/Heap)
because it uses counters that are built specifically for measuring the various
performance indicators of a function. Therefore, the KPIs can be utilized
for the creation of an algorithm that can verify performance based backwards
compatibility of a software update [SNM15].

• Using Flags for Enabling New Features

This is a strategy where the feature should have already been tested both for
functionality and execution and performance based backwards compatibility. If
the feature has a high risk of affecting the system as a whole then the feature is
introduced with a flag that is set to “off”, which can be enabled when needed
[Hut12]. If the feature has a low risk of affecting the system, it will come with
a disabling flag that is set to “on”, which can be disabled if necessary [Hut12].
If the feature has no risks of affecting the system, it does not need any flags.

• Network Traffic Monitoring

There is a number of tools that are used for network analysis, which can
capture all packet information and store them in a “.cap” file. The suggested
idea is to run the legacy version of component and capture all its network
communication information and then run the updated version and capture
the same information. Then using special differentiation tools, the two “.cap”
files will be compared in order to establish whether or not the new feature
is backwards compatible in terms of execution based backwards compatibility.
The Signal Based Verification Algorithm that was developed by the authors,
used this idea as a starting point for the design of the algorithm, however the
resulting algorithm has a completely different design than the proposed idea.

• Regression Testing for Verifying Backwards Compatibility

The main working principle of this strategy is to re-use the test cases and test
suites of the legacy version of the software on the updated version [WHL97]. If
the software update is execution based backwards compatible, then in principle
it should be able to pass the tests of the legacy version of the software. How-
ever, this comes with the assumption that the test cases are generic enough to
handle only the results of what is being tested and not deal with the entirety
of the content.

45

5. Results

• Run-Time Tests

This strategy involves the creation of test suites and test cases that are specifi-
cally made for checking execution based backwards compatibility of the system.
While this may be a very reliable way of verifying backwards compatibility, it
is not an automatic verification method, as it requires the manual creation of
tests for the various components of the system as well as the various circum-
stances that could arise from the development of such a feature. Thus, it will
require a team that is dedicated for this type of testing.

• SigTest

This tool is a bundle of Oracle’s commercial tools [WWW11]. It is used to
compare different API’s and measure their test coverage. Additionally, this
tool can assist in the creation of test suites. The tool is mostly used for Java
programming language applications. The main advantage of this tool is that it
can compare signatures of two different API’s; performs checking whether old
version can be replaced by the new one without adversely affecting existing
clients of the API. API coverage tool can be used to estimate test coverage a
test suite provides for an implementation of a specified API. This tool is aimed
at verifying source level backwards compatibility.

Figure 10. Taxonomy of Algorithms & Strategies

46

5. Results

The aforementioned algorithms and strategies were studied and classified into four
categories which include performance, execution, syntax as well as system level
categories. This helps in simplifying the process of choosing an algorithm that
is suitable to a particular class of problems. The classification of the algorithms is
mapped into a taxonomy which is illustrated in Figure (10). The taxonomy contains
an overview of the identified algorithms for verifying backwards compatibility in
different areas of software checks and components of systems.

5.2 Results of Implementation Phase

In this section the results of the implementation phase are presented. These results
represent the answers to research questions RQ2 and RQ3.

5.2.1 Results of Applying Signal Based Algorithm

The algorithm that was developed during the first cycle of the implementation phase
has been very successful in verifying execution based backwards compatibility. The
results of testing the algorithm’s prototype can be seen below:

• Results of the Proof of Concept

The prototype has been tested following the design of this proof of concept
on 500 test cases. Each of these test cases simulates a certain task that the
component executes in real environment. Not a lot of information can be
provided on the behavior of the test cases other than the fact that they test the
component’s simulated functionalities. This is the case due to confidentiality
agreement that is signed with the company.

The prototype was successful in passing the designed proof of concept for all
the test scenarios that it was applied to. This means that when the prototype
was ran on a test case and a re-run of that test case, the prototype resulted in
100% backwards compatibility for all the test cases (denoted as Fully Executed
in the figure), thereby passing the proof of concept as expected, this can be
seen in Figure (11). When the prototype is ran on test cases that were fully
executed against the same test cases, however, interrupted half way through
their execution, the prototype resulted in an average compatibility level that
is above 50% and below 70% (denoted as Interrupted Half Way in the figure).
This is because a number of signals obtained from fully executed test cases
did not exist in the test cases that were interrupted half way through their
execution.

47

5. Results

Figure 11. Signal Based Algorithm’s Prototype Validation

The values that resulted from this proof of concept conform to the theoretical
predictions of the algorithm, thus proving the validity of the prototype.

• Results of Comparing Builds

The prototype has been used for comparing the execution signals of an original
build of the component’s software against its updated version. The update
includes a feature for enhancing power saving mode of the component. The
parts of the components that were affected by the update were tested against
the original version of the program to verify the execution based backwards
compatibility of the update. This was done by using certain test suites that
test the behavior of the updated parts. Following the algorithm’s design, two
versions of the signal execution were extracted, before and after the update.

The prototype checked whether the execution signals of the original build were
a subset of that of the update build. Then a percentage was computed which
represents the backwards compatibility level of the updated software. The
prototype was run on three major test suites that test various tasks of the
component which include the use of power saving mode. According to the
designers and the developers of the feature in this software update, the feature
should be execution based backwards compatible since it has not caused any
problems to the system upon its introduction. As can be seen in Figure (12),

48

5. Results

the prototype resulted in an average percentage that is over 95% for all three
test suites. This confirms that the new feature is actually execution based
backwards compatible within the levels of backwards compatibility that were
set during the algorithm’s designing phase.

Figure 12. Signal Based Backwards Compatibility of a Software
Update

The results of the prototype show a lot of promise for an algorithm that with more
work can be developed into a fully automated system that can be used for verifying
execution based backwards compatibility in distributed real-time systems.

5.2.2 Results of Applying Events Based Algorithm

The algorithm that is about to be described was developed during the second cy-
cle of the implementation phase. The prototype of this algorithm has undergone
thorough testing following both types of proofs in order to establish the algorithm’s
validity in verifying execution based backwards compatibility. The results of testing
the algorithm’s prototype can be seen below:

• Results of Prototype Validation

The validation of the algorithm was done following the designed proof for
testing the prototype on 120 test cases in the system. The test cases simulate
the various tasks that the component must execute in a real environment.
Since the number of counters and events vary between each test scenario, and

49

5. Results

in order to make it easier to visualise the results in diagrams, the number of
counters and events for each test scenario was summed into a total value (N).
Then for each test scenario, a percentage is showed that is based on the total
number of counters and events (N). The results of testing this prototype are
depicted in Figure (13).

Figure 13. Events Based Algorithm’s Prototype Validation

The algorithm was successful in passing the designed proof of concept for all
the test scenarios that it was applied to. In the case of matching test scenarios
of the component’s tasks against full re-runs of the tests, the prototype resulted
in a 100% match of the counters and events between the two runs of each test.
In the case of matching test scenarios against re-runs of the tests that are
interrupted half way through their execution, the prototype resulted between
(50 to 70%) match of the counters and events between the two runs for each
test.

This is very close to the expected values of the proof; the prototype also
displays all the missing and mismatching events and counters. Thus, the values
that resulted from this proof of concept conform very closely to the theoretical
predictions of the algorithm, which proves the validity of the prototype.

• Results of Comparing Builds

Following the validation of the prototype, the prototype has been used for

50

5. Results

comparing the counters and events of an original build against its updated
version. The parts of the components that were affected by the update were
tested against the original version of the program to verify the execution based
backwards compatibility of the update. The testing of the component was
done using test cases that simulate the various tasks of the component in a
real environment. The update for which the algorithm was tested on, is the
same update for which the signal based algorithm was tested on, which is a
power saving mode feature for the component.

The prototype was ran on the results of three test suites that simulate the
various tasks of the component. The prototype reports the update is back-
wards compatible, if all counters and events from the original build exist in
the updated build. The prototype displays all counters and events that are
missing or contain mismatching values when compared to the updated build.
As can be seen in Figure (14), the prototype reported 94% of the tests in
test suite (A) to have matching results, 97% of the tests in test suite (B) to
have matching results, and 98% of the tests in test suite (C) to have matching
results.

Figure 14. Events Based Backwards Compatibility of a Software
Update

This indicates that there is a high level of compatibility in the update with
its original build. The prototype displayed all missing counters and events be-
tween the original and the updated build, as well as the respective mismatching
values, for all the failing tests.

51

5. Results

Looking at Figure (14) we can see that the results of this algorithms are fairly
close to the results that were reported from the signal based verification algo-
rithm. However, the prototype of this algorithm seems to detect slightly more
errors in terms of compatibility. The incompatibility results of the previous
algorithm were mostly related to missing communication signals within the
execution of the component, or to an incorrect order in the execution signals.
However, the incompatibility results of this algorithm are related to missing
counters or events due to the update, or mismatching values of the details of
the counters or the statuses of the events. Hence, the two algorithms provide
independent results in terms of the levels of backwards compatibility.

5.2.3 Results of Applying the Unified Algorithm

Similarly to the previous two algorithms, the prototype of the unified algorithm
was tested on the system for verifying the execution based backwards compatibility
of a software update. Since this algorithm is a combination of the signal based
verification algorithm and the events based verification algorithm, there was no
need to perform validation on the prototype, since the validation step was already
done for the prototype of the two algorithms separately (see sections 5.2.1 and
5.2.2). Thus, the prototype of the algorithm was used for comparing the signals,
counters and events of an original build against the updated version. In order to
be able to evaluate the results of this algorithm, the prototype was tested on the
same three test suites that were used in the previous two algorithms, which test the
functionalities of the power saving mode feature of the component.

Figure 15. Unified Algorithm’s Results

52

5. Results

The prototype reports that the software update is execution based backwards com-
patible if all the signals, counters and events of the original build match against those
of the updated build. The prototype should otherwise display all missing signals,
counters or events or the mismatching deltas of counters or statuses of events. The
results of testing this algorithm on the three test suites can be seen in Figure (15).
As can be seen in the figure, the prototype has reported 91% of the tests in test
suite (A), 94% of the tests in test suite (B), and 98% of the tests in test suite (C)
to have matching signals, counters and events.

The unified algorithm’s result is a combination of the results of the signal based and
events based verification algorithms. While the two algorithms reported close results,
there were some minor differences in the number of tests that had mismatching
results. For instance, in the signal based algorithm, test suite (A) had 97% of the
tests having matching results, while in the events based algorithm, test suite (A) had
94% of the tests with matching results between the original and updated build. This
is to be expected since the two algorithms work at different levels of the software,
i.e. the signal based algorithm focuses on communication signals, while events based
focuses on the behaviour of the node in the component. However, it is possible that
some of the tests that fail due to mismatching results between the original and
updated builds, can be the same for both algorithms, however, this is a rare case.
Since the unified algorithm combines the characteristics of both algorithms, it is
only natural that the prototype of the algorithm would detect even more tests with
mismatching results, which is the case in, for example, test suite (A) with matching
tests of 91%.

The results of this algorithm provide an answer for the third research question
RQ3, where the two previous algorithms were combined together into formulating
a concrete method for verifying execution based backwards compatibility.

5.2.4 Impact of the Results

The prototypes were all tested on an updated component that was provided for us as
a proof of concept. According to the developers of the feature, the prototype should
be backwards compatible and have no expected problems. However, testing the
prototypes of the developed algorithms on this updated component have reported
a small percentage of mismatches before and after the update, namely 8%. These
anomalies were represented in missing signals that were detected by the signal based
algorithm, and mismatching counter deltas that were detected by the events based
algorithm. These anomalies were reported to the company as part of the delivery of
the prototype, and will be further investigated by the developers of the prototype in
order to verify that they are not affecting backwards compatibility of the updated
software.

53

6
Threats to Validity

In the case of the signal based verification algorithm, the identified signal might
be an erroneous one. Depicted in Table 2 are the classification of signals and
the corresponding information whether the signal is erroneous or not, where the

signals and events can either match or mismatch between an original build and an
updated one.

Match Mismatch
Correct Signal/Event TP FN

Erroneous Signal/Event FP TN

Table 2. Signal Identification Fallacy

Hence, the point of focus is whether the erroneous signal is identified as a matching
signal incorrectly (False Positive; FP) and is added to the list of all the correct
signals that are identified as matching signals without any errors (True Positive;
TP). However, since the filter (explained in section 4.1.4) in the wireshark is explicit,
namely, any packet that is recorded via wireshark that does not satisfy the criteria,
for instance, packets that do not correspond to gtpv2 protocol, will be dropped
on the listening interface. Only the packets that fulfil the criteria of the filter
are collected. Therefore, the threats of identifying erroneous signals as matching
signals are considered under control. Similarly, when it comes to comparing the
execution sequence via bash scripting, the threats of identifying signals incorrectly
is also considered under control. This is because before the script was integrated
into the algorithm, it was extensively tested via many simulated scenarios during
the validation phase that is explained in (section 4.1.8).

It is worth noting that the scenario of collecting wrong data for the events based
verification algorithm can never happen, as the data that are collected from the
sources for the counters and events are always updated appropriately. It is highly
unlikely for the wrong counter to be updated, or the wrong event to be triggered as
a result of the execution of a task since the SGSN-MME system has been thoroughly
tested and verified. However, in order to ensure that the algorithm behaves correctly
when it comes to comparing counters and events before and after the update, the
algorithm was also extensively tested on many scenarios through the validation step
that is explained in (section 4.2.6), thus, making sure that false positives can never
occur.

54

7
Ethical Considerations

At the beginning of this thesis, several ethical considerations had to be made.
It is also a vital matter that the thesis and its outcome has to be built, first
and foremost, on mutual trust between the collaborating parties, in this

case, the authors and the company [SV02]. Furthermore, it is also the case that since
the thesis is being performed at the premises of Ericsson; the study will deal with
confidential information in an organization [SV02]. The thesis involves technical
interviews performed with the employees of the company, where participation of
the employees interviewed had to be voluntary. Hence, it is hard to say which
information should or should not be published, however, the key ethical issues to
consider are:

• Informed consent.

• Confidentiality.

• Sensitive information.

• Feedback.

• Supervising manager’s approval.

Receiving feedback from the supervisor and other employees who participated in
the technical interviews was extremely helpful. Moreover, by receiving feedback in a
positive manner, for instance, on where should the work be done (which subsystem),
it helps to maintain trust and validity of the thesis [SV02]. During the interviews,
since they were of a technical manner, no transcripts were being made as they are not
a part of the main goal of the thesis. However, the suggestions and understanding
obtained from these interviews regarding the heading of the thesis or explanations
regarding the functioning principle of specific components were important.

55

8
Conclusion

Backwards compatibility is an important goal for companies to achieve in
order to to reduce the cost of constant deployment of updates to their prod-
ucts. In this study we have explored and developed algorithms for verifying

backwards compatibility for distributed real-time systems. The study started by
exploring the existing definitions of backwards compatibility in literature. Addi-
tionally to the existing backwards compatibility definitions in the literature, two
new definitions were introduced which are execution based backwards compatibility,
and performance based backwards compatibility. Several algorithms and strategies
were identified through academia and the industry in order to verify backwards com-
patibility. The identified algorithms and strategies which are presented in Section 5
were classified into 4 main categories which are execution check, performance check,
system check and syntax check.

Three algorithms were designed, prototyped, and tested on the SGSN-MME system
at Ericsson. The algorithms pertain to the execution check category, which means
that the component must continue executing its tasks as it did before the update.
The first algorithm is the Signal Based Verification Algorithm, which is based on
the network traffic monitoring idea proposed by the company. It verifies that the
sequence of communication signals between the nodes of a component match be-
fore and after the update. The second algorithm is the Events Based Verification
Algorithm, which makes use of a number of measurements within the system and
verifies that those measurements do not change when an update is introduced to the
system. Lastly, the third is a unified algorithm which combines the characteristics
of both algorithms.

Testing the prototypes of the algorithms on the system for comparing an original
build and its updated one revealed a small percentage of non-backward compatible
anomalies, which were represented in mismatching signals, counters and events.
These anomalies were reported as part of the prototypes that were delivered to the
company. Based on the testing and evaluation of the prototype, the signal based
verification algorithm can be used during unit, component and functional testing
of a software. However, the events based verification algorithm and therefore the
unified algorithm, can only be used during unit testing of a software. In order
to get concrete results and discover compatibility flaws as early as possible during
the software development, it is important that each algorithm is used during the
recommended test phase.

56

8. Conclusion

Due to the complexity of the system and limited time of the study, and in spite of
the time that was put in evaluating some of the proposed methods, we were unable
to develop a viable algorithm for verifying performance based backwards compat-
ibility. It is clear that there is a lot more work that can be done from this point
forward. Future work for this thesis includes studying more of the identified algo-
rithms and creating prototypes to prove their capabilities in detecting compatibility
flaws. Furthermore, development of each of the prototypes into full automated tools
for verifying backwards compatibility is required. Lastly, exploring more methods
and techniques in order to develop a viable algorithm for verifying performance
based backwards compatibility is also needed.

57

Bibliography

58

[AEF05] T. Arons, E. Elster, L. Fix, S. Mador-Haim, M. Mishaeli, J. Shalev, E. Singerman, A. Tiemeyer, M. Y. Vardi,

L. D. Zuck. Formal Verification of Backwards Compatibility of Microcode. In International Conference on

Computer Aided Verification, volume 3576, pages 185-198, Edinburgh, Scotland, July 2005.

[ALM99] D. Avison, F. Lau, M.D. Myers, and P. A. Nielson. Action Research. Communications of the ACM, Vol.

42(1):94-97, January 1999.

[BG99] T.F. Bresnahan, and G. Shane. Technological Competition and the Structure of the Computer Industry. The

Journal of Industrial Economics, 47(1):1-40, March 1999.

[CJB04] A. Collins, D. Joseph, and K. Bielaczyc. Design research: Theoretical and methodological issues. Journal of

the Learning Sciences, 13(1):15-42, January 2004.

[GMB15] R. T. Gretz, M. Kim, S. Basuroy. Backwards Compatibility in Two-Sided Markets. October (2015).

[HS02] B. Hailpern, P. Santhanam. Software debugging, testing, and verification. IBM Systems Journal, 41(1):4-12,

2002.

[JIH02] B. Jarvis, L. Izatt, M. Hinckley. Method of implementing a forward compatibility network directory syntax.

July 23, 2002.

[KP96] B. Kitchenham, S.L Pfleeger. Software Quality: The Elusive Target. IEEE Computer Society, 13(1):12-21,

January 1996.

[LI00] J. W. S. Liu. Real-Time Systems, Prentice Hall PTR Upper Saddle River, NJ, USA. January 2000.

[MBN12] A. Maedche, A. Botzenhardt, and L. Nee. Software for People: Fundamentals, Trends and Best Practices.

Springer 2012.

[Hut12] M., Hüttermann. DevOps for Developers (Expert's Voice in Web Development). Apress Edition, page 59,

September, 2012.

[PR12] A. Ponomarenko and V. Rubanov. Backwards Compatibility of Software Interfaces: Steps towards Automatic

Verification. Programming and Computer Software, volume 38, issue 5, pages 257 – 267, September 2012.

[PSS10] K. Pandazo, A. Shollo, M. Staron, and W. Meding. Presenting Software Metrics Indicators - A Case Study.

Proceedings of the 20th International Conference on Software Product and Process Measurement

(MENSURA), volume 20, issue 1, 2010.

[SNM15] M. Staron, K. Niesel, and W. Meding. Selecting the Right Visualization of Indicators and Measures -

Dashboard Selection Model. International Conference on Software Measurement (Mensura), volume 230, page

130-143, 2015.

[Sta12] M. Staron. Critical role of measures in decision processes: Managerial and technical measures in the context of

large software development organizations. Information and Software Technology, volume 54, issue 8, Pages

887–899, August 2012.

[ST88] J.A. Stankovic. Misconceptions about real-time computing: a serious problem for next-generation system.

IEEE Computer Society, 21(10):10-19, October 1988.

[SV02] J. Singer, NG. Vinson. Ethical issues in empirical studies of software engineering. IEEE Transactions on

Software Engineering, 28(12):1171-1180, 2002.

[TS14] A.S. Tanenbaum, M. Steen. Distributed systems: principles and paradigms. Pearson Education Limited, 2014.

[VK04] Vaishnavi, V. and Kuechler, W. Design Science Research in Information Systems. January 20, 2004; last

updated: November 15, 2015. URL: http://www.desrist.org/design-research-in-information-systems

[VO08] C. Vogt. Six/one router: a scalable and backwards compatible solution for provider independent addressing.

Proceedings of the 3rd international workshop on Mobility in the evolving internet architecture, pages 13-18,

August 2008.

[WHL97] W. Wong, J. R. Horgan, S. London, H.A. Bellcore. A Study of Effective Regression Testing in Practice.

Proceedings of the Eighth International Symposium on Software Reliability Engineering, page 264, 1997.

[WH11] Y. Welsch, A.P. Heffter. A fully abstract trace-based semantics for reasoning about backwards compatibility of

class libraries. Science of Computer Programming, 92:129-161, October 2014.

[WH12] Y. Welsch, A.P. Heffter. Verifying backwards compatibility of object-oriented libraries using Boogie.

Proceedings of the 14th Workshop on formal techniques for java-like programs, pages 35-41, June 2012.

[WWW1] Ericsson Incorporate http://www.ericsson.com/ [Date of Access: 17/01/2016].

Bibliography

59

[WWW2] Ericsson’s Serving GPRS Support Node - Mobility Management Entity (SGSN-MME) [ONLINE]

http://www.ericsson.com/ourportfolio/products/sgsnmme?nav=productcategory004%7Cfgb_101_256 [Date of

Access: 17/01/2016].

[WWW3] DSniff Network Auditing And Penetration Testing [ONLINE] https://www.monkey.org/~dugsong/dsniff/

[Date of Access: 21/02/2016].

[WWW4] ETHERape Network Monitoring Tool [ONLINE] http://etherape.sourceforge.net/ [Date of Access:

21/02/2016].

[WWW5] NetSniff Networking Toolkit [ONLINE] http://netsniff-ng.org// [Date of Access: 21/02/2016].

[WWW6] Packet Analyzer Analyzing Tool [ONLINE] http://www.solarwinds.com/topics/packet-analyzer.aspx/ [Date of

Access: 21/02/2016].

[WWW7] Packet Square Network Protocol Testing Tool [ONLINE] https://code.google.com/archive/p/packetsquare-

capedit/ [Date of Access: 21/02/2016].

[WWW8] Scapy Packet Manipulation Tool [ONLINE] http://www.secdev.org/projects/scapy/ [Date of Access:

21/02/2016].

[WWW9] TcpDump Packet Analyzing Tool [ONLINE] http://www.tcpdump.org/ [Date of Access: 21/02/2016].

[WWW10] Wireshark Packet Analyzing Tool [ONLINE] https://www.wireshark.org/ [Date of Access: 21/02/2016].

[WWW11] Sigtest [ONLINE] https://wiki.openjdk.java.net/display/CodeTools/sigtest [Date of Access: 22/02/2016].

Bibliography

60

	Introduction
	Background
	Backwards Compatibility
	Sources of Backwards Incompatibility
	Verifying Backwards Compatibility
	Forward Compatibility

	Scope
	Real-Time Systems
	Distributed Systems
	Ericsson’s SGSN-MME Product
	Ericsson’s View of Backwards Compatibility in the SGSN-MME

	Related Work
	Limitations

	Methodology
	Research Questions
	Objectives
	Selecting Research Methodology
	Research Approach
	Literature Review Process
	Data Sources and Search Strategy
	Study Selection process

	Algorithms Design
	Signal Based Algorithms
	Signals, Packets & Protocols
	Capturing Execution Signals
	Identified Traffic Analysis Tools
	Execution Signals
	Identified Patterns
	Verifying Backwards Compatibility
	Prototyping the Algorithm
	Testing of the Prototype

	Events Based Algorithms
	Counters and Events
	Capturing Counters
	Capturing Events
	Verifying Backwards Compatibility
	Prototyping the Algorithm
	Testing of the Prototype

	Unified Algorithm
	Merging the Algorithms
	Verifying Backwards Compatibility

	Performance Based Algorithms

	Results
	Study Results
	Literature Review Results
	Empirical Results

	Results of Implementation Phase
	Results of Applying Signal Based Algorithm
	Results of Applying Events Based Algorithm
	Results of Applying the Unified Algorithm
	Impact of the Results

	Threats to Validity
	Ethical Considerations
	Conclusion

