

Concurrent Data-Structures Applied to
Financial Data-Stream Processing
Applying Concurrent Lock-Free Data-Structures to the design
and development of a Financial Options Pricing Stream Pro-
cessor

Master’s thesis in Computer Systems and Networks (MPCSN)

ALFONSO ALHAMBRA MORON

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY AND UNIVERSITY OF GOTHENBURG
Gothenburg, Sweden 2016

Concurrent Data-Structures Applied to
Financial Data-Stream Processing

Applying Concurrent Lock-Free Data-Structures to the design and
development of a Financial Options Pricing Stream Processor

ALFONSO ALHAMBRA MORON

Department of Computer Science and Engineering
Division of Networks and Systems

Distributed Computing and Systems Research Group
Chalmers University of Technology and University of Gothenburg

Gothenburg, Sweden 2016

Concurrent Data-Structures Applied to Financial Data-Stream Processing
Applying Concurrent Lock-Free Data-Structures to the design and development of
a Financial Options Pricing Stream Processor
ALFONSO ALHAMBRA MORON

© ALFONSO ALHAMBRA MORON, 2016.

Supervisor: Philippas Tsigas, Department of Computer Science and Engineering
Supervisor: Ioannis Nikolakopoulos, Department of Computer Science and Engi-
neering
Examiner: Marina Papatriantafilou, Department of Computer Science and Engi-
neering

Department of Computer Science and Engineering
Division of Networks and Systems
Distributed Computing and Systems Research Group
Chalmers University of Technology and University of Gothenburg
SE-412 96 Gothenburg
Telephone +46 (0)31 772-10 00

Cover: Data structures and operators diagram of the first and last iterations of the
financial options pricing stream processor.

Typeset in LATEX
Gothenburg, Sweden 2016

iv

Concurrent Data-Structures Applied to Financial Data-Stream Processing
ALFONSO ALHAMBRA MORON
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg

Abstract
This Thesis focuses on the efficient utilization of lock-free concurrent data struc-

tures in the scope of financial data-stream processing to achieve low latency and
high throughput parallel solutions responding to the continuously increasing high
throughput and low latency demand to process financial streams of data [17, 14, 30].

The two main problems address in the scope of this Thesis are options pricing
and risk assessment based on volatility aggregation. A proof-of-concept financial
stream processing engine has been designed and developed consuming a stream of
data representing the real-time behavior of the underlying stock exchange market,
and a stream of data representing the specifications of the option contracts to be
priced to produce an output stream of priced option contracts.

The throughput and latency results obtained when evaluating the different pro-
posed solutions suggest that the ScaleGate data-structure, [7, 22], when efficiently
used expediting its behavior with a heartbeat mechanism, satisfactorily responds to
the aforementioned high throughput and low latency demand in addition to guaran-
teeing the correct ordering of the resulting output stream in non-decreasing times-
tamp order.

Keywords: Shared Memory Parallelism, Lock-Free Synchronization, ScaleGate, Stream
Aggregate, Stream Join, Throughput, Latency, Finance, Options Pricing, Volatility.

v

Acknowledgements
I would like thank my supervisors, Yiannis and Philippas, for the chance of taking

part in the great research being performed by the Division of Networks and Systems.
The last months working closely with you have helped me growing not only as a
student but also at a personal and professional level. Thank you very much for
all your expert advice, for all your patience in some of the endless meetings and
specially for being always ready to help with any issue I had.

I would also like to thanks my examiner, Marina, and all the members of the
Division of Networks and Systems here at Chalmers for all the advice, encouragement
and support. Having had the chance to learn first-hand about your research in the
weekly seminars have strongly inspired me.

I cannot forget about all the docents I have had the opportunity to learn from
here at Chalmers, back in the Autonomous University of Madrid and previously in
my school and high-school, as well as all the professionals that I have had the chance
to collaborate with and learn from in my different internships during the last years.
All of you have contributed one way or another to the production of this Thesis.
Thank you all.

I would like to thank "la Caixa" foundation for all the financial and personal
support. I feel greatly honored to have been funded by the 2014 "la Caixa" Europe
scholarship during the last two years.

I would also like to thank Parallel Scalable Solutions AB for splendidly facilitating
me the NOBLE Professional Edition library which I have used in any experiment in
which an efficient concurrent lock-free queue was needed.

I would like to specially thank my family, for the constant and unconditional
support, and all my friends who have always been there when needed. Thank you
all.

Finally, I would like to show my heartfelt gratitude to Alma. You have helped
me growing at all levels, you have shared everything with me, you have helped me
become the person I am right now. Words are not enough to express my gratitude.
Thank you.

Alfonso Alhambra Moron, Gothenburg, June 2016

vii

Contents

List of Figures xiii

List of Tables xv

List of Listings xvii

1 Introduction 1
1.1 Context and Motivation . 1
1.2 Goals, Challenges and Limitations . 2
1.3 Structure . 3

2 Shared-Memory Parallelism and Lock-Free Synchronization 5
2.1 Shared-memory parallelism in C and pthreads 5

2.1.1 Processes, threads, and Pthreads 6
2.1.2 OpenMP . 7
2.1.3 Thread safety . 7

2.1.3.1 Lock-based synchronization 7
2.1.3.2 Lock-free synchronization 8

2.1.4 Thread safe pseudo-random numbers generation in C 8
2.2 The C++11 Memory Model and its emulation in C 8
2.3 Memory Management . 9

2.3.1 Reference Counting . 9
2.3.2 Hazard Pointers . 9

2.4 The impact of caches in performance 10
2.4.1 Cache misses and contention 10
2.4.2 Cache misses and memory alignment 11

3 Data-Streaming 13
3.1 Concurrent queues . 13
3.2 ScaleGate . 14
3.3 Sliding-Windows . 16

3.3.1 The Window Size Only Sliding-Windows Model 16
3.3.2 The Window Size and Window Advance Sliding-Windows Model 16

4 Finance 17
4.1 Relevant Financial Problems for this Thesis 17

4.1.1 Options Pricing . 17

ix

Contents

4.1.1.1 Monte Carlo Models 18
4.1.1.2 Binomial Models . 19
4.1.1.3 Black-Scholes . 19

4.1.2 Volatility . 20

5 Framework 21
5.1 Data Sources . 21

5.1.1 Financial Stream . 22
5.1.2 Options Settings Stream . 22

5.2 Main Program: The Options Pricing Financial Stream Processing
Engine . 23

5.3 Auxiliary Programs . 25
5.3.1 Financial Dataset Analyzer 25
5.3.2 Input Generator . 25
5.3.3 Output Analyzer . 27
5.3.4 Excel Master Index . 28

5.4 Test Environment . 28
5.4.1 Language and Compiler: C and GCC 28
5.4.2 Machines . 29

5.4.2.1 31228: Intel Xeon . 29
5.4.2.2 Hasgreen: Intel Core i7 29

6 Single-Threaded Binomial Options Pricing 31
6.1 Involved Threads . 31
6.2 Structure of the Tuples . 32
6.3 Used Data-Structures . 35
6.4 Behavior of the Operators . 35

6.4.1 The Single-Threaded Binomial Options Pricing Operator . . . 36
6.4.2 Integrating the Single-Threaded Binomial Options Pricing Op-

erator . 45

7 Batching Based Multi-Threaded Binomial Options Pricing 47
7.1 Involved Threads . 48
7.2 Structure of the Tuples . 48
7.3 Used Data-Structures . 49
7.4 Behavior of the Operators . 50

7.4.1 The Batching Based Multi-Threaded Binomial Options Pric-
ing Operator . 50

7.4.2 Integrating the Batching Based Multi-Threaded Binomial Op-
tions Pricing Operator . 55

8 Queue-ScaleGate-Based Multi-Threaded Binomial Options Pric-
ing 57
8.1 Involved Threads . 57
8.2 Structure of the Tuples . 58
8.3 Used Data-Structures . 58
8.4 Behavior of the Operators . 60

x

Contents

8.4.1 The Queue-ScaleGate-Based Multi-Threaded Binomial Options
Pricing Operator . 60

8.4.2 Integrating the Queue-ScaleGate-Based Multi-Threaded Bi-
nomial Options Pricing Operator 66

9 ScaleGate-ScaleGate-Based Multi-Threaded Binomial Options Pric-
ing 69
9.1 Involved Threads . 70
9.2 Structure of the Tuples . 70
9.3 Used Data-Structures . 71
9.4 Behavior of the Operators . 72

9.4.1 The ScaleGate-ScaleGate-Based Multi-Threaded Binomial Op-
tions Pricing Operator . 72

9.4.2 Integrating the ScaleGate-ScaleGate-Based Multi-Threaded Bi-
nomial Options Pricing Operator 78

10 Single-Threaded Volatility Aggregation 79
10.1 Involved Threads . 79
10.2 Structure of the Tuples . 80
10.3 Used Data-Structures . 81
10.4 Behavior of the Operators . 82

10.4.1 The Single-Threaded Volatility Aggregation Operator 83
10.4.2 Integrating the Single-Threaded Volatility Aggregation Oper-

ator . 98

11 Multi-Threaded Volatility Aggregation 101
11.1 Involved Threads . 102
11.2 Structure of the Tuples . 102
11.3 Used Data-Structures . 103
11.4 Behavior of the Operators . 105

11.4.1 The Multi-Threaded Volatility Aggregation Operator 105
11.4.2 Integrating the Multi-Threaded Volatility Aggregation Operator114

12 Multi-Threaded Volatility Aggregation and Stream Matching 115
12.1 Involved Threads . 116
12.2 Structure of the Tuples . 116
12.3 Used Data-Structures . 119
12.4 Behavior of the Operators . 119

12.4.1 The Multi-Threaded Volatility Aggregation and StreamMatch-
ing Operator . 120

12.4.2 Integrating the Multi-Threaded Volatility Aggregation and
Stream Matching Operator . 125

13 Experimental Results and Analysis 127
13.1 Experimental setup . 127
13.2 Experimental Results and Analysis 133

xi

Contents

13.2.1 Single-Threaded Binomial Options Pricing, and Single-Threaded
Volatility Aggregation (E1F, and E5P) 134

13.2.2 Multi-Threaded Binomial Options Pricing Operators (E2F,
E3F, and E4F) . 136

13.2.3 Single-Threaded Volatility Aggregation, and Multi-Threaded
Binomial Options Pricing (E5F) 140

13.2.4 Multi-Threaded Volatility Aggregation (E6P) 143
13.2.5 Multi-Threaded Volatility Aggregation and Multi-Threaded

Binomial Options Pricing (E6F, and E6C) 146
13.2.6 Multi-Threaded Volatility Aggregation and Stream Matching

(E7P) . 150
13.2.7 Multi-Threaded Volatility Aggregation and Stream Matching,

and Multi-Threaded Binomial Options Pricing (E7F, and E7C)153

14 Related Work 157

15 Future Work 159

16 Discussion and Conclusion 163

Bibliography 165

xii

List of Figures

6.1 Involved threads . 32
6.2 Structure of the tuples . 32
6.3 Used data-structures . 35
6.4 Reachable scenarios in one step in the underlying binomial tree model 36
6.5 Extending the 1-step Bernoulli tree model to an n-steps recombinant

binomial tree model . 40
6.6 n-steps recombinant binomial tree model with simplified equations . . 41
6.7 Operators and used constants . 45

7.1 Involved threads . 48
7.2 Structure of the tuples . 49
7.3 Used data-structures . 49
7.4 Latency and throughput as a function of the number of PT OpenMP

threads . 54
7.5 Operators and used constants . 55

8.1 Involved threads . 58
8.2 Structure of the tuples . 58
8.3 Used data-structures . 59
8.4 Latency and throughput as a function of the number of parallel PT

threads . 65
8.5 Operators and used constants . 66

9.1 Involved threads . 70
9.2 Structure of the tuples . 70
9.3 Used data-structures . 71
9.4 Latency and throughput as a function of the number of parallel PT

threads . 77
9.5 Operators and used constants . 78

10.1 Involved threads . 80
10.2 Structure of the tuples . 80
10.3 Used data-structures . 82
10.4 Sliding-window model visualization. WS = 7, WA = 2 87
10.5 Windows different tuples contribute to. WS = 7, WA = 2 87
10.6 Illustration of the PREV_WIN, POST_WIN, FIRST_WIN, and

LAST_WIN transformations. WS = 7, WA = 2, ts = 8 89

xiii

List of Figures

10.7 Illustration of the WIN_BIDX transformation and the circular buffer
of windows. WS = 7, WA = 2, MAXW = d7/2e = 4 91

10.8 Operators and used constants . 99

11.1 Involved threads . 102
11.2 Structure of the tuples . 103
11.3 Used data-structures . 104
11.4 Illustration of the BIDX_TID, and BIDX_TBIDX transformations.

WS = 7, WA = 2, m = 2 . 107
11.5 Latency and throughput as a function of the number of parallel V PT

threads . 113
11.6 Operators and used constants . 114

12.1 Involved threads . 116
12.2 Structure of the tuples . 117
12.3 Used data-structures . 119
12.4 Latency and throughput as a function of the number of parallelWPT

threads . 124
12.5 Operators and used constants . 125

13.1 31228 (Intel Xeon): E1F and E5P throughput and latency median . . 135
13.2 Hasgreen (Intel Core i7): E1F and E5P throughput and latency median135
13.3 31228 (Intel Xeon): E2F, E3F, and E4F throughput and latency median138
13.4 Hasgreen (Intel Core i7): E2F, E3F, and E4F throughput and latency

median . 138
13.5 31228 (Intel Xeon): E5F throughput and latency median 142
13.6 Hasgreen (Intel Core i7): E5F throughput and latency median 142
13.7 31228 (Intel Xeon): E6P throughput and latency median 145
13.8 Hasgreen (Intel Core i7): E6P throughput and latency median 145
13.9 31228 (Intel Xeon): E6F throughput and latency median 147
13.10Hasgreen (Intel Core i7): E6F throughput and latency median 147
13.1131228 (Intel Xeon): E6C throughput and latency median 149
13.12Hasgreen (Intel Core i7): E6C throughput and latency median 150
13.1331228 (Intel Xeon): E7P throughput and latency median 152
13.14Hasgreen (Intel Core i7): E7P throughput and latency median 152
13.1531228 (Intel Xeon): E7F throughput and latency median 154
13.16Hasgreen (Intel Core i7): E7F throughput and latency median 154
13.1731228 (Intel Xeon): E7C throughput and latency median 155
13.18Hasgreen (Intel Core i7): E7C throughput and latency median 156

xiv

List of Tables

13.1 31228 (Intel Xeon): E1F and E5P throughput and latency median . . 134
13.2 Hasgreen (Intel Core i7): E1F and E5P throughput and latency median134
13.3 31228 (Intel Xeon): E2F, E3F, and E4F throughput 136
13.4 31228 (Intel Xeon): E2F, E3F, and E4F latency median 136
13.5 Hasgreen (Intel Core i7): E2F, E3F, and E4F throughput 137
13.6 Hasgreen (Intel Core i7): E2F, E3F, and E4F latency median 137
13.7 31228 (Intel Xeon): E5F throughput 140
13.8 31228 (Intel Xeon): E5F latency median 140
13.9 Hasgreen (Intel Core i7): E5F throughput 141
13.10Hasgreen (Intel Core i7): E5F latency median 141
13.1131228 (Intel Xeon): E6P throughput and latency median 144
13.12Hasgreen (Intel Core i7): E6P throughput and latency median 144
13.1331228 (Intel Xeon): E6F throughput and latency median 146
13.14Hasgreen (Intel Core i7): E6F throughput and latency median 147
13.1531228 (Intel Xeon): E6C throughput and latency median 148
13.16Hasgreen (Intel Core i7): E6C throughput and latency median 149
13.1731228 (Intel Xeon): E7P throughput and latency median 151
13.18Hasgreen (Intel Core i7): E7P throughput and latency median 151
13.1931228 (Intel Xeon): E7F throughput and latency median 153
13.20Hasgreen (Intel Core i7): E7F throughput and latency median 153
13.2131228 (Intel Xeon): E7C throughput and latency median 155
13.22Hasgreen (Intel Core i7): E7C throughput and latency median 155

xv

List of Tables

xvi

Listings

6.1 Binomial options pricing operator pseudocode 43
7.1 Batching-based multi-threaded binomial options pricing operator pseu-

docode . 51
8.1 Queue-ScaleGate-based multi-threaded binomial options pricing op-

erator pseudocode . 60
8.2 Queue-ScaleGate-based multi-threaded binomial options pricing op-

erator pseudocode adding NULL control tuples 63
9.1 ScaleGate-ScaleGate-based multi-threaded binomial options pricing

operator pseudocode . 72
10.1 Volatility aggregation window pseudocode 92
10.2 Single-threaded sliding-window-based volatility aggregator for a sin-

gle traded symbol pseudocode . 94
10.3 Single-threaded sliding-window-based volatility aggregator for multi-

ple traded symbols pseudocode . 96
11.1 Multi-threaded sliding-window-based volatility aggregator for a single

traded symbol pseudocode . 108
11.2 Multi-threaded sliding-window-based volatility aggregator for multi-

ple traded symbols pseudocode . 111
12.1 Multi-threaded sliding-window-based volatility aggregator and stream

matcher for a single traded symbol pseudocode 121
12.2 Multi-threaded sliding-window-based volatility aggregator and stream

matcher for multiple traded symbols pseudocode 122

xvii

Listings

xviii

1
Introduction

The main focus of this Thesis is the research towards the application of the stream-
processing technologies being developed by the Distributed Computing and Systems
Research group to data-streaming challenges detected in the scope of finance.

The main objective of this research effort is, on the one hand, to test and improve,
based on experimental results, the concurrent data-structures being developed to
enhance parallelization in the context of data-streaming processing and, on the
other hand, to profit from this technology in the domain of financial applications,
in which more and more data need to be processed everyday on a streaming fashion
and energy restrictions pose a constant challenge towards optimizing the usage of
computing resources.

1.1 Context and Motivation
To better introduce the context of this Thesis it is key to understand the concept

of data-streaming. Paraphrasing [7]: “Data streaming emerged as an alternative
to store-then-process computing. In data-streaming, continuous queries (defined as
directed acyclic graphs of interconnected operators) are executed by stream process-
ing engines that process incoming data in a real-time fashion, producing results on
an on-going basis”. A brief analysis of the introduced definition helps understand-
ing the main difference between store-then-process computing and data-streaming
computing: the lack of backup storage in the former. In addition to this, it is com-
mon to assume that the data set being analyzed in data-streaming computing is an
infinite dataset of which every time only a small subset is available for the stream
processing engine and for a limited amount of time to produce results.

It is natural to understand that in this context, and as highlighted in [13], cited in
[7], low-latency, due to the real time requirements of the results, and high through-
put, depending on the amount of data to be processed every second, are key require-
ments for the stream processing of increasingly large data volumes making paral-
lelism [25] a necessity. In line with this, the Distributed Computing and Systems
Research Group at Chalmers is researching towards the definition of concurrent,
linearizable and lock-free data-structures [7] in order to enhance the parallelization
of the processes of aggregating the input streaming data and aggregating the output
generated by parallelized operators.

1

1. Introduction

A natural application scenario of the data stream processing paradigm is the
domain of financial applications. Stock prices can naturally be seen as a stream of
data and derived calculations such as option prices or market volatility are suitable
operators in the data-streaming context applied to this scenario. A brief review of
the state of the art literature in this field, e.g. [14], [17], is enough to become aware
that financial workloads demand highly energy efficient stream processing solutions
with low-latency and high-throughput requirements. In addition to this, the low-
latency and high-throughput requirements make the energy challenges tougher by
forcing the datacenters dealing with financial calculations to be located physically
close to the financial data sources, which, as stated in [17], removes the freedom to
site the datacenters in geographical regions with more preferential energy prices.

In this context, the main hypothesis of this Thesis is that the application of the
aforementioned concurrent data-structures being developed by the Distributed Com-
puting and Systems Research group to the financial analytics scenario can optimize
the parallelized usage of computing resources, thus, reducing latency and increasing
throughput without increasing the energy consumption.

1.2 Goals, Challenges and Limitations

Two main computational finance problems are addressed in the scope of this
Thesis. The first of them consisting on pricing option contracts, [8, 29], the second
of them focusing on risk assessment in the underlying stock exchange market based
on the volatility, [41], of the returns of the different financial assets traded in the
market.

Both problems are addressed both individually and also in conjunction given
the strong connection between the latter and the former: most option pricing ap-
proaches, [8, 4, 29, 38, 10], use as an input parameter the volatility modeling the
behavior of the underlying asset returns in order to expect wider or narrower changes
in the future behavior of the underlying asset returns leading to higher or lower op-
tion prices.

The main goal driving the approach to the aforementioned computational finance
problems are the achievement of high-throughput, low-latency stream processing
solutions enabling the production of a stream of priced options according to one
or more input streams modeling the behavior of the underlying stock market and
optionally the requirements of the option contracts to be priced in terms of strike
and expiration time. For this reason, an experimental stream processing engine has
been developed in the context of this Thesis in order to test in terms of throughput
latency and correctness the different single-threaded or multi-threaded solutions
proposed in the scope of this Thesis to add the stream processing engine options
pricing and or volatility aggregation functionality.

2

1. Introduction

1.3 Structure
This Thesis is divided into three main parts, the first part, to which Chapters 1-5

belong, introduces all the necessary background to understand the research effort
performed in the context of this thesis, the second part, to which Chapters 6-12
belong, introduces the research ideas produced in the context of the Thesis, and
the third part, to which Chapters 13-16 belong, reports the achieved experimental
results and discusses the main contributions.

3

1. Introduction

4

2
Shared-Memory Parallelism and

Lock-Free Synchronization

As anticipated in Section 1.3, this is the first one of the three chapters introducing
all the necessary background to understand the research efforts performed in the
context of this Thesis.

This chapter focuses on the scope of shared-memory parallelism and lock-free
synchronization introducing the technical background needed to understand how to
efficiently profit from the computational power offered by the multi-core hardware
architectures available nowadays.

Section 2.1 below introduces the concept of shared-memory parallelism and elab-
orates on how the C programming language supports the production of shared-
memory parallel solutions given the fact that it is the language of choice for the
experiments performed in the context of this Thesis for the reasons discussed in
that section. Section 2.2 briefly analyzes the C++ underlying memory model and
its emulation in C in order to support the atomic operations needed to achieve lock-
free synchronization. Section 2.3 elaborates on the memory management problem
when multiple threads or processes concurrently access shared-memory. Finally,
Section 2.4 briefly analyzes the impact of the cache architecture in performance
outlining how to design solutions which make an efficient use of caches.

2.1 Shared-memory parallelism in C and pthreads
As explained in [25], shared-memory parallelism focuses on the efficient utilization

of shared-memory multiprocessor architectures parallelizing tasks among multiple
processors in order to benefit from an increase in computational power. Given
the increasing computational power needs financial streaming applications have, as
discussed in Section 1.1, shared-memory parallelism is a key background component
to understand the different solutions proposed in the next chapters of this Thesis.

Paraphrasing [25], most real-world computational problems cannot be effectively
parallelized without incurring the costs of inter-processor communication and co-
ordination. And the computational problems approached in this Thesis are not an
exception as it will be seen in detail in further chapters. For this reason, the choice of
the tools used to implement the different solutions introduced in this Thesis has been

5

2. Shared-Memory Parallelism and Lock-Free Synchronization

strongly determined by the way the aforementioned inter-processor communication
and coordination costs can be minimized.

The last observation motivates the election of the C programming language in
order to produce all the programs introduced in Chapter 5, which describes the ex-
perimental framework designed and developed in the context of this Thesis in order
the face the challenges outlined in Section 1.2. Widely used higher level languages
such as Java or C# would have simplified the development of the different solutions
introduced in the next chapters by automatizing inter-processor communication and
coordination tasks such as garbage collection at the costs of using a general purpose
garbage collector not specifically optimized for the parallelization needs of the spe-
cific computational tasks parallelized in the context of this Thesis. In contrast, C
and C++ allow for a finer grained memory management allowing the development
of efficient memory management mechanisms tailored for the specific inter-processor
communication and coordination needs the implemented solutions may have. In ad-
dition to this, C and C++ enable a fine grained control of the hardware resources
by enabling for example the association of different threads to specific processing
units or the possibility of executing atomic operations supported by the hardware
architectures which enables the development of efficient lock-free solutions. In ad-
dition to this, C++ offers more development tools than C such as the support to
develop object oriented code or the built-in memory model introduced in Section
2.2. However, given the existence of the GCC atomic built-ins which emulate this
underlying memory model in C, and the fact that none of the solutions proposed in
the current Thesis explicitly benefits from the object oriented paradigm, the C pro-
gramming language was finally chosen for the development of all the solutions here
reported. The following sections deepen in the scope of shared-memory parallelism
and how it integrates with the C programming language.

2.1.1 Processes, threads, and Pthreads
Processes and threads are the main abstractions provided by modern operating

systems to support the parallel or pseudo-parallel execution of different task in the
underlying machine.

In [44], a process is described as an instance of an executing program, including
the current values of the program counter, registers, and variables. And a thread is
defined as a light-weight process which shares with other threads the same address
space associated to the parent process as opposed to processes, each of which have
its own address space which they do not share with other processes. This difference
between processes and threads make threads the right choice to implement shared-
memory parallel solutions.

As introduced in [28], Pthreads are defined as a set of C language programming
types and procedure calls implementing the standardized, hardware-independent,
thread programming interface specified by the IEEE POSIX 1003.1c standard (1995).

6

2. Shared-Memory Parallelism and Lock-Free Synchronization

Henceforth, the word thread will refer to a Pthread when it is used in an implemen-
tation related context and to the abstract definition of thread introduced in the
previous paragraph when discussing solutions independently of the implementations
details.

2.1.2 OpenMP

As described in [37], OpenMP (Open Multi-Processing) is an application program-
ming interface (API) that supports multi-platform shared memory multiprocessing
programming in C, C++, and Fortran, on most platforms, processor architectures
and operating systems, including Solaris, AIX, HP-UX, Linux, OS X, and Windows.
It consists of a set of compiler directives, library routines, and environment variables
that influence run-time behavior which uses a portable, scalable model that gives
programmers a simple and flexible interface for developing parallel applications for
platforms ranging from the standard desktop computer to the supercomputer.

In early iterations of the experiments performed in the scope of this Thesis, this
framework has been used to price options contracts in parallel as it is done in [29]
which inspires the solutions presented in Chapter 7. However, given the finer grained
control achievable when using Pthreads in C instead of the OpenMP framework,
most of the proposed solutions in This thesis are based on the latter.

2.1.3 Thread safety

As explained in [25] the concurrent correctness problem in terms of safety prop-
erties, is much harder than the sequential version due to the vast number of ways
that the steps of concurrent threads can be interleaved.

When many threads concurrently access a shared memory region, it is essential
for them to synchronize in order to guarantee the correct behavior of the concurrent
algorithm no matter how they interleave in each possible execution.

2.1.3.1 Lock-based synchronization

Lock-based synchronization guarantees thread safety properties through mutual
exclusion achieved by the usage of semaphores, mutual exclusion locks or condition
variables supported by most of the modern operating systems if not all of them [44].

Lock-based synchronization solutions need to be carefully addressed in order to
avoid deadlocks, which occur when each thread belonging to a set of threads is
waiting for an event that only another thread in the set can cause [44], as well as
livelocks and starvation, which can eventually prevent the set of concurrent threads
to fulfill their purpose.

7

2. Shared-Memory Parallelism and Lock-Free Synchronization

In addition to the aforementioned threats, lock-based synchronization is expensive
in terms of operating system overhead due to the changes of state required for all the
participating threads when interacting with the different lock-based synchronization
data-structures.

2.1.3.2 Lock-free synchronization

As described in [22], lock-free synchronization is a relaxed form of wait-free syn-
chronization. Wait-free synchronization ensures that any operation on a shared
memory object can complete in bounded number of steps, independently of other
contending threads, whereas lock-free synchronization ensures that at least one of
the contending operations makes progress in a finite number of its own steps.

Lock-free synchronization is usually achieved through the usage of atomic syn-
chronization primitives reducing the operating system overhead discussed in the
previous section when discussing lock-based synchronization.

2.1.4 Thread safe pseudo-random numbers generation in C
A very good example of a non-thread-safe mechanism is the default pseudo-

random number generator in C. If two different threads execute the default rand()
function defined in the stdlib.h header, both of them will access the same space of
memory, the global random generator state, without synchronizing to do so leading
to an unexpected behavior of the concurrent threads making it necessary for the
threads to synchronize to avoid concurrently executing the rand() function.

As an alternative to this pseudo-random number generator, the drand48_r fam-
ily of re-entrant pseudo-random number generators, also defined in the stdlib.h
header, can be used in a thread-safe manner because instead of relying on a global
random generator state, the drand48_r pseudo-random generators update a buffer
provided and managed by the calling threads, which avoids the aforementioned risk
of having two threads concurrently updating the global random generator state
without synchronizing to do so.

2.2 The C++11 Memory Model and its emula-
tion in C

As explained in [45], the C++11 memory model supports atomic operations able
to create inter-thread ordering constraints according to the different memory or-
ders of varying strength: relaxed, consume, acquire, release, acquire-release, and
sequential consistency.

This underlying memory model helps producing fine grained lock-free solutions,
but it is not supported by default as part of neither the C99 standard nor the
C11 standard. The way of emulating this memory model in C involved the careful

8

2. Shared-Memory Parallelism and Lock-Free Synchronization

usage of memory barriers or fences in conjunction with the blind to memory orders
atomic primitives. However, the latest versions of the GCC compiler support a
set of built in functions for memory model aware atomic operations which emulate
the aforementioned memory model making it possible to develop in C fine grained
lock-free solutions in a very similar manner as it is done in C++.

2.3 Memory Management

One of the most critical task related to shared-memory parallelism is memory
management. In single-threaded programming, as soon as the thread making use
of a given portion of memory considers it does not need to access it anymore it is
safe to free that portion of memory in order to, for example, be able to allocate
and use it again for a different purpose. However, if multiple threads concurrently
access a given portion of memory, and one of them considers it does not need to
access it anymore, it is not safe to free that portion of memory as done in the single-
threaded case because other concurrent threads may still need to access that portion
of memory. For this reason, it is necessary to keep track of whether if any given
address can be safely freed or not in order to avoid situations in which a thread may
access an already freed memory address leading to the failure of the program.

2.3.1 Reference Counting

Reference counting is probably the most widely spread, intuitive, and general
purpose memory management technique. As described in [15], it consists on keeping
track, for each allocated memory address, of the number of variables having a pointer
pointing to that address so that when the counter reaches zero the address can safely
be freed.

Even though it may seem a straight forward and safe solution, several threats
need to be taken into account in order to make it properly work. For example, in
case a cyclic linked list is not referenced by any other variable apart from the nodes
in the list itself, the list is safe to be freed, but all the addresses associated to the
nodes have a reference counter greater than zero due to the previous node in the list
holding a reference to it, preventing the reference counting mechanism from freeing
the memory occupied by the list. For this reason, reference counting us usually
extended by additional complementary memory management techniques to identify
and prevent threats such as the aforementioned one.

2.3.2 Hazard Pointers

Hazard pointers based memory management, [34], is an efficient memory man-
agement technique specifically designed to manage the memory occupied by the
different nodes or blocks underlying to concurrent data-structures.

9

2. Shared-Memory Parallelism and Lock-Free Synchronization

This technique consists on keeping track of a small set of memory addresses
flagged as hazardous by each of the concurrent threads utilizing the concurrent
data-structure, and adding the memory addresses which the different threads con-
sider safe to free to temporary lists which trigger, when they reach a certain number
of elements, a scan routine in which all the nodes in the list which are not flagged
as hazardous by other threads are safely freed.

This technique tends to be less expensive in terms of execution time and memory
than reference-counting based techniques, however, it has to be very carefully used
in order to guarantee according to the semantics of the concurrent data-structures
making use of this memory management technique that addressed not flagged as
hazardous are actually not hazardous when executing the aforementioned scan rou-
tine.

2.4 The impact of caches in performance

As explained in [11], given the performance gap between processing units and
random access memory, cache hierarchies play a fundamental role in the performance
of any computer architecture.

An efficient cache hierarchy efficiently managed by the operating system can con-
siderably reduce the overhead of retrieving bytes from the random access memory
making the memory system virtually behave almost as fast as the processing units
making use of it. For this reason, it is important to avoid whenever it is possible
cache misses in order to minimize the overhead of accessing the actual random access
memory hardware.

2.4.1 Cache misses and contention

Resource contention is a conflict over access to a shared resource such as random
access memory, disk storage, cache memory, internal busses or external network
devices aroused when more than one thread compete for the usage of the shared
resource.

Concurrent solutions making excessive use of synchronization variables which are
constantly checked and updated by multiple different threads may lead to a higher
cache contention, leading to the invalidation of entries in the different caches accessed
by the different threads increasing the number of cache misses and consequently
reducing the performance of the solution. For this reason, it is important to make a
conscious effort towards the minimization of the aforementioned contention in order
to produce efficient concurrent solutions which make a good use of the cache memory
hierarchy.

10

2. Shared-Memory Parallelism and Lock-Free Synchronization

2.4.2 Cache misses and memory alignment
The different levels of cache memory hierarchies are usually divided in blocks or

cache lines of different size containing the cached parts of the underlying random
access memory. In case a variable is mapped to two or more blocks, every time at
least one of the blocks is replaced, all the cached memory corresponding to that
variable is invalidated leading to more cache misses when trying to access that
variable.

One way to minimize the aforementioned problem is to align the different data-
structures to the smallest cache line sizes, which are the ones belonging to the L1
cache, by adding padding bytes. This would avoid situations in which a variable
smaller than one block is mapped to two due to memory miss-alignment, resulting
in a more efficient use of the cache hierarchy.

11

2. Shared-Memory Parallelism and Lock-Free Synchronization

12

3
Data-Streaming

As anticipated in Section 1.3, this is the second one of the three chapters intro-
ducing all the necessary background to understand the research efforts performed
in the context of this Thesis.

This chapter focuses on the data-streaming model introducing the technical back-
ground needed to understand how to efficiently produce relevant and useful results
on-the-go when a stream of data such as the succession of trades registered in a
stock exchange market needs to be processed in real time.

Henceforth the data-streaming-model will be understood as described in [22]: in
the data-streaming model, input tuples coming from one or multiple input streams
are consumed by Continuous Queries (or simply queries in the following), which
subsequently produce one or more output streams. A query, defined as a directed
acyclic graph (DAG) with additional input and output edges, produces results "con-
tinuously" while consuming input tuples. Vertexes represent operators that consume
tuples (from at least one input stream) and produce output tuples (for at least one
output stream). Edges define how input and output tuples flow among the operators
of a query.

In order to let the tuples flow from one operator to another, concurrent data-
structures need to be used allowing for one or multiple concurrent readers and
writers to add or retrieve tuples. Sections 3.1 and 3.2 below introduce the two main
concurrent data-structures which are used for this purpose in the scope of this thesis,
namely concurrent queues, and ScaleGate.

Another common need in the scope of stream-processing is to process tuples on
a sliding-window basis taking into account for the production of aggregated re-
sults subsets of the entire dataset represented by the stream of tuples. Section 3.3
elaborates on this introducing two alternative sliding-window models present in the
literature.

3.1 Concurrent queues
In [25], a concurrent queue is described as a concurrent container that provides

first-in-first-out (FIFO) fairness. In other words, a concurrent data-structure pro-
viding the enq and deq methods to respectively add elements to the end of the

13

3. Data-Streaming

queue and remove and return elements from the other end of the queue, commonly
referred to as head:

• enq(x): the enqueue method, henceforth referred to as enq in all the listings
it is used, let the calling writer thread add an element, x, to the container
which will be removed from the queue and returned to one and only one of
the reader threads only after all the elements already present in the container
have already been removed and returned to other readers.

• deq(): the dequeue method, henceforth referred to as deq in all the listings it
is used, removes in case there are one more elements available in the container,
the element which have stayed in the container the longest and returns it to
the calling reader thread.

Given the aforementioned semantics, concurrent queues are widely used in the
scope of data streaming as they allow a stream of tuples processed by a single writer
to traverse the queue in the same order as they are served.

In order for concurrent queues to achieve strong safety and liveliness requirements,
including linearizability [26], and lock-freedom [5] in case a lock-free implementation
is used, the concurrent queue writers and readers need to carefully synchronize either
on a lock-based manner relying on blocking solutions such as spin-locks or on a lock-
free manner carefully using atomic construct to guarantee the proper behavior of
the queues. This has motivated the research for the creation of efficient lock-free
queues [35, 16].

In order to better understand the impact of the different queue implementations
available in the state of the art literature on the performance of the different stream
processing solutions proposed in the context of this thesis, three of the queue imple-
mentations from the NOBLE1 library [42, 43] have been used for all the experiments
reported in Chapter 13:

• Standard spin-lock based queue (LB): the standard spin-lock based queue
is referred in [42] as LB (lock-based).

• Lock-free block structure bounded memory queue (LF_BB): the lock-
free block structure bounded memory queue introduced in [16] referred in [42]
as LF_BB (lock-free block-bounded).

• Lock-free dynamic structure bounded memory queue (LF_DB): the
lock-free dynamic structure bounded memory queue introduced in [35] referred
in [42] as LF_DB (lock-free dynamic-bounded).

3.2 ScaleGate
As described in [22], ScaleGate is a recently proposed abstract data type tailored

for the parallelization needs that arise in many stream processing problems.
1NOBLE Professional Edition is the lock-free concurrent data-structures library in C and C++

commercialized by Parallel Scalable Solutions AB, http://www.non-blocking.com/

14

http://www.non-blocking.com/

3. Data-Streaming

In order to properly define the semantics of the ScaleGate data-structure it is
necessary to understand the concept of ready tuples introduced in [6] as follows:

Ready tuple: Let tji be the i-th tuple in a timestamp-sorted physical stream j.
Tuple tji is ready to be processed if tji .ts ≤ mergets; where mergets is the mini-
mum among the latest timestamps from each timestamp-sorted physical stream j,
i.e. mergets = minj

{
maxi

(
tji .ts

)}
.

As it is proven in [6], if a set of concurrent writers add tuples in non-descending
timestamp order to a concurrent data-structure in which tuples are sorted in non-
descending timestamp order, consuming these tuples only once they are ready ac-
cording to the definition above guarantees that the resulting output stream of tuples
is properly sorted in non-descending timestamp order.

The last observation is key to understand the semantics of the ScaleGate data-
structure, which similarly to the concurrent queue data type described in the pre-
vious section, it is a concurrent data-structure in which multiple concurrent writer
and reader threads can add or retrieve tuples respectively using the addTuple and
getNextReadyTuple methods whose behavior is different from the formerly intro-
duced enq and deq methods as described in [22]:

• addTuple(timestamp,tuple,sourceID): the addTuple method allows a tu-
ple from the source thread, uniquely identified by the sourceID identifier, to
be merged by ScaleGate in the resulting timestamp-sorted stream of ready
tuples.

• getNextReadyTuple(readerID): the getNextReadyTuple method provides
to the calling reader thread, uniquely identified by the readerID identifier,
the next earliest ready tuple that has not been yet consumed by the former.

Altogether, the differences between the ScaleGate data-structure and the concur-
rent queue data-structure introduced in the previous chapters can be understood
when analyzing what happens if a set of multiple writer threads concurrently add
tuples in non-descending timestamp order to each of the data-structures a set of
multiple reader threads concurrently retrieve tuples from the data-structures.

In the case of the formerly introduced concurrent queue data type, each of the
tuples added by the set of concurrent writer threads would be retrieved by one
and only one of the concurrent reader threads. In case two or more tuples added
by the same writer thread are retrieved by a single reader thread, these tuples
would be retrieved in the same order in which they were added to the queue and
consequently, properly sorted in non-descending timestamp order. However, if two
tuples retrieved by a single reader thread were added to the queue by two different
writer threads, there is no guarantee whether or not they may be ordered in non-
descending timestamp order.

15

3. Data-Streaming

In the case of the newly introduced ScaleGate data-structure, each of the tuples
added by the set of concurrent writer threads would be retrieved by all of the
concurrent reader threads resulting in all of the reader threads consuming exactly
the same stream of tuples instead of a subset of it each as it happened with the
queue. All the tuples belonging to the stream of tuples consumed by all the reader
threads are guaranteed to be ordered in non-descending timestamp order.

In order to benefit from the aforementioned semantics of the ScaleGate data-
structure in the experiments performed in the context of this Thesis, the ScaleGate
data-type has been implemented in C together with an adaptation of the Hazard
Pointers based memory management mechanism introduced in Section 2.3.2.

3.3 Sliding-Windows
Given the unbounded and dynamic nature of the data processed in the scope of

data streaming, one common challenge is to process subsets of the streams of tuples
on a sliding-window basis for example to produce aggregate results [6].

3.3.1 The Window Size Only Sliding-Windows Model
In the window size only sliding-windows model, operators are computed over

sliding-windows which are defined by its window size parameter, henceforth referred
to as WS. Sliding windows can be time-based, (e.g., to group tuples received no
earlier than 5 minutes before the reception of the newest tuple in the window), or
tuple-based, (e.g., to group the last 10 received tuples).

As it can be understood, this sliding-windows model involves keeping track always
of the most recently received tuples discarding older tuples from the sliding windows
when newer tuples are received.

3.3.2 TheWindow Size andWindow Advance Sliding-Windows
Model

In the window size and window advance sliding-windows model, as described in [6],
operators are computed over sliding-windows which are defined by the parameters
size, henceforth referred to as WS, and advance, henceforth referred to as WA.
Sliding windows can be time-based, (e.g., to group tuples received during periods of
5 minutes every 2 minutes) or tuple-based (e.g., to group the last 10 received tuples
every 3 incoming tuples).

As it can be understood, this sliding-windows model involves keeping track at a
time of more than one sliding window as each tuple can contribute to one or more
overlapping sliding windows. Section 10.4 further elaborates on the definition of this
sliding-window model which is used by the operator introduced in that section.

16

4
Finance

As anticipated in Section 1.3, this is the third and last one of the three chapters in-
troducing all the necessary background to understand the research efforts performed
in the context of this Thesis.

This chapter focuses on the context of finance describing the computational fi-
nance problems detected in the literature which are approached in this Thesis in
the scope of data streaming optimizing the utilization of the available hardware
resources through shared-memory parallelism.

4.1 Relevant Financial Problems for this Thesis

After a careful study of the state of the art literature in the scope of computational
finance with a special focus on [14, 17, 29, 1, 18, 39, 10, 9, 3, 38, 30, 12, 2], further
reviewed in Chapter 14, two main financial problems were identified as relevant for
the goals of this Thesis, namely the options pricing problem and the risk assessment
problem which is approached in the context of this Thesis as the assessment of the
volatility of the underlying traded assets prices over time.

4.1.1 Options Pricing

As described in [8], an option is a security that gives its owner the right to trade
in a fixed number of shares of a specified common stock at a fixed price at any
time on or before a given date. The act of making this transaction is referred to as
exercising the option. The fixed price is termed the strike price, and the given date,
the expiration or maturity date. A call option gives the right to buy the shares, and
a put option gives the right to sell the shares.

The most commonly traded options are American and European options, some-
times referred to as plain vanilla options:

• American Options: American options can be exercised at any time between
the date of purchase and the expiration or maturity date.

• European Options: European options are different from American options
in that they can only be exercised at the end of their lives.

17

4. Finance

In addition to the aforementioned option types, non-standard options, commonly
referred to as exotic options, are also traded in different markets. These last kind
of options are either variations on the payoff profiles of the plain vanilla options or
are wholly different products based on options.

Given the stochastic nature of the underlying assets the problem of pricing dif-
ferent types of options becomes a complex and expensive estimation problem based
on different input parameters according to the underlying market information avail-
able, and the specified strike price and maturity. In addition to this, the increasing
volume of the financial data streams modeling the behavior of the underlying stock
markets and the expensive data center energy consumption and ownership cost
make it paramount in the scope of computational finance to research towards effi-
cient options pricing solutions which can process financial tuples achieving a high
throughput and a low latency in the most energy efficient way as possible.

According to [17, 10], two main models are used nowadays to approach the options
pricing problems, Monte Carlo models, briefly introduced in Section 4.1.1.1, and
binomial or grid-based models, briefly introduced in Section 4.1.1.2. In addition to
the aforementioned two models the Black-Scholes formula [4], briefly introduced in
Section 4.1.1.3, gives a theoretical estimate of the price of European options.

4.1.1.1 Monte Carlo Models

As described in [3], Monte Carlo models are computational algorithms which rely
on repeated random sampling to obtain numerical results. In order to do so, the
following steps are usually followed:

• Definition of a domain of possible inputs: in the scope of options pricing
this domain would be most of the times the set of possible values that the
underlying asset can have at any point of time before the expiration date, or
only at the expiration date.

• Random generation of inputs from a probability distribution over
the aforementioned domain: in the scope of options pricing this probability
distribution would deem more probable prices closer to the observed price of
the asset at the moment of pricing.

• Performance of a deterministic computation on the inputs: in the
scope of options pricing this deterministic computation would consist most of
the times on discounting the payoffs of the option at the given input points to
the instant of time in which the option is priced based on an assumed risk-less
interest rate.

• Aggregation of the results: in the scope of options pricing according to
the previous steps this deterministic aggregation would consist most of the
times on averaging the discounted payoffs weighted by the aforementioned
probability distribution.

As it can be easily seen, and as highlighted also in [3], Monte Carlo models are
especially suitable for GPU based solutions given the embarrassingly parallel nature
of the second and third aforementioned steps.

18

4. Finance

4.1.1.2 Binomial Models

As described in [8, 29], binomial model based options pricing algorithms rely
on underlying binomial tree models representing all the different paths that the
underlying asset price could follow if time were discretized from the option pricing
instant to the expiration date, and in each discrete step the underlying stock price
could go either up or down. In order to price options based on this, the following
steps are usually followed:

• Iterating to model the underlying binomial tree: in this first step, the
underlying binomial tree model is traversed from the options pricing instant
to the option expiration date calculating the expected price of the underlying
asset and the corresponding payoff of the option contracts in the scenario
represented by each node in case of need.

• Backtracking to obtain the desired option price: in this second step, the
underlying binomial tree model built in the previous step is iterated backwards
implicitly aggregating the expected payoff of the underlying asset at the option
pricing instant.

It is worth noticing that in order to bound the number of nodes in the different
levels of the underlying binomial tree, most binomial three based options pricing
algorithms force the underlying trees to be recombinant so that the number of nodes
per level is proportional to the level instead of two raised to the level.

4.1.1.3 Black-Scholes

As anticipated earlier in this chapter, the Black-Scholes formula [4] gives a theo-
retical estimate of the price of European call (C) and put (P) options as expressed
in Equation 4.1:

C(S, t) =N(d1)S −N(d2)Ke−r(T−t)

P (S, t) =Ke−r(T−t) − S + C(S, t) (4.1)
=N(−d2)Ke−r(T−t) −N(−d1)S

d1 = 1
σ
√
T − t

[
ln
(
S

k

)
+
(
r + σ2

2

)
(T − t)

]
d2 =d1 − σ

√
T − t

• N(.): cumulative distribution function if the standard normal distribution.
• T − t: time to maturity.
• S: spot price of the underlying asset.
• K: strike price.
• r: assumed continuous risk-less interest rate.
• σ: the volatility of returns of the underlying asset.

19

4. Finance

4.1.2 Volatility
As anticipated earlier in this chapter, the second key computational finance prob-

lem identified as relevant for the goals of this Thesis is the risk assessment problem
which is approached in the context of this Thesis as the assessment of the volatility
of the underlying traded assets prices over time because it is the way risk is assessed
in order to price options based on the models introduced in the previous section.

As described in [41], the standard deviation, henceforth referred to as σ, is a
measure which is used to quantify the amount of variation or dispersion of a set of
data values or a random variable, X.

Given the discrete and finite nature of the sets of stock prices which whose volatil-
ity is expected to be priced in the scope of this Thesis, the formal standard devi-
ation definition for a bounded discrete random variable X = {X1, X2, ..., XN} is
the one formally introduced in this section. However, before directly introducing
the standard deviation formula for a bounded discrete random variable, it is worth
understanding the definition of the mean or first moment, E[X] or µ, as described
in Equation 4.2.

E [X] = 1
N

N∑
i=1

Xi = µ (4.2)

As it can be seen, E[X] = µ is the well-known mean or average of the discrete
random variable. Elaborating from this definition towards the definition of the
standard deviation, σ, a first measure of how fast a discrete random variable spreads
out is its variance, Var(X), which is the mean of a new discrete random variable
representing, for each value in the original random variable, the difference from the
original value to the mean of the original random variable raised to the square, so
that the sign of the difference does not allow positive and negative deviations to
compensate each other. This is formally expressed in Equation 4.3.

Var (X) = E
[
(X − µ)2

]
= 1
N

N∑
i=1

(Xi − µ)2 (4.3)

The small problem with variance for its usage as a volatility measure is that given
the square operation in Equation 4.3, it is not expressed in the same units as the
original random variable. In other words, if the random variable units are dollars,
$, the variance is expressed in dollars raised to the square, $2. This motivates the
introduction of the standard deviation, σ, as a volatility measure, which is simply
the square root of the variance [41], as expressed in Equation 4.4, which takes it
back to the same units as the original random variable.

σ = 2
√
Var (X) = 2

√
E
[
(X − µ)2

]
= 2

√√√√ 1
N

N∑
i=1

(Xi − µ)2 (4.4)

20

5
Framework

In this chapter the experimental framework1 designed and developed in order to
quantitatively assess the quality of the different operators defined for the different
financial stream processing engine iterations described in detail in Chapters 6-12 is
introduced.

Section 5.1 below introduces the data sources that have been used to generate
the streams of tuples used in the different experiments reported and analyzed in
Chapter 13. Section 5.2 briefly describes the financial stream processor developed in
the context of this Thesis whose internal structure and the behavior of its operators
is described in detail in Chapters 6-12. Section 5.3 introduces all the auxiliary
programs which complete the framework enabling the production of the input data
files to be used by the aforementioned program to model streams of tuples, the
analysis of the output generated by the stream processing engine in order to obtain
the throughput and latency metrics which are reported and analyzed in Chapter
13, and the generation of the different scripts to launch and keep track of all the
experiments performed in the different test machines. Finally, Section 5.4 elaborates
on the physical test environment introducing the programming language used to
implement the aforementioned programs and the machines in which the experiments
reported and analyzed in Chapter 13 have been performed.

5.1 Data Sources
In order to simulate a financial stream of data representing the realistic behavior of

a reasonably scaled financial market, the data contained in the sample Daily Trades
File2 reporting all the trades registered in the NYSE and NASDAQ markets the 5th
of August of 2015 with µs timestamps precision provided by the NYSE Market Data3

reporting authority, whose structure is described in detail in Chapter 5 in [36], have
been used to produce the two different kinds of input data files consumed by the
financial stream processing engine described in Section 5.2 to price option contracts

1All the programs and tools introduced in this chapter are maintained in the private Git reposi-
tory https://bitbucket.org/ioaniko/alfonso_thesis_work. Please contact its administrator,
Ioannis Nikolakopoulos <ioaniko@chalmers.se> in order to be granted access in case of need.

2Sample Daily Trades File available for free in the official NYSE ftp reposi-
tory ftp://ftp.nyxdata.com/HistoricalDataSamples/DailyTAQ/ under the name
EQY_US_ALL_TRADE_20150805.zip.

3The NYSE Market Data reporting authority (http://www.nyxdata.com/) keeps track of all
the financial information registered in the NYSE and NASDAQ stock exchanges.

21

https://bitbucket.org/ioaniko/alfonso_thesis_work
ftp://ftp.nyxdata.com/Historical Data Samples/Daily TAQ/
http://www.nyxdata.com/

5. Framework

based on the behavior of the underlying financial market and the requirements for
each specific option contract.

Section 5.1.1 below describes the financial stream of data resulting from the first of
the two kinds of input data files consumed by the financial stream processing engine,
and Section 5.1.2 below describes the options settings stream of data resulting from
the second of the two kinds of input data files consumed by the financial stream
processing engine since the last iteration introduced in Chapter 12.

5.1.1 Financial Stream
The financial stream models the information contained in the aforementioned

Daily Trades File as a stream of financial tuples representing the behavior of the
underlying stock markets.

This is done by modeling each of the selected entries in the Daily Trades File as
a financial tuple representing a trade transaction in which a given number of shares
of a given stock are traded at a given price per share at a given instant of time.
Sections 6.2 and 12.2 describe in detail the structure and internal representation
of the financial tuples belonging to the financial stream specifying the mapping
between the different fields of the entries in the Daily Trades File and the different
fields in each financial tuple consumed by the stream processing engine.

5.1.2 Options Settings Stream
The options settings stream models the specifications of the options contracts to

be priced by the options pricing stream processing engine in accordance to the most
up to date financial data from the aforementioned stream processed by the stream
processing engine.

Each tuple belonging to this second stream represents an option contract to be
priced for a given underlying stock, at a given time, with a given strike and maturity
assuming a given risk-less interest rate.

This is achieved by creating for each of the tuples in the financial stream an options
settings tuple with the same physical and logical timestamps as the corresponding
financial tuple in order to produce two input datasets which can be fed synchronously
by two different input threads simulating two simultaneous streams of tuples in real
time, a randomly chosen underlying symbol among the traded symbols represented
in the financial stream, a randomly chosen options strike in the order of magnitude of
the trade prices seen for the chosen symbol in the financial stream, and a randomly
chosen maturity and assumed risk-less interest rate. Section 12.2 describes in detail
the structure and internal representation of the options settings tuples belonging to
the options settings stream.

22

5. Framework

5.2 Main Program: The Options Pricing Finan-
cial Stream Processing Engine

The main program developed in the context of this Thesis is the options pricing
financial stream processing engine which addresses the two main financial prob-
lems identified in Section 4.1, namely options pricing and volatility aggregation, in
the scope of data streaming, processing the two aforementioned streams of tuples
producing as a result, an output stream of tuples representing the priced option con-
tracts according to the observed behavior of the underlying stock exchange market.

The structure of this stream processing engine is adapted to the directed-acyclic-
graph model introduced in Chapter 3, the nodes and edges in the graph correspond-
ing respectively to threads executing different operators and the different concurrent
data-structures used to transfer tuples from one thread to another.

Two special types of threads are present in all the iterations of the stream pro-
cessing engine in order to model the input data streams and to output the processed
tuples:

• Input threads: the input threads retrieve tuples from the binary files rep-
resenting the two data streams introduced in Section 5.1 generated by the
input generator program introduced in Section 5.3.2 below. Consequently,
these threads do not retrieve tuples from a concurrent data-structure as the
rest of the threads in the stream processing engine do. In order to properly
model the behavior of an input stream of data adding tuples to the concurrent
data-structures from which the first process threads retrieve tuples, the input
threads can control the input rate in two different manners:
– Full speed rate: serving tuples at full speed rate consists on letting the

input threads serve the financial tuples read from the binary input files
one by one as fast as they can iterate through the input binary file. As
it will be further discussed in Section 13.1, this mode of operation leads
to a saturation situation in the stream processing engine which allows
for the assessment of the maximum achievable throughput but inflates
the reported latency metrics due to the time spent by the tuples in the
data-structures until they can be retrieved and processed.

– Constant rate: serving tuples at a constant rate consists on controlling
the speed at which the input threads serve the tuples read from the input
binary files in order to avoid the aforementioned saturation situation.

In addition to this, the input threads add each of the served tuples a process
start timestamp, as described in detail in Section 6.2, in order to measure the
time elapsed for each individual tuple from the instant of time it is added to the
corresponding concurrent data-structure by the corresponding input thread to
the instant of time it is finally retrieved by the output thread described below
without letting these measurements affect the performance of the operators
which process the tuple in the meantime.

• Output thread: the output thread corresponds always to the final node

23

5. Framework

of the underlying directed acyclic graph. Instead of adding tuples to the
next concurrent data-structure as the rest of the threads do, it outputs the
tuples it retrieves to the corresponding output binary file which keeps track
of how the financial stream processing stream process each individual tuple in
order to assess afterwards the correctness of the assigned volatility values and
options prices and the performance of the stream processing engine in terms of
throughput and latency. Before doing so, it adds each of the retrieved tuples
a process end timestamp, as described in detail in Section 6.2, for the same
reason why the input threads described above added a process start timestamp.

The design, development, and evaluation of the options pricing financial stream
processing engine has been approached in an iterative manner as documented in
detail in Chapters 6-12, each of which covers an iteration of the stream processing
engine in which new functionality is added or the existing functionality is optimized
towards a higher throughput or a lower latency.

Chapter 6 introduces the first iteration of the stream processing engine which
consumes tuples only from the aforementioned financial stream and uses only one
process thread to price option contracts always with the same fixed option strike,
option maturity, assumed risk-less interest rate and assumed volatility, and the
symbol and current trade price retrieved from the processed financial tuples.

Chapters 7-9 evolve the options pricing engine described above by letting it price
in parallel several option contracts at a time with the same settings as in the first
iteration employing to do so n ≥ 1 option pricing threads in parallel, yet preserving
the linearizability requirements for the ordering of the tuples output by the output
thread. In other words, the output thread in the iterations introduced in Chapters
7-9 output the same stream of processed tuples in terms of ordering and assigned
option prices as the one output in the first iteration of the stream processing engine.

Chapter 10 extends the functionality of the stream processing engine as defined
in Chapter 9 to aggregate on a sliding-window basis the volatility of the underlying
stock before pricing each option, and Chapter 11 parallelizes the sliding-window
based volatility aggregator introduced in the previous iteration.

Finally, Chapter 12 extends the functionality of the stream processing engine as
defined in Chapter 11 adding a second input thread to provide the options settings
tuples from the options settings stream and extending the parallel sliding-window
based volatility aggregation operator to let it also match the two streams of data
so that options contracts can be priced according to the option strike, maturity
and assumed risk-less interest rate specified in the options settings stream and the
trade price and aggregated volatility assigned to the most recent tuple from the
financial stream matching the options setting tuple given the specified underlying
stock symbol. Chapter 13 reports the throughput and latency metrics obtained
when totally or partially executing all the aforementioned iterations of the financial
stream processing engine in the context of the framework introduced in this chapter.

24

5. Framework

5.3 Auxiliary Programs
As anticipated in the previous sections, a set of auxiliary programs, which are de-
scribed in the following sections, complete the framework enabling the production
of the input data files to be used by the aforementioned financial stream process-
ing engine input threads to model the two streams of tuples introduced in Section
5.1, the analysis of the output generated by the stream processing engine in order
to obtain the throughput and latency metrics which are reported and analyzed in
Chapter 13, and the generation of the different scripts to launch and keep track of
all the experiments performed in the different test machines.

5.3.1 Financial Dataset Analyzer
The financial dataset analyzer program represents the first building block in the

framework described in this chapter. It analyzes the aforementioned Daily Trades
File in order to identify the most traded symbols in the reported session discarding
all the trades flagged as invalid.

The output of this program is used to determine the selection of target symbols
provided to the input generator program introduced in the next section to generate
the different binary input files modeling the streams of tuples introduced in Section
5.1.

Before concluding this section, it is worth highlighting some facts according to the
output generated by this program when analyzing the NASDAQ session recorded
the 5th of August 2015:

• Out of the 2972 symbols traded in the NASDAQ market that day. Only the ten
most traded ones already accounted for more than 15% of the trades registered
in the Daily Trades File and more than 50% of all the trades registered were
associated only to the top 140 most traded symbols.

• The rate at which tuples were recorded in the Daily Trades File according to
their physical timestamp followed a bathtub trend with peak rates close to
respectively 60000 and 100000 tuples per minute at the opening and closing
exchange times and an average rate between 10000 and 20000 tuples per minute
during the rest of the trading hours.

5.3.2 Input Generator
The input generator program, as its name anticipates, is the program which pro-

duces the binary files modeling each of the tuples belonging to the two streams
introduced in Section 5.1 which the stream processing engine consumes.

To do so, the input generator program needs to be provided with a Daily Trades
File with the structure specified in Chapter 5 in [36], and a text file listing a selection
of target traded symbols, with the same 16 ASCII characters format as specified in
[36], to be taken into account for the generation of the streams. With this, only

25

5. Framework

the entries in the Daily Trades File whose symbol fields match one of the specified
target symbols, which are not flagged as invalid, and which match the user specified
filters, are used for the generation of the financial tuples in the stream described in
Section 5.1.1.

The structure of the tuples belonging to both the binary files produced by this
program contains all the fields successively introduced in Chapters 6-12, plus a set
of padding bytes in order to align the tuples to the cache line length of the specific
machine in which the program is executed in order to minimize the number of cache
misses due to memory miss-alignment as discussed in Section 2.4.2.

All the tuples belonging to the financial stream according to the aforementioned
filters applied to the Daily Trades File are assigned by the input generator, in
addition to the physical timestamp retrieved from the Daily Trades File, a sequence
number according to its physical timestamp order in the final financial stream of
tuples, which represents a logical timestamp in the resulting output stream being the
first tuple assigned the sequence number 0, the second one 1, and so on. For each
of the financial tuples representing an entry in the Daily Trades File, an options
settings tuple is generated as described in Section 5.1.2, with the same sequence
number and physical timestamp. The main reason for this is to guarantee that
when testing the stream processing engine at full speed rate the two streams of
tuples are implicitly synchronized.

In addition to the production of the binary files modeling the two stream of
tuples, the input generator program is able to produce if requested to do so, an
ASCII version of the same files to facilitate further research on the streams of tuples
with external analysis tools, and trade price and trade volume plots for each traded
symbol belonging to the financial stream of tuples in order to provide a visual
description of the produced financial stream of tuples and its behavior.

Before concluding this section, it is worth briefly summarizing the different datasets
or pairs of streams produced making use of the input generator program based on
the Daily Trades File recording the 5th of August 2015 session which have been used
for different purposes in the context of this thesis:

• The micro dataset: the micro dataset was built using the last 10000 NAS-
DAQ valid trade records registered the 5th of August 2015 between 11:40 and
13:50 by the 3 most traded symbols in the session by number of valid trade
records, AAPL, FOXA, and CMCS A, according to the financial dataset ana-
lyzer program introduced in the previous section.
The resulting input files have been used for debugging purposes as well as
the fast production of preliminary results to expedite the implementation and
assessment of new ideas during the development of the different iterations of
the stream processing engine.

• The tiny dataset: the tiny dataset was built using the 190442 valid NASDAQ
trade records registered the 5th of August 2015 between 11:40 and 13:50 by

26

5. Framework

the aforementioned 3 most traded symbols in the session by number of valid
trade records.
The resulting input files have been used to proof check the preliminary results
obtained with the micro dataset in case of need and to produce the full speed
rate results to assess the maximum achievable throughput under a saturation
situation achievable by the different iterations of the stream processing engine
in order to control the input rate to avoid saturation in the production of the
experimental results reported in Chapter 13.

• The main dataset: the main dataset was built using the 1705386 valid
NASDAQ trade records registered the 5th of August 2015 between 09:25 and
16:05 by the 10 most traded symbols in the session by number of valid trade
records, according to the financial dataset analyzer program introduced in the
previous section.
The resulting input files have been used to produce the final throughput and
latency results reported and analyzed in Chapter 13.

5.3.3 Output Analyzer
The output analyzer program, as its name anticipates, is the program which taking

as an input the binary output file generated by the options pricing stream processing
engine each time it is executed, checks the correctness of the corresponding stream
processing engine execution and calculates a series of performance metrics to quan-
titatively assess the quality of the operators and data-structures implemented and
tested.

As anticipated in Section 5.1.1, each of the tuples retrieved by the output thread is
stored in the aforementioned binary output file in the same order as it is retrieved by
the aforementioned tread containing the process start and process end timestamps
respectively assigned by the input and output threads as well as the physical and
logical timestamps assigned by the input generator program and the values assigned
by the different operators executed by the process threads.

With all the aforementioned information, the output analyzer program verifies for
each execution if all the tuples from the input datasets have been correctly processed
and if they have been output by the stream processing engine in the same order as
the corresponding input thread served them. It also calculates the latency for each
individual tuple as the difference between its process end timestamp and its process
start timestamp and the overall achieved throughput as the difference between the
last processed tuple process end timestamp and the first processed tuple process
start timestamp divided by the total number of tuples in the binary file. In order
to summarize the aforementioned latency metrics, it calculates the minimum, max-
imum, mean, median, first percentile, first quartile, third quartile and ninety ninth
percentile of the latencies for all tuples and generates, using Gnuplot, latency plots
representing the individual latency for each tuple and the aforementioned latency
statistics.

27

5. Framework

Even though the output thread in the stream processing engine program intro-
duced in Section 5.1.1 already have access to all the information needed to produce
the aforementioned statistics, checks and plots, all this functionality has been imple-
mented separately in the output analyzer program in order to minimize the impact
of measuring the performance of the stream processing engine in performance of the
stream processing engine itself.

5.3.4 Excel Master Index
In order to produce the experimental results which are reported and analyzed in

Chapter 13, the stream processing engine as well as the output analyzer program
described in the previous sections have been executed hundreds of times in the
different test machines introduced in Section 5.4.2 having the carefully keep track
of the specific settings used to execute the financial stream processing engine and
the results produced by the output analyzer program.

In order to manage all of this, Excel has been used to produce a master index
workbook to keep track of all the experiments performed in the context of this the-
sis. Apart from keeping track of all the settings configuring the different executions
of the stream processing engine and the statistics and checks generated for each
execution by the output analyzer program, this workbook automatized the genera-
tion of shell scripts to schedule and run both the stream processing engine and the
output analyzer program and to import the output generated by the latter to the
master index table. In addition to this, the production of preliminary throughput
and latency plots for the different experiments reported in Chapter 13 has also been
automatized making use of pivot tables and pivot charts, which made it easier to
rapidly identify outliers and executions whose detailed latency plots needed to be
revised to understand in detail the specific behavior of the different operators and
data-structures used in the stream processing engine.

5.4 Test Environment

In order to produce all the experimental results reported in Chapter 13, all the
iterations of the stream processing engine described in Chapters 6-12 have been
carefully implemented in C and compiled with the GCC compiler as specified in
Section 5.4.1 below. The resulting executables have been run in the two differ-
ent Linux servers with shared-memory multi-processor architectures introduced in
Section 5.4.2.

5.4.1 Language and Compiler: C and GCC
As discussed in Section 2.1, the C programming language is the one used in the

context of this Thesis to implement the different iterations of the stream processing
engine introduced in Chapters 6-12.

28

5. Framework

In particular, the C99 standard (ISO/IEC 9899:1999) has been followed with
additions from the C11 standard (ISO/IEC 9899:2011) when needed.

The code in both machines has been compiled using the GCC compiler, version
4.9.2, which supports the atomic built-ins emulating the C++ memory model intro-
duced in Section 2.2.

5.4.2 Machines
All the experiments reported in Chapter 13 have been produced executing the dif-

ferent iterations of the stream processing engine in the Linux servers belonging the
department of Computer Science and Engineering at Chalmers cse-31228.cse.chalmers.se,
henceforth referred to as 31228, and cse-hasgreen.cse.chalmers.se, henceforth re-
ferred to as Hasgreen.

Both machines are Linux servers with single-socket multiple-processors architec-
tures, both of them with twice the number of virtual cores than physical CPUs
through the use of hyper-treading. Sections 5.4.2.1, and 5.4.2.2 respectively report
the main features of 31228 and Hasgreen in the context of the experiments performed
in this Thesis.

5.4.2.1 31228: Intel Xeon

The 31228 machine is a Linux server running the CentOS Linux release 7.1.1503
distribution over the 3.10.0-229.20.1.el7.x86_64 Linux kernel.

It is powered by an Intel Xeon E5-2695 v3 chip with 14 physical-28 virtual pro-
cessors at 2.30 GHz, with 35840KB of cache memory, 64B L1 cache line size, and
µs clock precision.

5.4.2.2 Hasgreen: Intel Core i7

The Hasgreen machine is a Linux server running the Ubuntu Linux release 14.04.2
LTS over the 3.13.0-48-generic Linux kernel.

It is powered by an Intel Core i7-4770 chip with 4 physical-8 virtual processors
at 3.40 GHz, with 8192KB of cache memory, 64B L1 cache line size, and µs clock
precision.

29

5. Framework

30

6
Single-Threaded Binomial Options

Pricing

As anticipated in Section 5.2, this is the first one of the seven chapters describing
the financial stream processing engine that have been developed in the context of
this Thesis.

In each of the Chapters 6 - 12, building on top of the previous chapter in Chapters
7 - 12, one iteration of the stream processing engine is covered introducing either
more functionality to the stream processing engine or making the existing function-
ality more efficient. To do so, each chapter has four main sections: a first section
to introduce the involved threads, a second one focusing on the structure of the
tuples, another one introducing the data-structures used, and a final one focusing
on the behavior of the operator. Every time new functionality is added, a detailed
pseudocode of the new operator or operators can be found in the section dedicated
to analyzing the behavior of the operators. Every time existing functionality is op-
timized, the section focusing on the behavior of the operators is extended analyzing
the theoretically expected performance improvements in terms of throughput and
latency.

In this chapter, the core functionality of the stream processing engine is intro-
duced: the options pricing operator in its single-threaded version. The introduction
of the behavior of the operator will be strongly based on the binomial options pricing
code introduced by Shuo Li [29], based on the classical paper by Cox et al. [8]. Nev-
ertheless, any operator implementing any of the models outlined in Section 4.1.1 can
be used for the options pricing purpose without having to modify neither the struc-
ture of the involved threads, nor the structure of the tuples, or the data-structures
used for synchronization purposes.

6.1 Involved Threads
As anticipated above, only one thread is dedicated to calculating option prices

in this first iteration of the financial stream processing engine. In addition to this
thread, as anticipated in Section 5.2, two threads are dedicated to retrieve tuples
from the input dataset and serve them to the process thread, and to get the tuples
output by the process thread and output them, in the case of the experiments, to
an output binary file.

31

6. Single-Threaded Binomial Options Pricing

Figure 6.1: Involved threads

Figure 6.1 outlines how threads are arranged in this first version of the financial
stream processing engine following the Directed Acyclic Graph (DAG) model intro-
duced in Chapter 3. Each of the boxes in the diagram represents one thread and
the arrows indicate the precedence of the threads in the stream processing engine:

• Input Thread (IT): the input thread, henceforth referred to as IT , is the
thread in charge of retrieving tuples from the input stream and serving them
to the process thread.

• Process Thread (PT): the process thread, henceforth referred to as PT , is
the thread which applies the binomial options pricing operator to the generate
option prices according to the financial information contained in the input
tuples.

• Output Thread (OT): the output thread, henceforth referred to as OT , is
the thread which reads the tuples output by the process thread and prints
them to an output file to enable further analysis of the performance of the
stream processing engine.

6.2 Structure of the Tuples
Input tuples are retrieved from the input financial stream introduced in Section

5.1.1 by IT and they are extended by each of the threads introduced in the previous
section introducing all the needed additional fields.

Figure 6.2: Structure of the tuples

Figure 6.2 extends the involved threads diagram introduced in Figure 6.1 specify-
ing the structure of the tuples in each transition from one thread to another as well
as the structure of the tuples read by IT , and the tuples output by OT .

Each tuple read by IT from the input financial stream, as described in Section
5.1.1, represents a trade transaction in which a given number of shares of a given
stock are traded at a given price per share, at a given instant of time. To model
this, the input financial tuples contain six fields, <ts, seq, s, sh, tv, tp>:

• Timestamp (ts): the timestamp field, henceforth referred to as ts, is the
value representing the physical timestamp when the transaction took place in
the monitored stock market. This fields is internally modeled as a long value
indicating the number of elapsed microseconds from the trade market opening

32

6. Single-Threaded Binomial Options Pricing

hour minus a given threshold to the instant of time when the transaction took
place. E.g. for NASDAQ trades, the number of elapsed microseconds from
09:25 a.m.
In the tuples used for the experiments documented in Chapter 13, this field is
retrieved from the bytes {0, .., 11} in the entries belonging to the Daily Trades
File introduced in Section 5.1.1, whose structure is documented in Chapter 5
in the financial dataset specification [36].

• Sequence number (seq): the sequence number field, henceforth referred
to as seq, is the value representing the unique sequence number assigned to
each tuple in the input financial stream and behaves as a logical timestamp
indicating the precedence order of the tuples in the stream. This field is
internally modeled as a long value, 0 being the sequence number assigned to
the first tuple in the stream, 1 being the sequence number associated to the
second tuple in the stream, and so on.
In the tuples used for the experiments documented in Chapter 13, this field is
assigned to each tuple by the input generator program introduced in Section
5.3.2.

• Symbol (s): the symbol field, henceforth referred to as s, is the value rep-
resenting the traded security symbol. E.g. AAPL for Apple Inc. or FOXA
for Twenty-First Century Fox Inc. shares traded in the NASDAQ stock mar-
ket. This field is internally modeled as an array with 16 ASCII char values,
the first 6 characters representing the symbol root and the last 10 characters
representing the symbol suffix.
In the tuples used for the experiments documented in Chapter 13, this field is
retrieved from the bytes {13, .., 28} in the entries belonging to the aforemen-
tioned Daily Trades File.

• Symbol hash (sh): the symbol hash field, henceforth referred to as sh, is
the value representing the unique hash value assigned to the traded security
symbol. This field is internally modeled as an int value.
In the tuples used for the experiments documented in Chapter 13, this hash
value is assigned to each tuple by the aforementioned input generator program
which makes sure to assign each distinct 16 characters symbol a unique hash
value in the range {0, ...,TOT_SYM−1}, TOT_SYM being the total number
of symbols in the input financial stream.

• Trade volume (tv): the trade volume field, henceforth referred to as tv, is
the value representing the total volume of shares traded in the trade that is
represented by the financial tuple. This field is internally modeled as a long
value accounting for the number of shares of the traded security symbol that
are traded in the transaction represented by the financial tuple.
In the tuples used for the experiments documented in Chapter 13, this field is
retrieved from the bytes {33, .., 41} in the entries belonging to the aforemen-
tioned Daily Trades File.

• Trade price (tp): the trade price field, henceforth referred to as tp, is the
value representing the price per share of the traded security symbol in the
trade that is represented by the financial tuple. This field is internally modeled
as a double value accounting for the price paid for each share.

33

6. Single-Threaded Binomial Options Pricing

In the tuples used for the experiments documented in Chapter 13, this field is
retrieved from the bytes {42, .., 52} in the entries belonging to the aforemen-
tioned Daily Trades File.

Before forwarding each tuple to PT , IT adds a process start physical timestamp
representing the instant of time in which the tuple starts being processed by the
stream processing engine. This action extends the tuples received by PT from six
to seven fields, <ts, seq, s, sh, tv, tp, sts>:

• Process start timestamp (sts): the process start timestamp field, hence-
forth referred to as sts, is the value representing the instant of time in which
each individual tuple started being processed by the stream processing engine.
This field is internally modeled as a long value accounting for the number of
elapsed microseconds from the epoch date of January 1, 1970.
This value will be used after the execution of the stream processing engine to
assess the latency in the processing of each individual tuple, hence minimizing
the impact of monitoring performance on the execution of the experiments.

The process thread, PT , also adds a field to the tuples it processes representing
the calculated option price for the given input tuple. This action extends the tuples
received by OT from seven to eight fields, <ts, seq, s, sh, tv, tp, sts, op>:

• Option price (op): the option price field, henceforth referred to as op, is
the value representing the option price assigned to each tuple by the options
pricing operator. This field is internally modeled as a double value accounting
for the price that should be paid for an option over one share of the underlying
stock.
Section 6.4 further elaborates on how this option price is calculated including
which input values are taken by the operator, where are they taken from and
how are they used to produce an option price.

Finally, before storing the output tuples in an output file, OT adds a process end
physical timestamp representing the instant of time in which the tuple finishes being
processed by the stream processing engine. This action extends the tuples stored
by OT from eight to nine fields, <ts, seq, s, sh, tv, tp, sts, op, ets>:

• Process end timestamp (ets): the process end timestamp field, henceforth
referred to as ets, is the value representing the instant of time in which each
individual tuple finished being processed by the stream processing engine.
This field is internally modeled as a long value accounting for the number of
elapsed microseconds from the epoch date of January 1, 1970.
This value, together with the aforementioned sts value, will be used after
the execution of the stream processing engine to assess the latency in the
processing of each individual tuple, hence minimizing the impact of monitoring
performance on the execution of the experiments.

34

6. Single-Threaded Binomial Options Pricing

6.3 Used Data-Structures
The DAG introduced in the previous sections can be seen as a pipeline in which

each thread represents one pipeline stage and the tuples processed by the financial
stream processor have to follow the path indicated by the DAG through the stream
processing engine. In order to achieve this, the different threads representing differ-
ent stages of this pipeline need to synchronize and communicate through concurrent
data-structures.

According to the structure of the DAG and the synchronization needs of the
different threads involved in all the calculations, different concurrent data-structures
are needed to guarantee the correct behavior of the stream processing engine.

Figure 6.3: Used data-structures

Figure 6.3 extends the structure of the tuples diagram introduced in Figure 6.2
specifying the data-structures used in each transition from one thread to another.
As it can be seen, each arrow in the DAG introduced in Figure 6.1 models one of
the data-structures in the data-structures diagram in Figure 6.3:

• IT to PT queue: IT and PT share one instance of a concurrent lock-free
queue from the NOBLE library [42, 43] introduced in Section 3.1. IT acts as
the only writer thread in this queue whereas PT acts as the only reader thread
in this queue. This way, tuples are processed by PT in the same order they
are served by IT and always after they have been assigned the sts timestamp
by IT .

• PT to OT queue: OT and PT also share one instance of a concurrent lock-
free queue. This way, tuples are assigned the ets timestamp and stored in the
output file in the same order as they are processed by PT (and transitively in
the same order as they are served by IT to the previous queue) and always
after they have been assigned the op value by PT .

6.4 Behavior of the Operators
As anticipated in the previous sections, what PT does is assigning each tuple an

option price value, op, based on the financial information contained in the tuple. To
do so, an options pricing operator is used. In the experiments performed in the scope
of the current thesis, the binomial options pricing operator introduced by Shuo Li
in [29], based on the classical paper by Cox et al. [8] is used. Section 6.4.1 below
elaborates on the formal description of this operator and Section 6.4.2 integrates
this operator in the data-structures diagram from Figure 6.3.

35

6. Single-Threaded Binomial Options Pricing

6.4.1 The Single-Threaded Binomial Options Pricing Oper-
ator

The binomial options pricing operator by Shuo Li [29] estimates the price of a
European call option over one share of the underlying asset. As anticipated in
Section 4.1.1, an European call option is a financial contract which gives the buyer
(the owner or holder) the right, but not the obligation, to buy an underlying asset
or instrument at a specified strike price on a specified date.

As it can be foreseen given its name, this options pricing operator belongs to
the family of binomial models based options pricing operators introduced in Section
4.1.1.2. It means that in order to estimate a fair price for an option contract, it
models the behavior of the underlying asset price in the interval of time between
the option contract creation and the expiration date building a binomial tree and it
uses this model to price the option contract.

The next lines elaborate on how this binomial tree model is built and how it is
used to price the option contract assuming a continuous risk-less interest rate return
on available secure assets such as bonds and the absence of arbitrage opportunities
in the market.

The main idea in the binomial tree model is to discretize time in steps and assume
two feasible events between one step and another: the underlying asset price can
either go up, multiplied by a constant u ≥ 1, or down, multiplied by a constant
d ≤ 1:

• Let St0 be the price of the underlying asset at time t0.
• Let t be the time interval covered by one discrete step.
• Let f be the payoff of the option.
• Let u and d, d ≤ u, be the aforementioned constants determining the two

possible price variations in the transition from time t0 to time t0 + t.
• Let fu and fd be the payoff of the option in the events of the asset price going

respectively up and down between t0 and t0 + t.
• Let p be the probability of the underlying asset price going up between t0 and
t0 + t.

• Let K be the strike price of the option contract, in other words, the price at
which the European call contract gives the buyer the right to buy shares of
the underlying asset at the expiration date.

With this notation, the two possible scenarios which can be reached from a sce-
nario at time t0 after t time units can be easily visualized as a Bernoulli distribution
tree model.

Figure 6.4: Reachable scenarios in one step in the underlying binomial tree model

36

6. Single-Threaded Binomial Options Pricing

Figure 6.4 summarizes the aforementioned two reachable scenarios with respect
to the underlying asset price per share, S, and the payoff of the option contract, f :

• In the event of the underlying asset price going up, the stock price at time t0+t
would naturally be St0u and the payoff of the option would be max[0, St0u−K].
In other words, the difference between the market price and the arranged strike
price lower bounded by 0 given the fact that the call contract gives the right,
but not the obligation, to buy shares of the underlying asset at the expiration
date.

• In the event of the underlying asset price going down, the stock price at time
t0 + t would naturally be St0d and following the same reasoning as in the
previous event, the payoff of the option would be max[0, St0d−K].

Assuming a continuous risk-less interest rate return on available secure assets such
as bonds and the absence of arbitrage opportunities in the market, every risk-less
portfolio, understanding as a risk-less portfolio, a portfolio built at time t0 whose
payoffs at time t0 + t are the same under both the scenarios described in Figure
6.4, should behave exactly the same way as a bond with the same price at time t0.
Otherwise, a trivial arbitrage opportunity would consist on a long (buy) position at
time t0 in the bond or risk-less portfolio with the highest payoff at time t0 + t and a
short (sell) position at time t0 with the same value as the long position in the bond
or risk-less portfolio with the lowest payoff at time t0 + t leading to the investment
of 0 monetary units at time t0 and the risk-less gain of the difference between the
fixed payoffs of the bond and the risk-less portfolio at time t0 + t, in other words,
an arbitrage opportunity.

The previous observation is relevant when the possibility of building a risk-less
portfolio based only on the option contract and the underlying asset is considered.
Let this risk-less portfolio be composed of:

• A long (buy) position in ∆ unit shares of the underlying asset.
• A short (sell) position in 1 unit of the call option.

A value for ∆ so that this portfolio behaves as a risk-less portfolio can be obtained
in the context of the one-step Bernoulli model introduced in Figure 6.4 by simply
analyzing the value or payoff of the portfolio at time t0 and at time t0 + t under the
two possible scenarios:

• The value of this portfolio at time t0 is St0∆− f .
• The value or payoff of this portfolio at time t0 + t under the scenario in which

the underlying asset price goes up with probability p is St0u∆− fu.
• The value or payoff of this portfolio at time t0 + t under the scenario in which

the underlying asset price goes down with probability 1− p is St0d∆− fd.

In order for this portfolio to satisfy the risk-less portfolio definition, it has to have
the same payoff at time t0 + t under both scenarios:

St0u∆− fu = St0d∆− fd (6.1)

37

6. Single-Threaded Binomial Options Pricing

Equation 6.1 can be trivially transformed to express ∆ as a function of u, d, fu,
fd, and S0:

St0u∆− fu = St0d∆− fd
St0u∆− St0d∆ = fu − fd
∆(St0u− St0d) = fu − fd

∆ = fu − fd
St0u− St0d

(6.2)

In order for the market to satisfy the absence of arbitrage assumption given the
observation above about the implications of this assumption on the behavior of risk-
less portfolios, the payoff at time t0 + t of this portfolio must be the same as that of
a risk-less bond whose value at time t0 were the same as the value of the portfolio
at time t0. This is, letting the assumed continuous risk-less interest rate be r:

St0∆− f = (St0u∆− fu)e−rt (6.3)

Substituting in Equation 6.3 the value of ∆ obtained in Equation 6.2 it is possible
to express the price of the option at time t0, f , as a function of u, d, fu, fd, r, and
t:

St0∆− f = (St0u∆− fu)e−rt

f = St0∆− (St0u∆− fu)e−rt

f = St0
fu − fd

St0u− St0d
−
(
St0u

fu − fd
St0u− St0d

− fu
)
e−rt

f = fu − fd
u− d

−
(
u
fu − fd
u− d

− fu
)
e−rt (6.4)

Another way to express the price of the option at time t0, f , based on the same
absence of arbitrage argument is expressing it as the expected payoff of the option
at time t0 + t, i.e. pfu + (1 − p)fd, discounted by the continuous risk-less interest
rate r. This leads to an expression of f as a function of p, fu, fd, r, and t:

f = (pfu + (1− p)fd)e−rt (6.5)

Refactoring Equation 6.4 towards Equation 6.5 enables the representation of the
probability of the stock price going up in one step, p, as a function of u, d, r and t:

38

6. Single-Threaded Binomial Options Pricing

f = fu − fd
u− d

−
(
u
fu − fd
u− d

− fu
)
e−rt

f = fu − fd − ufue−rt + ufde
−rt + ufue

−rt − dfue−rt

u− d

f = fu − fd + ufde
−rt − dfue−rt

u− d

f =
(
fue

rt − fdert + ufd − dfu
u− d

)
e−rt

f =
(
ert − d
u− d

fu + u− ert

u− d
fd

)
e−rt

p = ert − d
u− d

1− p = 1− ert − d
u− d

= u− ert

u− d
(6.6)

It is relevant to notice that this expression of p only makes sense if d ≤ ert ≤ u.
Otherwise, probability values out of the interval [0, 1] would be possible. However,
the assumption d ≤ ert ≤ u comes together with the absence of arbitrage assump-
tion:

• If ert < d, a trivial arbitrage opportunity would consist on a long (buy) position
at time t0 in the option and a short (sell) position at time t0 with the same
value as the long position in the bond leading to the investment of 0 monetary
units at time t0 and the gain, at time t0 +t, of the difference between the payoff
of the option and the payoff of the bond, the former being always bigger than
the latter.

• If ert > u, a trivial arbitrage opportunity would consist on a long (buy) position
at time t0 in the bond and a short (sell) position at time t0 with the same value
as the long position in the option leading to the investment of 0 monetary units
at time t0 and the gain, at time t0 + t, of the difference between the payoff of
the bond and the payoff of the option, the former being always bigger than
the latter.

Putting everything together, in the Bernoulli model introduced in Figure 6.4,
when a continuous risk-less interest rate return on available secure assets such as
bonds is assumed as well as the absence of arbitrage opportunities in the market,
the probability of the price of the underlying asset going up, p, can be expressed as
a function of the assumed risk-less interest rate, r, the time interval covered by one
discrete step in the model, t, and the constants controlling how much the price of
the underlying asset can go up, u, or down, d, from time t0 to time t0 + t as shown
in Equation 6.6.

The variable r can be well understood as an environmentally given constant that
needs to be provided to the model from an analysis of the market in which the
options are priced. The variable t is directly derived from the desired parameters
to price an option, i.e. the time from the option pricing instant to the expiration

39

6. Single-Threaded Binomial Options Pricing

date and the number of steps to model in the underlying binomial tree model. But
u and d still remain undefined by the analysis of one single step in the underlying
binomial tree. It is necessary to move forward from the one step Bernoulli model
introduced in Figure 6.4 to the full binomial tree model in order to determine which
values of u and d would be correct in order for the binomial options pricing operator
to produce reasonable option prices.

Figure 6.5: Extending the 1-step Bernoulli tree model to an n-steps recombinant
binomial tree model

Figure 6.5 extends the 1-step Bernoulli tree model introduced in Figure 6.4 to
a recombinant binomial tree model. In this extended model, each of the nodes
together with its two child nodes represent one instance of the Bernoulli tree model
introduced in Figure 6.4 and analyzed above. However, all of these groups of three
nodes are integrated in the binomial tree model in Figure 6.5 in a recombinant
manner. It means that given any node in the tree, the child node following the
stock price going down path from the child node following the stock price going up
path from the given node is the same node as the child node following the stock price
going up path from the child node following the stock price going down path from
the given node. This property establishes an upper bound on the number of nodes
per level which grows linearly with the number of levels instead of exponentially,
making it computationally feasible to model an orders of magnitude bigger number
of steps, and it introduces a new constraint on the values u and d. In order for
the recombinant behavior of the extended tree to be achieved, u and d must satisfy
Equation 6.7.

ud = 1 (6.7)

Equation 6.7 allows for the simplification of the equations in Figure 6.5 by sub-
stituting d by u−1.

40

6. Single-Threaded Binomial Options Pricing

Figure 6.6: n-steps recombinant binomial tree model with simplified equations

Figure 6.6 applies Equation 6.7 to simplify the equations shown in Figure 6.5
according to the requirement of the binomial tree to be recombinant.

In addition to the requirement on the values of u and d described in Equation
6.7, Cox et al. [8] proof that in order to converge to the classical Black-Scholes
options pricing formula [4] when the number of steps in the binomial tree tends to
∞, the values of u and d given the standard deviation, σ, of the underlying asset
price distribution as a measure of its volatility, must be the ones shown in Equation
6.8.

u = eσ
√
t d = e−σ

√
t (6.8)

With this, the variables u and d, are now defined as a function of the variable
t, which is directly derived from the desired parameters to price an option, i.e.
the time from the option pricing instant to the expiration date and the number of
steps to model in the underlying binomial tree model, and the variable σ, which,
as it happened before with r, can be well understood as an environmentally given
constant that needs to be provided to the model from an analysis of the market in
which the options are priced.

Putting everything together, the binomial options pricing operator introduced by
Shuo Li [29] builds the binomial tree model introduced in Figure 6.5 and then it
backtracks from the right most level in Figure 6.5 to the left most one discounting
the expected option payoff as described in Equation 6.5 obtaining this way, when
reaching the parent node in the tree, the fair option price. To do so, and as discussed
above, five financial input values are taken in addition to one algorithm-internal
parameter to define the granularity of the analysis:

• Underlying stock price (tp): the underlying stock price per share at the time
of pricing the option contract, henceforth referred to as tp, in accordance to
the notation introduced in Section 6.2. This value is provided to the operator
as a double value accounting for the price per share of the underlying stock.

41

6. Single-Threaded Binomial Options Pricing

• Option strike (os): the strike or price at which the European call option
contract gives the buyer the right to buy shares of the underlying asset at
the expiration date, henceforth referred to as os (option strike). This value is
provided to the operator as a double value accounting for the price the buyer
has the right, but not the obligation, to pay per share of the underlying asset
at the expiration date.

• Option time to maturity (om): the time from the option pricing instant to
the expiration date of the option contract, henceforth referred to as om (option
maturity). This value is provided to the operator as a double value accounting
for the number of years from the option pricing instant to the expiration date
of the priced option contract.

• Risk-less interest rate (rli): the guaranteed by the market risk-less interest
rate, henceforth referred to as rli (risk-less interest). This value is provided
to the operator as a double value accounting for the guaranteed continuous
risk-less interest rate.

• Volatility (v): the volatility of the underlying stock, henceforth referred to
as v (volatility). This value is provided to the operator as a double value
accounting for the observed volatility of the distribution of prices of the un-
derlying asset.

• Number of steps (N): the number of steps to be modeled, henceforth re-
ferred to as N (number of steps). This parameter determines how many levels
the underlying binomial tree model explained above will have. On the one
hand, the bigger N is, the finer grained and consequently accurate the assess-
ment of the fair option price will be. On the other hand, the smaller N is, the
cheaper in terms of memory and time the computations performed by the op-
erator will be. Shuo Li [29] recommends modeling 2048 levels for a reasonable
tradeoff between granularity and computational cost.

The notation introduced above together with the analysis of the underlying bi-
nomial tree model allows for the formal description of a single-threaded version of
the binomial options pricing operator introduced by Shuo Li [29]. However, and in
order to properly understand the pseudocode describing the operator, it is worth
making two observations. The first one involves how many nodes of the tree need
to be maintained in memory at a time and the second one suggests how the stage
of building the binomial tree can be dramatically optimized by directly building the
last level of the tree.

Regarding how many nodes of the tree needs to be maintained at a time, it is worth
noticing that in order to backtrack in the tree applying Equation 6.5 to calculate
the payoff of the option at a parent node given the payoffs of the options at both
children nodes until the three parent node is reached, only up to two levels of the
tree need to be maintained at a time. What is more, in this operation both levels
can be simultaneously maintained in the same array if the child node following the
stock price going down from the parent node is assigned to the same index as the
parent node and the child node following the stock price going up from the parent
node is assigned to the next index.

42

6. Single-Threaded Binomial Options Pricing

Regarding how the stage of building the binomial tree can be dramatically op-
timized by directly building the last level of the tree, it is worth reviewing the
equations in the last level of Figure 6.6. These equations display a closed formula
for the expected option payoff at each node in the right most level of the tree in
the context of the binomial model which enables the operator to directly model this
final level of the tree without having to iterate through the tree from left to right
according to Figure 6.6. This last observation concludes also the previous one as it
bounds to one the number of levels to be simultaneously maintained in memory dur-
ing the tree model construction stage letting the two levels upper bound discussed
before be the upper bound of levels to be maintained in memory at a time.

Listing 6.1: Binomial options pricing operator pseudocode
1 N = 2048 // The number o f s t e p s to be modeled
2 pr iceOpt ion (tp , os , om, r l i , v)
3 // S t a t i c array modeling the a l gor i thm view o f
4 // at most two l e v e l s o f the t r e e at a time
5 c a l l [N + 1]
6 // Pre−c a l c u l a t e cons tan t s
7 t = om / N
8 v_sqrt_t = v ∗ s q r t (t)
9 r l i_ t = r l i ∗ t
10 incr_f = exp (r l i_ t)
11 d i sc_f = exp(− r l i_ t)
12 u = exp (v_sqrt_t)
13 d = exp(−v_sqrt_t)
14 pu = (incr_f − d) / (u − d)
15 pd = 1 − pu
16 pu_disc_f = pu ∗ di sc_f
17 pd_disc_f = pd ∗ di sc_f
18 // D i r e c t l y b u i l d the l a s t l e v e l o f the b inomia l t r e e
19 for (i = 0 to N)
20 payo f f = tp ∗ exp (v_sqrt_t ∗ (2 ∗ i − N)) − os
21 c a l l [i] = payo f f > 0 ? payo f f : 0
22 // Backtrack from the l a s t to the f i r s t l e v e l
23 for (i = N − 1 to 0)
24 for (j = 0 to i)
25 c a l l [j] = pu_disc_f ∗ c a l l [j + 1]
26 + pd_disc_f ∗ c a l l [j]
27 return c a l l [0]

Listing 6.1 formally introduces the pseudocode of the single-threaded version of
the binomial options pricing algorithm introduced by Shuo Li [29]. In line 5 the size
of the array to maintain up to two levels of the binomial tree at a time is set to be
1 plus the number of steps to be modeled, N , which is the number of nodes the last
level of the binomial tree has. Lines 7-17 pre-calculate the constants analyzed above
which are needed to build the last level of the tree and backtrack from that level.

43

6. Single-Threaded Binomial Options Pricing

The loop in lines 19-21 corresponds to the first stage of the operator in which the
last level of the binomial tree is modeled directly storing in each position of the array
the payoff off the option at that node in the last level according to the equations in
Figure 6.6. Finally, the loops in lines 23-26 correspond to the second and final stage
of the operator backtracking from the last level to the first level applying Equation
6.5 to traverse from each pair of child nodes to their parent node obtaining this way
for the parent node in the first level a fair estimation of the option price. This value
is the one returned in line 27.

Before concluding this section, it is worth analyzing the complexity of this operator
in terms of time and memory. As it can easily be seen after a brief analysis of the
pseudocode introduced in Listing 6.1, the only parameter affecting the cost of the
operator in time and memory is N . In terms of time:

• Lines 7-17 calculate constants at a cost independent of the value of N . The
cost of these operations is O(1).

• Lines 19-21 iterate a single loop from 0 to N . The cost of these operations is
O(N).

• Lines 23-24 iterate two nested loops: the outer one from N −1 down to 0, and
the inner one from 0 to the number of nodes in the right most level present
in the tree at that iteration of the outer loop. The cost of these operations is
O(N2).

Overall, the cost of the operator in terms of time is the one expressed in Equation
6.9.

O(N2) (6.9)

The cost in terms of memory is even easier to assess:
• The input variables (tp, os, om, rli, and v) plus the constant N itself occupy

a fixed amount of memory independent of the value of N . The space occupied
by these variables in memory is O(1).

• The call array introduced in line 5 has the size N + 1. The space occupied
by this variable in memory is naturally O(N).

• The temporary variables used by the algorithm which are initialized in lines
7-17 and line 20 occupy a fixed amount of memory independent of the value
of N . The space occupied by these variables in memory is O(1).

Overall, the cost of the operator in terms of memory is the one expressed in
Equation 6.10.

O(N) (6.10)

44

6. Single-Threaded Binomial Options Pricing

6.4.2 Integrating the Single-Threaded Binomial Options Pric-
ing Operator

Getting back to the stream processing engine diagram from Section 6.3, it is worth
noticing that out of the six values that the binomial options pricing operator uses
as an input, namely the stock price (tp), option strike (os), option time to maturity
(om), risk-less interest rate (rli), volatility (v) and number of steps (N), only one,
tp, can be retrieved by PT from the tuples served by IT to the queue these two
threads share as described in Section 6.3. In this first stage of the financial stream
processing engine, the rest of the values are simply taken as constants:

• Stock price (tp): this value is taken from the tuples served by IT .
• Option strike (os): this value is taken in this stage of the financial options

pricing stream processing engine as a constant, internally modeled as a double
constant whose default value is 75.

• Option time to maturity (om): this value is taken in this stage of the
financial options pricing stream processing engine as a constant, internally
modeled as a double constant whose default value is 3.

• Risk-less interest rate (rli): this value is taken in this stage of the financial
options pricing stream processing engine as a constant, internally modeled as
a double constant whose default value is 0.06.

• Volatility (v): this value is taken in this stage of the financial options pric-
ing stream processing engine as a constant, internally modeled as a double
constant whose default value is 0.1.

• Number of steps (N): this value is taken in this stage of the financial options
pricing stream processing engine as a constant, internally modeled as an int
constant whose default value is 2048 according to [29].

Figure 6.7: Operators and used constants

Figure 6.7 extends the data-structures diagram introduced in Figure 6.3 to rep-
resent the aforementioned constant values between square brackets close to the box
representing the thread, PT , which executes the single-threaded binomial options
pricing operator.

As it can be well understood, there is plenty of room for improvement starting
from this first iteration of the financial stream processing engine. On the one hand,
the binomial options pricing stage of the stream processing engine seen as a pipeline
can be optimized. On the other hand, the constants os, om, rli and v need to be
provided in a more useful way in order to let the stream processing engine price any
option with any settings instead of just options with always the same fixed settings.
The next iterations of the stream processing engine introduced in the next chapters

45

6. Single-Threaded Binomial Options Pricing

will improve the current binomial options pricing stream processing engine in both
directions.

46

7
Batching Based Multi-Threaded

Binomial Options Pricing

In the previous chapter, the core functionality of the stream processing engine,
namely the options pricing operator in its single-threaded version, was introduced.
As it could be seen in Equation 6.9 introduced in Section 6.4, the cost of the options
pricing operation in terms of execution time grows quadratically with respect to
the number of steps modeled in the underlying binomial tree. Given that a higher
number of steps leads to a finer grained analysis resulting in a more accurate option
price [8], this operator would become a scalability bottleneck in an options pricing
stream processing engine if it is used in its single-threaded version as introduced in
Chapter 6. For this reason, it is reasonable to approach the problem of parallelizing
this operator. This chapter and the next two ones, Chapter 8, and Chapter 9, focus
on this problem evolving the design introduced in the previous chapter.

The approach followed in this chapter to parallelize the single-threaded binomial
options pricing operator is strongly inspired by the paper by Shuo Li [29]. In this
paper, two approaches are followed to parallelize the operator making use of the
OpenMP framework [37] introduced in Section 2.1.2. On the one hand, a pool
of OpenMP threads process in parallel a set of different option contracts profiting
from the fact that different option contracts are independent one to another. On
the other hand, the vector processing capabilities of the Xeon Phi Coprocessor [40]
are exploited by letting OpenMP unroll the loop in lines 24-26 in Listing 6.1 and
processing both the loop in lines 19-21 and the aforementioned loop in lines 24-26
following the Single Instruction Multiple Data (SIMD) paradigm. Even though the
second approach achieves both an increase in throughput and a decrease in latency
by reducing the amount of time needed to process each specific option contract,
given its high dependability on the specific hardware platform, only the first one,
which would improve the stream processing engine throughput but not its latency,
is followed in this chapter.

The following sections elaborate on how the PT thread introduced in Section 6.1
can be replaced by a batching helper thread and a set of OpenMP threads in order to
price sets of option contracts in parallel ensuring that processed tuples are delivered
to OT in the same order as the corresponding input tuples are served by IT .

47

7. Batching Based Multi-Threaded Binomial Options Pricing

7.1 Involved Threads

As anticipated above, the thread dedicated in the previous chapter to calculating
option prices is replaced in this second iteration of the financial stream processing
engine by a batching helper thread and a set of OpenMP threads. The two threads
dedicated to retrieve tuples from the input dataset and serve them to the process
threads, and to get the tuples output, in this case, by the batching helper thread,
and output them, remain in this second iteration exactly as they were introduced
in the first one.

Figure 7.1: Involved threads

Figure 7.1 outlines how threads are arranged in this second version of the financial
stream processing engine. As it can be seen, IT and OT remain as they were
introduced in Section 6.1 while PT has been replaced by BPT and the PT OpenMP
threads:

• Batching Process Thread (BPT): the batching process thread, henceforth
referred to as BPT , is the thread which substitutes the former PT thread in
the pipeline. This new thread will arrange in batches the tuples received from
IT and it will serve the tuples to OT in the same order as they were served
by IT every time a batch is processed.

• Parallel (OpenMP) Process Threads (PT): the parallel OpenMP process
threads, henceforth referred to as PT , are the OpenMP threads which apply
the binomial options pricing operator to the generate option prices according
to the financial information contained in the input tuples the same way as the
former PT thread did.

7.2 Structure of the Tuples

As introduced in Section 6.2, input tuples are retrieved from the input financial
stream introduced in Section 5.1.1 by IT and they are extended by each of the
threads introduced in the previous section introducing all the needed additional
fields.

48

7. Batching Based Multi-Threaded Binomial Options Pricing

Figure 7.2: Structure of the tuples

Figure 7.2 extends the involved threads diagram introduced in Figure 7.1 specify-
ing the structure of the tuples in each transition from one thread to another as well
as the structure of the tuples read by IT , and the tuples output by OT .

As it can be seen, the structure of the tuples retrieved by IT , the tuples transferred
from IT to BPT , the tuples served by BPT to OT , and the tuples output by
OT is exactly the same as the structure of the tuples retrieved by IT , the tuples
transferred from IT to PT , the tuples served by PT to OT , and the tuples output
by OT in Figure 6.2. The tuples facilitated to the PT threads by BPT have the
same structure, <ts, seq, s, sh, tv, tp, sts>, as the tuples retrieved by BPT from
IT and it is each PT thread who adds the op field introduced in Section 6.2 to
the tuples received from BPT before serving them back to BPT with the extended
structure <ts, seq, s, sh, tv, tp, sts, op>.

7.3 Used Data-Structures
As introduced in Section 6.3, the DAG introduced in the previous sections, com-

posed by the threads IT , BPT , and OT , can be seen as a pipeline in which each
thread represents one pipeline stage and the tuples processed by the financial stream
processor have to follow the path indicated by the DAG through the stream process-
ing engine. In addition to this, the tuples processed by BPT need to be provided
to the PT threads in batches and collected back by BPT once an option price is
assigned to each tuple before serving them to OT . In order to achieve all of this,
the IT , BPT , and OT threads synchronize and communicate through concurrent
data-structures as in Section 6.3 and the BPT and the PT threads communicate
through shared memory and synchronize using OpenMP.

Figure 7.3: Used data-structures

49

7. Batching Based Multi-Threaded Binomial Options Pricing

Figure 7.3 extends the structure of the tuples diagram introduced in Figure 7.2
specifying the data-structures used in each transition from one thread to another.
As anticipated above, IT and BPT , and BPT and OT communicate through con-
current lock-free queues as IT and PT , and PT and OT did in Section 6.3. The
new data-structure introduced in this section is the one used for the communications
and synchronization between BPT and the PT OpenMP threads:

• BPT to PT threads and PT threads to BPT shared array: BPT and
the PT OpenMP threads communicate through a shared array of tuples. BPT
iteratively adds tuples to the shared array until it is full. When the array is
full, BPT temporarily stops reading tuples from the queue it shares with IT
and lets OpenMP launch the PT OpenMP threads, each of which process one
or more tuples in the array. Once each tuple in the shared array has been
processed and assigned an option price by one and only one PT thread, BPT
serves the processed tuples from the array to the queue it shares with OT .
After this, the shared array is empty again and BPT can start reading tuples
again from the queue shared with IT and adding them to the shared array.

7.4 Behavior of the Operators
As anticipated in the previous sections, the PT OpenMP threads assign each

tuple an option price value, op, based on the financial information contained in the
tuple, the same way as the former PT thread did in the previous chapter. It is the
BPT thread the one responsible for arranging the tuples in batches so that they
can be processed in parallel by the PT threads, and serving them the OT thread
once they have been processed by the PT threads in the same order as they were
provided by IT . Section 7.4.1 below elaborates on the formal description of this
batching mechanism and Section 7.4.2 integrates it in the data-structures diagram
from Figure 7.3.

7.4.1 The Batching Based Multi-Threaded Binomial Op-
tions Pricing Operator

The BPT thread can be understood as a centralized scheduler of PT threads.
While the former PT thread simply kept retrieving tuples from the input queue,
individually processing each of them using the operator whose pseudocode was in-
troduced in Listing 6.1 in Section 6.4.1, and adding them to the output queue, the
BPT thread batches the tuples retrieved from the input queue, let the PT OpenMP
threads process them in parallel, and serves them to the output queue afterwards.

Given that the operator executed by the PT OpenMP threads is exactly the same
as the one introduced in Section 6.4.1, and that the behavior of the BPT thread in
this section is the key addition to the stream processing engine with respect to the
previous iteration, this section focuses on how BPT interacts with the input queue,
which is the one it shares with IT , the array it uses to communicate with the PT
OpenMP threads, and the output queue, which is the one it shares with OT .

50

7. Batching Based Multi-Threaded Binomial Options Pricing

Listing 7.1: Batching-based multi-threaded binomial options pricing operator
pseudocode

1 BS // Batch s i z e
2 BATCH[BS] // Shared array o f t u p l e s wi th s i z e BS
3
4 proces sTuples (inQueue , outQueue)
5 currPos = 0
6 while (TRUE)
7 BATCH[currPos] = inQueue . deq ()
8 currPos = currPos + 1
9 i f (currPos == BS) // Batch f u l l and ready
10 processBatch ()
11 for (i = 0 to BS − 1)
12 outQueue . enq (BATCH[i])
13 currPos = 0
14
15 processBatch ()
16 #pragma omp p a r a l l e l for
17 for (i = 0 to BS − 1)
18 BATCH[i] . op = pr iceOpt ion (BATCH[i] . tp , os , om, r l i , v)

Listing 7.1 formally introduces the pseudocode describing the behavior of theBPT
and PT OpenMP threads. Two main procedures are introduced in this listing. The
processTuples procedure in lines 4-13 is the task executed by the BPT thread
and the processBatch procedure in lines 15-18 lets the BPT thread offload the
calculation of the option prices to the PT OpenMP threads. In addition to this,
the shared array described in Section 7.3 is initialized in lines 1-2 and visible inside
both the aforementioned procedures.

The infinite loop in lines 6-13 determines how the BPT thread processes each
tuple it retrieves from the input queue, inQueue. In line 7, each retrieved tuple is
stored in the current position of the shared BATCH array. The current position being
0 for the first iteration, as initialized in line 5, and the position after the previous
one for the next iterations in which the retrieved tuples belong to the same batch,
as updated in line 8. Line 9 checks if the batch of tuples is full after the addition of
the tuple retrieved in line 7. In case the batch is full, the processBatch procedure
is called in line 10 to let the PT OpenMP threads process all the tuples in the batch
assigning them an option price, and the loop in lines 11-12 is executed afterwards
to enqueue the tuples in the output queue, outQueue, in the same order as they
were retrieved from the input queue, inQueue. Done so, the position in the batch
is updated again to 0 in line 13, as it was done in line 5 for the very first iteration
of the loop in lines 6-13, letting the BPT thread start filling the shared array from
the beginning in the next execution of the loop, or in other words, start gathering
together the next batch of tuples.

51

7. Batching Based Multi-Threaded Binomial Options Pricing

The for loop in lines 17-18 is parallelized using OpenMP with the directive shown
in line 16. This automatically lets the OpenMP framework partition the set of BS
iterations of the loop and assign each of the parallel PT OpenMP threads one subset
of the iterations so that the PT OpenMP threads process the loop in parallel, each
iteration being executed by one and only one PT OpenMP thread. The body of this
loop, which contains the code executed for each iteration by the corresponding PT
OpenMP thread, consists on line 18, in which the priceOption procedure introduced
in Listing 6.1 in Section 6.4.1 is executed to add the corresponding tuple the op
field, representing the option price assigned to the corresponding tuple based on its
financial information. To do so, in this iteration of the stream processing engine,
only the trade price, tp, is retrieved from the tuple, whereas the option strike, os,
the option maturity, om, the risk-less interest rate, rli, and the volatility, v, are
provided as fixed constants with the same values for all the tuples, as it was done
in the previous iteration.

Before concluding this section, it is worth analyzing the complexity of this operator
in terms of time and memory. As it can easily be seen after a brief analysis of the
pseudocode introduced in Listing 7.1, the main parameters affecting the cost of the
operator in time and memory, apart from N as in the previous chapter, are the
batch size, BS, and the number of PT OpenMP threads, henceforth n. In terms of
time:

• Lines 8-9 represent an O(1) time overhead for each individual tuple in terms
of scheduling.

• Line 7 and line 12 are executed once for each tuple as they were already
executed by PT in the previous chapter.

• Finally line 18 is executed once for each tuple as it was done also by PT .

In this sense the execution time overhead in terms of scheduling is the one ex-
pressed in Equation 7.1.

O(1) (7.1)

Nevertheless, given the semantics of the algorithm, it is worth noticing that:
• Each tuple in each batch needs to wait before being delivered to OT until the

full batch of tuples is ready, which represents an average O(BS) overhead per
tuple.

• Each tuple in each batch also needs to wait until all the tuples in the batch
have been processed. A fast analysis of loop 17-18 taking line 16 into account
shows that the average overhead of this per tuple is O(N2) · O(BS/n). The
O(N2) contribution coming from the time complexity analysis performed in
Section 6.4.1, the O(BS/n) contribution coming from the BS iterations of the
loop in lines 17-18, parallelized among n threads.

With these two observations, the time that each tuple needs to wait from the
moment it is retrieved by BPT from the input queue until the moment it is enqueued
by BPT to the output queue is expressed in Equation 7.2.

52

7. Batching Based Multi-Threaded Binomial Options Pricing

L(n) = O(BS) +O(N2) ·O(BS/n) (7.2)

Taking into account that given the discussion above, each option is priced by
one and only one PT OpenMP thread, the time each tuple needs to wait from the
moment it is retrieved by BPT from the input queue until the moment it is enqueued
by BPT to the output queue is minimized when Equation 7.3 holds.

BS = n (7.3)

If this condition holds, Equation 7.2, which represents the expected latency for
each individual tuple in the system can be simplified to Equation 7.4.

L(n) = O(n) +O(N2) ·O(1) = O(n) +O(N2) (7.4)

Given that the latency for each individual tuple in the first iteration of the stream
processing engine is O(N2) as expressed in Equation 6.9. The overall overhead in
terms of latency for each tuple in this iteration of the stream processing engine is
the one expressed in Equation 7.5.

O(n) (7.5)

In compensation for this overhead, the impact on throughput of this approach is
straight forward. Given that the PT OpenMP threads share the load of the loop in
lines 17-18 distributing iterations among the n threads, and that the synchronization
overhead per tuple, as introduced in Equation 7.1, is negligible compared to the
single-threaded operator overhead (O(1) << O(N2)), the throughput of the stream
processing engine presented in this iteration is expected to grow linearly with the
number of threads as expressed in Equation 7.6

T (n) = n · T (1) (7.6)

With this, the expected latency and throughput of this iteration of the stream
processing engine can be plotted as a function of the number of PT OpenMP threads
used.

53

7. Batching Based Multi-Threaded Binomial Options Pricing

Figure 7.4: Latency and throughput as a function of the number of PT OpenMP
threads

Figure 7.4 plots the expected latency and throughput of this iteration of the stream
processing engine. It is worth noticing that the positive impact of parallelization in
terms of throughput is stronger than its negative impact in latency. This is due to
the high overhead of calculating each individual option price compared to the small
overhead of scheduling which has been analyzed above.

The overhead in terms of memory is even easier to assess:
• The shared BATCH array initialized in line 2 with size BS tuples, or directly
n if Equation 7.3 holds, plus the BS constant itself occupy in memory O(BS)
space, or directly O(n) if Equation 7.3 holds.

• The temporary variables used by the algorithm which are initialized in lines
5 (currPos), 11 (i in processTuples), and 17 (i in processBatch) occupy a
fixed amount of memory independent of the values of N , BS or n. The space
occupied by these variables in memory is O(1) per PT OpenMP thread, O(n)
at the global stream processing engine level.

Overall, the overhead of the batching-based multi-threaded version of the operator
in terms of memory when Equation 7.3 holds is the one expressed in Equation 7.7.

O(n) (7.7)

Adding the overhead above to the cost in terms of memory of the single-threaded
volatility operator introduced in Equation 6.10 in Section 6.4.1, the total cost in
terms of memory of the batching-based multi-threaded version of the options pric-
ing operator in terms of memory when Equation 7.3 holds is the one expressed in
Equation 7.8.

O(n) ·O(N) +O(n) (7.8)

54

7. Batching Based Multi-Threaded Binomial Options Pricing

7.4.2 Integrating the Batching Based Multi-Threaded Bi-
nomial Options Pricing Operator

Getting back to the stream processing engine diagram from Section 7.3, it is worth
noticing that, as anticipated in Section 7.4.1 and the same way as in the previous
iteration of the stream processing engine, out of the six values that the binomial
options pricing operator uses as an input, namely the stock price (tp), option strike
(os), option time to maturity (om), risk-less interest rate (rli), volatility (v) and
number of steps (N), only one, tp, can be retrieved by BPT from the tuples served
by IT to the queue these two threads share as described in Section 7.3. In this
second iteration of the financial stream processing engine, the rest of the values are
simply taken as constants with the default values introduced in Section 6.4.2.

Figure 7.5: Operators and used constants

Figure 7.5 extends the data-structures diagram introduced in Figure 7.3 to repre-
sent the aforementioned constant values between square brackets close to the boxes
representing the PT OpenMP threads, each of which executes the single-threaded
binomial options pricing operator introduced in the previous chapter.

Overall, this second iteration of the stream processing engine responds to the
first line of improvement outlined in the last paragraph in Section 6.4.2 concluding
Chapter 6.

55

7. Batching Based Multi-Threaded Binomial Options Pricing

56

8
Queue-ScaleGate-Based

Multi-Threaded Binomial Options
Pricing

In the previous chapter, a batching based approach to the options pricing opera-
tor parallelization problem was introduced and integrated in the stream processing
engine. This approach involved synchronizing a centralized batching helper thread,
BPT , and a pool of OpenMP option pricing threads, the PT OpenMP threads. As a
result, the expected throughput linearly increased with the number of PT OpenMP
threads at the cost of a small overhead in the expected latency due to the fact that
tuples needed to wait for all the tuples belonging to their same batch to be retrieved
by BPT before starting being processed.

In this chapter, an alternative approach allowing tuples to start being processed
as soon as they are retrieved from the input queue populated by the input thread is
introduced. It involves letting multiple option pricing threads competitively retrieve
tuples from the input queue and using the ScaleGate [21] data-structure introduced
in Section 3.2 to let these threads collaboratively re-order the tuples in the same
order as they were added to the input queue by the input thread. This new ap-
proach also distributes the synchronization effort to which the BPT thread in the
previous approach was entirely dedicated, avoiding the risk of letting the centralized
scheduling thread eventually become a scalability bottleneck.

The following sections elaborate on how the PT thread introduced in Section 6.1
and the queue it enqueued tuples to can be replaced by a set of parallel PT threads
and a concurrent ScaleGate data-structure in order to price sets of option contracts
in parallel ensuring that processed tuples are delivered to OT in the same order as
the corresponding input tuples are served by IT .

8.1 Involved Threads
As anticipated above, the thread dedicated in the previous chapter to batching

the tuples and synchronizing the pool of parallel OpenMP threads is replaced in
this third iteration by a set of parallel options pricing threads which do not need a
synchronization thread as in the previous approach because all the option pricing
threads will implicitly synchronize by using the concurrent queue and ScaleGate.

57

8. Queue-ScaleGate-Based Multi-Threaded Binomial Options Pricing

The two threads dedicated to retrieve tuples from the input dataset and serve them
to the process threads, and to get the tuples output, in this case, by the parallel
option pricing threads, and output them, remain in this third iteration exactly as
they were introduced in the first one.

Figure 8.1: Involved threads

Figure 8.1 outlines how threads are arranged in this third version of the financial
stream processing engine. As it can be seen, IT and OT remain as they were
introduced in Section 6.1 while the BPT thread and the pool of PT OpenMP
threads introduced in Section 7.1 have been replaced by a set of parallel option
pricing threads. Given that the internal behavior of these options pricing threads is
basically the same as in the first iteration, they have been assigned the same name
in this chapter as the former PT thread introduced in Section 6.1 in Chapter 6.

8.2 Structure of the Tuples
As introduced in Section 6.2, input tuples are retrieved from the input financial

stream introduced in Section 5.1.1 by IT and they are extended by each of the
threads introduced in the previous section introducing all the needed additional
fields.

Figure 8.2: Structure of the tuples

Figure 8.2 extends the involved threads diagram introduced in Figure 8.1 specify-
ing the structure of the tuples in each transition from one thread to another as well
as the structure of the tuples read by IT , and the tuples output by OT .
As it can be seen, the structure of the tuples retrieved by IT , the tuples transferred
from IT to the parallel PT threads, the tuples served by the parallel PT threads to
OT , and the tuples output by OT is exactly the same as the structure of the tuples
retrieved by IT , the tuples transferred from IT to the former PT thread, the tuples
served by the former PT thread to OT , and the tuples output by OT in Figure 6.2.

8.3 Used Data-Structures
The key difference between this third iteration of the financial stream processing

engine and the two first iterations discussed in Chapters 6 and 7 is that the options

58

8. Queue-ScaleGate-Based Multi-Threaded Binomial Options Pricing

pricing stage of the DAG is parallelized temporarily subdividing the single physical
stream of financial tuples which flowed from IT to OT into a set of physical streams
of financial tuples, one for each PT thread, all of them belonging to the same logical
stream and naturally having all the tuples in each physical stream traversing the
PT threads in ascending timestamp order.

On the one hand, subdividing the single physical stream of tuples produced by
IT is straight forward given the semantics of the concurrent queue. Having IT
enqueuing tuples in ascending timestamp order and letting the set of PT threads
competitively retrieve tuples from the queue results in a partition of the physical
stream produced by IT into the set of physical streams traversing each PT thread,
each tuple output by IT belonging to one and only one of these streams and having
all the tuples in each stream traversing the corresponding PT thread in ascending
timestamp order.

On the other hand, recombining the set of physical streams of tuples traversing
each PT thread is not as straight forward as the aforementioned task. If a queue
was used for this purpose, the resulting output stream would not be guaranteed to
have all the tuples in the same order as they were served by IT , preventing the
stream processing engine from meeting the linearizability requirement. Fortunately,
the ScaleGate concurrent data-structure, as anticipated in Section 3.2, solves this
problem by letting the concurrent writers insert tuples in the proper order and
allowing readers to consume tuples only once they are ready to be consumed ensuring
that the resulting output stream is ordered in ascending timestamp order the same
way as the stream produced by IT was.

Figure 8.3: Used data-structures

Figure 8.3 extends the structure of the tuples diagram introduced in Figure 8.2
specifying the data-structures used in each transition from one thread to another:

• IT to the PT threads queue: As reasoned above, IT and the parallel PT
threads keep sharing a concurrent lock-free queue from the NOBLE library
[42, 43] introduced in Section 3.1. This time, IT acts as the only writer thread
in this queue as it did in the two previous iterations, and the PT threads act
as a set of multiple readers in this queue. This way, as anticipated above,
tuples are processed by one and only one PT thread in the same order they
are served by IT and always after they have been assigned the sts timestamp
by IT .

• PT threads to OT ScaleGate: As anticipated above, the PT threads and
OT share an instance of ScaleGate in which the PT threads act as a set of

59

8. Queue-ScaleGate-Based Multi-Threaded Binomial Options Pricing

multiple writers and OT acts as a single reader. This way, the set of physical
streams of tuples traversing the PT threads is recombined again into a single
physical stream letting OT assign the tuples the ets timestamp and serve them
in the same order as IT enqueued them in the queue above only after they
have been added the op field by the corresponding PT thread.

8.4 Behavior of the Operators
As discussed in the previous sections, the binomial options pricing operator is

parallelized in this third iteration of the financial stream processing engine by letting
a set of parallel PT threads price options in parallel synchronizing by concurrently
dequeuing tuples from the queue to which IT enqueues input tuples and adding them
once they are processed to the ScaleGate instance they share with OT . Section
8.4.1 below elaborates on the formal description of the parallel PT threads and
Section 8.4.2 concludes the presentation of this third iteration of the financial stream
processing engine by extending the data-structures diagram introduced in Figure 8.3
to take into account the constant values that are provided to the binomial options
pricing operator by the PT threads.

8.4.1 The Queue-ScaleGate-Based Multi-Threaded Binomial
Options Pricing Operator

Similarly as the former PT thread from the first iteration of the stream processing
engine simply kept retrieving tuples from the input queue, individually processing
each of them using the operator whose pseudocode was introduced in Listing 6.1 in
Section 6.4.1, and adding them to the output queue, each of the new PT threads
keeps retrieving tuples from the input queue, processing them using the aforemen-
tioned operator, and adding them, this time, to the output ScaleGate instance.

Given that the operator executed by the PT threads is exactly the same as the
one introduced in Section 6.4.1, and that the usage of the queue and ScaleGate
data-structures is the key addition to the stream processing engine with respect to
the first iteration, this section focuses on how the PT threads interact with the
input queue which they share with IT , and the output ScaleGate instance which
they share with OT .

Listing 8.1: Queue-ScaleGate-based multi-threaded binomial options pricing op-
erator pseudocode

1 ID // Thread l o c a l PT thread id
2 proces sTuples (inQueue , outScaleGate)
3 while (TRUE)
4 tup l e = inQueue . deq ()
5 tup l e . op = pr iceOpt ion (tup l e . tp , os , om, r l i , v)
6 outScaleGate . addTuple (tup l e . seq , tuple , ID)

60

8. Queue-ScaleGate-Based Multi-Threaded Binomial Options Pricing

Listing 8.1 formally introduces the pseudocode describing the behavior of the
parallel PT threads, each of which directly executes the processTuples procedure in
lines 2-6. In addition to this, a unique identifier, ID, is assigned to each individual PT
thread, as expressed in line 1, to allow them properly synchronize when concurrently
adding tuples to the ScaleGate data-structure, outScaleGate.

The infinite loop in lines 3-6 determines how the PT threads process each tuple
they retrieve from the input queue, inQueue. In line 4, a tuple is retrieved from the
input queue, inQueue. It is important to take into account that given the semantics
of the queue, as discussed before, only the thread which dequeued that tuple is able
to process it. Other threads will dequeue other tuples but not the one dequeued
by this thread. In line 5, the priceOption procedure introduced in Listing 6.1 in
Section 6.3 is executed to add the corresponding tuple the op field, representing the
option price assigned to the corresponding tuple based on its financial information.
To do so, in this iteration of the stream processing engine, as in the two previous
ones, only the trade price, tp, is retrieved from the tuple. The os, om, rli, and v
values are provided as fixed constants with the same values for all the tuples. Finally
in line 6, the tuple which was added the op field in the previous line is added to
the output ScaleGate instance so that OT can retrieve it once it becomes a ready
tuple.

Before concluding this section, it is worth analyzing the complexity of this operator
in terms of time and memory. As it can be understood after a brief analysis of the
pseudocode introduced in Listing 8.1, the main parameter affecting the cost of the
operator in time and memory, apart from N as in Chapter 6, is the number of
parallel PT threads, henceforth n.

In terms of execution time there is not an explicit batching overhead as there was
in the previous iteration, as carefully analyzed in Section 7.4.1. However, adding a
tuple to the ScaleGate data-structure in line 6 instead of enqueuing it in a concurrent
queue as it was done in the previous two iterations, adds a non-negligible overhead
in terms of execution time as the operation of inserting a node in the proper position
of the skip list maintained by the ScaleGate instance involves:

• A random number generation in order to determine to how many levels of the
underlying skip list the inserted ScaleGate node carrying the tuple will belong
to, which represents an O(1) overhead in terms of execution time.

• A search operation for each of the levels the ScaleGate node carrying the tuple
will belong to. Under a non-saturation situation, assuming that the amount
of nodes persisting in the ScaleGate instance at a time is proportional to the
number of PT threads, O(n), a reasonable expected overhead in terms of
execution time, as far as n does not exceed by far 2 raised to the number of
ScaleGate levels, is O(log n).

• An insertion operation for each of the levels the ScaleGate node carrying the
tuple will belong to, which represents an O(1) overhead under a non-saturation
situation but redounds in a more intensive use of the atomic synchronization
primitives due to having to insert the tuple in multiple levels of the skip list as

61

8. Queue-ScaleGate-Based Multi-Threaded Binomial Options Pricing

opposed to simply synchronizing with other threads to insert the tuple in the
tail of a concurrent queue, which makes the algorithm more prone to cache
misses which can represent a non-negligible O(1) time overhead.

• The utilization of the Hazard Pointers based memory reclamation mechanism
[34] introduced in Section 2.3.2. This mechanism has been simplified given the
semantics of the ScaleGate data-structure replacing the first stage of the scan
routine by a search of the oldest tuple having a hazard pointer referencing
it, and modifying the second stage of the scan routine replacing the search
operation by a comparison against the sequence number of the tuple which
was selected in the modified first stage. In addition to this, only one hazard
pointer per thread has been used in the C implementation of the ScaleGate
instance. As a result, the average overhead of managing memory per tuple is
upper bound by O(log n).

Altogether, the expected execution time overhead derived from the analysis of the
costs of using an ScaleGate instance instead of a queue assuming a non-saturation
situation is the one expressed in Equation 8.1.

O(log n) (8.1)

If this overhead is compared against the overhead for the batching based mech-
anism shown in Equation 7.1, it can be seen that the usage of the ScaleGate data-
structure instead of the batching mechanism introduced in the previous chapter
seems to be slightly more expensive in terms of execution time, and may have a
negative impact on latency and throughput. However, this difference in practice, as
it will be appreciated in the experimental results in Section 13.2.2, is negligible given
the number of usable threads bounded by the physical resources of the used ma-
chines and the proportion between the overhead of pricing options and the overhead
of using either the batching mechanism or ScaleGate (O(N2) >> O(log n) ∼ O(1)).

However, it is worth noticing that, given the semantics of the ScaleGate data-
structure, the tuples added to the ScaleGate instance cannot be retrieved by OT
until a new tuple is added by the same thread which added it, and all the tuples
in the ScaleGate instance with an earlier timestamp also satisfy this condition.
This observation implies that even in the best possible case, independently of how
the PT threads interact with each other, any tuple being processed by the stream
processing engine needs to spend, after being served by IT and before reaching OT ,
at least the time required to price two options: the time it takes to price the option
corresponding to that tuple executing in the corresponding thread the priceOption
procedure introduced in Listing 6.1 in Section 6.3, and the time it takes to price
the option corresponding to the next tuple processed by the same PT thread. As
a result, even when using only one PT thread, the latency of processing a tuple
would be duplicated with respect to the latency that would be achieved in the first
and second iterations of the stream processing engine. This motivates the addition
of a NULL tuple with the same sequence number as the properly added tuple in
the ScaleGate instance every time a tuple is added. Given the small overhead of

62

8. Queue-ScaleGate-Based Multi-Threaded Binomial Options Pricing

using ScaleGate compared to the cost of the options pricing operator as discussed
above, this modification to the algorithm presented in Listing 8.1 would result in
an improvement in latency with a negligible impact on throughput, as it would
unlock the tuples served and ready to be retrieved yet preserving the inter-thread
synchronization semantics by letting the NULL tuple serve as a control tuple to
prevent tuples added by other threads from becoming prematurely ready.

Listing 8.2: Queue-ScaleGate-based multi-threaded binomial options pricing op-
erator pseudocode adding NULL control tuples

1 ID // Thread l o c a l PT thread id
2 proces sTuples (inQueue , outScaleGate)
3 while (TRUE)
4 tup l e = inQueue . deq ()
5 tup l e . op = pr iceOpt ion (tup l e . tp , os , om, r l i , v)
6 outScaleGate . addTuple (tup l e . seq , tuple , ID)
7 outScaleGate . addTuple (tup l e . seq , NULL, ID)

Listing 8.2 extends the processTuples routine introduced in Listing 8.2 adding
the aforementioned NULL tuple with the same sequence number as the properly added
tuple in the ScaleGate instance every time a tuple is added. In line 7 it can be seen
how the NULL tuple is added with the same sequence number as the tuple added in
line 6 in both Listing 8.1 and Listing 8.2.

With this edition, the aforementioned duplicated latency problem in the case of
one PT thread is mitigated getting back to similar latencies as in the previous two
iterations for the single-threaded execution. However, it is still possible with this
setup, as soon as two or more PT threads are used, to reach a situation in which one
tuple needs to spend, after being served by IT and before reaching OT , at least the
time required to price two options: if two PT threads, PT1, and PT2 concurrently
add tuples to the ScaleGate instance, it is feasible to reach the following scenario:

• PT1 and PT2 just processed and inserted in the ScaleGate instance the tuples
with sequence numbers x− 1 and x− 2.

• PT1 retrieves the tuple with sequence number x from the queue.
• Almost simultaneously, PT2 retrieves the tuple with the next sequence number,
x+ 1, from the queue.

• Both threads process the tuples simultaneously.
• PT1 inserts the tuple with sequence number x in the ScaleGate instance and

immediately after that, it inserts the NULL tuple with the same sequence num-
ber, x.

• Almost simultaneously, PT2 inserts the tuple with sequence number x + 1 in
the ScaleGate instance and immediately after that, it inserts the NULL tuple
with the same sequence number, x+ 1.

In the scenario above:

63

8. Queue-ScaleGate-Based Multi-Threaded Binomial Options Pricing

• The tuples with sequence number x− 1 and x− 2, both the proper tuples and
the NULL tuples, must become ready, if they were not already ready, right after
the insertion of the non NULL tuples with sequence numbers x and x+ 1.

• The tuple with sequence number x becomes ready right after the insertion
of the NULL tuple with sequence number x, thus, being able to be directly
retrieved by OT after having spent, since retrieved from the queue, the time
needed to execute the priceOption procedure only once plus the small over-
head to add this tuple and the NULL tuple to the ScaleGate instance.

• The tuple with sequence number x + 1, as opposed to the one with sequence
number x, needs to wait until PT1 adds another tuple with a sequence number
greater than x to let the NULL tuple with sequence number x, which allowed
the non NULL tuple with sequence number x to become ready right after being
added, become ready. As a result, the non NULL tuple with sequence num-
ber x + 1 needs to spend, since retrieved from the queue, at least twice the
time needed to execute the priceOption procedure before being successfully
retrieved by OT .

The analysis presented above can be trivially extended to three or more PT
threads arriving at the conclusion that the expected time spent by each tuple in the
stream processing engine, under a non-saturation scenario, between the instant of
time it is added to the queue by IT and the instant of time it is finally retrieved
by OT is lower bounded by the time consumed by the processTuple procedure to
process one tuple (O(N2)) plus the overhead of adding two tuples to the ScaleGate
instance (O(log n)), and upper bounded by the time consumed by the processTuple
procedure to process up to two tuples (O(N2)), plus the overhead of adding three tu-
ples to the ScaleGate instance (O(log n)). With the exception of the single-threaded
setup in which the upper bound is equal to the aforementioned lower bound follow-
ing the reasoning which motivated above the addition of the NULL tuple in line 7 in
Listing 8.2. Altogether, the expected latency for each tuple is the one expressed in
Equation 8.2.

L(n) = O(N2) +O(log n) (8.2)

If this expected latency is compared against the expected latency for the batching
based approach introduced in Equation 7.4 in the previous chapter, it is tempt-
ing to conclude that the parallelization approach introduced in this chapter will
produce better latency results. However, it is important to keep in mind that the
strongest factor in both equations is the O(N2) contribution derived from executing
the priceOption procedure to price the option contracts, and as discussed above,
the semantics of the ScaleGate data-structure, even when using the aforementioned
NULL tuple mechanism, make the constant controlling this contribution to the la-
tency greater than in the previous iteration. In other words, if the contribution
to the latency derived from the usage of the queue plus ScaleGate mechanism is
separated from the contribution to the latency derived from the actual pricing of
the option contract associated to a given input tuple, the O(N2) contribution will
not disappear as it did in the transition from Equation 7.4 to Equation 7.5 in the

64

8. Queue-ScaleGate-Based Multi-Threaded Binomial Options Pricing

previous chapter. Instead, the expression of the overhead in terms of latency for
each tuple in this iteration of the stream processing engine is the one expressed in
Equation 8.3.

O(N2) +O(log n) (8.3)

As it can be seen, Equations 8.2 and 8.3 have the same big O notation expression.
The difference, as discussed above, can be found in the constant controlling the
O(N2) contribution. This contribution not being zero in Equation 8.3 as it was in
Equation 7.5 is the main reason why, even though as discussed above, Equation 8.2
seemed to deem the current iteration more efficient in terms of latency than the
previous one, in the experimental results presented in Section 13.2.2, the previous
iteration of the stream processing engine leads to lower latency records.

In terms of throughput, given that the parallel PT threads subdivide the input
physical stream into n physical streams, and that the synchronization overhead de-
rived from using ScaleGate is orders of magnitude smaller than the single-threaded
operator overhead (O(log n) << O(N2)), the throughput is expected to grow lin-
early with the number of threads as expressed in Equation 8.4.

T (n) = n · T (1) (8.4)

Altogether, the expected latency and throughput of this iteration of the stream
processing engine can be plotted as a function of the number of parallel PT threads
used.

Figure 8.4: Latency and throughput as a function of the number of parallel PT
threads

Figure 8.4 plots the expected latency and throughput of this iteration of the
stream processing engine. It is worth observing how in the transition from one PT
thread to two or more PT threads the latency overhead dramatically increases in
comparison the further latency increases due to the addition of the O(N2) contri-
bution in Equation 8.3. In terms of expected throughput, the tendency is similar to
the previous iteration. However, as it will be shown in Section 13.2.2, the current

65

8. Queue-ScaleGate-Based Multi-Threaded Binomial Options Pricing

iteration will scale better in terms of throughput under scenarios in which not all
the processing units have the same conditions given the load balancing flexibility
achieved by the combined use of the queue and ScaleGate.

The overhead in terms of memory is easier to assess:
• The thread local ID assigned to each of the n PT threads occupy in memory
O(1) space per PT thread, O(n) space globally.

• The temporary variable tuple initialized in line 4 represents an O(1) space
overhead per PT thread, consequently an O(n) space overhead at the global
stream processing engine level.

• The underlying skip list maintained by the ScaleGate data-structure has a
similar size as the underlying concurrent data-structures maintained by the
queues.

Overall, the overhead of the queue-ScaleGate-based multi-threaded version of the
operator in terms of memory is the one expressed in Equation 8.5.

O(n) (8.5)

Adding the overhead above to the cost in terms of memory of the single-threaded
volatility operator introduced in Equation 6.10 in Section 6.4.1, the total cost in
terms of memory of the queue-ScaleGate-based multi-threaded version of the options
pricing operator is the one expressed in Equation 8.6.

O(n) ·O(N) +O(n) (8.6)

8.4.2 Integrating the Queue-ScaleGate-Based Multi-Threaded
Binomial Options Pricing Operator

Getting back to the stream processing engine diagram from Section 8.3, it is worth
noticing that, as anticipated in Section 8.4.1, and the same way as in the previous
two iterations of the stream processing engine, out of the six values that the binomial
options pricing operator uses as an input, tp, os, om, rli, v, and N , only one, tp,
can be retrieved by the PT threads from the tuples served by IT to the queue it
shares with them as described in Section 8.3. In this third iteration of the financial
stream processing engine, as in the previous two ones, the rest of the values are
simply taken as constants with the default values introduced in Section 6.4.2.

Figure 8.5: Operators and used constants

66

8. Queue-ScaleGate-Based Multi-Threaded Binomial Options Pricing

Figure 8.5 extends the data-structures diagram introduced in Figure 8.3 to repre-
sent the aforementioned constant values between square brackets close to the boxes
representing the PT threads, each of which executes the single-threaded binomial
options pricing operator introduced in Chapter 6.

Overall, this third iteration of the stream processing engine, as the second one also
did, and the fourth one will do, responds to the first line of improvement outlined
in the last paragraph in Section 6.4.2 concluding Chapter 6.

67

8. Queue-ScaleGate-Based Multi-Threaded Binomial Options Pricing

68

9
ScaleGate-ScaleGate-Based

Multi-Threaded Binomial Options
Pricing

In the previous chapter, an alternative approach to the options pricing operator
parallelization problem was introduced and integrated in the stream processing en-
gine. This approach involved temporarily partitioning the physical input stream of
tuples into a set of physical disjoint streams by letting a set of parallel PT threads
compete to retrieve the tuples served by the input thread to the input queue and
using a ScaleGate instance to let the parallel PT threads collaboratively re-combine
the physical streams of tuples into one output physical stream having the tuples in
exactly the same order as they were originally served by the input thread. As a
result, the synchronization among threads became distributed instead of centralized
as in the batching based approach discussed in Chapter 7, and the load balancing
properties of the stream processing engine became more flexible because the com-
petitive way of retrieving tuples from the input queue would allow faster processing
units to retrieve and process more tuples than slower processing units. However,
the expected impact on latency of this solution, as extensively discussed in Section
8.4.1, could be potentially even higher than that of the batching based paralleliza-
tion approach introduced in Chapter 7 due to the semantics of the output ScaleGate
instance.

In this chapter, a new alternative approach is introduced by replacing the input
queue in the previous approach by another ScaleGate instance and letting the PT
threads determine whether to process or not a tuple based on their thread iden-
tifier and the tuple sequence number. Letting the PT threads retrieve the tuples
from the ScaleGate instance instead of the former queue makes it possible for all
the tuples to be visible by all the threads, which enables the implementation of
a heartbeat mechanism to expedite the output ScaleGate behavior preserving the
output stream ordering requirements. With this, the synchronization effort which
became distributed in the previous iteration of the stream processing engine remains
distributed in this new iteration avoiding performance bottlenecks, and the latency
expectations discussed in Section 8.4.1 can be improved thanks to the heartbeat
mechanism.

The following sections elaborate on how the queue instance in the previous it-
eration of the stream processing engine can be replaced by a ScaleGate instance,

69

9. ScaleGate-ScaleGate-Based Multi-Threaded Binomial Options Pricing

and how it would affect the way the PT threads interact with the input and output
data-structures.

9.1 Involved Threads
As anticipated above, this fourth iteration of the stream processing engine is a

modification of the previous one in which the data-structure used to transmit tuples
from the input thread to the option pricing threads is the main structural change.
For this reason, the way to arrange the different threads in this iteration is exactly
the same as in the previous one.

Figure 9.1: Involved threads

Figure 9.1 outlines how threads are arranged in this fourth version of the financial
stream processing engine. As it can be seen, IT , the PT threads and OT remain as
they were introduced in Figure 8.1 in Section 8.1.

9.2 Structure of the Tuples
Similarly as it happened with the involved threads in the previous section, the

structure of the tuples in this fourth iteration of the financial stream processing
engine remains the same as in the previous iteration.

Figure 9.2: Structure of the tuples

Figure 9.2 extends the involved threads diagram introduced in Figure 9.1 specify-
ing the structure of the tuples in each transition from one thread to another as well
as the structure of the tuples read by IT , and the tuples output by OT .

As it can be seen, the structure of the tuples retrieved by IT , the tuples transferred
from IT to the parallel PT threads, the tuples served by the parallel PT threads
to OT , and the tuples output by OT is exactly the same as the structure of the
tuples retrieved by IT , the tuples transferred from IT to the parallel PT threads,
the tuples served by the parallel PT threads to OT , and the tuples output by OT
in Figure 8.2.

70

9. ScaleGate-ScaleGate-Based Multi-Threaded Binomial Options Pricing

9.3 Used Data-Structures

The key difference between this fourth iteration of the financial stream processing
engine and the previous iteration discussed in Chapter 8 is the usage of a ScaleGate
instance instead of a queue to let the IT and PT threads communicate.

This change with respect to the previous iteration implies that the input physical
stream served by IT will no longer be implicitly partitioned by the PT threads
when retrieving tuples from the former input queue. Instead, all the PT threads
will have access to the full physical stream of tuples served by IT thanks to the
input ScaleGate instance semantics. This allows them to explicitly partition the
input physical stream into a set of physical streams output by each PT thread and
generate additional control streams based on the tuples the PT threads receive but
do not assign a price to in order to expedite the behavior of the output ScaleGate
instance which represented in the previous iteration, as analyzed in Section 8.4.1, a
potential latency bottleneck.

Figure 9.3: Used data-structures

Figure 9.3 extends the structure of the tuples diagram introduced in Figure 9.2
specifying the data-structures used in each transition from one thread to another:

• IT to the PT threads ScaleGate: As reasoned above, IT and the parallel
PT threads share in this fourth iteration of the stream processing engine a
ScaleGate instance instead of a queue having IT as the only writer thread
and the PT threads as a set of multiple readers. This way, as anticipated
above, all the tuples are now received by all the PT threads in the same order
they are served by IT making it possible for them to expedite the behavior of
the output ScaleGate instance using the heartbeat mechanism which will be
introduced in Section 9.4.1.

• PT threads to OT ScaleGate: The same way it was done in the previous
iteration as discussed in Section 8.3, the PT threads and OT keep sharing an
instance of ScaleGate in which the PT threads act as a set of multiple writers
and OT acts as a single reader. This way, the set of physical streams of tuples
output by the PT threads is recombined again into a single physical stream
letting OT assign the tuples the ets timestamp and serve them in the same
order as IT added them to the input ScaleGate instance only after they have
been added the op field by the corresponding PT thread.

71

9. ScaleGate-ScaleGate-Based Multi-Threaded Binomial Options Pricing

9.4 Behavior of the Operators
As discussed in the previous sections, the binomial options pricing operator is

parallelized in this fourth iteration of the financial stream processing engine in a
manner very similar to how it was parallelized in the previous iteration. A set of
parallel PT threads price options in parallel synchronizing by retrieving from the
input ScaleGate instance all the tuples added by IT , making sure one and only
one PT thread assign an option price to each tuple by using the tuple sequence
number and the threads unique identifier to determine whether to assign a tuple a
price or not, and adding the priced tuples once they are processed to the output
ScaleGate instance they share with OT . Section 9.4.1 below elaborates on the formal
description of the parallel PT threads and Section 9.4.2 concludes the presentation
of this fourth iteration of the financial stream processing engine by extending the
data-structures diagram introduced in Figure 9.3 to take into account the constant
values that are provided to the binomial options pricing operator by the PT threads.

9.4.1 The ScaleGate-ScaleGate-Based Multi-Threaded Bi-
nomial Options Pricing Operator

In contrast with the previous iteration of the financial stream processing engine
in which the PT threads simply retrieved tuples from the input queue, added them
an option price, and added them to the output ScaleGate instance, the PT threads
in this fourth iteration of the stream processing engine have two main additional
task to perform given the fact that all of them have access to all the tuples served
by IT :

• The PT threads have to determine whether they should assign a tuple an op-
tion price or not based on their unique thread identifier and the tuple sequence
number in order to guarantee that for each input tuple one and only one PT
thread assigns it an option price and adds it to the output ScaleGate instance.

• The PT threads can also make use of the information contained in the tuples
they do not assign a price to, in particular their sequence number, in order
to expedite the behavior of the output ScaleGate. They can do so by adding
NULL tuples with the same sequence number as the tuples they do not assign
an option price to letting the non-NULL tuples added to the output ScaleGate
instance faster become ready without having to wait for all the PT threads to
price up to two options as discussed in Section 8.4.1. This way of expediting
the output ScaleGate behavior will be henceforth referred to as the heartbeat
mechanism, being the aforementioned NULL tuples heartbeat tuples.

Listing 9.1: ScaleGate-ScaleGate-based multi-threaded binomial options pricing
operator pseudocode

1 ID // Thread l o c a l PT thread id in the range { 0 , . . . , n−1}
2 proces sTuples (inScaleGate , outScaleGate , H)
3 cnt = 0
4 while (TRUE)
5 tup l e = inSca leGate . getNextReadyTuple (ID)

72

9. ScaleGate-ScaleGate-Based Multi-Threaded Binomial Options Pricing

6 i f (tup l e . seq mod n == ID)
7 tup l e . op = pr iceOpt ion (tup l e . tp , os , om, r l i , v)
8 outScaleGate . addTuple (tup l e . seq , tuple , ID)
9 outScaleGate . addTuple (tup l e . seq , NULL, ID)
10 else i f (H > 0)
11 cnt = cnt + 1
12 i f (cnt == H)
13 outScaleGate . addTuple (tup l e . seq , NULL, ID)
14 cnt = 0

Listing 9.1 formally introduces the pseudocode describing the behavior of the
parallel PT threads, each of which executes the processTuples procedure in lines
2-14. In addition to this, as in the previous iteration, a unique identifier, ID, is
assigned to each individual PT thread, as expressed in line 1, to allow them properly
synchronize when retrieving tuples from the input ScaleGate instance, inScaleGate,
determining whether they should add the tuples a price or not, and concurrently
adding the tuples they add a price to the output ScaleGate instance, outScaleGate.

The infinite loop in lines 4-14 determines how the PT threads process each
tuple they retrieve from the input ScaleGate instance, inScaleGate. In line 5,
the next ready tuple input by IT is retrieved from the input ScaleGate instance,
inScaleGate. It is worth taking into account that even though the pseudocode
above represents this operation straight forward in one line, the retrieval of a tu-
ple from a ScaleGate instance in practice, given its non-blocking nature, conveys a
retry loop in which the next ready tuple is requested iteratively until it is ready,
having the ScaleGate instance returning a NULL tuple, which needs to be ignored
by the caller, every time the getNextReadyTuple procedure is called and there is
not a non-NULL tuple ready to be provided to the caller. This observation applies
also to the deq operation in queues in case a non-blocking implementation is used.
It is also important to take into account that given the semantics of ScaleGate, as
discussed before, each of the tuples added by IT to the input ScaleGate instance,
inScaleGate, will eventually be retrieved by all the PT threads in line 5.

The last observation above justifies the check performed in line 6, which corre-
sponds to the aforementioned task of determining whether a tuple should be added
an option price or not by the current thread according to the tuple sequence number
and the current thread identifier. As it can be seen, this check consists on basically
checking whether the identifier modulo the number of PT threads, henceforth n,
matches the identifier of the thread performing the check belonging to the range
{0, ..., n− 1}. This way, the tuples which are added by IT to inScaleGate with
consecutive sequence numbers are paired to PT threads for the option pricing task
in a round robin fashion achieving a fair load balance assuming similar processing
capacities in all the nodes running the PT threads, and allowing each tuple to start
being processed by the corresponding PT thread as soon as they are retrieved from
inScaleGate and the aforementioned O(1) time complexity check is performed. The

73

9. ScaleGate-ScaleGate-Based Multi-Threaded Binomial Options Pricing

PT thread for which this check is successful for a given tuple moves forward to line
7 in which the priceOption procedure introduced in Listing 6.1 in Section 6.3 is
executed to add the corresponding tuple the op field, representing the option price
assigned to the corresponding tuple based on its financial information. To do so,
as in the previous three iterations of the stream processing engine, only the trade
price, tp, is retrieved from the tuple. The os, om, rli, and v values are provided as
fixed constants with the same values for all the tuples. Finally, in line 8, the tuple
which was added the op field in the previous line is added to the output ScaleGate
instance so that OT can retrieve it once it becomes a ready tuple, and in line 9, a
NULL tuple is added with the same sequence number as the tuple added in line 8 to
mitigate the duplicated latency problem in the case of having a single PT thread
which was discussed in Section 8.4.1. This last action in also performed for the same
reason by IT when adding tuples to inScaleGate in this iteration of the stream
processing engine and all further iterations in which it adds tuples to a ScaleGate
instance.

In case the check in line 6 fails for the current thread, it means another thread
will take care of pricing the corresponding option but the current thread can still
use the sequence number of the retrieved tuple to expedite the output ScaleGate
instance, outScaleGate, behavior helping the non-NULL tuple added by the thread
which succeeded in line 6 earlier become ready. This is the motivation behind the
heartbeat mechanism executed by the non successful in line 6 threads which have the
chance to execute lines 10-14 in Listing 9.1. This heartbeat mechanism is controlled
by the H input parameter which determines how many non-priced tuples should
elapse between two consecutive heartbeat tuples. A value of 0 or lower implying the
heartbeat mechanism is simply not used as the check in line 10 would fail triggering
the next iteration of the loop in lines 4-14, a value of 1 letting every non-priced
tuple trigger a heartbeat tuple, and a value H greater than 1 letting the PT threads
output a heartbeat tuple every H non-processed tuples. To allow this, the counter
of non-priced tuples, cnt, initially initialized to zero in line 3, is updated in line 11
every time a tuple is deemed not to be priced by the current thread according to
the check in line 6. This update is followed by the check in line 12 to determine
whether or not the specified amount of non-priced tuples seen by the current thread
has reached the H threshold. In case the check in line 12 succeeds, the thread is
allowed to add a heartbeat tuple to the output ScaleGate instance executing line
13 which adds a NULL tuple to outScaleGate with the same sequence number as
the non-priced tuple. As a result, if a non-NULL tuple was waiting to be ready in
OutScaleGate with a sequence number higher than the last NULL or non-NULL tuple
added by the current thread and a sequence number lower than or equal to the
sequence number of the heartbeat tuple, the thread which adds the heartbeat tuple
would immediately stop preventing that tuple from becoming ready yet preserving
the ordering requirements in the output stream retrieved by OT . Finally, in line 14
the cnt counter is set to zero again as in line 3 to let another set of H non-priced
tuples be retrieved by the current thread before adding another heat beat tuple to
OutScaleGate.

74

9. ScaleGate-ScaleGate-Based Multi-Threaded Binomial Options Pricing

Before concluding this section, it is worth analyzing the complexity of this operator
in terms of execution time and memory. As it can be understood after a brief analysis
of the pseudocode introduced in Listing 9.1, the main parameters affecting the cost
of the operator in terms of execution time and memory, apart from N as in the
previous chapters, are the number of parallel PT threads, n, and the H parameter.

In terms of execution time it is worth starting the analysis referencing back to
the O(log n) expected execution time overhead derived from the analysis of the
costs of using the outScaleGate ScaleGate instance instead of a queue assuming
a non-saturation situation which was expressed in Equation 8.1. In the current
iteration of the stream processing engine, the H parameter with values tending to 1
from above would result in a more intensive usage of the output ScaleGate instance
potentially multiplying by up to n the amount of nodes inserted in outScaleGate.
However, as the purpose of these nodes is to expedite the behavior of that ScaleGate
instance helping tuples faster become ready as discussed above, and assuming once
more a non-saturation situation, the amount of nodes maintained at a time in the
underlying skip list in outScaleGate is expected to remain in a similar range as in
the previous iteration leaving the outScaleGate usage overhead with the same big
O notation expression as in the previous iteration controlled perhaps by a slightly
bigger constant as expressed in Equation 9.1.

O(log n) (9.1)

The experimental results in Section 13.2.2 actually confirm the expectations above
as it will be seen when comparing the throughput achieved using this iteration of
the stream processing engine with H = 0 and H = 1.

In this iteration of the stream processing engine, the input queue is also replaced
by a ScaleGate instance. However, having IT acting as a single writer, the inser-
tions performed by IT will not have the O(log n) search overhead they have in the
output ScaleGate instance to which multiple threads concurrently add tuples. In
this sense, only the memory management overhead discussed in Section 8.4 lets the
input ScaleGate overhead remain as expressed in Equation 9.2.

O(log n) (9.2)

It is also worth mentioning that given the semantics of ScaleGate, the multi-
ple readers, in this case the PT threads, do not have to compete with each other
attempting to retrieve the head tuple and retrying if another concurrent thread suc-
ceeded doing so at the same time. This should reduce the contention overhead with
respect to the usage of a queue as an input data-structure.

To conclude the execution time overhead analysis, it is worth noticing that the
newly added logic with respect to the previous iteration in lines 6, and 10-14 in
Listing 9.1 consists on a series of O(1) operations performed by each PT thread
for each retrieved tuple. Adding this overhead to the overheads of using the input

75

9. ScaleGate-ScaleGate-Based Multi-Threaded Binomial Options Pricing

and output ScaleGate instances, the expected execution time overhead assuming a
non-saturation situation is the one expressed in Equation 9.3.

O(log n) (9.3)

The expression above of the expected execution time overhead is exactly the
same as in the previous iteration. However, its impact in latency as far as the
heartbeat mechanism is enabled is expected to be strongly different from that of
the previous iteration analyzed in Section 8.4.1. Given that the latency for each
individual tuple in the first iteration of the stream processing engine is O(N2) as
expressed in Equation 6.9. And taking into account that the heartbeat mechanism
reduces unnecessary waiting time for the tuples in the output ScaleGate instance,
the overall overhead in terms of latency for each tuple in this iteration of the stream
processing engine according to 9.3 should be O(log n) instead of O(N2) + O(log n)
as expressed in Equation 8.3 for the previous iteration of the stream processing
engine. This means that the expected latency for each tuple is expected to be the
one expressed in Equation 9.4 but having the O(N2) contribution a lower control
constant than in Equation 8.2.

L(n) = O(N2) +O(log n) (9.4)

In terms of throughput, given that the options pricing overhead is equally dis-
tributed among the n parallel PT threads, and that the synchronization overhead
derived from using the input and output ScaleGate instances and executing the
newly introduced control logic with respect to the previous iteration is orders of mag-
nitude smaller than the single-threaded operator overhead (O(log n) << O(N2)),
the throughput is expected to grow linearly with the number of threads as expressed
in Equation 9.5.

T (n) = n · T (1) (9.5)

Altogether, the expected latency and throughput of this iteration of the stream
processing engine having H greater than 0 and close to 1 can be plotted as a function
of the number of parallel PT threads used.

76

9. ScaleGate-ScaleGate-Based Multi-Threaded Binomial Options Pricing

Figure 9.4: Latency and throughput as a function of the number of parallel PT
threads

Figure 9.4 plots the expected latency and throughput of this iteration of the stream
processing engine. It is worth observing how in the transition from one PT thread
to two or more PT threads the latency overhead no longer dramatically increases
in comparison the further latency increases as it did in the previous iteration of the
stream processing engine. This is achieved thanks to the usage of the aforementioned
heartbeat mechanism made possible by the fact that all the PT threads have access
to all the tuples served by IT . In terms of expected throughput, the tendency is
similar to the previous iterations.

The overhead in terms of memory is even easier to assess:
• The thread local ID assigned to each of the n PT threads occupy in memory
O(1) space per PT thread, O(n) space globally.

• The temporary variable tuple initialized in line 5 as well as the temporary
value cnt initialized in line 3 and the input parameter, H, represent an O(1)
space overhead per PT thread, consequently an O(n) space overhead at the
global stream processing engine level.

• The underlying skip lists maintained by the ScaleGate data-structures have
a similar size as the underlying concurrent data-structures maintained by the
former queues.

Overall, the overhead of the ScaleGate-ScaleGate-based multi-threaded version of
the operator in terms of memory is the one expressed in Equation 9.6.

O(n) (9.6)

Adding the overhead above to the cost in terms of memory of the single-threaded
volatility operator introduced in Equation 6.10 in Section 6.4.1, the total cost in
terms of memory of the ScaleGate-ScaleGate-based multi-threaded version of the
options pricing operator is the one expressed in Equation 9.7.

O(n) ·O(N) +O(n) (9.7)

77

9. ScaleGate-ScaleGate-Based Multi-Threaded Binomial Options Pricing

9.4.2 Integrating the ScaleGate-ScaleGate-Based Multi-Threaded
Binomial Options Pricing Operator

Getting back to the stream processing engine diagram from Section 9.3, it is
worth noticing that, as anticipated in Section 9.4.1, and the same way as in the
previous three iterations of the stream processing engine, out of the six values that
the binomial options pricing operator uses as an input, tp, os, om, rli, v, and N ,
only one, tp, can be retrieved by the PT threads from the tuples served by IT to the
ScaleGate instance it shares with them as described in Section 9.3. The rest of the
values are simply taken as constants with the default values introduced in Section
6.4.2. In addition to this, in this fourth iteration of the stream processing engine
the H parameter needs to be specified and provided to the parallel PT threads to
determine whether to use or not the heartbeat mechanism and how exhaustively to
use it.

Figure 9.5: Operators and used constants

Figure 9.5 extends the data-structures diagram introduced in Figure 9.3 to repre-
sent the aforementioned constant values between square brackets close to the boxes
representing the PT threads, each of which executes the single-threaded binomial
options pricing operator introduced in Chapter 6. The H parameter has also been
added to the square brackets as a value determining the behavior of the operator
more widely understood as the actions performed by the PT threads for each in-
put tuple, which involves executing the heartbeat mechanism as explained in the
previous section.

Overall, this fourth iteration of the stream processing engine, as the second and
third ones also did, responds to the first line of improvement outlined in the last
paragraph in Section 6.4.2 concluding Chapter 6. The next three chapters address
the second line of improvement, namely providing the v, os, om, and rli values in a
more useful way in order to let the stream processing engine price any option with
any settings instead of just options with always the same fixed settings.

78

10
Single-Threaded Volatility

Aggregation

In the previous three chapters, three different approaches to the options pricing
operator parallelization problem was introduced and integrated in the stream pro-
cessing engine providing three alternative solutions for the first line of improvement
of the stream processing engine outlined in Section 6.4.2. Even though these three
approaches achieve an expected throughput increase proportional to the number of
process threads at the cost of a small latency overhead, only the trade price, tp, is
taken from the tuples representing the actual market behavior whereas many other
constants such as the volatility, option strike, option maturity, and risk-less interest
rate, are simply taken as constants, which is not a realistic solution in a dynamic
market setup.

Among the aforementioned constants, volatility, is especially relevant for the
proper functioning of an options pricing mechanism as it is the value which sum-
marizes the speed at which the underlying stock prices change in the market, which
determines the behavior of the underlying binary tree model as discussed in [8, 4].
It has been extensively argued in the literature, as anticipated in Section 4.1.2, that
the market volatility is not static at all and changes with time [1, 18, 39]. For this
reason, it is important to be able to keep track of its evolution in time, which is
the problem this chapter focuses on. In particular, a sliding-window-based volatility
aggregation mechanism will be introduced, understanding market volatility as the
standard deviation [41] of the most recently observed trade prices for each symbol.

The following sections elaborate on how the stream processing engine as it was
defined in the previous chapter can be extended by adding a volatility aggregation
thread in the pipeline right after IT and before the PT threads, so that the tuples
can be extended before calculating an option price with a volatility field obtained
from the aggregated calculation of the volatility of all the tuples contributing to the
most recent sliding-window the corresponding tuple does not contribute to.

10.1 Involved Threads
As anticipated above, the threads introduced in the previous chapter to retrieve

tuples from the input dataset and serve them to the process threads, to calculate
option prices, and to get the tuples output by the option pricing threads and output

79

10. Single-Threaded Volatility Aggregation

them, remain in this fifth iteration as they were introduced in the previous one with
the addition of a new volatility aggregation thread which will process the tuples
after they have been assigned the process start timestamp by the input thread and
before the option pricing threads start pricing the corresponding options.

Figure 10.1: Involved threads

Figure 10.1 outlines how threads are arranged in this fifth version of the financial
stream processing engine. As anticipated above, the new addition is the volatility
aggregation thread placed between the input thread and the parallel option pricing
threads whose name has been updated in this fifth iteration given the fact that now
there are two different kinds of process threads, the volatility aggregation thread
and the options pricing threads:

• Volatility Aggregation Process Thread (V PT): the volatility aggregation
process thread, henceforth referred to as V PT , is the aforementioned addition
to the stream processing engine pipeline. This new thread will maintain a set
of sliding-windows for each traded symbol in order to aggregate the volatility of
the most recent trades and extend the tuples served by IT with an aggregated
volatility result so that the option pricing threads, which will process the tuples
afterwards, do so with a realistic and updated measure of the underlying stock
volatility.

• Options Pricing Parallel Process Threads (PPT): the parallel option
pricing process threads, henceforth referred to as PPT , have basically the
same function as the former PT threads introduced in Section 9.1, namely
pricing options. The only difference apart from the newly assigned name
is that these threads will no longer provide a predefined constant volatility
value to the options pricing algorithm. They will instead provide the updated
volatility value assigned by the volatility aggregation thread to the tuples.

10.2 Structure of the Tuples

As anticipated above, the new V PT thread extends the structure of the tuples
it processes adding a new field summarizing the market volatility which needs to
be taken into account to perform the options pricing calculation for each individual
tuple instead of using a default, constant and outdated value.

Figure 10.2: Structure of the tuples

80

10. Single-Threaded Volatility Aggregation

Figure 10.2 extends the involved threads diagram introduced in Figure 10.1 spec-
ifying the structure of the tuples in each transition from one thread to another as
well as the structure of the tuples read by IT , and the tuples output by OT .

As it can be seen, with the addition of V PT , the structure of the tuples processed
by the PPT threads and output by OT is extended. The tuples retrieved by IT
and the tuples received by V PT have exactly the same structure as the tuples
IT retrieved and the former PT threads received in the previous iteration of the
financial stream processing engine. The volatility aggregation thread, V PT , adds
a field to the tuples it process representing the aggregated volatility for the given
input tuple, which extends the tuples received by the PPT threads from seven to
eight fields, <ts, seq, s, sh, tv, tp, sts, v>:

• Volatility (v): the volatility field, henceforth referred to as v, is the value
representing the volatility aggregated from the most recent tuples with the
same symbol as the tuple processed by the V PT thread. This field is inter-
nally modeled as a double value accounting for the standard deviation of the
distribution of the finite discrete distribution of the most recent trade prices
weighted by the trade volumes.
Section 10.4 further elaborates on how this volatility is calculated including
which input values are taken by the operator, where are they taken from and
how are they used to produce a volatility value.

As in the previous iterations, the option pricing threads, PPT , add the option
price, op, field to the tuples the V PT thread provides them with, extending its
structure from eight to nine fields, <ts, seq, s, sh, tv, tp, sts, v, op>. And the OT
thread adds the process end timestamp, ets, field completing the structure of the
tuples output by the stream processing engine with ten fields, <ts, seq, s, sh, tv,
tp, sts, v, op, ets>.

10.3 Used Data-Structures

Given the single-threaded nature of the volatility aggregation mechanism intro-
duced in this fifth iteration of the stream processing engine, the V PT thread has
the same synchronization needs the single-threaded volatility operator had in the
first iteration introduced in Section 6.3. It will synchronize with IT using a single
writer, single reader concurrent queue and with the PPT threads the same way
as the former IT thread synchronized with the former PT threads in the previous
iteration of the stream processing engine because what V PT outputs is the same
stream output by IT with one more field in each tuple informing about the market
volatility at the time of pricing the options.

81

10. Single-Threaded Volatility Aggregation

Figure 10.3: Used data-structures

Figure 10.3 extends the structure of the tuples diagram introduced in Figure 10.2
specifying the data-structures used in each transition from one thread to another.
As anticipated above, IT and V PT share a concurrent single writer, single reader
queue exactly the same way as the former IT and PT did in the first iteration
of the financial stream processing engine as discussed Section 6.3. V PT and the
PPT threads share a ScaleGate instance having V PT as a single writer and the
PPT threads as a set of multiple readers exactly the same way as the former IT
and PT threads did in the fourth iteration of the financial stream processing engine
as discussed in Section 9.3. Finally, the PPT threads and OT share a ScaleGate
instance also the same way as the former PT threads and OT did in the fourth
iteration of the financial stream processing engine as discussed in Section 9.3.

10.4 Behavior of the Operators

As anticipated in the previous sections, what V PT does is assigning each tuple
a volatility value, v, based on the financial information contained in the tuple and
the most recent tuples with the same symbol. To do so, a sliding-window-based
volatility aggregation operator is used. In the experiments performed in the scope
of the current thesis, as suggested in [8], the tradditional definition of standard
deviation [41] is used as a measure of the volatility of the distribution of trade prices
of the most recent tuples with the same symbol as the tuple to which V PT assigns
a volatility value. This is done on a sliding-window basis using the window size and
window advance sliding-window model introduced in Section 3.3.2, assigning the
tuples the volatility value derived from the consumption of the most recent window
the tuple does not contribute to. With this, the PPT threads can provide the
options pricing operator the volatility aggregated by the V PT tread instead of a
default constant and outdated value as it was done in the previous iteration. In this
sense, the only difference in the behavior of the PPT threads with respect to the PT
threads in the previous operation is the last parameter provided to the priceOption
procedure in line 7 in Listing 9.1, which is now retrieved from the tuple as the
first one, tp, was. Section 10.4.1 below elaborates on the formal description of the
sliding-window-based volatility aggregation operator and Section 10.4.2 integrates
this operator in the data-structures diagram from Figure 10.3.

82

10. Single-Threaded Volatility Aggregation

10.4.1 The Single-Threaded Volatility Aggregation Opera-
tor

As described in [41], the standard deviation, henceforth referred to as σ, is a
measure which is used to quantify the amount of variation or dispersion of a set
of data values or a random variable, X, in this case, the set of most recent stock
prices for a given symbol. Given the discrete and finite nature of the set of most
recent stock prices, the formal standard deviation definition which is relevant in the
scope of the volatility aggregation operator is the standard deviation for a bounded
discrete random variable X = {X1, X2, ..., XN} introduced in Section 4.1.2. This
definition was based on the definition of the mean or first moment, E[X] or µ, as
described in Equation 10.1.

E [X] = 1
N

N∑
i=1

Xi = µ (10.1)

As it can be seen, E[X] = µ is the well-known mean or average of the discrete
random variable. Elaborating from this definition towards the definition of the
standard deviation, σ, a first measure of how fast a discrete random variable spreads
out is its variance, Var(X), which is the mean of a new discrete random variable
representing, for each value in the original random variable, the difference from the
original value to the mean of the original random variable raised to the square, so
that the sign of the difference does not allow positive and negative deviations to
compensate each other. This is formally expressed in Equation 10.2.

Var (X) = E
[
(X − µ)2

]
= 1
N

N∑
i=1

(Xi − µ)2 (10.2)

The small problem with variance for its usage as a volatility measure is that given
the square operation in Equation 10.2, it is not expressed in the same units as the
original random variable. In other words, if the random variable units are dollars,
$, the variance is expressed in dollars raised to the square, $2. This motivates the
introduction of the standard deviation, σ, as a volatility measure, which is simply
the square root of the variance [41], as expressed in Equation 10.3, which takes it
back to the same units as the original random variable.

σ = 2
√
Var (X) = 2

√
E
[
(X − µ)2

]
= 2

√√√√ 1
N

N∑
i=1

(Xi − µ)2 (10.3)

Equation 10.3 provides a clear definition of the standard deviation, σ, which can
be easily translated to code so that given a set of stock prices, a standard deviation
value can be easily obtained. Nevertheless, it is worth noticing that if this formula
is used as it is, in order to be able to start calculating the standard deviation of a
given set of values, it is necessary to first have all the values together so that the
mean, µ, can be calculated and then this value can be used to calculate the standard
deviation σ.

83

10. Single-Threaded Volatility Aggregation

This last observation leads to a clear imbalance in the effort spent by one thread
processing the standard deviation after the arrival of one value:

• Values which are not the last value in a set of values: until the set of
values is ready to be processed, arriving values can only be added in an attempt
to start pre-calculating the mean, µ, and inserted to an array or linked list so
that they can be used afterwards to calculate the standard deviation, σ.
It is easy to see that with an efficient data-structure to temporarily store the
values, the cost of this operation in terms of execution time is O(1).

• Values which are the last value in a set of values: once the set of values
is ready, it is necessary to go through all the values and calculate the sum in
Equation 10.3.
It is also easy to see that again with an efficient data-structure to temporarily
store the values, the cost of this operation in terms of execution time is O(N).

In addition to this, given the fact that all the values in the set need to be main-
tained in memory, Equation 10.3 leads also to an O(N) memory overhead per set of
values of size N .

Altogether, Equation 10.3 as it has been introduced allows for the implementation
of a stateful sliding-window-based volatility aggregator with the aforementioned
imbalance in terms of execution time and overhead in terms of memory. This would
lead to the aggregator maintaining O(N) sized windows with window update and
window consume operations with execution time costs respectively O(1) and O(N).

Fortunately, a simple succession of arithmetic transformations on Equation 10.3
leads to an expression of the standard deviation, σ, which does not suffer from the
aforementioned drawbacks.

Applying the definition of µ as introduced in Equation 10.1:

σ = 2

√√√√ 1
N

N∑
i=1

(Xi − µ)2 = 2

√√√√√ 1
N

N∑
i=1

Xi −
1
N

N∑
j=1

Xj

2

Raising the expression in the parenthesis to the square:

= 2

√√√√√√ 1
N

N∑
i=1

X2
i +

 1
N

N∑
j=1

Xj

2

− 2Xi

N

N∑
j=1

Xj



Separating the sum iterating i from 1 to N into three sums:

= 2

√√√√√ 1
N

N∑
i=1

X2
i + 1

N

N∑
i=1

 1
N

N∑
j=1

Xj

2

− 1
N

N∑
i=1

2Xi

N

N∑
j=1

Xj

84

10. Single-Threaded Volatility Aggregation

Extracting 2 from the third sum as a common factor and refactoring that sum:

= 2

√√√√√ 1
N

N∑
i=1

X2
i + 1

N

N∑
i=1

 1
N

N∑
j=1

Xj

2

− 2
N

N∑
i=1

Xi

 1
N

N∑
j=1

Xj


Applying the definition of E [X] as introduced in Equation 10.1 in the second and

third sums:

= 2

√√√√ 1
N

N∑
i=1

X2
i + 1

N

N∑
i=1

E [X]2 − 2
N

N∑
i=1

XiE [X]

Transforming the second sum into a multiplication given the fact that all the
factors have the same value, E [X]2, and extracting E [X] in the third sum as a
common factor:

= 2

√√√√ 1
N

N∑
i=1

X2
i + 1

N

(
NE [X]2

)
− 2E [X] 1

N

N∑
i=1

Xi

Applying the definition of E [X] as introduced in Equation 10.1 in the first and
third sums and applying simple arithmetic:

= 2
√
E [X2] + E [X]2 − 2E [X]E [X] = 2

√
E [X2] + E [X]2 − 2E [X]2 = 2

√
E [X2]− E [X]2

With the last expression obtained the chain of arithmetic transformations above,
the expression of the standard deviation, σ, which is extended in Equation 10.4
below applying once more Equation 10.1, is obtained.

σ = 2
√
E [X2]− E [X]2 = 2

√√√√√ N∑
i=1

X2
i −

(
N∑
i=1

Xi

)2

(10.4)

This new way of expressing the standard deviation, σ, disentangles the aforemen-
tioned imbalance in the effort spent by one thread processing the standard deviation
after the arrival of one value:

• Values which are not the last value in a set of values: Until the set
of values is ready to be processed, arriving values and their squares can be
added to start pre-processing respectively E [X] and E [X2]. Instead of having
to add these values to a temporary array or linked list, a simple counter can
be updated to keep track of the number of values in the set.
It is easy to see that the cost of this operation in terms of execution time is
O(1).

• Values which are the last value in a set of values: On arrival of the last
value completing the set, this value can be processed as the values which are
not the last value and afterwards compute the standard deviation, σ, of the
whole set of values in five simple steps:

85

10. Single-Threaded Volatility Aggregation

1. Dividing the sum of values by the counter of values obtaining E [X].
2. Raising the aforementioned value to the square obtaining E [X]2.
3. Dividing the sum of squares of the values by the counter of values ob-

taining E [X2].
4. Subtracting E [X]2 from E [X2] obtaining E [X2]− E [X]2.
5. Calculating the square root of the value obtained in the previous step,

finally obtaining σ = 2
√
E [X2]− E [X]2.

The cost of this procedure in terms of execution time is also O(1).

With this, no matter whether a value is the last value belonging to a set or not, the
time spent to process it in the scope of one set of values whose standard deviation
is being calculated is always O(1).

In addition to this, with the aforementioned procedure, each value in the set no
longer needs to occupy an individual position in memory as in the case of Equation
10.3. Instead, only an accumulator of values, an accumulator of their squares and
a counter of values need to be maintained in memory, which reduces the memory
overhead per set of values of size N from O(N) to O(1).

Altogether, Equation 10.4 as it has been introduced allows for the implementation
of a stateless sliding-window-based volatility aggregator with O(1) sized windows
and O(1) execution time window update and window consume operations.

In order to integrate Equation 10.4 in the paradigm of sliding-window stream
processing so that the sliding-window-based volatility operator executed by V PT
can be formally defined, it is worth reviewing the window size and window advance
sliding-window model introduced in Section 3.3.2, which is the window model which
V PT implements due to its algebraic properties, which allow the parallelization
introduced in the next chapter of the single-threaded volatility aggregator that is
introduced in this chapter.

As described in Section 3.3.2, according to the sliding-window model introduced
in [6], operators are computed over a sliding-window, defined by the parameters
size, henceforth referred to as WS, and advance, henceforth referred to as WA.
Sliding-windows can be time-based, (e.g., to group tuples received during periods
of 5 minutes every 2 minutes) or tuple-based (e.g., to group the last 10 received
tuples every 3 incoming tuples). Given the nature of the data to be processed
by the financial stream processing engine, the former type, time-based, is the one
implemented by V PT letting the ts field in the tuples determine which windows
they contribute to.

86

10. Single-Threaded Volatility Aggregation

Figure 10.4: Sliding-window model visualization. WS = 7, WA = 2

Figure 10.4 helps visualizing the window size and window advance time-based
sliding-window model. The x axis represents the time discretized in intervals of one
time unit and the y axis assigns each window an index, 0 being the index for the
very first sliding-window in chronological order of expiration. The white horizontal
successions of squares in the diagram represent the different sliding-windows in the
two-dimensional discrete space defined by the aforementioned x and y axes. For
visualization purposes, small values for WS (7) and WA (2) have been chosen for
the illustrative diagrams in this section. However, as it will be discussed in further
sections, different values will be chosen for the stream processing engine with a big
impact on both the quality of the volatility values calculated and the performance
of the operator. It is worth observing the superposition of sliding-windows in time.
Tuples with timestamps bigger than WA will contribute always to two windows
of more, in the sense that their financial information will be used to calculate the
volatility aggregated for these windows. This raises the need to maintain more than
one window at a time for each traded symbol in V PT .

Figure 10.5: Windows different tuples contribute to. WS = 7, WA = 2

87

10. Single-Threaded Volatility Aggregation

Figure 10.5 illustrates which windows different tuples contribute to, based on their
timestamp having WS = 7, and WA = 2. According to the upper left diagram, a
tuple with timestamp 0 would only contribute to window 0 whereas a tuple with
timestamp 5, according to the diagram below the previous one, would contribute to
windows 0, 1, and 2. The upper right diagram shows how a tuple with timestamp
8 would contribute to windows 1, 2, 3, and 4, while according to the lower right
diagram, a tuple with timestamp 9 would contribute to windows 2, 3, and 4.

The visual procedure to determine which windows a tuple contributes to given its
timestamp is pretty simple. As illustrated in Figure 10.5, it consists on projecting
a vertical line from the tuple’s timestamp, ts, the orange rectangles in Figure 10.5,
and determining which windows it intersects with, the green rectangles in Figure
10.5. However, in order to provide a formal description of the sliding-window-based
volatility operator, it is necessary to formalize the calculations to determine the
bounds of the set of windows a tuple contributes to given its timestamp. This can
be done by defining a family of transformations from the domain of non-negative
discrete timestamps, the x axis in Figure 10.4, to the range of non-negative window
identifiers, the y axis in Figure 10.4, as expressed in Equation 10.5.

f : X → Y (10.5)

• X: the timestamps space, {0, ...}, x axis in Figure 10.4.
• Y : the window identifiers space, {0, ...}, y axis in Figure 10.4.

The first transformation worth defining is PREV_WIN, which determines the
last window a tuple does not contribute to given its timestamp, ts, as expressed in
Equation 10.6.

PREV_WIN : X −→ Y
ts −→ PREV_WIN(ts) = b(ts−WS) /WAc (10.6)

The second transformation worth defining is POST_WIN, which determines the
first window a tuple does not contribute to given its timestamp, ts, as expressed in
Equation 10.7.

POST_WIN : X −→ Y
ts −→ POST_WIN(ts) = b(ts+WA) /WAc (10.7)

Based on the PREV_WIN transformation, FIRST_WIN can be defined to de-
termine the first window a tuple contributes to given its timestamp, ts, which is
the window right after the one obtained in Equation 10.6, as expressed in Equation
10.8.

FIRST_WIN : X −→ Y
ts −→ FIRST_WIN(ts) = PREV_WIN(ts) + 1 (10.8)

88

10. Single-Threaded Volatility Aggregation

Based on the POST_WIN transformation, LAST_WIN can be defined to deter-
mine the last window a tuple contributes to given its timestamp, ts, which is the
window right before the one obtained in Equation 10.7, as expressed in Equation
10.9.

LAST_WIN : X −→ Y
ts −→ LAST_WIN(ts) = POST_WIN(ts)− 1 (10.9)

Altogether, the set of windows a tuple contributes to given its timestamp, ts, is
{FIRST_WIN(ts), ...,LAST_WIN(ts)}.

Figure 10.6: Illustration of the PREV_WIN, POST_WIN, FIRST_WIN, and
LAST_WIN transformations. WS = 7, WA = 2, ts = 8

Figure 10.6 illustrates the four transformations introduced above using the sliding-
window diagram introduced in Figure 10.4 with WS = 7 and WA = 2, highlighting
in grey the windows matching the four different transformations given a tuple with
timestamp 8. According to the upper left diagram, the last window the tuple does
not contribute to is PREV_WIN(8) = b(8− 7) /2c = 0. The first window the
tuple does not contribute to, according to the diagram below the previous one is
POST_WIN(8) = b(8 + 2) /2c = 5. The upper right diagram shows that the first
window the tuple contributes to is FRIST_WIN(8) = PREV_WIN(8) + 1 = 1,
while according to the lower right diagram, the last window the tuple contributes
to is LAST_WIN(8) = POST_WIN(8)− 1 = 4.

Having formalized the transformations which determine the set of windows a tuple
contributes to given its timestamp, ts, it is worth determining how many windows an
aggregator needs to keep track of at a time for each traded symbol. In other words,
if there is a boundary on the size of the set of windows a tuple contributes to. The
answer to this question is obviously yes, Equation 10.10, derived from Equations
10.6 and 10.7 expresses this upper boundary henceforth referred to as MAXW.

89

10. Single-Threaded Volatility Aggregation

MAXW = dWS/WAe (10.10)

As it can be seen in Figure 10.4, havingWS = 7 andWA = 2, MAXW = d7/2e =
4, which is the maximum number of windows which can be seen overlapping in the
diagram in the time instants 8 + 2 ∗ n for n ≥ 0.

As discussed above, the MAXW boundary determines the maximum number of
windows which need to be maintained by a volatility aggregator at a time. The
reason for this is that given the nature of the data to be processed by the financial
stream processing engine, only the last window a tuple does not contribute to given
its timestamp, ts, or according to the transformations above, the window whose
identifier is PREV_WIN(ts), is the window whose aggregated volatility is assigned
to the tuple being processed by the volatility aggregator. Given the fact that tuples
arrive in non-decreasing timestamp order, once a window has been consumed, it will
be no longer updated and only its aggregated value may be used for future tuples
while they have the same PREV_WIN as the tuple which triggered its consumption,
in other words, the first tuple with that PREV_WIN. With all of this, whenever a
tuple arrives to the aggregator, the window with identifier PREV_WIN(ts) can be
consumed if it has not been consumed and dropped before and all the windows older
than that one can be simply dropped as well as that one, once consumed, if they have
not been dropped by an earlier tuple with the same PREV_WIN. Afterwards, only
up to MAXW windows need to be updated, thus, having to maintain in memory at
most MAXW windows at a time per stock symbol.

The last observation allows for the usage of a fixed size circular buffer of windows
to keep track of the MAXW windows which need to be maintained for each traded
symbol. In order to formally define the volatility aggregation operator using the
aforementioned circular buffer, it is necessary to formalize the calculations to deter-
mine which position in the circular array of windows does a window occupy given its
window identifier. This can be done by defining a transformation from the formerly
introduced domain of non-negative window identifiers, the y axis in Figure 10.4,
to the range of the corresponding circular buffer indexes, as expressed in Equation
10.11.

f : Y → Z (10.11)

• Y : the window identifiers space, {0, ...}, y axis in Figure 10.4.
• Z: the circular buffer indexes space, {0, ...,MAXW− 1}.

The transformation WIN_BIDX determines the index in the circular buffer of
MAXW windows corresponding to the position a window occupies in it given its
window identifier as expressed in Equation 10.12.

WIN_BIDX : Y −→ Z
id −→ WIN_BIDX(id) = id mod MAXW (10.12)

90

10. Single-Threaded Volatility Aggregation

Figure 10.7: Illustration of the WIN_BIDX transformation and the circular buffer
of windows. WS = 7, WA = 2, MAXW = d7/2e = 4

Figure 10.7 illustrates the WIN_BIDX transformation introduced above using
the sliding-window diagram introduced in Figure 10.4 with WS = 7 and WA = 2,
which lead to MAXW = 4 as discussed above. The Z range for this transformation
has been represented in parallel with the Y range in the left most side of the figure
depicting for the first MAXW window an illustration of the circular buffer in its
initial state. With all of this, having WS = 7 and WA = 2, the windows with
identifiers {0 + i ·MAXW, 1 + i ·MAXW, 2 + i ·MAXW, 3 + i ·MAXW}, for i ∈
{0, ...} are respectively assigned to the buffer indexes {0, 1, 2, 3}.

Having introduced the formal definition of volatility in both the standard man-
ner, Equation 10.3, and optimized for computational purposes, Equation 10.4, hav-
ing reviewed the window size and window advance sliding-windows model and for-
mally defined the PREV_WIN, POST_WIN, FIRST_WIN, LAST_WIN, and
WIN_BIDX transformations as well as the MAXW boundary, the single-threaded
sliding-window-based volatility aggregation operator executed by the V PT thread
can be formally defined.

First of all, each volatility aggregation window updated and consumed by the
volatility aggregator can be modeled as a data-structure with three variables ac-
cording to the volatility calculation procedure introduced when analyzing Equation
10.4:

• Trade price sum (tps): the trade price sum variable, henceforth referred
to as tps, is the variable summing all the prices per share of the traded secu-
rity symbol that are traded in the transactions represented by all the financial
tuples contributing to the volatility aggregation window. This variable is inter-
nally modeled as a double value accounting for the sum of the prices paid for
each individual share. Its value on initialization of the volatility aggregation
window is naturally 0.

• Trade price to the square sum (tpsqs): the trade price to the square
sum variable, henceforth referred to as tpsqs, is the variable summing the
squares of all the prices per share of the traded security symbol that are

91

10. Single-Threaded Volatility Aggregation

traded in the transactions represented by all the financial tuples contributing
to the volatility aggregation window. This variable is internally modeled as
a double value accounting for the sum of the squares of the prices paid for
each individual share. Its value on initialization of the volatility aggregation
window is naturally 0.

• Trade volume sum (tvs): the trade volume sum variable, henceforth referred
to as tvs, is the variable summing all the trade volumes for all the financial
tuples contributing to the volatility aggregation window, in other words, the
count of values contributing to the discrete random variable of trade prices
whose volatility is output when consuming the window. This variable is in-
ternally modeled as a long value accounting for the sum of the trade volumes
for each tuple contributing to the window. Its value on initialization of the
volatility aggregation window is naturally 0.

In accordance to the sliding-window paradigm, there are two main ways to interact
with a volatility aggregation window:

• Update the volatility aggregation window: the update procedure con-
sists on letting the window account for the information contained in one tuple
contributing to it. In the case of the volatility aggregation window, this implies
updating the aforementioned variables:
– Adding to tps the tp field contained in the contributing tuple as many

times as the tv field in the same tuple specifies.
– Adding to tpsqs the tp field contained in the contributing tuple, raised

to the square, as many times as the tv field in the same tuple specifies.
– Adding to tvs the tv field contained in the contributing tuple.

• Consume the volatility aggregation window: the consume procedure
consist on iterating through the data accumulated by the window and ob-
taining an aggregated result summarizing the information aggregated by the
window from the contributing tuples which performed the aforementioned up-
date procedure on the window. In the case of the volatility aggregation window
this implies using the aforementioned three variables to compute the volatility
as described when analyzing Equation 10.4.

In addition to the two main procedures above, an instance of volatility aggregation
window can be reset in order to be reused modelling a different window once the
window represented by that instance has expired and is no longer of use. This
additional procedure, consisting on resetting to zero the values of the three variables,
will be useful for the definition of the circular array of volatility aggregation windows
maintained by the volatility aggregators as discussed earlier in this section.

Listing 10.1: Volatility aggregation window pseudocode
1 vo lat i l i tyWindow
2 tps = 0 , tpsqs = 0 , tvs = 0
3
4 update (tp , tv)
5 tps = tps + tp ∗ tv

92

10. Single-Threaded Volatility Aggregation

6 tpsqs = tpsqs + tp ∗ tp ∗ tv
7 tvs = tvs + tv
8
9 consume ()
10 i f (tvs > 0)
11 etp = tps / tvs
12 etpsq = tpsqs / tvs
13 v = sq r t (etpsq − etp ∗ etp)
14 else
15 v = 0
16 return v
17
18 r e s e t ()
19 tps = 0
20 tpsqs = 0
21 tvs = 0

Listing 10.1 formally defines the volatility aggregation window introduced above.
Lines 1-2 represent the structure of the volatility aggregation window with the three
aforementioned variables, tps, tpsqs, and tvs initialized to 0 by default. The update
procedure is described in lines 4-7, having in lines 5, 6, and 7 respectively the
updates to the tps, tpsqs, and tvs variables described when introducing the update
procedure above. The consume procedure is defined in lines 9-16. The safety check
in line 10 prevents the window from dividing by 0 assuming that the volatility for
a window in which not a tuple has contributed is simply 0 as expressed in line
15. Lines 11-13 perform the volatility aggregation according to Equation 10.4 using
the aforementioned three variables tps, tpsqs, and tvs to calculate E [X] in line 11,
E [X2] in line 12, and finally

√
E [X2]− E [X]2 in line 13. This value, or the value

0 in case not a tuple contributed to the window, is returned in line 16. Finally, in
lines 18-21 the reset procedure is defined by setting back to 0 the values of the
variables tps, tpsqs, and tvs respectively in lines 19, 20, and 21.

Having formally defined the volatility aggregation window above, the sliding-
window-based volatility aggregator for a given traded symbol maintaining a circular
buffer of MAXW volatility aggregation windows can be formally defined as a data-
structure also with three variables:

• Volatility aggregation windows buffer (wbuff): the volatility aggrega-
tion windows buffer variable, henceforth referred to as wbuff , is the variable
modeling the aforementioned circular buffer of volatility aggregation windows
which let the volatility aggregator maintain in memory the MAXW most re-
cent volatility aggregation windows. This variable is internally modeled as an
array of MAXW volatilityWindow instances, each of which is initialized by
default as described when formally defining the volatility aggregation windows.

• Last timestamp (lastts): the last timestamp variable, henceforth referred to
as lastts, stores the last processed tuple timestamp, ts, field value in order to

93

10. Single-Threaded Volatility Aggregation

keep track of which specific windows are maintained every time in the wbuff
circular buffer, and to determine whether if a new window has to be consumed
or not, and when a set of windows in the buffer need to be discarded and
replaced by newer windows. This variable is internally modeled as a long
value exactly the same way as the ts field in the financial tuples is modeled as
introduced in Section 6.2. Its value on initialization of the volatility aggregator
is 0 by default.

• Last volatility (lastv): the last volatility variable, henceforth referred to
as lastv, stores the volatility calculated for the last processed tuple whose
timestamp is stored in the previous variable, lastts. This value needs to be
maintained by the volatility aggregator because as soon as a window is con-
sumed, it has to be discarded and replaced by a new one in order to let the
tuple which triggered the window consumption contribute to the up to MAXW
windows it has to contribute to. With this, in case a new tuple arrives with a
greater or equal timestamp as the tuple which triggered the window consump-
tion but with the same PREV_WIN, the window to be consumed to assign a
volatility value to that tuple is no longer present in wbuff , as reasoned above,
but the volatility resulting for its consumption is the one stored in lastv. This
variable is internally modeled as a double value accounting for the volatility
assigned to the tuple with timestamp lastts resulting from the consumption
of the window whose identifier in the Y space discussed when introducing the
ts to window identifiers transformations is PREV_WIN(lastts). Its value on
initialization of the volatility aggregator is 0 by default.

For each of the tuples with the same symbol as the underlying stock associated
to the volatility aggregator there is one single way to interact with the volatility
aggregator consisting on letting the aggregator process the tuple. This procedure
involves providing the tuple ts, tp, and tv fields to the aggregator in order for it
to assign the tuple a volatility value resulting from the consumption of the window
whose identifier is PREV_WIN(ts), and to update all the windows in the range
{FIRST_WIN(ts), ...,LAST_WIN(ts)} providing the tp and ts values as discussed
when introducing the update procedure for the volatility aggregation window.
Listing 10.2: Single-threaded sliding-window-based volatility aggregator for a sin-
gle traded symbol pseudocode

1 v o l a t i l i t yAgg r e g a t o r
2 wbuff [MAXW] , l a s t t s = 0 , l a s t v = 0
3
4 processTuple (ts , tp , tv)
5 i f (PREV_WIN(l a s t t s) < PREV_WIN(t s) and
6 PREV_WIN(t s) − PREV_WIN(l a s t t s) <= MAXW)
7 l a s t v = wbuff [WIN_BIDX(PREV_WIN(t s))] . consume ()
8 for (i = FIRST_WIN(l a s t t s) to PREV_WIN(t s))
9 wbuff [WIN_BIDX(i)] . r e s e t ()
10 else i f (PREV_WIN(l a s t t s) < PREV_WIN(t s) and
11 PREV_WIN(t s) − PREV_WIN(l a s t t s) > MAXW)
12 l a s t v = 0

94

10. Single-Threaded Volatility Aggregation

13 for (i = 0 to MAXW − 1)
14 wbuff [i] . r e s e t ()
15 for (i = FIRST_WIN(t s) to LAST_WIN(t s))
16 wbuff [WIN_BIDX(i)] . update (tp , tv)
17 l a s t t s = t s
18 return l a s t v

Listing 10.2 formally defines the sliding-window-based volatility aggregator for a
given traded symbol introduced above. Lines 1-2 represent the structure of the
aggregator with the aforementioned variable, wbuff , having space for MAXW
volatilityWindow instances and the lastts, and lastv variables initialized to 0
by default.

The processTuple procedure is formally defined in lines 4-18, having the window
consumption and replacement logic in lines 5-14, and the window update logic in
lines 15-16. The assertion in lines 5-6 checks whether or not the processed tuple given
its timestamp, ts, should trigger the consumption of a window present in wbuff .
In case this assertion holds, the window is consumed and the resulting volatility
value is stored in the lastv variable in line 7 and the loop in lines 8-9 is executed
to reset all the windows which need no longer be maintained in wbuff , including
the window consumed in line 7, in order to start keeping track of the last windows
the processed tuple may contribute to which were not yet present in wbuff . The
assertion in lines 10-11 checks if the unfeasible but not impossible case in which the
tuple should trigger the consumption of a window which is not present in wbuff
is given. This would happen if two consecutive tuples processed by the aggregator
are separated in time enough for the full set of windows the first one contributed
to not to intersect with the set of windows the second one contributes to plus the
last window it did not contribute to. In this unfeasible situation, the volatility for
the window consumed by the second tuple, which had never a tuple contributing
to it in the aggregator, is assumed to be 0 as expressed in line 12, and the loop in
lines 13-14 is executed resetting all the now outdated windows in wbuff in order to
allocate space for the up to MAXW windows the second tuple contributes to.

Having updated in case of need the lastv variable and reset the outdated tuples
in wbuff in lines 5-14, the tp and tv values of the tuple being processed can be used
to update all the windows it contributes to according to its timestamp. This is done
in the loop in lines 15-16 which iterates from the first window the processed tuple
contributes to according to its timestamp, FIRST_WIN(ts), to the last window the
processed tuple contributes to according to its timestamp, LAST_WIN(ts), execut-
ing in line 16 the update procedure introduced in Listing 10.2, for the corresponding
windows in wbuff which can be located thanks to the WIN_BIDX transformation.
Once all the windows have been updated, the lastts variable is updated in line 17
to keep track of the tuple which was just processed and the previously updated
if needed lastv value is returned in line 18 representing the volatility value to be
assigned to the tuple by the V PT thread when adding the v field to the tuple to

95

10. Single-Threaded Volatility Aggregation

let the PPT threads price the corresponding option contract taking into account
the aggregated volatility instead of a constant outdated value as in the previous
iterations of the financial stream processing engine.

Having formally defined the sliding-window-based volatility aggregator for a given
traded symbol, the single-threaded sliding-window-based volatility aggregator for a
set of traded symbols with symbol hash, sh, in the range {0, ...,MAXSH− 1} can
be formally defined as an array with MAXSH volatilityAggregator instances
indexed by symbol hash.
Listing 10.3: Single-threaded sliding-window-based volatility aggregator for mul-
tiple traded symbols pseudocode

1 v o l a t i l i t yAgg r e g a t o r s
2 aggrs [MAXSH]
3
4 processTuple (sh , ts , tp , tv)
5 return aggrs [sh] . processTuple (ts , tp , tv)

Listing 10.3 formally defines the sliding-window-based volatility aggregator for a
set of traded symbols with symbol hash, sh, in the range {0, ...,MAXSH− 1} intro-
duced above. Lines 1-2 represent the structure of the aggregator with the aforemen-
tioned array of aggregators, aggrs, having space for MAXSH volatilityAggregator
instances. The processTuple procedure is described in lines 4-5, and consists only
in using the sh field in the processed tuple to identify the corresponding single-
threaded volatility aggregator for the symbol associated to the tuple and letting
that aggregator process the tuple based on its ts, tp, and tv fields executing in line
5 the processTuple procedure introduced in Listing 10.2 which allows the V PT
thread to assign the processed tuple the resulting aggregated volatility returned in
line 5.

The last described procedure, processTuple, is the one executed by the V PT
thread every time a tuple is retrieved from the queue it shares with IT and before
adding it to the ScaleGate instance it shares with the PPT threads. It is worth
mentioning that the same way as IT did in the previous iteration of the financial
stream processing engine, V PT will also insert a NULL tuple with the same sequence
number as the non-NULL tuple added to the ScaleGate instance to avoid the double
latency problem for single writers in a ScaleGate instance discussed in Section 8.4.1.

Before concluding this section, it is worth analyzing the complexity of the single-
threaded sliding-window based volatility aggregation operator in terms of execution
time and memory as it was done in Section 6.4 with the single-threaded binomial
option pricing operator. As it can easily be seen after a brief analysis of the pseu-
docode introduced in Listings 10.1, 10.2, and 10.3, the three parameters affecting
the cost of the operator in time and memory are MAXSH, WS, and WA, the lat-
ter two ones determining together the MAXW boundary as described in Equation
10.10. In terms of execution time:

96

10. Single-Threaded Volatility Aggregation

• Line 5 in Listing 10.3 triggers the execution of the processTuple procedure
introduced in lines 4-18 in Listing 10.2 for the volatilityAggregator in-
stance associated to the processed tuple symbol. The cost of locating the
volatilityAggregator instance is O(1) as it consists simply on a direct ac-
cess to the position indexed by the tuple symbol hash, sh, in the hash indexed
array of aggregators.

• The assertion in lines 5-6 in Listing 10.2 have also an O(1) execution time
cost.
In case it succeeds:
– The consume procedure introduced in lines 9-16 in Listing 10.1 is executed

in line 7 in Listing 10.2. As discussed when analyzing Equation 10.4, and
as it can be verified analyzing lines 9-16 in Listing 10.1, the cost in terms
of execution time of this procedure is O(1).

– The reset procedure introduced in lines 18-21 in Listing 10.1 is executed
up to MAXW times in the worst possible case in the loop in lines 8-9 in
Listing 10.2. It is easy to see that the cost in terms of execution time
of the reset procedure consisting on simply 3 variable value updates is
O(1) concluding that the worst possible execution time cost of the loop
in lines 8-9 in Listing 10.2 is O(MAXW).

In case it fails:
– The assertion in lines 10-11 in Listing 10.2 is checked incurring in an O(1)

execution time cost.
In case it succeeds:

∗ The variable update performed in line 12 in Listing 10.2 has an O(1)
execution time cost.

∗ The execution of the loop in lines 13-14 in Listing 10.2 has anO(MAXW)
cost in terms of execution time following the same reasoning as when
analyzing the cost of the loop in lines 8-9 in Listing 10.2.

• The loop in lines 15-16 in Listing 10.2 is executed for all the tuples. It im-
plies executing in line 16 the update procedure introduced in lines 4-7 in
Listing 10.1 LAST_WIN(ts)− FIRST_WIN(ts) + 1 times, ts being the pro-
vided tuple timestamp. Given the definition of MAXW, LAST_WIN(ts) −
FIRST_WIN(ts) + 1 ≤ MAXW ∀sh ∈ {0, ...}. As discussed when analyzing
Equation 10.4, and as it can be verified analyzing lines 4-7 in Listing 10.1, the
cost in terms of execution time of the update procedure is O(1). With this,
the cost in terms of execution time of the loop in lines 15-16 in Listing 10.2 is
O(MAXW).

• Finally, the variable update and return operations in lines 17 and 18 respec-
tively in Listing 10.1 are executed for all the tuples with an O(1) execution
time cost.

Overall, the cost of the operator in terms of time is the one expressed in Equation
10.13.

O(MAXW) = O(WS/WA) (10.13)

97

10. Single-Threaded Volatility Aggregation

The cost in terms of memory is also easy to assess:
• The input variables in the different analyzed procedures plus the constants
WS, and WA, and the different temporary variables used inside the different
procedures analyzed occupy a fixed amount of memory independent of the
values of WS, WA, and MAXSH. The space occupied by these variables in
memory is O(1).

• The wbuff array introduced in line 2 in Listing 10.2 has space for MAXW
volatilityWindow instances, each of which occupy in memory, has antici-
pated when analyzing Equation 10.4, and as it can be verified analyzing line
2 in Listing 10.1, O(1) space. With this, the space occupied by one instance
of volatilityAggregator in memory is O(MAXW).

• The aggrs array introduced in line 2 in Listing 10.3 has space for MAXSH in-
stances of volatilityAggregator, each of them occupying O(MAXW) space
in memory. With this, the space occupied in memory by the instance of
volatilityAggregators used by the V PT thread is O(MAXSH ·MAXW).

Overall, the cost of the operator in terms of memory is the one expressed in
Equation 10.14.

O(MAXSH ·MAXW) = O(MAXSH ·WS/WA) (10.14)

10.4.2 Integrating the Single-Threaded Volatility Aggrega-
tion Operator

Getting back to the stream processing engine diagram from Section 10.3, the two
main values that the V PT thread needs to be provided with in order to initialize each
of the volatilityAggregator instances maintained by the volatilityAggregators
instance it uses to support the sliding-windows model, discussed in detail in the pre-
vious section, areWS andWA. MAXSH is also necessary in order to determine how
many volatilityAggregator instances to maintain in the volatilityAggregators
instance but it does not have a direct impact on the volatility values output by the
operator nor the execution time cost of the operator as discussed in the previous
section.

• Window size (WS): this value is taken as a constant, internally modeled
as a long constant expressing the size of the windows in microseconds. In
a production setup, pricing option contracts with maturities in the range of
months or years, reasonable WS values consequently stay in the range of
months of years. However, in the context of this thesis, having a fine grained
financial dataset spanning only one day in time as described in Section 5.1, the
WS and WA constants have been homotetically scaled to fit the size of the
experimental dataset yet preserving the proportion they would preserve in a
reasonable production setup in order not to alter the MAXW boundary which
determines the execution time and memory cost of the operator, together with
the MAXSH constant in terms of memory as described in Equations 10.13 and
10.14. With this, the default value chosen for the WS constant in the context
of this thesis is 3600000000µs = 1h.

98

10. Single-Threaded Volatility Aggregation

• Window advance (WA): this value is also taken as a constant, internally
modeled as a long constant expressing the advance of the windows in microsec-
onds. In a production setup, the smaller the window advance is, the faster
the volatility aggregator would react to sudden changes in the behavior of the
underlying asset leading to more up to date volatility values being provided
to the PPT threads. WA values in the range of minutes would be acceptable
for WS values in the range of years or months. With this, the default value
chosen for the WA constant in the context of this thesis is 50000µs = 50ms.

It is worth noticing that in contrast with the previous four iterations of the stream
processing engine, out of the six values that the binomial options pricing operator
uses as an input, tp, os, om, rli, v, and N , two of them, tp, and since this fifth
iteration also v, can be retrieved by the PPT threads from the tuples served by V PT
to the ScaleGate instance it shares with them as described in Section 10.4.1. The
rest of the values are still taken as constants with the default values introduced in
Section 6.4.2. In addition to this, since the fourth iteration of the stream processing
engine the H parameter needs to be specified and provided to the parallel PPT
threads to determine whether to use or not the heartbeat mechanism introduced in
the previous chapter and how exhaustively to use it.

Figure 10.8: Operators and used constants

Figure 10.8 extends the data-structures diagram introduced in Figure 10.3 to
represent the aforementioned constant values between square brackets close to the
boxes representing the V PT and PPT threads, which execute respectively the
single-threaded sliding-window-based volatility aggregation operator introduced in
the previous section and the multi-threaded binomial options pricing operator intro-
duced in the previous chapter retrieving the volatility, v, this time from the tuples
instead of taking it as a fixed outdated constant.

Overall, this fifth iteration of the stream processing engine, as anticipated in Sec-
tion 9.4.2, responds to the second line of improvement outlined in the last paragraph
in Section 6.4.2 concluding Chapter 6.

99

10. Single-Threaded Volatility Aggregation

100

11
Multi-Threaded Volatility

Aggregation

In the previous chapter, the single-threaded version of the sliding-window-based
volatility aggregation operator was introduced and integrated in the financial stream
processing engine enabling the options pricing threads to use the reliable and up to
date volatility values aggregated by this operator based on the financial information
contained in the tuples being processed by the financial stream processing engine.
As it could be seen in Equation 10.13 introduced in Section 10.4, the cost of the
aforementioned volatility aggregation operator in terms of execution time grows lin-
early with the proportion between the window size, WS, and window advance, WA,
of the underlying sliding-window model. Given that, as discussed in Section 10.4.2,
window sizes in the range of months or years are needed in production setups and
the smaller the window advance, the more valuable the volatility aggregation val-
ues are in terms of responsiveness to sudden changes in the market and timeliness,
this proportion can become considerably big making it possible for the operator to
become a scalability bottleneck in an options pricing stream processing engine if
it is used in its single-threaded version. This problem can be actually appreciated
in Section 13.2.3 where the throughput and latency median results obtained when
executing the fifth iteration of the stream processing engine introduced in the pre-
vious chapter with one volatility aggregation thread and n parallel options pricing
threads are reported and discussed. For this reason, it is reasonable to approach in
this chapter the problem of parallelizing the volatility aggregation operator.

It is worth taking into account that, in contrast with the nature of the formerly
introduced options pricing operator, in which the option prices assigned to the dif-
ferent tuples were totally independent from the behavior of other tuples in the same
stream, all the tuples processed by the volatility aggregation operator update the
status of the underlying sliding-window model, these changes affecting the volatil-
ity values assigned to further tuples in the stream. For this reason, the approach
followed in this chapter to parallelize the single-threaded volatility aggregation oper-
ator differs from the approaches followed in Chapters 7-9 to parallelize the binomial
options pricing operator in which the workload derived from pricing one option con-
tract given a specific tuple was not distributed among the concurrent threads. In
this occasion the workload the single-threaded version of the volatility aggregation
operator performed for each individual tuple needs to be distributed among the par-
allel volatility aggregation threads in order to let all of them be aware of changes in
the underlying sliding-window model every time a new tuple is processed by all of

101

11. Multi-Threaded Volatility Aggregation

them.

The following sections elaborate on how the V PT thread introduced in Section
10.1 can be replaced by a set of parallel volatility aggregation threads in order
to concurrently update the shared underlying sliding-windows model ensuring that
processed tuples are delivered to the PPT threads in the same order as the corre-
sponding input tuples are served by IT and assigning them the same volatility values
the single-threaded version of the volatility aggregation operator would assign them.

11.1 Involved Threads

As anticipated above, the thread dedicated in the previous chapter to calculating
the aggregated volatility of the most recent tuples for a given symbol on a sliding-
window basis is replaced in this sixth iteration of the financial stream processing
engine by a set of parallel volatility aggregation threads. The threads dedicated to
retrieve tuples from the input dataset and serve them to the process threads, to get
the tuples output, in this case by the volatility aggregation threads and assign them
an option price, and to get the tuples output by the options pricing threads and
output them, remain in this sixth iteration exactly as they were introduced in the
previous one.

Figure 11.1: Involved threads

Figure 11.1 outlines how threads are arranged in this sixth version of the financial
stream processing engine. As it can be seen, IT and OT remain as they were
introduced in Section 6.1 and the PPT threads remain as the PT threads were
introduced in Section 8.1 renamed to PPT threads in Section 10.1, while the V PT
thread introduced in Section 10.1 has been replaced by a set of parallel volatility
aggregation threads. Given that the new parallel volatility aggregation threads
distribute the workload performed in the previous iteration by the single-threaded
volatility aggregation thread, they have been assigned the same name in this chapter
as the former V PT thread introduced in Section 10.1 in Chapter 10.

11.2 Structure of the Tuples

Similarly as it happened when parallelizing the options pricing operator in Chap-
ters 7-9, the structure of the tuples in this sixth iteration of the financial stream
processing engine remains the same as in the previous iteration.

102

11. Multi-Threaded Volatility Aggregation

Figure 11.2: Structure of the tuples

Figure 11.2 extends the involved threads diagram introduced in Figure 11.1 spec-
ifying the structure of the tuples in each transition from one thread to another as
well as the structure of the tuples read by IT , and the tuples output by OT .

As it can be seen, the structure of the tuples retrieved by IT , the tuples transferred
from IT to the now parallel V PT threads, the tuples extended by the now parallel
V PT threads and facilitated to the PPT threads, the tuples served by the parallel
PPT threads to OT , and the tuples output by OT is exactly the same as the
structure of the tuples retrieved by IT , the tuples transferred from IT to the former
V PT thread, the tuples extended by the former V PT thread and facilitated to the
PPT threads, the tuples served by the parallel PPT threads to OT , and the tuples
output by OT in Figure 10.2.

11.3 Used Data-Structures
As anticipated in the introduction of this chapter, all the V PT threads need to

have access to all the tuples served by IT in the same order so that they can con-
currently update the underlying sliding-windows to aggregate volatility producing
exactly the same output as the single-threaded volatility aggregator. As discussed
in Section 9.3, letting IT add all the tuples it assigns a timestamp to a ScaleGate
instance shared with a set of readers enables all the readers to have access to all
the tuples served by IT in the same order. For this reason, similarly as it was done
in Section 9.3 to let all the tuples added by IT reach all the parallel PT threads,
the IT thread and the V PT threads in this sixth iteration of the financial stream
processing engine will share a ScaleGate instance.

Moving forward in the DAG, given the fact that since the fourth iteration of the
financial stream processing engine all the PPT threads need to have access to all the
tuples being processed by the stream processing engine in order to have the chance
to use the heartbeat mechanism introduced in Section 9.4.1 to expedite the behavior
of the ScaleGate instance they share with OT , the ScaleGate instance that V PT and
the PPT threads shared in the previous iteration of the financial stream processing
engine will also be shared between the V PT threads and the PPT threads in this
sixth iteration of the financial stream processing engine.

With all of this, the stream of tuples served by IT , is accessed by all the V PT
threads, which will coordinate to, as explained in detail in Section 11.4.1, add to the
ScaleGate instance they share with the PPT threads one and only one non-NULL
extended tuple for each tuple received from IT letting each of the PPT threads

103

11. Multi-Threaded Volatility Aggregation

retrieve from the ScaleGate instance they share with the V PT threads exactly the
same stream of extended tuples they retrieved in the previous iteration of the stream
processing engine consequently letting the OT thread retrieve and output the same
stream of tuples with an option price assigned based on the volatility aggregated by
the V PT threads the same way as it did in the previous iteration with one V PT
thread.

Figure 11.3: Used data-structures

Figure 11.3 extends the structure of the tuples diagram introduced in Figure 11.2
specifying the data-structures used in each transition from one thread to another:

• IT to the V PT threads ScaleGate: As reasoned above, IT and the parallel
V PT threads share in this sixth iteration of the stream processing engine a
ScaleGate instance having IT as the only writer thread and the V PT threads
as a set of multiple readers. This way, as anticipated above, all the tuples are
received by all the V PT threads in the same order they are served by IT mak-
ing it possible for them to update in parallel the underlying sliding-windows
model and synchronize to output, for each tuple served by IT , one and only
one tuple with the same value in the volatility, v, field the former V PT thread
in the previous section would have assigned to that tuple. This also gives the
V PT threads the chance to expedite the behavior of the ScaleGate instance
they share with the PPT threads in a similar manner as the PPT threads
in the two previous iterations of the stream processing engine expedited the
behavior of the output ScaleGate instance.

• V PT threads to the PPT threads ScaleGate: As reasoned above, the
parallel V PT threads and the parallel PPT threads share in this sixth iteration
of the stream processing engine also a ScaleGate instance having the V PT
threads as a set of multiple writers and the PPT threads as a set of multiple
readers. This way, as anticipated above, all the tuples concurrently assigned
a volatility value by the V PT threads are received by all the PPT threads in
the same order they were initially served by IT making it possible for them
to expedite the behavior of the output ScaleGate instance using the heartbeat
mechanism introduced in Section 9.4.1.

• PPT threads to OT ScaleGate: The same way it was done in the previous
iterations as initially discussed in Section 8.3, the PPT threads and OT keep
sharing an instance of ScaleGate in which the PPT threads act as a set of
multiple writers and OT acts as a single reader. This way, the set of physical
streams of tuples output by the PPT threads is recombined again into a single
physical stream letting OT assign the tuples the ets timestamp and serve them
in the same order as IT added them to the input ScaleGate instance only after

104

11. Multi-Threaded Volatility Aggregation

they have been added the v and op fields by the corresponding V PT and PPT
threads.

11.4 Behavior of the Operators
As anticipated in the previous sections, what the V PT threads do in this sixth

iteration of the stream processing engine is distributing the volatility aggregation
workload assigned in the previous iteration of the financial stream processing engine
to the V PT thread. With this, the PPT threads in this sixth iteration of the
financial stream processing engine keep having exactly the same behavior as in the
previous one given the fact that the stream of tuples they retrieve from the ScaleGate
instance they share with the parallel V PT threads has exactly the same information
as the one they retrieved in the previous version of the stream processing engine from
the ScaleGate instance they shared with the V PT thread had.

Section 11.4.1 below elaborates on the formal description of the parallel version
of the sliding-window-based volatility aggregation operator and Section 11.4.2 inte-
grates this operator in the data-structures diagram from Figure 11.3.

11.4.1 The Multi-Threaded Volatility Aggregation Opera-
tor

As introduced in Section 10.4.1 when formally defining the single-threaded version
of the sliding-window based volatility aggregation operator executed by the V PT
thread in the previous iteration of the stream processing engine, what the single-
threaded volatility aggregation operator maintained for each traded symbol was
a circular buffer of volatility aggregation windows. The size of the aforementioned
buffer was determined by the MAXW boundary, derived from the window size, WS,
and window advance, WA, parameters of the underlying sliding-window model as
introduced in Equation 10.10, which determined the maximum number of windows
to be maintained in memory at a time. This circular buffer made it possible for
V PT to assign the tuples processed by the stream processing engine, which arrived
in non-decreasing timestamp order, the volatility resulting from consuming the last
window they did not contribute to, and to let each of them contribute to the up to
MAXW windows they should contribute to according to their timestamp, ts.

As it could be seen in Section 10.4.1 when analyzing the cost of the single-threaded
volatility aggregation operation in terms of execution time, the O(MAXW) contri-
butions to the execution time overhead of the single-threaded operator came from
the iteration over all the up to MAXW volatility aggregation windows every time
a window was consumed and that window together with all the older windows still
present in wbuff had to be reset in the loops in lines 8-9 and 13-14 in Listing
10.2, and the iteration over all the up to MAXW windows a tuple contributed to,
updating the affected windows in the loop in lines 15-16 in Listing 10.2. These
O(MAXW) contributions are actually the reason, as anticipated in the introduction

105

11. Multi-Threaded Volatility Aggregation

of this chapter, why the problem of parallelizing the sliding-window-based volatility
operator is approached in this chapter and it is worth analyzing them in order to
determine how to properly parallelize the operator.

The first observation which is worth doing is about the inter-dependability among
different windows in the underlying sliding-window model. As it could be seen in
Section 10.4.1, one tuple can contribute to many windows according to its times-
tamp, which motivated the aforementioned long loops, but once a tuple has con-
tributed to a window, this contribution does not affect at all how it contributes to
other windows as it can be seen when analyzing the update procedure introduced
in lines 4-7 in Listing 10.1. The same observation can be done for the reset and
consume procedures introduced in the same listing. For this reason, is feasible to
simply partition the wbuff circular buffer formerly maintained by the V PT thread
for each traded symbol letting each of the m V PT threads in the current iteration
of the stream processing engine maintain a portion of wbuff containing MAXWT
volatility aggregation windows, as expressed in Equation 11.1 below, instead of all
the MAXW volatility aggregation windows maintained by the former V PT thread
in the previous iteration.

MAXWT = dMAXW/me (11.1)

Given the order in which the different windows in the former wbuff circular buffer
were iterated in all the loops in Listing 10.2, always in ascending window identifier
order iterating through all the consecutive windows from the first window in the loop
to the last one, partitioning the wbuff array in a round robin fashion distributing
each set of m consecutive volatility aggregation windows among the m available
V PT threads, would ensure that the workload represented by the former loops is
equally distributed among the m V PT threads. In particular, this would ensure
that each of the m V PT threads would iterate through up to MAXWT windows,
being the difference between the number of iterations of each loop performed by one
V PT thread or another lower than or equal to one.

The last observations motivate the definition of two new transformations, in ad-
dition to the ones introduced in Section 10.4.1, in order to formally define the
multi-threaded version of the sliding-windows based volatility aggregator.

The first of these transformations can be defined from the domain of circular
buffer indexes introduced in Section 10.4.1, to the range of V PT thread identifiers,
as expressed in Equation 11.2.

f : Z → T (11.2)

• Z: the circular buffer indexes space, {0, ...,MAXW− 1}.
• T : the V PT thread identifiers space, {0, ...,m− 1}.

106

11. Multi-Threaded Volatility Aggregation

The transformation BIDX_TID determines the identifier of the V PT thread to
which the given index of the former wbuff circular buffer of MAXW volatility
aggregation windows will be assigned, as expressed in Equation 11.3.

BIDX_TID : Z −→ T
bidx −→ BIDX_TID(bidx) = bidx mod m

(11.3)

The second of these transformations can be defined also from the domain of circu-
lar buffer indexes introduced in Section 10.4.1, to the range of circular buffer subset
indexes maintained by each V PT thread, as expressed in Equation 11.4.

f : Z → W (11.4)
• Z: the circular buffer indexes space, {0, ...,MAXW− 1}.
• W : the circular buffer subset indexes space, {0, ...,MAXWT− 1}.

The transformation BIDX_TBIDX determines the index in the wbuff subset
maintained by the corresponding V PT thread to which the given index of the former
wbuff circular buffer will correspond, as expressed in Equation 11.5.

BIDX_TBIDX : Z −→ W
bidx −→ BIDX_TBIDX(bidx) = bbidx/mc (11.5)

Figure 11.4: Illustration of the BIDX_TID, and BIDX_TBIDX transformations.
WS = 7, WA = 2, m = 2

Figure 11.4 illustrates the BIDX_TID, and BIDX_TBIDX transformations in-
troduced above building on top of the sliding-window diagram introduced in Figure
10.4 in Section 10.4.1 with WS = 7, WA = 2, and in this section m = 2, which
led to MAXW = 4 as discussed in Section 10.4, and MAXWT = 2 according to
Equation 11.1. As it can be seen, the windows which were assigned to index 0 in the
former wbuff maintained by V PT in the previous iteration of the financial stream
processing engine are assigned to the V PT thread with identifier 0 in this sixth it-
eration of the financial stream processing engine by the BIDX_TID transformation,
occupying in the subset of wbuff maintained by this thread the position with index
0 according to the BIDX_TBIDX transformation. Similarly, the windows which
were assigned to index 1 are assigned to the V PT thread with identifier 1 occupying

107

11. Multi-Threaded Volatility Aggregation

the position with index 0, the windows which were assigned to index 2 are assigned
to the V PT thread with identifier 0 occupying this time the position with index 1,
and finally the windows which were assigned to index 3 are assigned to the V PT
thread with identifier 1 occupying the position with index 1.

Having formally defined the BIDX_TID, and BIDX_TBIDX transformations as
well as the MAXWT boundary, the multi-threaded sliding-window based volatility
aggregation operator executed by the V PT threads can be formally defined.

First of all, the sliding-window-based volatility aggregator for a given traded sym-
bol maintaining a circular buffer of MAXW volatility aggregation windows formally
defined as a data-structure with three variables in Section 10.4.1 can be redefined
with the same three variables, but reducing the size of wbuff from MAXW to
MAXWT, and adding a fourth variable to store the corresponding V PT thread
identifier:

• V PT thread identifier (tid): the V PT thread identifier variable, henceforth
referred to as tid, stores the thread identifier of the V PT thread which owns the
current instance of parallel volatility aggregator in order to keep track of which
subset of the original wbuff circular buffer of MAXW volatility aggregation
windows is represented by the new wbuff variable which maintains MAXWT
of the original MAXW volatility aggregation windows.

For each of the tuples with the same symbol as the underlying stock associated
to the parallel volatility aggregator there is, as it happened in Section 10.4.1 with
the single-threaded volatility aggregator, one single way to interact with the it con-
sisting on letting the parallel aggregator process the tuple. This procedure involves
providing the tuple ts, tp, and tv fields to the aggregator in order for it to assign the
tuple a volatility value resulting from the consumption of the window whose iden-
tifier is PREV_WIN(ts) if and only if that window is assigned by the BIDX_TID
transformation to its subset of the original wbuff , and to update all the windows in
the range {FIRST_WIN(ts), ..., LAST_WIN(ts)} maintained in its subset of the
original wbuff providing the tp and ts values as discussed in Section 10.4.1 when
introducing the update procedure for the volatility aggregation window.

Listing 11.1: Multi-threaded sliding-window-based volatility aggregator for a sin-
gle traded symbol pseudocode

1 pVo la t i l i t yAgg r ega to r
2 wbuff [MAXWT] , l a s t t s = 0 , l a s t v = 0 , t i d
3
4 FIRST_WINL(ts , t i d) =
5 i f (BIDX_TID(WIN_BIDX(FIRST_WIN(t s))) <= t i d)
6 FIRST_WIN(t s)+t id−BIDX_TID(WIN_BIDX(FIRST_WIN(t s)))
7 else
8 FIRST_WIN(t s)+t id−BIDX_TID(WIN_BIDX(FIRST_WIN(t s)))+m
9
10 PREV_WINR(ts , t i d) =

108

11. Multi-Threaded Volatility Aggregation

11 i f (BIDX_TID(WIN_BIDX(PREV_WIN(t s))) >= t id)
12 PREV_WIN(t s)+t id−BIDX_TID(WIN_BIDX(PREV_WIN(t s)))
13 else
14 PREV_WIN(t s)+t id−BIDX_TID(WIN_BIDX(PREV_WIN(t s)))−m
15
16 LAST_WINR(ts , t i d) =
17 i f (BIDX_TID(WIN_BIDX(LAST_WIN(t s))) >= t id)
18 LAST_WIN(t s)+t id−BIDX_TID(WIN_BIDX(LAST_WIN(t s)))
19 else
20 LAST_WIN(t s)+t id−BIDX_TID(WIN_BIDX(LAST_WIN(t s)))−m
21
22 processTuple (ts , tp , tv)
23 i f (PREV_WIN(l a s t t s) < PREV_WIN(t s) and
24 PREV_WIN(t s) − PREV_WIN(l a s t t s) <= MAXW)
25 i f (BIDX_TID(WIN_BIDX(PREV_WIN(t s))) == t id)
26 l a s t v = wbuff [BIDX_TBIDX(WIN_BIDX(PREV_WIN(t s)))]
27 . consume ()
28 for (i = FIRST_WINL(l a s t t s , t i d) to
29 PREV_WINR(ts , t i d)
30 in s t ep s o f s i z e m)
31 wbuff [BIDX_TBIDX(WIN_BIDX(i))] . r e s e t ()
32 else i f (PREV_WIN(l a s t t s) < PREV_WIN(t s) and
33 PREV_WIN(t s) − PREV_WIN(l a s t t s) > MAXW)
34 i f (BIDX_TID(WIN_BIDX(PREV_WIN(t s))) == t id)
35 l a s t v = 0
36 for (i = 0 to MAXWT − 1)
37 wbuff [i] . r e s e t ()
38 for (i = FIRST_WINL(ts , t i d) to
39 LAST_WINR(ts , t i d)
40 in s t ep s o f s i z e m)
41 wbuff [BIDX_TBIDX(WIN_BIDX(i))] . update (tp , tv)
42 l a s t t s = t s
43 i f (BIDX_TID(WIN_BIDX(PREV_WIN(t s))) == t id)
44 return l a s t v

Listing 11.1 formally defines the parallel sliding-window-based volatility aggrega-
tor for a given traded symbol introduced above. Lines 1-2 represent the structure
of the parallel aggregator, pVolatilityAggregator, with the aforementioned vari-
able, wbuff , having space in this sixth iteration of the stream processing engine for
MAXWT volatilityWindow instances, the lastts, and lastv variables initialized to
0 by default, and the aforementioned tid variable storing the thread identifier of the
corresponding V PT thread.

The FIRST_WINL transformation represented in lines 4-8 adapts the FIRST_WIN
transformation introduced in Section 10.4.1 to the scope of the loops iterated by

109

11. Multi-Threaded Volatility Aggregation

the parallel volatility aggregator. Instead of determining the identifier of the first
window a tuple contributes to; it determines the index of the first window assigned
to the thread with identifier tid whose window identifier is higher than the identifier
of the window determined by the former FIRST_WIN transformation.

Similarly, the PREV_WINR, and LAST_WINR transformations respectively represented
in lines 10-14, and 16-20, respectively adapt the PREV_WIN, and LAST_WIN
transformations introduced in Section 10.4.1 to the scope of the loops iterated by
the parallel volatility aggregator. Instead of respectively determining the identifier
of the last window a tuple does not contribute to, and the last window a tuple
contributes to, they respectively determine the indexes of the last windows assigned
to the thread with identifier tid whose window identifiers are lower than the identi-
fier of the windows respectively determined by the former PREV_WIN, and LAST_WIN
transformations.

The processTuple procedure is formally defined in lines 22-44, having the window
consumption and replacement logic in lines 23-37, and the window update logic in
lines 38-41. The assertion in lines 23-24 corresponds to the assertion in lines 5-6 in
Listing 10.2 which checked whether or not the processed tuple given its timestamp,
ts, should trigger the consumption of a window present in the original wbuff . In
case this assertion holds, the window cannot be directly consumed and the resulting
volatility stored in the lastv variable as it was done in line 7 in Listing 10.2 because
in this iteration of the stream processing engine, a window present in the original
wbuff is only present in one of the wbuff subsets maintained by one of the V PT
threads. For this reason, lines 26-27, which perform the aforementioned window
consumption and lastv variable update actions performed in line 7 in Listing 10.2,
are protected by the assertion in line 25 which verifies whether or not the volatility
aggregation window to be consumed is present in the current V PT thread view of
the original wbuff . The loop in lines 28-31 corresponds to the loop in lines 8-9
in Listing 10.2 and makes use of the aforementioned FIRST_WINL and PREV_WINR
transformations to reset in line 31 all the windows present in the current V PT thread
view of wbuff which need no longer be maintained in order to start keeping track
of the subset of the last windows the processed tuple may contribute to which were
not yet present in the current V PT thread view of wbuff . Exactly the same way
as lines 5-31 in Listing 11.1 correspond to lines 5-9 in Listing 10.2 with the addition
of the assertion in line 25 in Listing 11.1, lines 32-37 in Listing 11.1 correspond to
lines 10-14 in Listing 10.2 with the addition of the assertion in line 34 in Listing
11.1 which performs exactly the same check as the one in line 25.

Having updated in case of need the lastv variable and reset the outdated tuples
in the current V PT thread view of wbuff in lines 23-37, the tp and tv values of the
tuple being processed can be used to update all the windows present in the current
V PT thread view of wbuff the processed tuple contributes to according to its
timestamp, ts. This is done using the aforementioned FIRST_WINL and LAST_WINR
transformations in the loop in lines 38-41 which equitatively subdivides the workload
of the loop in lines 15-16 in Listing 10.2 among the m parallel V PT threads. Once

110

11. Multi-Threaded Volatility Aggregation

all the windows have been updated, the lastts variable is updated in line 42 as
it was done in line 17 in Listing 10.2 to keep track of the tuple which was just
processed. Finally, the previously updated if needed lastv value is returned in line
44 representing the volatility value to be assigned to the tuple by the V PT thread
if and only if, as checked in line 43, the window consumed to update the lastv value
was ever present in the current V PT thread view of wbuff . This way, only the
V PT thread in charge of that window adds the v field to the tuple to let the PPT
threads price the corresponding option contract taking into account the aggregated
volatility as in the previous iteration of the financial stream processing engine.

The same way as it was done in the previous iteration of the financial stream
processing engine, having formally defined the parallel sliding-window-based volatil-
ity aggregator for a given traded symbol, the parallel sliding-window-based volatil-
ity aggregator for a set of traded symbols with symbol hash, sh, in the range
{0, ...,MAXSH− 1} can be formally defined as an array with MAXSH pVolatility-
Aggregator instances indexed by symbol hash.

Listing 11.2: Multi-threaded sliding-window-based volatility aggregator for multi-
ple traded symbols pseudocode

1 pVo l a t i l i t yAgg r ega to r s
2 aggrs [MAXSH]
3
4 processTuple (sh , ts , tp , tv)
5 return aggrs [sh] . processTuple (ts , tp , tv)

Listing 11.2 formally defines the multi-threaded sliding-window-based volatility
aggregator for a set of traded symbols with symbol hash, sh ∈ {0, ...,MAXSH− 1}.
As it can be easily seen, the only difference between the pseudocode in this listing and
the pseudocode in Listing 10.3 is the name given to the pVolatilityAggregators
data-structure in line 1 and the data-structure of the items contained in the aggrs
array in line 2, which are pVolatilityAggregator instances in this sixth iteration of
the financial stream processing engine instead of volatilityAggregator instances.

The last described procedure, processTuple, is the one executed by the parallel
V PT threads every time a tuple is retrieved from the ScaleGate instance they share
with IT . In case a volatility value is returned, which will happen, as discussed
above, for one and only one V PT thread for each individual tuple, the tuple will be
added the v field by that V PT thread and added to the ScaleGate instance shared
with the PPT threads followed by a NULL tuple with the same sequence number
as the non-NULL tuple added to the ScaleGate instance to avoid the double latency
problem for single writers in a ScaleGate instance discussed in Section 8.4.1. The
rest of the V PT threads for which a volatility value is not returned, execute the
heartbeat logic introduced in Lines 10-14 in Listing 9.1 in Section 9.3 to expedite
the behavior of the ScaleGate instance shared with the PPT threads exactly the
same way these threads expedite the behavior of the ScaleGate instance they share
with OT .

111

11. Multi-Threaded Volatility Aggregation

It is worth observing that the heartbeat mechanism plays a more crucial role in
the behavior of the ScaleGate instance the V PT and PPT threads share than the
role it played in the behavior of the ScaleGate instance shared by the PPT threads
and OT . The reason for this is that while the PPT threads add tuples to the
ScaleGate instance they share with OT in a round robin fashion having each of the
n PPT threads adding one tuple to the ScaleGate instance for every n processed
tuples, the V PT threads, given the algorithms described above, will have the first
thread adding a set of tuples to the ScaleGate instance until the next window is
consumed triggering the addition of tuples by the second thread instead of the first
one, and so on. With this, the cycle until any V PT thread starts adding tuples
again to the ScaleGate instance after it stops adding tuples is considerably longer
than in the case of the PPT threads making the heartbeat mechanism crucial for
the control of the latency as it will be seen in Sections 13.2.4 and 13.2.5 where the
latency and throughput achieved when executing the parallel volatility aggregation
stage of the stream processing engine respectively alone and followed by the options
pricing stage are reported.

Before concluding this section, it is worth analyzing the complexity of the multi-
threaded sliding-window based volatility aggregation operator in terms of execution
time and memory. As it can easily be seen after a brief analysis of the pseudocode
introduced in Listings 11.1, and 11.2, in addition to the three parameters affecting
the cost of the operator in terms of execution time and memory identified in Section
11.4.1, MAXSH,WS, andWA, the latter two ones determining together the MAXW
boundary as described in Equation 10.10, the number of parallel V PT threads, m,
also determines the cost of the operator. As anticipated when distributing the
MAXW windows in the former wbuff array among the m available V PT threads
and as it can be verified analyzing the loops in lines 28-31, 36-37, and 38-41 in Listing
11.1, the cost of the parallel volatility aggregation operator in terms of execution
time is the one expressed in Equation 11.6:

O(MAXWT) = O(MAXWT/m) = O(WS/WA/m) (11.6)

Following a similar reasoning as when analyzing the expected latency for each
tuple in the fourth iteration of the stream processing engine in Section 9.4.1, in
which the PT threads retrieve tuples from a ScaleGate instance as multiple readers
and serve tuples to a ScaleGate instance as multiple writers, expediting its behavior
with the heartbeat mechanism, exactly the same way as the V PT threads do in this
iteration, the expected latency for each tuple making use of the parallel volatility
aggregation operator is the one expressed in Equation 11.7:

L(m) = O(MAXWT/m) +O(logm) (11.7)

In terms of throughput of the multi-threaded volatility aggregator, given that the
volatility aggregation overhead is equally distributed among the m parallel V PT
threads, and that the synchronization overhead derived from using the input and

112

11. Multi-Threaded Volatility Aggregation

output ScaleGate instances and executing the newly introduced control logic with re-
spect to the previous iteration is orders of magnitude smaller than the multi-threaded
operator overhead (O(logm) << O(WS/WA/m)), the throughput is expected to
grow linearly with the number of threads as expressed in Equation 11.8.

T (m) = m · T (1) (11.8)

Altogether, the expected latency and throughput of the multi-threaded volatility
aggregator having H greater than 0 and close to 1 can be plotted as a function of
the number of parallel V PT threads used.

Figure 11.5: Latency and throughput as a function of the number of parallel V PT
threads

Figure 11.5 plots the expected latency and throughput of the parallel volatility
aggregation operator introduced in this section. It is worth observing how in terms of
latency, as opposed to the expectations shown when executing in parallel the options
pricing operator, the tendency is to decrease inversely proportionally to the number
of volatility aggregation threads, the reason for this is that in this case, the workload
for each individual tuple is distributed among all the volatility aggregation threads
allowing the latency to decrease. In terms of expected throughput, the tendency is
similar to the one observed when executing the options pricing operator in parallel
in previous iterations.

In terms of memory, given the fact that the former wbuff array with MAXW
volatility aggregation windows is partitioned among them V PT threads maintaining
each or them up to MAXWT = dMAXW/me volatility aggregation windows, the
cost of the operator in terms of memory per thread is the one expressed in Equation
11.9, and the cost of the operator at a global level is the one expressed in Equation
11.10 which matches exactly the cost of the single-threaded operator introduced in
the previous chapter:

O(MAXSH ·MAXWT) = O(MAXSH ·MAXW/m) = O(MAXSH ·WS/WA/m)
(11.9)

113

11. Multi-Threaded Volatility Aggregation

O(MAXSH ·MAXW) = O(MAXSH ·WS/WA) (11.10)

11.4.2 Integrating the Multi-Threaded Volatility Aggrega-
tion Operator

Getting back to the stream processing engine diagram from Section 11.3, it
is worth noticing that, as anticipated in Section 11.4.1, and the same way as
in the previous iteration of the stream processing engine, the two main values
that the V PT threads need to be provided with in order to initialize each of the
pVolatilityAggregator instances maintained by the pVolatilityAggregators
instance it uses to support the sliding-windows model, discussed in detail in the
previous section, are WS and WA. Out of the six values that the binomial options
pricing operator uses as an input, tp, os, om, rli, v, and N , two of them, tp, and v,
can be retrieved by the PPT threads from the tuples served by the V PT threads to
the ScaleGate instance they share with them as described in Section 11.3. The rest
of the values are simply taken as constants with the default values introduced in
Section 6.4.2. In addition to this, in this sixth iteration of the stream processing en-
gine the H parameter needs to be specified and provided to both the parallel V PT
threads and the PPT threads to determine whether to use or not the heartbeat
mechanism and how exhaustively to use it.

Figure 11.6: Operators and used constants

Figure 11.6 extends the data-structures diagram introduced in Figure 11.3 to
represent the aforementioned constant values between square brackets close to the
boxes representing the V PT and PPT threads, which execute respectively the multi-
threaded sliding-window-based volatility aggregation operator introduced in the pre-
vious section and the multi-threaded binomial options pricing operator introduced
in Chapter 9 retrieving the volatility, v, as in the previous iteration, from the tuples
instead of taking it as a fixed outdated constant.

Overall, this sixth iteration of the stream processing engine, as anticipated in Sec-
tion 9.4.2, responds to the second line of improvement outlined in the last paragraph
in Section 6.4.2 concluding Chapter 6.

114

12
Multi-Threaded Volatility

Aggregation and Stream Matching

In the previous chapter, the sliding-window-based volatility aggregator introduced
in Chapter 10 was parallelized linearly increasing the throughput expectations at the
same time as the latency expectations were reduced. However, out of the six values
that the options pricing threads provided to the binomial options pricing operator
as an input, tp, os, om, rli, v, and N , yet only two of them, tp, and v, could be
retrieved from the tuples served by the volatility aggregation threads in order to
price option contracts.

In a realistic options pricing setup, in order to profit from the operators so far
introduced and optimized, it is necessary to allow for the specification of the option
strike, os, option maturity, om, and assumed risk-less interest rate, rli, for each of
the options contracts to be priced. As it can be understood, whereas the financial
information contained in the tuples processed in the previous iterations of the stream
processing engine represented the behavior of the underlying market independently
of the actions of the clients willing to acquire option contracts, the aforementioned
information, os, om, and rli, is solely determined by the specific desires the clients of
the financial stream processing engine may have, which needs to be modeled, given
its different nature, as a separate logical stream of data different from the financial
stream of tuples that have been used in the previous iterations.

For this reason, in this chapter the functionality of the stream processing engine
introduced in the previous iteration will be extended in order to support two different
logical streams, the first of them with the same tuples as the financial input stream
that was already processed by the previous versions of the stream processing engine,
the second of them allowing for the specification of the different option contracts
settings.

The following sections elaborate on how the ScaleGate instance the IT and V PT
threads shared in the previous iteration of the stream processing engine can be used
to receive not one but two logical streams of tuples, and how the functionality of the
V PT threads can easily be extended to match the two streams of tuples producing
an extended stream of tuples to be provided to the PPT threads summarizing both
the most relevant and up to date information retrieved from the financial stream of
tuples and the options settings information retrieved from the new stream of option
settings tuples.

115

12. Multi-Threaded Volatility Aggregation and Stream Matching

12.1 Involved Threads
As anticipated above, this seventh iteration of the financial stream processing

engine profits from the semantics of the ScaleGate instance which the input thread,
IT , and the volatility aggregation threads, V PT , shared in the previous iteration
in order to input not only one logical stream of financial tuples as it was done in
all the previous iterations of the stream processing engine, but also a second logical
stream of option settings in order to specify for each option contract to be priced
the option strike, os, option maturity, om, and assumed risk-less interest rate, rli.

With this, the former IT thread is renamed to FIT to specify that it takes care
of serving the financial input stream of tuples, and the new SIT thread is added to
serve the settings input stream of tuples. In addition to this, the functionality of
the former V PT threads is extended in order to match the two streams of tuples as
it will be explained in detail in Section 12.4.1, which motivates its change of name
in this iteration of the financial stream processing engine from V PT to WPT .

Figure 12.1: Involved threads

Figure 11.1 outlines how threads are arranged in this seventh iteration of the
financial stream processing engine. As anticipated above, the former IT thread has
been replaced by the FIT and SIT threads, the former serving the same stream of
tuples IT served and the latter serving the new stream of tuples to determine for
each specific option contract to be priced the option strike, os, option maturity, om,
and the assumed risk-less interest rate, rli. The former V PT threads have been
renamed to WPT given their extended functionality, and the PPT threads and OT
remain exactly the same as in the previous iteration with the only difference that
the PPT threads will now retrieve from the tuples served by the WPT threads, not
only the tp and v fields, but also the os, om, and rli fields.

12.2 Structure of the Tuples
In this seventh iteration of the financial stream processing engine, input financial

tuples are retrieved from the input financial stream introduced in Section 5.1.1 by
FIT , and input options settings tuples are retrieved from the input options settings
stream introduced in Section 5.1.2 by SIT . Both streams of tuples are matched by
the WPT threads as it will be explained in detail in Section 12.4.1 resulting in an
extended streams of tuples which will be further extended by the PPT threads and
OT allowing the latter thread to output a stream of tuples with the same options
settings, and in the same order as the tuples served by the SIT thread, with the most

116

12. Multi-Threaded Volatility Aggregation and Stream Matching

up to date financial information added by the WPT threads from the tuples served
by the FIT thread and with an option price assigned based on all this information
by the PPT threads.

Figure 12.2: Structure of the tuples

Figure 12.2 extends the involved threads diagram introduced in Figure 12.1 spec-
ifying the structure of the tuples in each transition from one thread to another as
well as the structure of the tuples read by FIT and SIT , and the tuples output by
OT .

Each tuple read by FIT from the input financial stream, as described in Section
5.1.1, represents, as in the previous iterations of the stream processing engine the
tuples read by IT represented, a trade transaction in which a given number of shares
of a given stock are traded at a given price per share, at a given instant of time. To
model this, the input financial tuples contained six fields in the previous iterations of
the stream processing engine, <ts, seq, s, sh, tv, tp>. However, given the addition
of a second logical stream of tuples, a new additional field needs to be added to
these tuples to specify the logical stream type once they reach the WPT threads,
extending the structure of the tuples retrieved by FIT from six to seven fields <st,
ts, seq, s, sh, tv, tp>:

• Stream Type (st): the stream type field, henceforth referred to as st, is
the value identifying the logical stream of tuples to which the tuple belongs.
This field is internally modeled as a char value uniquely identifying the logical
stream type. Its value is ’F’ for all the tuples belonging to the stream served
by FIT .

Each tuple read by SIT from the input options settings stream, as described in
Section 5.1.2, represents an option contract to be priced for a given underlying stock,
at a given time, with a given strike and maturity assuming a given risk-less interest
rate. To model this, the input financial tuples contain eight fields, <st, ts, seq, s,
sh, os, om, rli>:

• Stream Type (st): the stream type field, henceforth referred to as st, has the
same function and internal representation as the st field in the financial tuples
read by FIT described above. Its value is ’S’ for all the tuples belonging to
the stream served by SIT .

• Timestamp (ts): the timestamp field, henceforth referred to as ts, is the
value representing the physical timestamp when the option contract starts
being effective. This field is internally modeled the same way as the so called
field is modeled in the financial input tuples read by FIT .

117

12. Multi-Threaded Volatility Aggregation and Stream Matching

• Sequence number (seq): the sequence number field, henceforth referred to
as seq, is the value representing the unique sequence number assigned to each
tuple in the input options settings stream and behaves as a logical timestamp
indicating the precedence order of the tuples in the stream the same way the
so called field behaved in the financial stream of tuples read by FIT . This
field is internally modeled the same way as the so called field is modeled in
the financial input tuples read by FIT .

• Symbol (s): the symbol field, henceforth referred to as s, is the value repre-
senting the underlying security symbol as the so called field represented in the
financial input tuples read by FIT . This field is internally modeled the same
way as the so called field is modeled in the financial input tuples read by FIT .

• Symbol hash (sh): the symbol hash field, henceforth referred to as sh, is the
value representing the unique hash value assigned to the underlying security
symbol as the so called field represented in the financial input tuples read by
FIT . This field is internally modeled the same way as the so called field is
modeled in the financial input tuples read by FIT , and it is used by theWPT
threads to match the two streams of tuples together with the ts field as it will
be explained in detail in Section 12.4.1.

• Option strike (os): the option strike field, henceforth referred to as os, repre-
sents the price at which the European call option contract gives the buyer the
right to buy shares of the underlying asset at the expiration date. This field
is internally modeled as a double value accounting for the price the buyer has
the right, but not the obligation, to pay per share of the underlying asset at
the expiration date, in accordance to how it is provided to the options pricing
operator as specified in Section 6.4.1.

• Option time to maturity (om): the option time to maturity field, hence-
forth referred to as om, represents the time from the option pricing instant
to the expiration date of the option contract. This field is internally modeled
as a double value accounting for the number of years from the option pricing
instant to the expiration date of the priced option contract, in accordance to
how it is provided to the options pricing operator as specified in Section 6.4.1.

• Risk-less interest rate (rli): the risk-less interest rate field, henceforth re-
ferred to as rli, represents the assumed to be guaranteed by the market risk-less
interest rate. This value is internally modeled as a double value accounting
for the assumed guaranteed continuous risk-less interest rate, in accordance to
how it is provided to the options pricing operator as specified in Section 6.4.1.

The same way as the IT thread in the previous iterations of the financial stream
processing engine added all the tuples the sts timestamp to keep track of when the
tuples started being processed, it is the new SIT thread in this iteration of the
stream processing engine the one in charge of adding the tuples the sts timestamp
given the fact that the options settings tuples are the ones which really trigger the
event of pricing an option contract.

118

12. Multi-Threaded Volatility Aggregation and Stream Matching

12.3 Used Data-Structures
As anticipated earlier in this chapter, this iteration of the stream processing engine

profits from the semantics of the ScaleGate instance the former IT and V PT threads
shared in the previous iteration of the stream processing engine to let the newly
introduced FIT and SIT threads provide tuples belonging to the financial and
options settings logical streams ordered by logical and physical timestamp to the
WPT threads.

Figure 12.3: Used data-structures

Figure 12.3 extends the structure of the tuples diagram introduced in Figure 12.2
specifying the data-structures used in each transition from one thread to another.
As it can be seen, the only difference with respect to the data-structures diagram
introduced in Figure 11.3 in Section 11.3, is the fact that now the FIT and SIT
threads act as multiple writers in the first ScaleGate instance in contrast with how
the IT thread acted in the previous iteration of the stream processing engine as a
single writer.

The WPT threads act as multiple readers in the first ScaleGate instance and
multiple writers in the second ScaleGate instance the same way as the former V PT
threads did in the previous iteration of the stream processing engine. The PPT
threads act as multiple readers in the second ScaleGate instance and multiple writers
in the third ScaleGate instance the same way they did in the previous iteration of
the stream processing engine. And OT acts as a single reader in the third ScaleGate
instance as it did in the previous iteration of the stream processing engine.

12.4 Behavior of the Operators
As anticipated in Section 12.2, in addition to updating the underlying sliding-

window model as the V PT threads did in the previous iteration of the financial
stream processing engine, theWPT threads in this iteration of the stream processing
engine will match the tuples served by SIT with the most recent tuples served by
FIT with the same underlying stock symbol in order to extend the tuples served by
SIT with the most up to date financial information from the financial stream served
by FIT . This allows the PPT threads to provide the options pricing procedure with
the os, om, and rli fields specified in the options settings stream served by SIT ,
the tp field from the most recent financial tuple served by FIT which matched the
corresponding options settings tuple served by SIT , and the v field the volatility

119

12. Multi-Threaded Volatility Aggregation and Stream Matching

aggregation operator assigned to the aforementioned financial tuple provided by
FIT .

Section 12.4.1 below elaborates on the formal description of the aforementioned
parallel sliding-window-based volatility aggregation and stream matching operator
and Section 12.4.2 integrates this operator in the data-structures diagram from
Figure 12.3.

12.4.1 The Multi-Threaded Volatility Aggregation and Stream
Matching Operator

In order to formally define the multi-threaded volatility aggregation and stream
matching operator, it is worth starting by extending the definition of the sliding-
window-based multi-threaded volatility aggregator for a given traded symbol intro-
duced in Section 11.4.1, pVolatilityAggregator, which was defined as a data-
structure with four variables. The first of these variables, wbuff , maintained up to
MAXWT of all the MAXW windows in its view of the global wbuff circular buffer
introduced in Section 10.4.1, the second and third of them, lastts, and lastv, kept
track respectively of the last processed financial tuple physical timestamp and the
volatility value assigned to it, and the fourth of them, tid, stored the correspond-
ing V PT thread identifier, WPT thread identifier in this iteration of the financial
stream processing engine. In addition to these four variables, in order to support
the stream matching functionality, two additional variables are needed to keep track
of the tp and tv fields of the last processed financial tuple:

• Last trade price (lasttp): the last trade price variable, henceforth referred
to as lasttp, stores the tp field of the last financial tuple processed by the
aggregator and stream matcher in order to make it possible for the WPT
threads to add the option settings tuples the most recently seen trade price in
the financial stream of tuples.

• Last trade volume (lasttv): the last trade volume variable, henceforth re-
ferred to as lasttv, stores the tv field of the last financial tuple processed by
the aggregator and stream matcher in order to make it possible for the WPT
threads to add the option settings tuples the most recently seen trade volume
in the financial stream of tuples.

For each of the financial or options settings tuples with the same symbol as the
underlying stock associated to the multi-threaded volatility aggregator and stream
matcher there is, as it happened in Section 11.4.1 with the multi-threaded volatility
aggregator, one single way to interact with it consisting on letting the parallel ag-
gregator and stream matcher process the tuple. This procedure involves, in case the
tuple belongs to the financial stream of tuples served by FIT , performing the same
actions the aggregator introduced in the previous iteration of the stream processing
engine performed but keeping track of the assigned volatility and the provided tp
and tv fields instead of outputting the assigned volatility, and in case the tuple be-
longs to the options settings stream of tuples served by SIT , providing the volatility,
trade price and trade volume values kept track of to let the corresponding WPT

120

12. Multi-Threaded Volatility Aggregation and Stream Matching

thread extend the tuple with the most up to date financial information from the
financial stream of tuples.

Listing 12.1: Multi-threaded sliding-window-based volatility aggregator and
stream matcher for a single traded symbol pseudocode

1 pVolat i l i tyAggregatorM
2 wbuff [MAXWT]
3 l a s t t s = 0 , l a s t v = 0 , t id , l a s t t v = 0 , l a s t t p = 0
4
5 processTuple (st , ts , [tp , tv])
6 i f (s t == ’F ’)
7 i f (PREV_WIN(l a s t t s) < PREV_WIN(t s) and
8 PREV_WIN(t s) − PREV_WIN(l a s t t s) <= MAXW)
9 i f (BIDX_TID(WIN_BIDX(PREV_WIN(t s))) == t id)
10 l a s t v = wbuff [BIDX_TBIDX(WIN_BIDX(PREV_WIN(t s)))]
11 . consume ()
12 for (i = FIRST_WINL(l a s t t s , t i d) to
13 PREV_WINR(ts , t i d)
14 in s t ep s o f s i z e m)
15 wbuff [BIDX_TBIDX(WIN_BIDX(i))] . r e s e t ()
16 else i f (PREV_WIN(l a s t t s) < PREV_WIN(t s) and
17 PREV_WIN(t s) − PREV_WIN(l a s t t s) > MAXW)
18 i f (BIDX_TID(WIN_BIDX(PREV_WIN(t s))) == t id)
19 l a s t v = 0
20 for (i = 0 to MAXWT − 1)
21 wbuff [i] . r e s e t ()
22 for (i = FIRST_WINL(ts , t i d) to
23 LAST_WINR(ts , t i d)
24 in s t ep s o f s i z e m)
25 wbuff [BIDX_TBIDX(WIN_BIDX(i))] . update (tp , tv)
26 l a s t t s = t s
27 i f (BIDX_TID(WIN_BIDX(PREV_WIN(t s))) == t id)
28 l a s t t p = tp
29 l a s t t v = tv
30 else i f (s t == ’S ’)
31 i f (BIDX_TID(WIN_BIDX(PREV_WIN(t s))) == t id)
32 return <la s t tp , l a s t t v , l a s tv>

Listing 12.1 formally defines the parallel sliding-window-based volatility aggrega-
tor and stream matcher for a given traded symbol introduced above. Lines 1-3 repre-
sent the structure of the parallel aggregator and stream matcher, pVolatilityAggr-
egatorM, with the aforementioned variable, wbuff , having space as in the previous
iteration of the stream processing engine for MAXWT volatilityWindow instances,
the lastts, and lastv variables initialized to 0 by default, the aforementioned tid vari-
able storing the thread identifier of the corresponding WPT thread, and the new
lastv, and lasttp variables also initialized to 0 by default.

121

12. Multi-Threaded Volatility Aggregation and Stream Matching

The processTuple procedure is formally defined in lines 5-32. The two last
input parameters, corresponding to the tp, and tv fields of the financial tuples are
represented in brackets as optional parameters because only when processing tuples
belonging to the financial stream these parameters can be provided and used inside
the procedure. The assertion in line 6 checks whether the tuple belongs to the
financial stream of tuples served by FIT or the options settings stream of tuples
served by SIT . In case it belongs to the former, lines 7-29 are executed which
perform the same actions as lines 23-44 in Listing 11.1 with the exception of lines
28 and 29 which, instead of returning the volatility value to extend the financial
tuples as line 44 in Listing 11.1 did in the previous iteration, keep track of the
processed tuple trade price, tp, and trade volume, tv, updating respectively the
lasttp, and lasttv variables and not returning anything. This way, theWPT threads
can execute the heartbeat mechanism for every tuple they process belonging to the
financial input stream, and any time a tuple belonging to the options settings stream
arrives, the values stored in the lasttp and lasttv correspond to the most recently
processed tuple belonging to the financial stream of tuples served by FIT . In case
the assertion in line 6 fails because the tuple belongs to the options settings stream,
the assertion in line 30 confirms if the tuple belongs to the options settings stream
and in case it does, the assertion in line 31 checks if the window consumed to update
the lastv value was ever present in the current WPT thread view of wbuff , and
line 32 returns, only for the WPT thread in which the assertion in line 31 holds,
the lasttp, lasttv, and lastv values to let the WPT thread extend the tuple with
the financial information from the last processed financial tuple.

The same way as it was done in the previous iteration of the financial stream
processing engine, having formally defined the parallel sliding-window-based volatil-
ity aggregator and stream marcher for a given traded symbol, the parallel sliding-
window-based volatility aggregator and stream matcher for a set of traded symbols
with symbol hash, sh, in the range {0, ...,MAXSH− 1} can be formally defined
as an array with MAXSH pVolatilityAggregatorM instances indexed by symbol
hash.

Listing 12.2: Multi-threaded sliding-window-based volatility aggregator and
stream matcher for multiple traded symbols pseudocode

1 pVolat i l i tyAggregatorMs
2 aggrs [MAXSH]
3
4 processTuple (sh , ts , [tp , tv])
5 i f (s t == ’F ’)
6 aggrs [sh] . processTuple (ts , tp , tv)
7 else i f (s t == ’S ’)
8 return aggrs [sh] . processTuple (t s)

Listing 12.2 formally defines the multi-threaded sliding-window-based volatility
aggregator and stream matcher for a set of traded symbols with symbol hash, sh ∈

122

12. Multi-Threaded Volatility Aggregation and Stream Matching

{0, ...,MAXSH− 1}. Similarly as it happened in the previous chapter, the pseu-
docode in this listing differs from the pseudocode in Listing 11.2 in the name given
to the pVolatilityAggregatorMs data-structure in line 1, and the data-structure of
the items contained in the aggrs array in line 2, which are pVolatilityAggregatorM
instances in this seventh iteration of the financial stream processing engine instead
of pVolatilityAggregator instances. In addition to this, the two last input pa-
rameters in the processTuple procedure in line 4, corresponding to the tp, and tv
fields of the financial tuples are represented in brackets as optional parameters as
it happened in line 5 in Listing 12.1, and the assertions in lines 5, and 7 are added
to determine whether to provide or not the tp, and tv input parameters to the cor-
responding volatility aggregator and stream matcher instance according to whether
the tuple belongs to the financial stream of tuples served by FIT or the options
settings stream of tuples served by SIT .

The last described procedure, processTuple, is the one executed by the parallel
WPT threads every time a tuple is retrieved from the ScaleGate instance they
share with FIT and SIT . In case the lasttp, lasttv, and lastv values are returned,
which will happen, as discussed above, for one and only one WPT thread for each
individual options settings tuple, the tuple will be added the tp, tv, and v fields
by that WPT thread and added to the ScaleGate instance shared with the PPT
threads followed by a NULL tuple with the same sequence number as the non-NULL
tuple added to the ScaleGate instance to avoid the double latency problem for
single writers in a ScaleGate instance discussed in Section 8.4.1. In case nothing is
returned, the heartbeat logic introduced in Lines 10-14 in Listing 9.1 in Section 9.3
is executed to expedite the behavior of the ScaleGate instance shared with the PPT
threads exactly the same way it was done in the previous iteration.

Before concluding this section, it is worth analyzing the complexity of the multi-
threaded sliding-window based volatility aggregation and stream matching operator
in terms of execution time and memory. As it can easily be seen after a brief analysis
of the pseudocode introduced in Listings 12.1, and 12.2, the same four parameters
identified in Section 11.4.1, MAXSH,WS, andWA, the latter two ones determining
together the MAXW boundary as described in Equation 10.10, and the number of
parallel WPT threads, m, determine the cost of the operator in terms of execution
time and memory. Given the fact that the assertions in lines 6 and 30 in Listing
12.1, the assertion in line 31 in Listing 12.1, the variable updates in lines 28 and
29 in Listing 12.1, the return action in line 32 in Listing 12.1, and the assertions
in lines 5 and 7 in Listing 12.2 have all O(1) execution time cost and the rest of
the code is exactly the same as the one analyzed in the previous iteration of the
stream processing engine, the cost of the parallel volatility aggregation and stream
matching operator in terms of execution time has the same big O notation as the
cost of the parallel volatility aggregation operator as expressed in Equation 12.1:

O(MAXWT) = O(MAXWT/m) = O(WS/WA/m) (12.1)

123

12. Multi-Threaded Volatility Aggregation and Stream Matching

Following a similar reasoning as in the previous iteration, the expected latency
for each tuple making use of the parallel volatility aggregation as stream matching
operator is the one expressed in Equation 12.2:

L(m) = O(MAXWT/m) +O(logm) (12.2)

In terms of throughput of the multi-threaded volatility aggregator and stream
matcher, given that the volatility aggregation overhead is equally distributed among
the m parallel WPT threads, and that the synchronization overhead derived from
using the input and output ScaleGate instances and executing the newly introduced
control logic with respect to the previous iteration is orders of magnitude smaller
than the multi-threaded operator overhead (O(logm) << O(WS/WA/m)), the
throughput is expected to grow linearly with the number of threads as expressed in
Equation 12.3.

T (m) = m · T (1) (12.3)

Altogether, the expected latency and throughput of the multi-threaded volatility
aggregator and stream matcher havingH greater than 0 and close to 1 can be plotted
as a function of the number of parallel WPT threads used.

Figure 12.4: Latency and throughput as a function of the number of parallelWPT
threads

Figure 12.4 plots the expected latency and throughput of the parallel volatility
aggregation and stream matching operator introduced in this section. The observed
expected latency and throughput trends are the same as in the previous iteration
for the parallel volatility aggregation operator.

In terms of memory, given the fact that the two new variables added to the
pVolatilityAggregatorM data structure, lasttv, and lasttp, occupy O(1) space in
memory each, the cost of the operator in terms of memory per thread is, as in
the case of the operator introduced in the previous chapter, the one expressed in
Equation 12.4, and the cost of the operator at a global level is the one expressed

124

12. Multi-Threaded Volatility Aggregation and Stream Matching

in Equation 12.5 which matches exactly the cost of the single-threaded operator
introduced in Chapter 10:

O(MAXSH ·MAXWT) = O(MAXSH ·MAXW/m) = O(MAXSH ·WS/WA/m)
(12.4)

O(MAXSH ·MAXW) = O(MAXSH ·WS/WA) (12.5)

12.4.2 Integrating the Multi-Threaded Volatility Aggrega-
tion and Stream Matching Operator

Getting back to the stream processing engine diagram from Section 12.3, it is worth
noticing that, as anticipated in Section 12.4.1, and the same way as in the previous
iteration of the stream processing engine, the two main values that theWPT threads
need to be provided with in order to initialize each of the pVolatilityAggregatorM
instances maintained by the pVolatilityAggregatorMs instance it uses to support
the sliding-windows model discussed in detail in the previous section are WS and
WA. Out of the six values that the binomial options pricing operator uses as an
input, tp, os, om, rli, v, and N , five of them, tp, os, om, rli and v, can be retrieved in
this seventh iteration of the stream processing engine by the PPT threads from the
tuples served by the WPT threads to the ScaleGate instance they share with them
as described in Section 12.3. The remaining N value is simply taken as constant with
the default value introduced in Section 6.4.2 as it is understood to be an algorithm
performance and result quality configuration value independent from the behavior of
the market and the desires of the stream processing engine users. In addition to this,
as in the sixth iteration of the stream processing engine, the H parameter needs to
be specified and provided to both the parallel WPT threads and the PPT threads
to determine whether to use or not the heartbeat mechanism and how exhaustively
to use it.

Figure 12.5: Operators and used constants

Figure 12.5 extends the data-structures diagram introduced in Figure 12.3 to rep-
resent the aforementioned constant values between square brackets close to the boxes
representing the WPT and PPT threads, which execute respectively the multi-
threaded sliding-window-based volatility aggregation and stream matching operator
introduced in the previous section and the multi-threaded binomial options pric-
ing operator introduced in Chapter 9 retrieving in addition to the trade price, tp
and volatility, v, from the tuples, also the option strike, os, option maturity, om,

125

12. Multi-Threaded Volatility Aggregation and Stream Matching

and risk-less interest rate, rli, this instead of taking them as a fixed not-very-useful
constants.

Overall, this seventh iteration of the stream processing engine, as anticipated
in Section 9.4.2, responds to the second line of improvement outlined in the last
paragraph in Section 6.4.2 concluding Chapter 6.

126

13
Experimental Results and Analysis

Having formally described in the previous seven chapters, Chapters 6-12, the fi-
nancial stream processing engine developed in the context of this Thesis, this chapter
reports the throughput and latency median metrics obtained when executing in the
machines introduced in Section 5.4.2 the different financial stream processing engine
configurations introduced in Chapters 6-12.

Section 13.1 below briefly summarizes the experimental setup describing how the
experiments were performed and introducing the abbreviations used in Section 13.2
to refer to the different financial stream processing engine configurations used in
the different experiments. Section 13.2 reports the obtained throughput and la-
tency metrics and discusses them comparing them whenever it is possible with the
throughput and latency expectations introduced in Chapters 6-12 when theoretically
analyzing the cost of the different algorithms in terms of execution time.

13.1 Experimental setup
The experimental framework introduced in Chapter 5 has been used to quanti-

tatively assess the quality of the different designs introduced in Chapters 6-12 in
terms of achieved throughput and latency.

All the iterations of operators introduced in Chapters 6-12 have been tested both
in an isolated manner and together with the other operators in the pipeline in order
to asses both their individual performance and scalability and the way they perform
and scale in conjunction with other operators in case the corresponding iteration
involves more than one operator as it happens in Chapters 10-12.

In order to refer to the different stream processing engine configurations a mnemonic
notation has been established with three characters to identify each experimental
configuration as follows:

• Prefix: The first character is always the prefix ’E’ from experimental config-
uration.

• Iteration: The second character is a single digit specifying which iteration of
the stream processing engine the configuration corresponds to, 1 referring to
the first iteration introduced in Chapter 6, 2 referring to the second iteration
introduced in Chapter 7, and so on.

127

13. Experimental Results and Analysis

• Suffix: The last character specifies whether the configuration corresponds to
the full configuration introduced in the corresponding chapter or to a subset
or variation of it in order to asses the individual performance of a newly intro-
duced operator or optimization of an operator in the corresponding iteration
of the stream processing engine:
– Full configuration (F): The ’F’ suffix indicates that the configuration

corresponds to the full configuration illustrated in the last figure in the
corresponding chapter.

– Partial configuration (P): The ’P’ suffix indicates that the configu-
ration corresponds to a subset of the full configuration illustrated in the
last figure in the corresponding chapter in order to test only the operator
which is described in detail in the operators description section in that
chapter.

– Combined configuration (C): The ’C’ suffix indicates for the last two
iterations of the stream processing engine introduced in Chapters 11 and
12 that the two kinds of process thread have been merged together letting
each process thread price an option contract right after the same thread
has assigned the corresponding tuple an aggregated volatility value.

Below all the configurations whose throughput and latency median metrics are re-
ported and analyzed in the next section are summarized according to the mnemonic
notation introduced above.

• E1F: first iteration full configuration corresponding to the stream processing
engine configuration introduced in Figure 6.7 in Section 6.4.2:
– One options pricing thread, PT , executes the single-threaded binomial

options pricing operator.
– It communicates with the input thread, IT , and the output thread, OT ,

through concurrent queues.
• E2F: second iteration full configuration corresponding to the stream process-

ing engine configuration introduced in Figure 7.5 in Section 7.4.2:
– n OpenMP options pricing threads, the PT threads, are synchronized by

the batching helper thread, BPT , to execute the single-threaded binomial
options pricing operator in parallel for batches of tuples.

– The BPT thread communicates with the input thread, IT , and the out-
put thread, OT , through concurrent queues, and with the OpenMP PT
threads through a shared array.

• E3F: third iteration full configuration corresponding to the stream processing
engine configuration introduced in Figure 8.5 in Section 8.4.2:
– n options pricing threads, the PT threads, execute the single-threaded

binomial options pricing operator in parallel.
– The PT threads compete to retrieve financial tuples from the queue to

which the input thread IT serves them, and share a ScaleGate instance
with the output thread, OT .

• E4F: fourth iteration full configuration corresponding to the stream processing
engine configuration introduced in Figure 9.5 in Section 9.4.2:

128

13. Experimental Results and Analysis

– n options pricing threads, the PT threads, execute the single-threaded
binomial options pricing operator in parallel.

– The PT threads share a ScaleGate instance with the input thread, IT
and another ScaleGate instance with the output thread, OT . They are
able to expedite the behavior of the second ScaleGate instance using the
heartbeat mechanism.

• E5P: fifth iteration partial configuration corresponding to the stream process-
ing engine configuration introduced in Figure 10.8 in Section 10.4.2 excluding
the options pricing threads, PPT threads, and letting the volatility aggrega-
tion thread, V PT serve tuples to the output thread, OT , through a second
queue instance:
– One volatility aggregation thread, V PT , executes the single-threaded

sliding-windows-based volatility aggregation operator.
– It communicates with the input thread, IT , and the output thread, OT ,

through concurrent queues.
• E5F: fifth iteration full configuration corresponding to the stream processing

engine configuration introduced in Figure 10.8 in Section 10.4.2:
– One volatility aggregation thread, V PT , executes the single-threaded

sliding-windows-based volatility aggregation operator.
– n options pricing threads, the PPT threads, execute the single-threaded

binomial options pricing operator in parallel using the volatility values
added to the tuples by V PT .

– The V PT thread communicates with the input thread, IT , through a con-
current queue. It shares with the PPT threads a ScaleGate instance and
the PPT threads share with the output thread, OT , a second ScaleGate
instance whose behavior they can expedite using the heartbeat mecha-
nism.

• E6P: sixth iteration partial configuration corresponding to the stream process-
ing engine configuration introduced in Figure 11.6 in Section 11.4.2 excluding
the options pricing threads, PPT threads, and letting the volatility aggrega-
tion threads, V PT threads, serve tuples to the output thread, OT , through a
second ScaleGate instance:
– m parallel volatility aggregation threads, the V PT threads, execute the

multi-threaded sliding-windows-based volatility aggregation operator.
– The V PT threads share with the input thread, IT , a ScaleGate instance,

and with the output thread, OT , a second ScaleGate instance whose
behavior they can expedite using the heartbeat mechanism.

• E6F: sixth iteration full configuration corresponding to the stream processing
engine configuration introduced in Figure 11.6 in Section 11.4.2:
– m parallel volatility aggregation threads, the V PT threads, execute the

multi-threaded sliding-windows-based volatility aggregation operator.
– n options pricing threads, the PPT threads, execute the single-threaded

binomial options pricing operator in parallel using the volatility values
added to the tuples by the V PT threads.

– The V PT threads share with the input thread, IT , a ScaleGate instance,
and with the PPT threads, a second ScaleGate instance whose behavior

129

13. Experimental Results and Analysis

they can expedite using the heartbeat mechanism. The PPT threads
share with the output thread, OT , a third ScaleGate instance whose
behavior they can also expedite using the heartbeat mechanism.

• E6C: sixth iteration combined configuration corresponding to the stream pro-
cessing engine configuration introduced in Figure 11.6 in Section 11.4.2 but
combining the V PT and PPT threads together to form V PPT threads which
execute both the operators the V PT and PPT threads executed:
– r parallel volatility aggregation and options pricing threads, the V PPT

threads, execute the multi-threaded sliding-windows-based volatility ag-
gregation operator. For each tuple they assign a volatility value to, they
also execute the single-threaded binomial options pricing operator in par-
allel.

– The V PPT threads share with the input thread, IT , a ScaleGate in-
stance, and with the output thread, OT , a second ScaleGate instance
whose behavior they can expedite using the heartbeat mechanism.

• E7P: seventh iteration partial configuration corresponding to the stream pro-
cessing engine configuration introduced in Figure 12.5 in Section 12.4.2 ex-
cluding the options pricing threads, PPT threads, and letting the volatility
aggregation and stream matching threads, WPT threads, serve tuples to the
output thread, OT , through a second ScaleGate instance:
– m parallel volatility aggregation and stream matching threads, theWPT

threads, execute the multi-threaded sliding-windows-based volatility ag-
gregation and stream matching operator.

– The WPT threads share with the financial and options settings input
threads, FIT and SIT , a ScaleGate instance, and with the output thread,
OT , a second ScaleGate instance whose behavior they can expedite using
the heartbeat mechanism.

• E7F: seventh iteration full configuration corresponding to the stream process-
ing engine configuration introduced in Figure 12.5 in Section 12.4.2:
– m parallel volatility aggregation and stream matching threads, theWPT

threads, execute the multi-threaded sliding-windows-based volatility ag-
gregation and stream matching operator.

– n options pricing threads, the PPT threads, execute the single-threaded
binomial options pricing operator in parallel using the trade price, volatil-
ity, option strike, option maturity and risk-less interest rate values added
to the tuples by the WPT threads.

– The WPT threads share with the financial and options settings input
threads, FIT and SIT , a ScaleGate instance, and with the PPT threads,
a second ScaleGate instance whose behavior they can expedite using the
heartbeat mechanism. The PPT threads share with the output thread,
OT , a third ScaleGate instance whose behavior they can also expedite
using the heartbeat mechanism.

• E7C: seventh iteration combined configuration corresponding to the stream
processing engine configuration introduced in Figure 12.5 in Section 12.4.2
but combining the WPT and PPT threads together to form WPPT threads
which execute both the operators the WPT and PPT threads executed:

130

13. Experimental Results and Analysis

– r parallel volatility aggregation, stream matching and options pricing
threads, theWPPT threads, execute the multi-threaded sliding-windows-
based volatility aggregation and stream matching operator. For each tu-
ple they assign a volatility value to, they also execute the single-threaded
binomial options pricing operator in parallel.

– The WPPT threads share with the input thread, IT , a ScaleGate in-
stance, and with the output thread, OT , a second ScaleGate instance
whose behavior they can expedite using the heartbeat mechanism.

All the aforementioned configurations in which one or more concurrent queues
have been used to let different involved threads in the pipeline communicate, namely
E1F, E2F, E3F, E5P, and E5F, have been tested with three different NOBLE [42, 43]
queue implementations. Similarly as done above with the different stream processing
engine configurations, each of the three concurrent queue implementations are hence-
forth referred to using the following three mnemonics, LB, LF_BB, and LF_DB
introduced in [42]:

• Standard spin-lock based queue (LB): the standard spin-lock based queue
is assigned the mnemonic LB (lock-based) according to [42] as anticipated in
Section 3.1.

• Lock-free block structure bounded memory queue (LF_BB): the lock-
free block structure bounded memory queue introduced in [16] is assigned the
mnemonic LF_BB (lock-free block-bounded) according to [42] as anticipated
in Section 3.1.

• Lock-free dynamic structure bounded memory queue (LF_DB): the
lock-free dynamic structure bounded memory queue introduced in [35] is as-
signed the mnemonic LF_DB (lock-free dynamic-bounded) according to [42]
as anticipated in Section 3.1.

In addition to this, the aforementioned configurations in which the behavior of
one or more ScaleGate instances can be expedited using the heartbeat mechanism,
namely E4F, E5F, E6P, E6F, E6C, E7P, E7F, and E7C, have been tested both
without using the heartbeat mechanism at all and using it having each non-output-
generating tuple triggering the addition of a heartbeat tuple to the corresponding
ScaleGate instance. Similarly as done above with the different stream processing
engine configurations and queue implementations, each of these two modes of oper-
ation are henceforth referred to using the following mnemonics, NO HB, and HB:

• Heartbeat mechanism not used (NO HB): the experiments in which the
heartbeat mechanism can be used but is not used at all are flagged with the
mnemonic NO HB.

• Heartbeat mechanism fully used (HB): the experiments in which the
heartbeat mechanism can be used and is used at its full capacity are flagged
with the mnemonic HB. Given the fact that the achieved throughput metrics
recorded, as it can be verified in the next section, with and without using the
heartbeat mechanism do not differ more than a couple of tuples per second
given the proportion between the cost of the operators and the cost of using
the different concurrent data-structures, experiments partially utilizing the

131

13. Experimental Results and Analysis

heartbeat mechanisms withH values greater than 1 are considered not relevant
and consequently, not reported in the next sections.

As anticipated when formally describing the different iterations of the financial
stream processing engine, the latency of each individual tuple is individually mea-
sured minimizing the impact of this measure in the performance of the operators
by letting the corresponding input and output threads add the tuples a process
start timestamp, sts, before adding them to the concurrent data-structure the input
threads in the different iterations share with the process threads, and letting the
corresponding output thread add the tuples a process end timestamp, ets, after re-
trieving them from the concurrent data-structure the output threads in the different
iterations share with the process threads. A careful analysis of the latency plots
for all the individual tuples processed by the different configurations of the stream
processing engine produced by the output analyzer program introduced in Section
5.3.3 for each individual experimental execution led to the conclusion that the la-
tency median of all the individual latencies measured for each individual processed
tuple was the value which better summarized the behavior of the operators in terms
of latency under a non-saturation situation, which is the reason why the latency
results reported in the following sections express the median latency among all the
tuples in the input dataset processed in each individual execution of the stream pro-
cessing engine. In order to measure the throughput achieved in each execution, the
difference between the last processed tuple ets timestamp and the first processed
tuple sts timestamp has been divided by the number of processed tuples in each
execution leading to the achieved throughput metrics reported in the next section.

All the throughput and latency median metrics reported in the next section were
obtained controlling the input rate at which the input threads in the different it-
erations added tuples to the concurrent data-structures shared with the different
process threads in order to ensure a non-saturation situation. Otherwise, the la-
tency median metrics would have reflected more the time spent by the different
tuples waiting inside the concurrent data-structures for the different process threads
to deal with the excessive workload of receiving more tuples than the ones they
can process at a time than the time actually spent being processed by the oper-
ators and profiting from the concurrent data-structures to meet the linearizability
requirements of the stream processing engine. To achieve this, all the experimental
configurations whose throughput and latency median metrics are reported in the
next sections were executed twice:

• In the first execution all the tuples from the relatively small subset of the main
input dataset, introduced in Section 5.3.2 as tiny dataset, with 190442 tuples
were served by the different input threads at full speed rate in order to assess
the maximum throughput the configuration could achieve.
As anticipated in Section 5.3.2, the financial input stream contained a selection
of the 190442 tuples associated to the trades registered for the three most
traded symbols in the NASDAQ market from 11:40 to 13:50 the 5th of August
2015, and the options settings stream, when used, contained also 190442 tuples
with the same physical and logical timestamps as the former ones.

132

13. Experimental Results and Analysis

• In the second execution all the tuples in the main dataset introduced in 5.3.2
with 1705386 tuples were served at a constant rate at 90% the tuples per
second that the same configuration could process according to the achieved
throughput in the first execution described above in order to assess the latency
the different configurations could achieve under a non-saturation situation.
As anticipated in Section 5.3.2, the financial input dataset contained a selection
of the 1705386 tuples associated to the trades registered for the ten most traded
symbols in the NASDAQ market from 09:25 to 16:05 the 5th of August 2015,
and the options settings stream, when used, contained also 1705386 tuples
with the same physical and logical timestamps as the former ones.
The results obtained in this second iteration for each configuration are the
ones reported and analyzed in the next section.

13.2 Experimental Results and Analysis

In the following sections, the throughput and latency median results obtained
when executing each of the aforementioned stream processing engine configurations
as described in the previous section are reported and analyzed.

Section 13.2.1 reports the results obtained for the E1F, and E5P configurations
in both of which the single-threaded version of the two main operators in which this
Thesis focuses are individually tested. Section 13.2.2 reports and compares the re-
sults obtained for the E2F, E3F, and E4F configurations analyzing the performance
of the different ways of executing in parallel the single-threaded binomial options
pricing operator. Section 13.2.3 reports the results obtained for the E5F configura-
tion showing how the single-threaded volatility aggregation operator introduced in
Chapter 10 performs together with the options pricing operator as it is used since
Chapter 9 letting multiple options pricing threads price option contracts in parallel.

Section 13.2.4 reports the results obtained for the E6P configuration analyzing
the performance of the parallel volatility aggregator introduced in Chapter 11 in-
dependently of the behavior of the options pricing threads to be used in the full
configuration, E6F, whose results are reported in Section 13.2.5 together with the
results obtained using the alternative E6C configuration.

Finally, Section 13.2.6 reports the results obtained for the E7P configuration an-
alyzing the performance of the parallel volatility aggregator and stream matcher in-
troduced in Chapter 12 independently of the behavior of the options pricing threads
to be used in the full configuration, E7F, whose results are reported in Section 13.2.7
together with the results obtained using the alternative E7C configuration.

133

13. Experimental Results and Analysis

13.2.1 Single-Threaded Binomial Options Pricing, and Single-
Threaded Volatility Aggregation (E1F, and E5P)

Tables 13.1, and 13.2 below report the throughput and latency median achieved
respectively in the 31228 machine (Intel Xeon), and Hasgreen (Intel Core i7) when
executing the E1F, and E5P configurations using the three different concurrent
queue implementations LB, LF_BB, and LF_DB according to the naming conven-
tions introduced in Section 13.1.

Table 13.1: 31228 (Intel Xeon): E1F and E5P throughput and latency median

Throughput (tuples/s) Latency Median (µs)
LB LF_BB LF_DB LB LF_BB LF_DB

E1F 485.00 489.00 490.00 1015 939 939
E5P 2146.87 2148.99 2135.00 373 289 289

Table 13.2: Hasgreen (Intel Core i7): E1F and E5P throughput and latency median

Throughput (tuples/s) Latency Median (µs)
LB LF_BB LF_DB LB LF_BB LF_DB

E1F 580.19 586.00 586.00 866 791 792
E5P 1212.00 1264.00 1262.00 493 478 477

As it can be seen, in both machines, the lock-based queue, LB, tends to perform
slightly worse in terms of throughput and latency than the lock-free alternatives,
LF_BB, and LF_DB, which could be expected in advance given the lock-free nature
of the latter ones in contrast with the lock-based nature of the former.

As it can also be appreciated, the single-threaded volatility aggregation operator
(E5P) records better results in terms of throughput and latency than the single-
threaded binomial options pricing operator (E1F) in both machines. This means
that given the configuration parameters chosen for the execution of the experiments
here reported, namely N = 2048 steps in the underlying binomial model in E1F, as
anticipated in Section 6.4.1 , and WS = 1h, WA = 50ms for the underlying sliding-
windows model in E5P, as anticipated in Section 10.4.2, make the single-threaded
binomial options pricing operator more expensive in terms of execution time than
the single-threaded sliding-window-based volatility aggregation operator.

It can also be seen that the aforementioned difference in performance is consid-
erably greater in the Intel Xeon machine than in the Intel Core i7 machine. As
it can be seen, while the E1F configuration reports in the Intel Core i7 machine
better results in terms of throughput and latency than in the Intel Xeon machine,
which could be expected given the faster clock rate of the former and the fact that
in none of the machines all the cores need to be used by any of the configurations
here analyzed, the E5P configuration behaves completely the opposite way reporting
in the Intel Xeon machine considerably better results in terms of throughput and

134

13. Experimental Results and Analysis

latency than in the Intel Core i7 machine. A possible explanation for this is the fact
that, as analyzed in Section 10.4.1, the sliding-window-based volatility aggregation
operator maintains in memory a considerably big data-structure, the underlying
sliding-windows model, which may give the Intel Xeon machine a competitive ad-
vantage in comparison to the Intel Core i7 machine given the bigger cache the former
machine makes use of, as anticipated in Section 5.4.2.

The last observation above helps understanding the different nature of the two
machines used to produce the experimental results discussed in this chapter, which
go beyond the difference in the number of threads or the clock rates.

E1F E5P
0

500

1,000

1,500

2,000

T
hr
ou

gh
pu

t
(t
up

le
s/
s)

Throughput

E1F E5P
0

200

400

600

800

1,000
La

te
nc
y
(µ
s)

Latency Median

LB
LF_BB
LF_DB

Figure 13.1: 31228 (Intel Xeon): E1F and E5P throughput and latency median

E1F E5P
0

200

400

600

800

1,000

1,200

T
hr
ou

gh
pu

t
(t
up

le
s/
s)

Throughput

E1F E5P
0

200

400

600

800

La
te
nc
y
(µ
s)

Latency Median

LB
LF_BB
LF_DB

Figure 13.2: Hasgreen (Intel Core i7): E1F and E5P throughput and latency
median

135

13. Experimental Results and Analysis

To help better appreciating the different behavior of the operators in both ma-
chines according to the results reported and analyzed above, Figures 13.1, and 13.2
above plot all the results reported in Tables 13.1, and 13.2.

13.2.2 Multi-Threaded Binomial Options Pricing Operators
(E2F, E3F, and E4F)

Tables 13.3, 13.4, 13.5, and 13.6 below report the throughput and latency median
achieved respectively in the 31228 machine (Intel Xeon), and Hasgreen (Intel Core
i7) when executing the E2F, E3F, and E4F configurations with the number of options
pricing threads, PT threads, reported in the left-most column, using in E2F and E3F
the three different concurrent queue implementations, LB, LF_BB, and LF_DB,
and in E4F both using and not the heartbeat mechanism, according to the naming
conventions introduced in Section 13.1.

Table 13.3: 31228 (Intel Xeon): E2F, E3F, and E4F throughput

Throughput (tuples/s)
E2F E3F E4F

LB LF_BB LF_DB LB LF_BB LF_DB NO HB HB
1 457.00 490.00 491.00 488.00 492.00 491.00 488.00 490.00
4 1670.00 1727.00 1735.00 1729.97 1737.00 1739.00 1738.00 1728.00
8 3244.35 3345.99 3342.99 3366.35 3370.00 3371.00 3369.00 3362.00
12 4815.42 5003.98 4995.97 5050.14 5055.00 5056.00 5058.00 5033.00
16 3627.99 3599.00 3622.99 5758.63 5772.95 5773.95 3718.00 3710.00
20 4525.86 4526.98 4510.96 5917.58 5918.98 5924.95 4531.98 4503.99
24 5414.93 5351.95 5410.97 6057.85 6063.98 6061.96 5437.00 5395.00
27 5918.43 6099.34 6061.94 6165.78 6170.70 6171.94 6114.96 6076.49

Table 13.4: 31228 (Intel Xeon): E2F, E3F, and E4F latency median

Latency Median (µs)
E2F E3F E4F

LB LF_BB LF_DB LB LF_BB LF_DB NO HB HB
1 939 938 938 959 938 939 939 940
4 2262 2110 2140 3957 3944 3940 2792 1646
8 2336 2297 2299 4698 4691 4963 3181 1402
12 2352 2303 2305 5258 5095 5292 3278 1305
16 4263 4278 4266 7032 7175 7156 5256 1499
20 4265 4259 4272 9957 9596 9316 6232 2268
24 4281 4300 4279 11140 11152 11111 6275 2241
27 4410 4235 4253 12245 12193 12472 6297 2224

136

13. Experimental Results and Analysis

Table 13.5: Hasgreen (Intel Core i7): E2F, E3F, and E4F throughput

Throughput (tuples/s)
E2F E3F E4F

LB LF_BB LF_DB LB LF_BB LF_DB NO HB HB
1 575.47 587.00 586.00 585.20 586.00 586.00 586.00 586.00
2 1113.88 1141.00 1140.00 1141.80 1142.00 1142.00 1143.00 1142.00
3 1645.00 1664.00 1662.00 1567.68 1669.00 1669.00 1669.00 1668.00
4 1405.00 1337.00 1399.00 1652.40 1968.00 1968.00 1225.00 1223.00
5 1508.00 1508.00 1507.00 1749.88 2016.00 2017.00 1530.00 1529.00
6 1803.99 1807.00 1804.00 1714.73 2065.00 2065.00 1814.91 1813.00
7 2089.99 2104.99 2101.00 2112.91 2113.00 2112.98 2093.00 2090.00

Table 13.6: Hasgreen (Intel Core i7): E2F, E3F, and E4F latency median

Latency Median (µs)
E2F E3F E4F

LB LF_BB LF_DB LB LF_BB LF_DB NO HB HB
1 900 790 791 1123 792 792 792 792
2 1708 1590 1457 1802 2562 1760 1688 1689
3 1448 1438 1440 2634 2630 2632 2033 1435
4 2762 2828 2766 3615 3375 3376 3288 1658
5 2921 2898 2901 5442 4380 4530 4155 2197
6 3238 3225 3233 7820 5698 5757 4302 2103
7 3050 3022 3027 7190 6683 6473 4418 2034

As it can be seen, similarly as in the results reported in the previous section,
in both machines when executing the E2F and E3F configurations, the lock-based
queue, LB, tends to perform slightly worse in terms of throughput and latency than
the lock-free alternatives, LF_BB, and LF_DB, which could be expected in advance
given the lock-free nature of the latter ones in contrast with the lock-based nature of
the former. In the particular case of E3F executed in Hasgreen (Intel Core i7), the
the difference of performance between the lock-based queue, LB, and the lock-free
alternatives, LF_BB, and LF_DB, is especially noticeable when using from 4 to 6
PT threads.

As it can also be seen when briefly analyzing the throughput metrics reported
when executing the E4F configuration in both machines, the heartbeat mechanism,
as expected in Section 9.4.1 when estimating the expected throughput, does not
represent a significant overhead in terms of throughput due to the small cost of
adding tuples to, and getting tuples from the ScaleGate instances in comparison to
the cost of executing the options pricing procedure.

To help better appreciating the way throughput and latency scale as more PT
threads are used, Figures 13.3, and 13.4 below plot all the results reported in Tables

137

13. Experimental Results and Analysis

13.3, 13.4, 13.5, and 13.6.

1 4 8 12 16 20 24270

2,000

4,000

6,000

#PT threads

T
hr
ou

gh
pu

t
(t
up

le
s/
s)

Throughput

1 4 8 12 16 20 24270

0.2

0.4

0.6

0.8

1

1.2

·104

#PT threads

La
te
nc
y
(µ
s)

Latency Median

E2F LB
E2F LF_BB
E2F LF_DB
E3F LB
E3F LF_BB
E3F LF_DB
E4F NO HB
E4F HB

Figure 13.3: 31228 (Intel Xeon): E2F, E3F, and E4F throughput and latency
median

1 2 3 4 5 6 70

500

1,000

1,500

2,000

#PT threads

T
hr
ou

gh
pu

t
(t
up

le
s/
s)

Throughput

1 2 3 4 5 6 70

2,000

4,000

6,000

8,000

#PT threads

La
te
nc
y
(µ
s)

Latency Median

E2F LB
E2F LF_BB
E2F LF_DB
E3F LB
E3F LF_BB
E3F LF_DB
E4F NO HB
E4F HB

Figure 13.4: Hasgreen (Intel Core i7): E2F, E3F, and E4F throughput and latency
median

As it can be appreciated in all plots, there is a clear change of tendencies in terms
of throughput and latency when more than respectively 12 and 3 PT threads are
used in 31228 (Intel Xeon) and Hasgreen (Intel Core i7). The reason for this is
hyper-threading. On the one hand, when needing no more than the total number
of physical processors available, equivalent in both machines to half the number of
virtual processors available, each of the threads have been assigned to a separate

138

13. Experimental Results and Analysis

physical processor minimizing contention and scheduling overhead. On the other
hand, when needing more than the total number total number of physical proces-
sors available, some of the threads have had to share processor with other threads
increasing contention, scheduling overhead in the affected physical processors.

Focusing on the reported throughput, as it can be seen, the expected linear scaling
tendencies for the three configurations have been met before having to start assigning
more than one thread to some or all of the processors. Reached that point, both the
E2F, and E4F configurations show a sudden drop in throughput in both machines
before getting back to a linear increasing tendency with less slope while in the E3F
configuration, the slope changes even more but no drop is appreciated.

One possible explanation for this two different responses to hyper-threading is
the load balancing flexibility of the different configurations. Given the behavior of
the operators and data-structures in the second and fourth iterations of the stream
processing engine, each of the PT threads has to process exactly one tuple out
of every n consecutive tuples, n being the number of PT threads, whereas in the
third iteration, the usage of the concurrent queue with multiple readers allows the
PT threads to compete to retrieve tuples to be processed, resulting in the threads
assigned alone to their corresponding processor being able to process more tuples
than the threads assigned to a processor together with other thread. This hypothesis
is reinforced when observing the throughput reported when using all the available
logical cores, which is the same for the three configurations, as each of the processors
is assigned two threads getting back to a situation in which all the threads are
assigned to equally busy processors.

Focusing on the reported latency, the E4F configuration making use of the heart-
beat mechanism is clearly the best configuration being able to produce option prices
for all tuples in both machines using any number of threads in less than twice the
time it takes to produce options prices using the only one options pricing thread.
It is also worth highlighting how if the heartbeat mechanism is not used, the E2F
configuration becomes better than the E4F configuration in terms of latency. This
last observation helps appreciating the overhead of using ScaleGate without expe-
diting its behavior with heartbeat tuples as reasoned in detail when introducing the
different iterations of the stream processing engine. Finally, the E3F configuration is
the one which behaves the worst in terms of latency, especially when the lock-based
queue, LB, is used in Hasgreen (Intel Core i7). With this configuration, the effect
of the ScaleGate semantics on latency is inflated due to the indeterminism added
by the competition of the PT threads to process tuples.

All the results reported and analyzed in this section motivated the election of the
fourth iteration of the stream processing engine as the one on top of which the fifth,
sixth, and seventh iterations are built.

139

13. Experimental Results and Analysis

13.2.3 Single-Threaded Volatility Aggregation, and Multi-
Threaded Binomial Options Pricing (E5F)

Tables 13.7, 13.8, 13.9, and 13.10 below report the throughput and latency median
achieved respectively in the 31228 machine (Intel Xeon), and Hasgreen (Intel Core
i7) when executing the E5F configuration with one volatility aggregation thread,
V PT , and the number of options pricing threads, PPT threads, reported in the
left-most column, using the three different concurrent queue implementations, LB,
LF_BB, and LF_DB, and both using and not the heartbeat mechanism, according
to the naming conventions introduced in Section 13.1.

Table 13.7: 31228 (Intel Xeon): E5F throughput

Throughput (tuples/s)
LB LF_DB LF_BB

NO HB HB NO HB HB NO HB HB
1 480.00 479.00 480.00 481.00 478.00 480.00
4 1677.92 1655.75 1674.00 1677.00 1683.00 1674.00
8 1951.25 1962.98 1962.00 1964.00 1954.00 1954.00
12 1941.57 1921.15 1962.00 1963.00 1964.00 1961.00
15 1332.00 1332.00 1334.00 1334.00 1333.00 1332.00
19 1334.00 1333.00 1335.00 1334.00 1335.00 1333.00
23 1335.00 1333.00 1336.99 1334.97 1336.00 1334.00
26 1334.41 1333.89 1336.97 1332.94 1334.95 1333.95

Table 13.8: 31228 (Intel Xeon): E5F latency median

Latency Median (µs)
LB LF_DB LF_BB

NO HB HB NO HB HB NO HB HB
1 1308 1304 1300 1302 1300 1302
4 3247 2031 3213 2018 3204 2020
8 5106 1948 4990 1932 5004 1935
12 7185 2003 7029 1934 7024 1935
15 12118 2359 12095 2353 12109 2355
19 16002 3269 15992 3268 15992 3269
23 18994 3277 18969 3275 18981 3275
26 21249 3280 21215 3280 21244 3280

140

13. Experimental Results and Analysis

Table 13.9: Hasgreen (Intel Core i7): E5F throughput

Throughput (tuples/s)
LB LF_DB LF_BB

NO HB HB NO HB HB NO HB HB
1 575.00 574.00 574.00 575.00 575.00 574.00
2 1106.00 1104.00 1103.00 1103.00 1106.00 1104.00
3 1004.00 1004.00 1005.00 1004.00 1005.00 1004.00
4 1050.00 1049.00 1049.00 1051.00 1046.00 1050.00
5 1050.00 1050.00 1050.00 1051.00 1051.00 1050.00
6 1046.00 1048.98 1051.00 1051.99 1049.00 1050.00

Table 13.10: Hasgreen (Intel Core i7): E5F latency median

Latency Median (µs)
LB LF_DB LF_BB

NO HB HB NO HB HB NO HB HB
1 1316 1317 1315 1315 1318 1317
2 2245 2246 2265 2247 2244 2246
3 3576 2577 3574 2578 3569 2579
4 4786 2882 4825 2917 4809 2894
5 5934 3079 5934 3078 5930 3080
6 6925 3102 6906 3098 6910 3101

As it can be seen, similarly as in the results reported in the previous sections,
in both machines when executing the E5F configuration, the lock-based queue, LB,
tends to perform slightly worse in terms of throughput and latency than the lock-free
alternatives, LF_BB, and LF_DB.

As it can also be seen when briefly analyzing the throughput metrics reported
when executing the E5F configuration in both machines, the heartbeat mechanism,
as observed in the results reported in the previous section for the E4F configuration,
does not represent a significant overhead in terms of throughput.

To help better appreciating the way throughput and latency scale as more PPT
threads are used, Figures 13.5, and 13.6 below plot all the results reported in Tables
13.7, 13.8, 13.9, and 13.10.

141

13. Experimental Results and Analysis

1 4 8 1215 19 23260

500

1,000

1,500

2,000

#PPT threads

T
hr
ou

gh
pu

t
(t
up

le
s/
s)

Throughput

1 4 8 1215 19 23260

0.5

1

1.5

2

·104

#PPT threads

La
te
nc
y
(µ
s)

Latency Median

LB NO HB
LB HB
LF_DB NO HB
LF_DB HB
LF_BB NO HB
LF_BB HB

Figure 13.5: 31228 (Intel Xeon): E5F throughput and latency median

1 2 3 4 5 60

200

400

600

800

1,000

1,200

#PPT threads

T
hr
ou

gh
pu

t
(t
up

le
s/
s)

Throughput

1 2 3 4 5 60

2,000

4,000

6,000

#PPT threads

La
te
nc
y
(µ
s)

Latency Median

LB NO HB
LB HB
LF_DB NO HB
LF_DB HB
LF_BB NO HB
LF_BB HB

Figure 13.6: Hasgreen (Intel Core i7): E5F throughput and latency median

Focusing on the reported throughput, the reported results help very well under-
standing the impact of performance bottlenecks when different operators precede
each other as it happens in the E5F configuration. When using only one PT thread,
the reported throughput is the same as the one reported in Section 13.2.1 for the
E1F configuration. This means that the options pricing operator, working at its
full capacity, is the one upper bounding the achieved throughput, in other words,
acting as a bottleneck. The volatility aggregation thread, even though it is able to
process more tuples per second as shown in Section 13.2.1, cannot be used at its
full capacity when having only one PPT thread without negatively affecting the
reported latency because the output stream of tuples served by the V PT threads

142

13. Experimental Results and Analysis

to the data-structure it shares with the PPT thread, cannot be assimilated by the
PPT thread, forcing the tuples to spend more time the more tuples served by V PT
waiting in the data-structure from which the PPT thread retrieves tuples more
slowly than they are added to it.

When using more PPT threads, the options pricing stage of the stream processing
engine becomes able to process more tuples per second than the volatility aggrega-
tion stage with only one V PT thread as it can be anticipated when analyzing the
results reported in Section 13.2.2. In this situation, and before reaching a hyper-
threading situation, the reported throughput is the same as the one reported in
Section 13.2.1 for the E5P configuration. This means that it is now the volatility
aggregation operator, working at its full capacity, is the one upper bounding the
achieved throughput, in other words, acting as a bottleneck. The options pricing
threads, even though they are able to process more tuples per second as shown in
Section 13.2.2, cannot be used at their full capacity when having only one V PT
thread without negatively affecting the reported latency because the input stream
of tuples that the input thread would have to serve to the concurrent data-structure
it shares with V PT would not be able to be assimilated by the V PT thread, forcing
the tuples to spend more time the more tuples served by the input thread wait-
ing in the data-structure from which V PT retrieves tuples more slowly than they
are added to it. When hyper-threading appears, the V PT thread performs slightly
worse having to share the physical processor with a PPT thread leading to the drop
in throughput which can be observed especially in the results reported for the 31228
machine (Intel Xeon).

Focusing on the reported latency, similarly as it was observed when analyzing
the latency results reported for the E4F configuration in the previous section, the
heartbeat mechanism helps keeping the latency considerably lower than the absence
of it. When hyper-threading appears, a step can be appreciated especially in the
31228 machine (Intel Xeon) latency plot which can be understood considering that
both the volatility aggregation operator and the options pricing operator need more
time to produce a result for each single tuple when sharing a physical core with
other thread than when not having to do so.

13.2.4 Multi-Threaded Volatility Aggregation (E6P)

Tables 13.11, and 13.12 below report the throughput and latency median achieved
respectively in the 31228 machine (Intel Xeon), and Hasgreen (Intel Core i7) when
executing the E6P configuration with the number of volatility aggregation threads,
V PT threads, reported in the left-most column, using and not the heartbeat mech-
anism, according to the naming conventions introduced in Section 13.1.

143

13. Experimental Results and Analysis

Table 13.11: 31228 (Intel Xeon): E6P throughput and latency median

Throughput (tuples/s) Latency Median (µs)
NO HB HB NO HB HB

1 2114.00 2102.00 294 294
4 4816.00 4793.01 6195 338
8 9335.86 9207.86 8688 177
12 11639.78 11634.76 12105 143
16 9876.86 9717.76 20921 143
20 9229.84 9145.88 31063 181
24 11075.74 10938.59 31604 154
27 15316.36 14987.41 26396 116

Table 13.12: Hasgreen (Intel Core i7): E6P throughput and latency median

Throughput (tuples/s) Latency Median (µs)
NO HB HB NO HB HB

1 1250.00 1244.00 482 482
2 2036.00 2035.00 4434 786
3 2752.00 2754.00 7011 581
4 2803.00 2777.00 10883 535
5 2690.00 2672.00 15324 558
6 3119.00 3089.00 17381 525
7 3398.99 3372.00 19903 481

As it can be seen when briefly analyzing the throughput metrics reported when
executing the E6P configuration in both machines, the heartbeat mechanism, as
observed in the results reported in the previous sections, does not represent a sig-
nificant overhead in terms of throughput.

To help better appreciating the way throughput and latency scale as more V PT
threads are used, Figures 13.7, and 13.8 below plot all the results reported in Tables
13.11, and 13.12.

144

13. Experimental Results and Analysis

1 4 8 12 16 20 24270

0.5

1

1.5

·104

#V PT threads

T
hr
ou

gh
pu

t
(t
up

le
s/
s)

Throughput

1 4 8 12 16 20 24270

100

200

300

400

#V PT threads
La

te
nc
y
(µ
s)

Latency Median

NO HB
HB

Figure 13.7: 31228 (Intel Xeon): E6P throughput and latency median

1 2 3 4 5 6 70

1,000

2,000

3,000

#V PT threads

T
hr
ou

gh
pu

t
(t
up

le
s/
s)

Throughput

1 2 3 4 5 6 70

200

400

600

800

#V PT threads

La
te
nc
y
(µ
s)

Latency Median

NO HB
HB

Figure 13.8: Hasgreen (Intel Core i7): E6P throughput and latency median

Focusing on the reported throughput, as it can be seen, the expected linear scaling
tendency has been met before having to start assigning more than one thread to
some or all of the processors. Reached that point, as it happened with the E2F,
and E4F configurations as reported in Section 13.2.2, a drop in throughput can be
appreciated before getting back to an increasing tendency.

Focusing on the reported latency, as anticipated in Section 11.4.1 when estimating
the expected latency, the heartbeat mechanism plays an even more relevant role
than when executing in parallel the options pricing operator given the longer cycles
followed by the volatility aggregation threads adding tuples to the ScaleGate data-
structure. The difference is so big that if the latency reported for both modes

145

13. Experimental Results and Analysis

of operations were plotted in the figures above together, the results reported for
the heartbeat mechanism would be perceived as a red line attached to the x axis
no matter the number of V PT threads used. For this reason, the y axis in the
latency plots has been adapted to the order of magnitude of the latency results
reported when using the heartbeat mechanism making it possible to appreciate
the evolution with the number of V PT threads of the latency reported using the
heartbeat mechanism.

As it can be seen in the latency results reported for both machines using the
hear beat mechanism, even though the reported latency increases when moving
forward from one to more than one V PT threads, as soon as the number of threads
starts growing more, a decreasing tendency inversely proportional to the number of
threads, as expected in Section 11.4.1, can be clearly appreciated. This tendency is
slightly broken when different threads start having to share physical processor with
another thread but even with this, the lowest reported latency results are the ones
recorded when using all the available virtual processors.

13.2.5 Multi-Threaded Volatility Aggregation and Multi-
Threaded Binomial Options Pricing (E6F, and E6C)

Tables 13.13, and 13.14 below report the throughput and latency median achieved
respectively in the 31228 machine (Intel Xeon), and Hasgreen (Intel Core i7) when
executing the E6F configuration using all the available logical processors with the
number of volatility aggregation threads, V PT threads, reported in the left-most
column, and the number of options pricing threads, PPT threads, necessary to
utilize all the available logical processors, namely the left-most column read bottom-
up, using and not the heartbeat mechanism, according to the naming conventions
introduced in Section 13.1.

Table 13.13: 31228 (Intel Xeon): E6F throughput and latency median

Throughput (tuples/s) Latency Median (µs)
NO HB HB NO HB HB

1 1275.94 1277.94 22134 3337
4 2490.87 2481.96 25166 3124
8 4291.92 4264.68 31906 2651
12 3450.89 3386.88 59829 2749
15 3885.41 3829.55 79209 2668
19 2947.21 2910.80 148444 2807
23 1613.48 1598.91 367883 3376
26 473.58 471.66 4831458 6311926

146

13. Experimental Results and Analysis

Table 13.14: Hasgreen (Intel Core i7): E6F throughput and latency median

Throughput (tuples/s) Latency Median (µs)
NO HB HB NO HB HB

1 1036.00 1037.00 6984 3127
2 1484.00 1480.00 16894 3259
3 1199.00 1195.00 31355 3512
4 1319.98 1319.00 53526 3274
5 983.98 980.00 103553 3798
6 542.98 542.00 279910 3610

1 4 8 12 15 19 230

1,000

2,000

3,000

4,000

#V PT threads

T
hr
ou

gh
pu

t
(t
up

le
s/
s)

Throughput

1 4 8 12 15 19 230

1,000

2,000

3,000

4,000

#V PT threads

La
te
nc
y
(µ
s)

Latency Median

NO HB
HB

Figure 13.9: 31228 (Intel Xeon): E6F throughput and latency median

1 2 3 4 5 60

500

1,000

1,500

#V PT threads

T
hr
ou

gh
pu

t
(t
up

le
s/
s)

Throughput

1 2 3 4 5 60

1,000

2,000

3,000

4,000

#V PT threads

La
te
nc
y
(µ
s)

Latency Median

NO HB
HB

Figure 13.10: Hasgreen (Intel Core i7): E6F throughput and latency median

147

13. Experimental Results and Analysis

To help better appreciating the way throughput and latency scale as more V PT
threads and less PPT threads are used, Figures 13.9, and 13.10 above plot all the
results reported in Tables 13.13, and 13.14.

Focusing on the throughput results, in both edges of the plots for both machines
it can be appreciated how respectively the single volatility aggregation thread and
the single options pricing thread act as bottlenecks. Getting more centric, the best
tradeoffs when distributing the available logical processors among V PT and PPT
threads are found closer to the left side having slightly more options pricing threads
than volatility aggregation threads. This seems reasonable given the fact that, as
seen in Section 13.2.1, the options pricing workload for each individual tuple is
higher than the volatility aggregation workload.

Focusing on the latency results, similarly as in the previous section, the results
produced using the heartbeat mechanism are orders of magnitude better leaving the
results produced without using the heartbeat mechanism out of the latency plots.
When using the heartbeat mechanism, the latency results, especially in the 31228
machine (Intel Xeon) are better the better the throughput is. This can be seen
as a positive feature of the E6F configuration avoiding the choice between better
throughput or better latency which would have had to be done if this correlation
did not hold.

Tables 13.15, and 13.16 below report the throughput and latency median achieved
respectively in the 31228 machine (Intel Xeon), and Hasgreen (Intel Core i7) when
executing the E6C configuration with the number of volatility aggregation and op-
tions pricing threads, V PPT threads, reported in the left-most column, using and
not the heartbeat mechanism, according to the naming conventions introduced in
Section 13.1.

Table 13.15: 31228 (Intel Xeon): E6C throughput and latency median

Throughput (tuples/s) Latency Median (µs)
NO HB HB NO HB HB

1 394.00 395.00 1239 1239
4 1188.00 1180.00 29823 7873
8 2267.95 2260.95 52321 31541
12 3263.95 3253.94 70308 51928
16 2662.95 2654.96 108239 67617
20 3028.72 3005.72 156331 124628
24 3562.68 3537.68 178640 156961
27 4164.82 4122.23 202078 186341

148

13. Experimental Results and Analysis

Table 13.16: Hasgreen (Intel Core i7): E6C throughput and latency median

Throughput (tuples/s) Latency Median (µs)
NO HB HB NO HB HB

1 396.00 396.00 1298 1309
2 711.00 712.00 12862 1706
3 1050.00 1044.00 19257 2339
4 906.00 901.00 36371 2150
5 1079.00 1074.00 47287 13536
6 1212.72 1209.00 57698 24981
7 1407.00 1401.00 67732 38441

To help better appreciating the way throughput and latency scale as more V PPT
threads are used, Figures 13.11, and 13.12 below plot all the results reported in
Tables 13.15, and 13.16.

1 4 8 12 16 20 24270

1,000

2,000

3,000

4,000

#V PPT threads

T
hr
ou

gh
pu

t
(t
up

le
s/
s)

Throughput

1 4 8 12 16 20 24270

0.5

1

1.5

2

·105

#V PPT threads

La
te
nc
y
(µ
s)

Latency Median

NO HB
HB

Figure 13.11: 31228 (Intel Xeon): E6C throughput and latency median

149

13. Experimental Results and Analysis

1 2 3 4 5 6 70

500

1,000

1,500

#V PPT threads

T
hr
ou

gh
pu

t
(t
up

le
s/
s)

Throughput

1 2 3 4 5 6 70

2

4

6

·104

#V PPT threads
La

te
nc
y
(µ
s)

Latency Median

NO HB
HB

Figure 13.12: Hasgreen (Intel Core i7): E6C throughput and latency median

Focusing on the throughput results, a similar tendency as in previous occasions
can be observed, having a linear increasing tendency before hyper-threading, a drop,
and a second linear increasing tendency which achieves when all the available logical
processors are used in both machines a similar throughput as the one achieved
with the E6F configuration optimally distributing the available logical cores among
V PT and PPT cores. This means that letting the threads in the sixth iteration of
the stream processing engine execute both the volatility aggregation logic and the
options pricing logic in order to use two ScaleGate instances instead of three does
not result in appreciable performance gains in terms of throughput.

Focusing on the latency results, even when using the heartbeat mechanism the
reported latency linearly grows becoming orders of magnitude higher than in the
E6F configuration even when using the same number of virtual processors in the
system or even less virtual processors. The reason for this is that given the different
cycles the parallel volatility aggregation operator and the options pricing opera-
tor followed when outputting tuples, the heartbeat mechanism cannot be used to
expedite the behavior of the ScaleGate instance as effectively as in the previous oc-
casions when executing both workloads by the same thread. This together with the
discussed throughput results represent a very strong argument towards the usage of
ScaleGate as an articulation point in stream processing engines. The E6F configura-
tion preforms clearly better than the E6C configuration thanks to the intermediate
ScaleGate instance.

13.2.6 Multi-Threaded Volatility Aggregation and Stream
Matching (E7P)

Tables 13.17, and 13.18 below report the throughput and latency median achieved re-
spectively in the 31228 machine (Intel Xeon), and Hasgreen (Intel Core i7) when ex-

150

13. Experimental Results and Analysis

ecuting the E7P configuration with the number of volatility aggregation and stream
matching threads, WPT threads, reported in the left-most column, using and not
the heartbeat mechanism, according to the naming conventions introduced in Sec-
tion 13.1.

Table 13.17: 31228 (Intel Xeon): E7P throughput and latency median

Throughput (tuples/s) Latency Median (µs)
NO HB HB NO HB HB

1 748.94 747.00 1336 1337
4 4629.00 4579.01 6521 354
8 8955.94 8812.91 9137 189
12 10936.82 10666.75 12908 158
16 9426.80 9259.83 22285 308
20 9221.84 9096.87 31137 182
24 11013.69 10888.80 31782 156
27 14024.34 13751.34 35252 178

Table 13.18: Hasgreen (Intel Core i7): E7P throughput and latency median

Throughput (tuples/s) Latency Median (µs)
NO HB HB NO HB HB

1 827.00 825.00 738 1211
2 2018.00 2004.00 4479 798
3 2780.00 2733.00 6909 585
4 2737.99 2707.00 11127 598
5 2671.00 2650.00 15461 611
6 3099.90 3074.00 17505 527
7 3392.88 3356.99 19927 487

As it can be seen when briefly analyzing the throughput metrics reported when
executing the E7P configuration in both machines, the heartbeat mechanism, as
observed in the results reported in the previous sections, does not represent a sig-
nificant overhead in terms of throughput.

To help better appreciating the way throughput and latency scale as more WPT
threads are used, Figures 13.13, and 13.14 below plot all the results reported in
Tables 13.17, and 13.18.

151

13. Experimental Results and Analysis

1 4 8 12 16 20 24270

0.5

1

1.5
·104

#WPT threads

T
hr
ou

gh
pu

t
(t
up

le
s/
s)

Throughput

1 4 8 12 16 20 24270

500

1,000

1,500

#WPT threads
La

te
nc
y
(µ
s)

Latency Median

NO HB
HB

Figure 13.13: 31228 (Intel Xeon): E7P throughput and latency median

1 2 3 4 5 6 70

1,000

2,000

3,000

#WPT threads

T
hr
ou

gh
pu

t
(t
up

le
s/
s)

Throughput

1 2 3 4 5 6 70

500

1,000

1,500

#WPT threads

La
te
nc
y
(µ
s)

Latency Median

NO HB
HB

Figure 13.14: Hasgreen (Intel Core i7): E7P throughput and latency median

Focusing on the reported throughput, as it can be seen, the expected linear scaling
tendency has been met before having to start assigning more than one thread to
some or all of the processors. Reached that point, as it happened with the E6P
configuration as reported in Section 13.2.4, a drop in throughput can be appreciated
before getting back to an increasing tendency. Actually, if the throughput reported
in this section is compared to the throughput reported in Section 13.2.4, it is difficult
to appreciate big differences. The reason for this is that the overhead of matching
the streams is, as anticipated in Section 12.4.1 when analyzing the cost of the multi-
threaded volatility aggregation and stream matching operator, almost negligible
compared to the volatility aggregation workload.

152

13. Experimental Results and Analysis

Focusing on the reported latency, the results obtained with the E7P configuration
are also very similar to the results reported in Section 13.2.4 for the E6P configura-
tion for the same reason as explained above when analyzing the throughput results.

13.2.7 Multi-Threaded Volatility Aggregation and Stream
Matching, and Multi-Threaded Binomial Options Pric-
ing (E7F, and E7C)

Tables 13.19, and 13.20 below report the throughput and latency median achieved
respectively in the 31228 machine (Intel Xeon), and Hasgreen (Intel Core i7) when
executing the E7F configuration using all the available logical processors with the
number of volatility aggregation and stream matching threads, WPT threads, re-
ported in the left-most column, and the number of options pricing threads, PPT
threads, necessary to utilize all the available logical processors, namely the left-most
column read bottom-up, using and not the heartbeat mechanism, according to the
naming conventions introduced in Section 13.1.

Table 13.19: 31228 (Intel Xeon): E7F throughput and latency median

Throughput (tuples/s) Latency Median (µs)
NO HB HB NO HB HB

1 450.00 450.00 58996 5674
4 2397.89 2387.81 26683 3161
8 4337.86 4290.88 31102 2642
12 3484.59 3418.81 58461 2741
15 3881.62 3777.61 76720 2668
19 2962.59 2896.00 142175 2809
23 1624.46 1600.90 349693 3371
26 481.75 477.00 2300212 4216

Table 13.20: Hasgreen (Intel Core i7): E7F throughput and latency median

Throughput (tuples/s) Latency Median (µs)
NO HB HB NO HB HB

1 583.00 583.00 11202 4987
2 1492.99 1487.00 16303 3189
3 1206.00 1202.00 31412 3508
4 1326.99 1323.00 50850 4787
5 985.99 984.00 96972 3816
6 547.99 547.00 256673 3587

To help better appreciating the way throughput and latency scale as more V PT
threads and less PPT threads are used, Figures 13.15, and 13.16 below plot all the
results reported in Tables 13.19, and 13.20.

153

13. Experimental Results and Analysis

1 4 8 12 15 19 23 260

1,000

2,000

3,000

4,000

#WPT threads

T
hr
ou

gh
pu

t
(t
up

le
s/
s)

Throughput

1 4 8 12 15 19 230

2,000

4,000

6,000

#WPT threads
La

te
nc
y
(µ
s)

Latency Median

NO HB
HB

Figure 13.15: 31228 (Intel Xeon): E7F throughput and latency median

1 2 3 4 5 60

500

1,000

1,500

#WPT threads

T
hr
ou

gh
pu

t
(t
up

le
s/
s)

Throughput

1 2 3 4 5 60

2,000

4,000

6,000

#WPT threads

La
te
nc
y
(µ
s)

Latency Median

NO HB
HB

Figure 13.16: Hasgreen (Intel Core i7): E7F throughput and latency median

Focusing on both the throughput and latency results, similarly as it happened
when comparing the results reported for the E7P, and E6P configurations in the
previous section, and for the same reasons, the throughput and latency results re-
ported for the E7F configuration are very similar to the throughput and latency
results reported for the E6F configuration.

Tables 13.21, and 13.22 below report the throughput and latency median achieved
respectively in the 31228 machine (Intel Xeon), and Hasgreen (Intel Core i7) when
executing the E7C configuration with the number of volatility aggregation, stream
matching and options pricing threads,WPPT threads, reported in the left-most col-

154

13. Experimental Results and Analysis

umn, using and not the heartbeat mechanism, according to the naming conventions
introduced in Section 13.1.

Table 13.21: 31228 (Intel Xeon): E7C throughput and latency median

Throughput (tuples/s) Latency Median (µs)
NO HB HB NO HB HB

1 296.00 297.00 1743 4304
4 1185.00 1179.00 27712 28250
8 2258.95 2255.95 48191 47797
12 3221.94 3218.95 63808 63856
16 2656.96 2672.95 103034 103585
20 3024.79 3024.79 144382 145165
24 3557.76 3559.76 164811 165661
27 4125.71 4110.24 185902 185969

Table 13.22: Hasgreen (Intel Core i7): E7C throughput and latency median

Throughput (tuples/s) Latency Median (µs)
NO HB HB NO HB HB

1 343.00 343.00 1896 1532
2 714.00 713.00 12505 13466
3 1054.00 1054.00 18889 18888
4 900.00 902.00 36418 35533
5 1073.00 1073.00 45405 46263
6 1208.98 1210.00 54726 54741
7 1403.00 1402.00 64081 64515

1 4 8 12 16 20 24270

1,000

2,000

3,000

4,000

#WPPT threads

T
hr
ou

gh
pu

t
(t
up

le
s/
s)

Throughput

1 4 8 12 16 20 24270

0.5

1

1.5

2
·105

#WPPT threads

La
te
nc
y
(µ
s)

Latency Median

NO HB
HB

Figure 13.17: 31228 (Intel Xeon): E7C throughput and latency median

155

13. Experimental Results and Analysis

1 2 3 4 5 6 70

500

1,000

1,500

#WPPT threads

T
hr
ou

gh
pu

t
(t
up

le
s/
s)

Throughput

1 2 3 4 5 6 70

2

4

6

·104

#WPPT threads
La

te
nc
y
(µ
s)

Latency Median

NO HB
HB

Figure 13.18: Hasgreen (Intel Core i7): E7C throughput and latency median

To help better appreciating the way throughput and latency scale as moreWPPT
threads are used, Figures 13.17, and 13.18 above plot all the results reported in
Tables 13.21, and 13.22.

Focusing on both the throughput and latency results, similarly as it happened
when comparing the results reported for the E7F, and E6F configurations earlier in
this section, and for the same reasons, the throughput and latency results reported
for the E7C configuration are very similar to the throughput and latency results
reported for the E6C configuration.

156

14
Related Work

In this chapter, state of the art work related to the research performed in the
context of this Thesis is briefly introduced and analyzed in comparison to the con-
tributions introduced in the previous chapters.

In the scope of shared-memory parallelization, lock-free synchronization, [5], has
progressively gained popularity motivating the research towards lock-free synchro-
nizing concurrent data-structures such as the queues proposed in [35, 32, 16] used in
the scope of this thesis thanks to the NOBLE library [42, 43]. A good compendium
of some of the most relevant concurrent data-structures to date can be found in
[19, 20] which served as a great source of reference in the context of this Thesis
together with [25], which elaborate on the implementation of the most common
concurrent data-structures with a strong penchant towards lock-freedom.

In the scope of data-streaming, the ScaleGate data-structure introduced in Section
3.2, has been proposed by the Division of Networks and Systems of the Department
of Computer Science and Engineering at Chalmers as a key building block for parallel
efficient stream processing solutions [7, 22].

This data-structure, which actually represents a key building block in the last
iterations of the stream processing engine introduced in the previous chapters, has
been used to address generic data-streaming problems such as multiway aggregation
[6], and stream join [21, 23], as well as scope-specific data-streaming problems such as
the production of deterministic real-time analytics of geospatial data streams [24]. It
is worth mentioning that the multiway aggregation solution [6], and the stream join
solution [21, 23] strongly inspired respectively the volatility aggregation solutions
introduced in Chapters 10 and 11, and the stream matching solution introduced in
Chapter 12.

In the scope of computational finance, several papers highlight the continuously
increasing high throughput and low latency and energy consumption requirements
demanded to process financial streams of data [17, 14, 30]. The first two cited papers
also elaborate on the definition of platform independent energy and performance
metrics.

One of the most widely approached financial computational problems approached
in the literature is the pricing of equities and in particular options in its many

157

14. Related Work

flavors. Two main trends to approach options pricing problems are identified in
[17, 10], either based on Monte Carlo models, or grid-based or binomial models.

As anticipated in Chapter 6, in [29] the single-asset European options pricing
problem is approached relying on an underlying binomial tree model strongly in-
spired by the classical options pricing literature [4, 8]. Even though the operator
presented in this paper is the one used to price options in all the different itera-
tions of the options pricing stream processing engine introduced in this Thesis, the
approach followed in this paper strongly differs from the approach followed in this
Thesis. The former focuses on parallelizing the operator itself as much as possible
in order to maximize throughput profiting from architecture specific optimizations
such as vectorization whereas the latter focuses on the integration of the operator in
a stream processing engine pursuing the increase of throughput as well as the small-
est increase as possible of latency and ensuring that options are output in the same
order as their corresponding settings are provided to the stream processing engine.
Another architecture specific approach to price, in this case, American options on
GPUs implementing the Least Squares Monte Carlo method [31], is introduced in
[12].

More complex options pricing and equity pricing problems are approached in
[10, 3, 38] which respectively approaches the problems of pricing multi-asset Amer-
ican options, pricing more elaborate equity products and parallelizing the pricing
operators through the usage of GPUs, and pricing swing options on GPGPUs.

Other widely approached problems concern market-risk assessment. In [9], the
problem of calculating of the correlation matrix is approached targeting low latency
and profiting from the specific architecture features of the Blue Gene supercomputer.
In [2], the problem of computing the diagonal of inverse covariance matrices for
uncertainty quantification in risk analysis is approached reducing its complexity
from cubic to quadratic. The assessment of the underlying market volatility has
also been approached from different theoretical points of view in [1, 39, 18]. In the
scope of this thesis, a more conservative approach to the assessment of volatility
[41], has been integrated in the window size and window advance sliding-window
model introduced in [6].

158

15
Future Work

The research effort performed in the context of this Thesis inspired the prolifer-
ation of many potential research lines which could not be covered in the scope of
the Thesis here reported. This chapter briefly outlines the most interesting open
research lines which can take as a starting point the research contributions reported
in the scope of this Thesis.

In order to better understand the mathematical nature of the underlying operators
introduced in this Thesis, one interesting line of research would involve approaching
the visualization of the values assigned to the tuples the by the different operators
in conjunction with the input data used by these operators. This could lead to
interesting insights towards the definition of computationally-cheaper estimation
operators leading to further increases in throughput and decreases in latency.

Given the fact that the binomial options pricing operator has not been internally
parallelized but instead used in parallel to price independent options contracts, it
should be straight forward to try different single-threaded options pricing operators
targeted for more complex options pricing tasks such as Bermudan options pric-
ing, multi-asset options pricing or stochastic volatility model based options pricing.
Another interesting line of research would involve trying to parallelize either the
binomial options pricing operator or a different options pricing operator in order
to profit from the ScaleGate data-structure increasing throughput and reducing la-
tency in a similar manner as the parallel sliding-window based volatility aggregation
operator introduced in Chapter 11 does. One intermediate approach between the
two previous research lines would be to profit from the vectorialization capabilities
of the Xeon Phi coprocessor in the 31228 machine in a similar manner as done in
[29] to expedite the behavior of the binomial option pricing operator as used in the
different experiments performed in the scope of this thesis.

Given the fact that the parallelization approach followed in Chapter 11 to dis-
tribute the workload derived from the maintenance of the underlying sliding-window
model is actually inherent to the underlying sliding-window model independently of
the internal behavior of the volatility aggregation sliding windows, a potentially
fruitful research line would involve profiting from the parallelization logic intro-
duced in Chapter 11 in order to parallelize different stateless or stateful aggregation
operators. This can be achieved by simply modifying the internal data-structure of
the volatility aggregation windows, the set of values retrieved from the tuples to be

159

15. Future Work

provided in the different procedures described in Chapter 11, and the update and
consume procedures introduced in Listing 10.1.

One example of aggregation operator which might be interesting testing as de-
scribed above would be a tendency line aggregator whose output can be potentially
used to determine whether to trigger or not a bid or ask order according to the
expected behavior of the underlying asset as summarized by the tendency line ag-
gregator. An interesting way to assess the quality of the resulting stream of bid and
ask orders would be to model given the tuples belonging to the financial stream of
tuples introduced in Section 5.1.1 the achieved earnings or losses given an initial
simulated budget. In addition to this example, other non-necessarily financial ag-
gregation operators can also profit from the aforementioned sliding-window model
based parallelization.

Apart from the approached options pricing, volatility aggregation and stream
matching problems, other interesting financial problems such as the ones approached
in [10, 3, 38] briefly described in the previous chapter can be approached on a stream-
ing fashion profiting from the ScaleGate data-structure similarly as the aforemen-
tioned problems have done in the context of this thesis.

Another interesting research line would involve carefully profiling the behavior
of the different solutions presented in the previous chapters to identify potential
performance bottlenecks derived from the specific implementation of the operators
and concurrent data-structures. In this research line, carefully configuring the CPU
affinity of the different process threads in the stream processing engine could lead to
a reduction in the cache access contention potentially improving both the reported
throughput and latency for all the experiments.

A natural future research line would be the one following the path already outlined
by the main research lines followed in the context of this Thesis. Further iterations
beyond the seven ones reported in this Thesis can be introduced further introducing
new functionality to the stream processing engine or trying different configurations,
such as letting the SIT thread introduced in Chapter 12 directly serve tuples to the
second ScaleGate instance and letting the stream matching logic be executed by a
single stream matching process thread before serving the tuples this thread would
share with the options pricing threads.

Given the ScaleGate data-structure ability to deal with multiple input physical
and logical streams of data, an interesting research line would involve letting the
output thread monitor the latencies registered by each tuple allowing it to add in
case of need control tuples to the input ScaleGate instance to dynamically rearrange
the load balance dedicating more threads to volatility aggregation or options pricing
according to the needs deducted by the output thread.

160

15. Future Work

Finally, a very interesting research line would involve executing in a wider variety
of machines with different architectures such as more than one socket, all the itera-
tions of the stream processing engine as done in the 31228 and Hasgreen machines
in order to extend the experimental results reported and analyzed in Chapter 13.

161

15. Future Work

162

16
Discussion and Conclusion

In this Thesis the ScaleGate concurrent data-structure introduced by the Division
of Networks and Systems of the Department of Computer Science and Engineering
at Chalmers has been implemented in C and used to approach three main computa-
tional finance problems, namely options pricing, volatility aggregation and stream
matching, in the scope of data streaming. As a result, the experimental financial
stream processing engine described in Chapter 12 has been produced. This stream
processing engine is able to efficiently process two different financial streams pro-
ducing aggregated market volatility measurements on a sliding window basis and
pricing options contracts based on the information resulting from matching the two
streams of data.

In the chapters describing the different iterations of the aforementioned stream
processing engine, efficient ways to either parallelize an operator or let it process
independent tuples in parallel yet ensuring that tuples are output by the stream
processing engine in the same order as they are input to it, have been introduced.
Worth mentioning is the heartbeat mechanism introduced in Chapter 9 to expedite
the behavior of ScaleGate yet meeting the aforementioned ordering constraint, which
achieves when used in most the stream processing engine configurations orders of
magnitude lower latency metrics than the ones achieved without making use of it
yet achieving the same performance in terms of throughput.

163

16. Discussion and Conclusion

164

Bibliography

[1] T. G. Andersen, T. Bollerslev, F. X. Diebold, and H. Ebens. The distribution of
realized stock return volatility. Journal of Financial Economics, 61(1):43–76,
2001.

[2] C. Bekas, A. Curioni, and I. Fedulova. Low Cost High Performance Uncer-
tainty Quantification. In Proceedings of the 2Nd Workshop on High Perfor-
mance Computational Finance, WHPCF ’09, pages 8:1–8:8, New York, NY,
USA, 2009. ACM.

[3] A. Bernemann, R. Schreyer, and K. Spanderen. Pricing structured equity prod-
ucts on GPUs. In High Performance Computational Finance (WHPCF), 2010
IEEE Workshop on, pages 1–7, Nov 2010.

[4] F. Black and M. Scholes. The Pricing of Options and Corporate Liabilities.
Journal of Political Economy, 81(3):637–654, 1973.

[5] D. Cederman, A. Gidenstam, P. H. Ha, H. Sundell, M. Papatriantafilou, and
P. Tsigas. Lock-free Concurrent Data Structures. CoRR, abs/1302.2757, 2013.

[6] D. Cederman, V. Gulisano, I. Nikolakopoulos, M. Papatriantafilou, and P. Tsi-
gas. Concurrent Data Structures for Efficient Streaming Aggregation. Report,
Chalmers University of Technology, 2013.

[7] D. Cederman, V. Gulisano, I. Nikolakopoulos, M. Papatriantafilou, and P. Tsi-
gas. Brief Announcement: Concurrent Data Structures for Efficient Streaming
Aggregation. In Proceedings of the 26th ACM Symposium on Parallelism in
Algorithms and Architectures, SPAA ’14, pages 76–78, New York, NY, USA,
2014. ACM.

[8] J. C. Cox, S. A. Ross, and M. Rubinstein. Option pricing: A simplified ap-
proach. Journal of Financial Economics, 7(3):229–263, 1979.

[9] D. Daly, K. D. Ryu, and J. E. Moreira. Multi-variate finance kernels in the
Blue Gene supercomputer. In High Performance Computational Finance, 2008.
WHPCF 2008. Workshop on, pages 1–7, Nov 2008.

[10] D. M. Dang, C. C. Christara, and K. R. Jackson. Pricing multi-asset American
options on Graphics Processing Units using a PDE approach. In High Per-
formance Computational Finance (WHPCF), 2010 IEEE Workshop on, pages
1–8, Nov 2010.

[11] P. M. Dubois, M. Annavaram, and P. Stenström. Parallel Computer Organiza-
tion and Design. Cambridge University Press, 2012.

[12] M. Fatica and E. Phillips. Pricing American Options with Least Squares Monte
Carlo on GPUs. In Proceedings of the 6th Workshop on High Performance
Computational Finance, WHPCF ’13, pages 5:1–5:6, New York, NY, USA,
2013. ACM.

165

Bibliography

[13] B. Gedik, R. R. Bordawekar, and P. S. Yu. Celljoin: a parallel stream join
operator for the cell processor. The VLDB Journal, 18(2):501–519, 2009.

[14] G. Georgakoudis, C. J. Gillan, A. Sayed, I. T. A. Spence, R. Faloon, and D. S.
Nikolopoulos. Methods and Metrics for Fair Server Assessment under Real-
Time Financial Workloads. CoRR, abs/1501.00048, 2015.

[15] A. Gidenstam, M. Papatriantafilou, H. Sundell, and P. Tsigas. Efficient and
Reliable Lock-Free Memory Reclamation Based on Reference Counting. IEEE
Transactions on Parallel and Distributed Systems, 20(8):1173–1187, Aug 2009.

[16] A. Gidenstam, H. Sundell, and P. Tsigas. Principles of Distributed Systems:
14th International Conference, OPODIS 2010, Tozeur, Tunisia, December 14-
17, 2010. Proceedings, chapter Cache-Aware Lock-Free Queues for Multiple
Producers/Consumers and Weak Memory Consistency, pages 302–317. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2010.

[17] C. J. Gillan, D. S. Nikolopoulos, G. Georgakoudis, R. Faloon, G. Tzenakis, and
I. Spence. On the Viability of Microservers for Financial Analytics. In High
Performance Computational Finance (WHPCF), 2014 Seventh Workshop on,
pages 29–36, Nov 2014.

[18] V. Golosnoy, B. Gribisch, and R. Liesenfeld. The conditional autoregressive
Wishart model for multivariate stock market volatility. Journal of Economet-
rics, 167(1):211–223, 2012.

[19] V. Gramoli. More Than You Ever Wanted to Know About Synchronization:
Synchrobench, Measuring the Impact of the Synchronization on Concurrent Al-
gorithms. In Proceedings of the 20th ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming, PPoPP 2015, pages 1–10, New York,
NY, USA, 2015. ACM.

[20] V. Gramoli. More Than You Ever Wanted to Know About Synchronization:
Synchrobench, Measuring the Impact of the Synchronization on Concurrent
Algorithms. SIGPLAN Not., 50(8):1–10, Jan. 2015.

[21] V. Gulisano, I. Nikolakopoulos, M. Papatriantafilou, and P. Tsigas. ScaleJoin:
a deterministic, disjoint-parallel and skew-resilient stream join enabled by con-
current data structures. Technical report, Chalmers University of Technology,
2014. 12.

[22] V. Gulisano, I. Nikolakopoulos, M. Papatriantafilou, and P. Tsigas. Data-
Streaming and Concurrent Data-Object Co-design: Overview and Algorith-
mic Challenges. In Lecture Notes in Computer Science. European Symposium
on Algorithms, ESA 2015, Patras, Greece, 16 September 2015, pages 242–260,
2015.

[23] V. Gulisano, I. Nikolakopoulos, M. Papatriantafilou, and P. Tsigas. Scalejoin:
A deterministic, disjoint-parallel and skew-resilient stream join. In Big Data
(Big Data), 2015 IEEE International Conference on, pages 144–153, Oct 2015.

[24] V. Gulisano, I. Nikolakopoulos, I. Walulya, M. Papatriantafilou, and P. Tsi-
gas. Deterministic Real-time Analytics of Geospatial Data Streams Through
ScaleGate Objects. In Proceedings of the 9th ACM International Conference on
Distributed Event-Based Systems, DEBS ’15, pages 316–317, New York, NY,
USA, 2015. ACM.

166

Bibliography

[25] M. Herlihy and N. Shavit. The Art of Multiprocessor Programming, Revised
Reprint. Elsevier, 2012.

[26] M. P. Herlihy and J. M. Wing. Linearizability: A Correctness Condition for
Concurrent Objects. ACM Trans. Program. Lang. Syst., 12(3):463–492, July
1990.

[27] B. W. Kernighan and D. M. Ritchie. The C Programming Language. Prentice
Hall Professional Technical Reference, 2nd edition, 1988.

[28] B. Klemens. 21st Century C: C Tips from the New School. O’Reilly Media,
2012.

[29] S. Li. Binomial Options Pricing Model Code for Intel© Xeon
Phi™ Coprocessor. Technical report, Intel Developer Zone,
May 2014. https://software.intel.com/en-us/articles/
binomial-options-pricing-model-code-for-intel-xeon-phi-coprocessor.

[30] A. Lindeman. Opportunities for shared memory parallelism in financial mod-
eling. In High Performance Computational Finance (WHPCF), 2010 IEEE
Workshop on, pages 1–6, Nov 2010.

[31] F. A. Longstaff and E. S. Schwartz. Valuing American options by simulation:
A simple least-squares approach. Review of Financial Studies, pages 113–147,
2001.

[32] C. Lu, T. Masuzawa, and M. Mosbah, editors. Principles of Distributed Sys-
tems: 14th International Conference, OPODIS 2010, Tozeur, Tunisia, Decem-
ber 14-17, 2010. Proceedings. Springer Berlin Heidelberg, Berlin, Heidelberg,
2010.

[33] R. W. Melicher and E. A. Norton. Introduction to Finance: Markets, Invest-
ments, and Financial Management. Wiley, 2011.

[34] M. M. Michael. Hazard pointers: safe memory reclamation for lock-free objects.
IEEE Transactions on Parallel and Distributed Systems, 15(6):491–504, June
2004.

[35] M. M. Michael and M. L. Scott. Simple, Fast, and Practical Non-blocking
and Blocking Concurrent Queue Algorithms. In Proceedings of the Fifteenth
Annual ACM Symposium on Principles of Distributed Computing, PODC ’96,
pages 267–275, New York, NY, USA, 1996. ACM.

[36] Nyxdata. Daily TAQ Client Specification, 2.1. edition, June 2015. http://
www.nyxdata.com/doc/243156.

[37] OpenMP Architecture Review Board. OpenMP Application Programming Inter-
face, v 4.5 edition, November 2015. http://www.openmp.org/mp-documents/
openmp-4.5.pdf.

[38] G. Pagès and B. Wilbertz. Parallel implementation of Quantization methods for
the valuation of swing options on GPGPU. In High Performance Computational
Finance (WHPCF), 2010 IEEE Workshop on, pages 1–5, Nov 2010.

[39] Z. Qu and P. Perron. A stochastic volatility model with random level shifts and
its applications to S&P 500 and NASDAQ return indices. The Econometrics
Journal, 16(3):309–339, 2013.

[40] J. Reinders. An Overview of Programming for Intel© Xeon© processors and
Intel Xeon Phi™ coprocessors. © 2012, Intel Corporation, rev 20120131 edition,
October 2012.

167

https://software.intel.com/en-us/articles/binomial-options-pricing-model-code-for-intel-xeon-phi-coprocessor
https://software.intel.com/en-us/articles/binomial-options-pricing-model-code-for-intel-xeon-phi-coprocessor
http://www.nyxdata.com/doc/243156
http://www.nyxdata.com/doc/243156
http://www.openmp.org/mp-documents/openmp-4.5.pdf
http://www.openmp.org/mp-documents/openmp-4.5.pdf

Bibliography

[41] S. M. Ross. Introductory Statistics. Elsevier Sciences, 3rd edition, 2010.
[42] H. Sundell and P. Tsigas. NOBLE Professional Edition Application Program-

mers Interface (API). © 2008 Parallel Scalable Solutions AB, May 2008.
[43] H. Sundell and P. Tsigas. NOBLE Professional Edition v2.2 Developers Manual.

© 2009 Parallel Scalable Solutions AB, March 2009.
[44] A. S. Tanenbaum and H. Bos. Modern Operating Systems. Prentice Hall Press,

Upper Saddle River, NJ, USA, 4th edition, 2014.
[45] A. Williams. C++ Concurrency in Action: Practical Multithreading. Manning

Publications, 2012.

168

	List of Figures
	List of Tables
	List of Listings
	Introduction
	Context and Motivation
	Goals, Challenges and Limitations
	Structure

	Shared-Memory Parallelism and Lock-Free Synchronization
	Shared-memory parallelism in C and pthreads
	Processes, threads, and Pthreads
	OpenMP
	Thread safety
	Lock-based synchronization
	Lock-free synchronization

	Thread safe pseudo-random numbers generation in C

	The C++11 Memory Model and its emulation in C
	Memory Management
	Reference Counting
	Hazard Pointers

	The impact of caches in performance
	Cache misses and contention
	Cache misses and memory alignment

	Data-Streaming
	Concurrent queues
	ScaleGate
	Sliding-Windows
	The Window Size Only Sliding-Windows Model
	The Window Size and Window Advance Sliding-Windows Model

	Finance
	Relevant Financial Problems for this Thesis
	Options Pricing
	Monte Carlo Models
	Binomial Models
	Black-Scholes

	Volatility

	Framework
	Data Sources
	Financial Stream
	Options Settings Stream

	Main Program: The Options Pricing Financial Stream Processing Engine
	Auxiliary Programs
	Financial Dataset Analyzer
	Input Generator
	Output Analyzer
	Excel Master Index

	Test Environment
	Language and Compiler: C and GCC
	Machines
	31228: Intel Xeon
	Hasgreen: Intel Core i7

	Single-Threaded Binomial Options Pricing
	Involved Threads
	Structure of the Tuples
	Used Data-Structures
	Behavior of the Operators
	The Single-Threaded Binomial Options Pricing Operator
	Integrating the Single-Threaded Binomial Options Pricing Operator

	Batching Based Multi-Threaded Binomial Options Pricing
	Involved Threads
	Structure of the Tuples
	Used Data-Structures
	Behavior of the Operators
	The Batching Based Multi-Threaded Binomial Options Pricing Operator
	Integrating the Batching Based Multi-Threaded Binomial Options Pricing Operator

	Queue-ScaleGate-Based Multi-Threaded Binomial Options Pricing
	Involved Threads
	Structure of the Tuples
	Used Data-Structures
	Behavior of the Operators
	The Queue-ScaleGate-Based Multi-Threaded Binomial Options Pricing Operator
	Integrating the Queue-ScaleGate-Based Multi-Threaded Binomial Options Pricing Operator

	ScaleGate-ScaleGate-Based Multi-Threaded Binomial Options Pricing
	Involved Threads
	Structure of the Tuples
	Used Data-Structures
	Behavior of the Operators
	The ScaleGate-ScaleGate-Based Multi-Threaded Binomial Options Pricing Operator
	Integrating the ScaleGate-ScaleGate-Based Multi-Threaded Binomial Options Pricing Operator

	Single-Threaded Volatility Aggregation
	Involved Threads
	Structure of the Tuples
	Used Data-Structures
	Behavior of the Operators
	The Single-Threaded Volatility Aggregation Operator
	Integrating the Single-Threaded Volatility Aggregation Operator

	Multi-Threaded Volatility Aggregation
	Involved Threads
	Structure of the Tuples
	Used Data-Structures
	Behavior of the Operators
	The Multi-Threaded Volatility Aggregation Operator
	Integrating the Multi-Threaded Volatility Aggregation Operator

	Multi-Threaded Volatility Aggregation and Stream Matching
	Involved Threads
	Structure of the Tuples
	Used Data-Structures
	Behavior of the Operators
	The Multi-Threaded Volatility Aggregation and Stream Matching Operator
	Integrating the Multi-Threaded Volatility Aggregation and Stream Matching Operator

	Experimental Results and Analysis
	Experimental setup
	Experimental Results and Analysis
	Single-Threaded Binomial Options Pricing, and Single-Threaded Volatility Aggregation (E1F, and E5P)
	Multi-Threaded Binomial Options Pricing Operators (E2F, E3F, and E4F)
	Single-Threaded Volatility Aggregation, and Multi-Threaded Binomial Options Pricing (E5F)
	Multi-Threaded Volatility Aggregation (E6P)
	Multi-Threaded Volatility Aggregation and Multi-Threaded Binomial Options Pricing (E6F, and E6C)
	Multi-Threaded Volatility Aggregation and Stream Matching (E7P)
	Multi-Threaded Volatility Aggregation and Stream Matching, and Multi-Threaded Binomial Options Pricing (E7F, and E7C)

	Related Work
	Future Work
	Discussion and Conclusion
	Bibliography

